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Abstract 

Climate change and global warming have sparked a great interest in the research 

on the health effects of temperature in recent years.  However, there are some 

limitations of current research on temperature-mortality relationship. Firstly, few 

studies have explored the effects of temperature on health in tropical or subtropical 

developing countries, particular in Vietnam (i.e. ranked 7th among the 10 countries 

most affected by climate change). Secondly, previous studies indicated that urban 

populations are more susceptible to the heat compared to non-urban population. 

There is, however, no study so far has directly quantified the magnitude of 

attributable deaths due to urban heat island (UHI) as well as the attributable deaths 

can be prevented by the increase of green space. Finally, some methodological 

issues remain to be addressed, such as the uncertainty in estimation of minimum 

mortality temperature (MMT). This PhD thesis aims to contribute to the solving of 

above deficits.   

I wrote this thesis using a publication style based on three manuscripts. 

Chapter 1 provides a literature review on the effect of climate change and health, 

specifically focus on the direct effect of climate change (i.e. temperature effect) on 

mortality. This chapter also summarizes time series regression, which has been 

widely used in examine temperature-mortality relationship, as well as address 

limitations of current evidence in the field. Then, it follows by aims and objectives 

of the study and significance of the study. 

The three manuscripts are presented in chapter 2-4, each of them try to solve one-

by-one limitation addressed in chapter 1. Basically, chapter 2 used the distributed 

lag non-linear model to investigate the relationship between temperature and 

mortality in Hue, a sub-tropical city of Vietnam. Chapter 3 directly quantifies the 

attributable deaths due to urban heat island effect in Ho Chi Minh City of Viet 

Nam using dynamic downscaling with a regional weather model. Chapter 4 

proposes a method to estimate confidence interval of minimum mortality 

temperature (MMT) with application using Japanese data. 

Chapter 5 gives some conclusions based on results of the three manuscripts and 

some directions for future researches. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Climate change, temperature and health 

During the last century, our global climate is changing rapidly, due to anthropogenic 

greenhouse gas emissions. The Intergovernmental Panel on Climate Change has 

concluded that warming of the climate system is obviously from 1950s (Figure 1.1, 

upper). The planet’s average temperature has increased by 0.74 °C from 1906 to 

2005 (IPCC 2007b). During the past three decades, the global temperature increased 

significantly compared to that of previous decades (Figure 1.1, bottom). It is 

projected that climate change will increase the global average temperature not only 

by between 1.1 °C and 6.4 °C by 2100, but also to increase the frequency of extreme 

weather events (e.g., heat waves, cyclones and storms) (Medina-Ramon and 

Schwartz 2007). 

 

Figure 1.1 Globally averaged combined land and ocean surface temperatures 

(Smith, Woodward et al. 2014) 
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Climate change is a significant and emerging threat to public health in many 

countries worldwide (Smith, Woodward et al. 2014). Climate change affect 

population health through three main pathways: direct exposure, in-direct exposure, 

and through social and economic disruption (Figure 1.2). The direct pathway relates 

to changes in mortality or morbidity rates associated with exposure to temperature.  

 

Figure 1.2. Schematic diagram of pathways by which climate change affects 

health (Smith, Woodward et al. 2014) 

Several studies showed that many countries already experienced burdens of 

temperature-related mortality from current weather patterns. These studies showed 

that mortality tends to rise with increasing hot or cold temperatures from an 

optimum temperature value, therefore form a U-, V-, J-, reversed J-shape (or L-

shape) (Figure 1.3) (Kalkstein and Greene 1997, Gellert 1998, McMichael, 

Wilkinson et al. 2008, Hajat, Vardoulakis et al. 2014, Tawatsupa, Dear et al. 2014) 
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Figure 1.3. Common shapes of temperature and mortality relationship  

(Guo 2012) 

 

Many factors may modify the effects of temperature on human health, categorized 

into intrinsic and extrinsic factors (Kovats and Hajat 2008). The intrinsic factors (i.e. 

related to individuals aspects) include age (Filleul, Le Tertre et al. 2004), gender 

(Bell, O'Neill et al. 2008), chronic diseases (Stafoggia, Forastiere et al. 2006), 

Whereas, the extrinsic factors (i.e. related to environmental and behavioral aspects) 

include socio-economic disadvantage (Rey, Fouillet et al. 2009), housing 

(Vandentorren, Bretin et al. 2006), urban heat island effect (Goggins, Chan et al. 

2012, Xu, Dadvand et al. 2013), access to air conditioning and availability of health 
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care services (Kovats and Hajat 2008). Importantly, populations in developing 

countries are more sensitive to impacts of climate change, because they have limited 

adaptive capacity and more vulnerable people (Costello, Abbas et al. 2009). 

Previous studies also indicated some levels of population adaptation to temperature 

effect by investigating the geographical and temporal variations in the temperature-

mortality association. For example, people living in cities with milder summers 

were more susceptible to heat than people in cities with higher summer temperatures 

(i.e. spatial variation) (Medina-Ramon and Schwartz 2007). Interestingly, some 

studies reported a progressive reduction in heat-related mortality along the last 

century, despite the aging of populations (i.e. temporal variation) (Gasparrini, Guo 

et al. 2015, Todd and Valleron 2015). There are some factors that may contribute to 

this reduction trend, such as the improvements in social, environmental, behavioral, 

and health-care factors. Particularly, the increase of air conditioning is one of the 

main factors (Rogot, Sorlie et al. 1992, Curriero, Heiner et al. 2002, Medina-Ramon 

and Schwartz 2007, Ostro, Rauch et al. 2010, Gasparrini, Guo et al. 2015). In 

addition, some studies reported that heat waves occurring early in the summer are 

associated with a higher mortality risk than heat waves occurring later in the summer 

(Baccini, Biggeri et al. 2008), implicating a short-term adaptation of population to 

changing climate. 

 

1.1.2 Time series analysis in environmental epidemiology 

Time series methods have been hugely applied in environmental epidemiology 

during the last couple of decades to investigate the acute health effects of air 

pollution, and more recently outdoor temperature and other weather parameters 

(Armstrong 2006). 

The data of time series in temperature and health study usually consists of a single 

observation for every day in a city or multiple cities. For each day (row) there is a 

temperature measurement (i.e. exposure) on that day, and the total number of deaths 

(i.e. outcome). In addition, the dataset may also contain daily measurements of 

potential confounders, for example ozone level and relative humidity. For a typical 

dataset, please consult an example in Figure 1.4 (London dataset) 
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Figure 1.4 Example of time series dataset in temperature and heath study 

(London data) (Bhaskaran, Gasparrini et al. 2013) 

 

The main aim of temperature and health study is to investigate an association 

between day-to-day variation in temperature and daily risk of death or other health 

outcomes (short-term effect). To do so, we often use time series regression with 

quasi-Poisson distribution to adjust for the over-dispersion of the outcome, while 

controlling for seasonality and long-term trend (Bhaskaran, Gasparrini et al. 2013). 

Figure 1.5 shows an example of time-series data of temperature and mortality in Ho 

Chi Minh City. In Figure 1.5 we can obviously see an association between 

temperature and mortality at short-term scale (e.g, in summer of year 2010 when 

temperature increased, the mortality counts also increased), while we also see the 

seasonality and long-term trend of temperature and mortality counts.  

In addition, because the causal relationships between temperature, air pollutants, 

and mortality is complicated, adjusting for air pollutants or not in modelling 

temperature and mortality association is still a debate. For example, in previous 

studies Ozone was treated as a confounder, sometimes as an effect modifier, or as a 

co-exposure (Reid, Snowden et al. 2012). Though there is no simple solution for 

this debate, it is suggested that a Directed acyclic graphs (DAGs) could help to 

further clarify the role of air pollutants in temperature-mortality study. 
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Figure 1.5 Time-series of mortality, temperature (ºC ) and relative humidity (%) in 

Ho Chi Minh City (2010-2013). The unit for temperature is Celsius (oC), and unit for 

relative humidity is percent (%) 

 

The relationship between temperature and mortality has two main characteristics: 

non-linear relationship and lag effect. Previous studies showed a non-linear curve 

in temperature-mortality relationship (Basu and Samet 2002, Basu 2009). 

Meanwhile, lag effect means the temperature not only increases the risk of mortality 

at current day, but also persists for a period of time (from several days in heat effect 

to several weeks in cold effect) (Baccini, Biggeri et al. 2008, Muggeo and Hajat 

2009). Recently, the non-linear relationship and lag effect can be modeled flexibly 

using distributed lag non-linear model (DLNM). This framework is firstly 

developed by Armstrong et.al (Armstrong 2006), following by an implementation 

of this framework into R, an open statistical software with several publications 

(Gasparrini, Armstrong et al. 2010, Gasparrini 2014). Since then, DLNM 

framework has been widely used in the field of temperature and health. Figure 1.6 

shows an example of application of DLNM into temperature and health study. 
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Figure 1.6 An example of application DLNM framework into temperature 

and health study (Gasparrini and Armstrong 2013) 

 

1.1.3 Limitations of current evidences (temperature and health studies) 

Global warming and other weather phenomena, such as El Niño, have sparked new 

interest in the weather-mortality relation. Most studies on exploring temperature-

mortality relation, however, have been conducted in developed countries (i.e. North 

America, Europe), majority of which are temperate and cold climate regions (Hajat 

and Kosatky 2010). Meanwhile, very few studies have been done in tropical or 

subtropical developing countries (Mannig, Müller et al. 2013), particularly in 

Vietnam. According to Global Climate Index 2015, Vietnam ranked 7th among the 

10 countries most affected by climate change (Kreft, Eckstein et al. 2015). Over the 

last 50 years, the mean temperature of Vietnam has increased by 0.5-0.70C, and the 

sea level has risen by 20 cm. 

Some evidence suggests that urban populations are more susceptible to heat 

compared to people living in non-urban areas (McGeehin and Mirabelli 2001). The 

main reason for that phenomenon is because of urban heat island (UHI) (Milojevic, 

Armstrong et al. 2016). However, no study so far has directly quantified the 
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magnitude of attributable deaths due to urban heat island as well as the attributable 

deaths can be prevented by the increase of green space.  

The temperature-mortality relationship has been described as a J- or U-, or V- 

shaped curve as common shapes (Figure 1.3), where a temperature, so called 

minimum mortality temperature (MMT), has a lowest risk of mortality. MMT is 

found to vary greatly by countries with different climate condition (Guo, Gasparrini 

et al. 2014, Honda, Kondo et al. 2014) and by time (Todd and Valleron 2015). This 

variation suggests some level of adaptation, but ability to characterize it is limited 

in previous studies by the absence of a method to describe uncertainty in estimated 

MMT. For example, one of the comment of reviewer in Todd et.al study is “I think 

it’s a nice conclusion, but I’d like to see more to justify their conclusions—for 

example, confidence intervals or hypothesis testing” (Barrett 2015). 

1.2 Aims and Objectives 

This doctoral thesis aims to fill these gaps (stated in 1.1.3) by offering a multi-city 

assessment of the health effect of temperature in cities with different climate 

condition, including Vietnam (Hue and Ho Chi Minh City), and Japan (47 

prefectures). Specific objectives are: 

 To examine short term effect of temperature on mortality in Hue, a sub-

tropical city of Vietnam using distributed lag non-linear model (DLNM). 

 To investigate the urban heat island (UHI) effect on mortality in Ho Chi Minh 

city, Vietnam using dynamic downscaling with a regional weather model. 

 To propose a novel statistical method to estimate MMT and its 95% 

confidence interval (CI). Then apply this method to explore the MMT 

movement in Japan with 40 years of data.  

Each of the following chapter 2-4 will address one of the stated objectives above. 

 

  



18 
 

Chapter 2: Characterizing the relationship between temperature and 

mortality in tropical and subtropical cities: A distributed lag nonlinear model 

analysis in Hue, Viet Nam, 2009-2013 

 

 

 

 

This chapter is based on the published report describled below: 

Dang TN, Seposo XT, Duc NHC, Thang TB, An DD, Hang LTM, Long TT, 

Loan BTH, Honda Y: Characterizing the relationship between temperature 

and mortality in tropical and subtropical cities: a distributed lag non-

linear model analysis in Hue, Viet Nam, 2009–2013. Global Health Action 

2016, 9:10.3402/gha.v3409.28738 
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2.1  Abstract 

Background: The short-term association between temperature and mortality was 

found to have U-, V-, or J shapes in developed temperate countries, however, in 

developing tropical/subtropical cities, it remains unclear.  

Objectives: To investigate the relationship between temperature and mortality in 

Hue, a subtropical city in Viet Nam.  

Methods: We collected daily mortality data from A6 system in Viet Nam with 6214 

deceased persons between 2009 and 2013. A distributed lag nonlinear model 

(DLNM) was used to examine the temperature effects on all-cause, and cause-

specific mortality by assuming negative binomial distribution for count data. We 

developed an objective-oriented model selection with four steps following the 

Akaike information criterion (AIC) rule (i.e. smaller AIC value is the better model).  

Results: High temperature-related mortality was more associated with short lags, 

whereas, low temperature-related mortality was more associated with long lags. The 

low temperatures increased higher risk in all-category mortality compared to high 

temperatures. We observed elevated temperature-mortality risk in vulnerable 

groups such as: elderly people (high temperature effect, RR= 1.42, 95% CI=1.11–

1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52 ), female (low 

temperature effect, RR=2.19, 95% CI=1.14–4.21), respiratory disease (high 

temperature effect, RR=2.45, 95% CI=0.91–6.63), and cardiovascular (high 

temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 

95% CI = 0.92 – 4.28). 

Conclusions: In Hue, the temperature significantly increased risk of mortality, 

especially in vulnerable groups (i.e. elderly, female, people with respiratory and 

cardiovascular diseases). These findings may provide a foundation for developing 

adequate policies to address the effects of temperature on health in Hue City.  

Keywords: high temperature effects, low temperature effects, hot effects, cold 

effects, time series regression 
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2.2  Introduction 

Climate change is a significant and emerging threat to public health in many 

countries worldwide, which directly relates to a short-term increase in mortality 

rates during exposure to low or high temperature (Smith, Woodward et al. 2014). 

Most studies exploring the temperature-mortality relationship have been conducted 

in developed countries (i.e. North America, Europe) of which the majority are 

temperate and cold climate regions (Hajat and Kosatky 2010). Meanwhile, very few 

studies have been performed in tropical or subtropical developing countries 

(McMichael, Wilkinson et al. 2008, Mannig, Müller et al. 2013).  

According to the Global Climate Index 2015, Viet Nam ranked 7th among the 10 

countries most affected by climate change (Kreft, Eckstein et al. 2015). 

Unsurprisingly, 9 out of 10 of those countries were developing countries, and one 

country was a middle-income country. In a recent study by Guo et al. (Guo, 

Gasparrini et al. 2014) which assessed the global variation of high temperature and 

low temperature effects on mortality, the data set was collected and analyzed from 

306 communities in 12 countries including Australia, Brazil, Thailand, China, 

Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States, and Canada, 

however, none of the 10 countries most affected by climate change mentioned above 

was included. This fact may cause an imbalance in assessing the impact of climate 

change on health. 

In temperate and cold climate regions, the temperature-mortality relationship has 

been confirmed to have the usual U-, V-, or J-shapes (Baccini, Biggeri et al. 2008, 

Anderson and Bell 2009). However, the latest multi-country study showed an 

unusual so called L-pattern with a 0-21 lag period, where low temperature effects 

had a steeper slope and high temperature effects were almost flat (Gasparrini, Guo 

et al. 2015). Interestingly, these patterns only occurred in tropical or subtropical 

cities (see Additional file 1, Figure S1). The reason for the L-pattern being a 

characteristic in these tropical or subtropical cities remains unclear. In addition, 

some studies found that both high temperature and low temperature effects resulted 

in immediate increases in mortality in tropical and subtropical climate areas 

(Hashizume, Wagatsuma et al. 2009, Guo, Punnasiri et al. 2012). While other 

studies have observed that low temperature effects being delayed for several days 

to weeks in temperate and cold climate areas (Anderson and Bell 2009). 

A better understanding of the temperature-mortality relationship in 

tropical/subtropical developing cities is crucial for the establishment of local 

intervention strategies against temperature effects, and contributes to projection 
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studies on a global scale (Honda, Kondo et al. 2014). We therefore undertook time-

series analyses coupled with DLNM to investigate the short-term (day-to-day 

variation) association between temperature and mortality in Hue, a subtropical city 

in Viet Nam. This is the first study in the field using daily mortality data in Viet 

Nam. 

2.3  Materials and Methods 

Study area: 

Viet Nam is located between 8 and 24 degrees north of the equator, having 

remarkably different climates from the northern to the southern regions. According 

to the Kȍppen-Geiger classification, the climate of Southern Viet Nam (e.g., Ho Chi 

Minh City) can be classified as "tropical wet and dry climate - Aw” with the annual 

mean temperature above 18°C and a dry winter. On the other hand, the northern 

parts (e.g. Hanoi city) have a "humid subtropical - Cwa” climate, with the warmest 

month over 22°C, the coldest month between -3°C  and 18°C and a dry winter (Peel, 

Finlayson et al. 2007). Hue is the capital city of Thua-Thien-Hue province in North-

central Viet Nam, 71.7 km2 in area and with a population of around 348000 in year 

2013 (Committee) (14). The climate of Hue is "tropical monsoon climate - Am” 

under the Kȍppen-Geiger classification (Peel, Finlayson et al. 2007). Hue has a mild 

cold-wet winter and hot-dry summer with a rainy season from September to January 

and a dry season from March to August. The yearly average temperature is around 

25°C, and yearly rainfall is approximately 3000 mm.  

Mortality and weather data 

Since 1956, mortality data in Viet Nam has been collected from the civil registration 

and vital statistics system. The quality of mortality data in this system, however, 

was very poor; the number of deaths especially was often incomplete and the cause 

of death inaccurate (Rao, Osterberger et al. 2010). Since 1992, a mortality data-

collecting system based on the commune health center has been introduced in an 

official book named A6 (hereafter, namely A6 mortality reporting system) (Heath. 

1992). Data from the A6 are collected at the commune health center level and then 

forwarded to the provincial and central levels. The quality of A6 mortality data is 

good enough as validated in a previous study (Stevenson, Ngoan le et al. 2012). In 

this study, daily mortality data from 27 community health centers in Hue was 

collected from the A6 mortality reporting system, from 2009-2013. The data 

included 6214 deceased persons with information about date of death, sex, age, and 

cause of death classified by the 10th Revision of the International Classification of 
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Disease (ICD10) code. The deceased person was, however, anonymous (only name 

abbreviations were used). We obtained permission from Thua-Thien-Hue provincial 

health department before collecting the data. Weather data was obtained from the 

National Oceanic and Atmospheric Administration's (NOAA) National Climate 

Data Center (NCDC). The necessary information included daily minimum, average, 

and maximum temperatures, dewpoint temperature, and relative humidity. We did 

not include air pollution levels in our model due to the data unavailability. However, 

some studies found that temperature effect was not confounded or modified due to 

air pollution exposure (Hales, Salmond et al. 2000, Rainham and Smoyer-Tomic 

2003, Basu, Feng et al. 2008, Pinheiro, Saldiva et al. 2014).  

Statistical model 

We used a negative binomial coupled with a distributed lag nonlinear model 

(DLNM) to examine the short-term association (day-to-day variation) between 

temperature and all-cause mortality (i.e. the daily total number of death counts). 

Negative binomial distribution was employed to adjust for the Poisson over-

dispersion of daily death count Yt (23). In addition, DLNM was applied to describe 

the nonlinear effect of temperature (in the temperature-mortality dimension) and lag 

(in the lag-mortality dimension) simultaneously (Gasparrini, Armstrong et al. 2010). 

The general model is specified as follows:   

  Yt ~ Negative binomial (µt) 

Log (Yt) = α + β1*Tt,l + β2* DOWt+ β3*NCS (time, df=i/year) + β4*NCS(relative 

humidity, df=3) + β5*NCS(dewpoint temperature, df=3)     

    (1) 

where α is the intercept; t is the day of the observation; Yt is daily all-cause death 

count on day t; Tt,l is a matrix obtained by applying the “cross-basis” DLNM 

functions to temperature, β1 is the vector of coefficients for Tt,l, and l is the lag days. 

According to previous studies, the natural cubic spline (NCS) with three degrees of 

freedom (df) was selected to control for potential confounding factors (i.e. daily 

average relative humidity and daily average dewpoint temperature) (Peng, Dominici 

et al. 2006, Guo, Punnasiri et al. 2012). Time is a continuous variable ranging from 

1 on the starting day of observation to 1811 on the final day of observation within 

five years of data (2009-2013). To adjust for the long-term trend and seasonality, 

we used NCS smoothing for the time variable with i degrees of freedom per year. 

The day of the week on day t (DOWt) was used to control for the effect of weekday 

on daily mortality (e.g. on the weekends, mortality tended to be higher than that on 

week days). After a series of steps for model selection (Additional file 2), the final 
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model of temperature and all-cause mortality included 5 df per year of time variable 

(i value) for controlling seasonality and long-term trend,  an “NCS –NCS” DLNM 

using 4 df for the temperature dimension and 5 df for the lag dimension with 

maximum lag equal to 28. The model checking procedure was carried out to check 

the fitness of this final model and can be found in Additional file 3. For the cause-, 

age-, and sex-specific analyses, the outcome variable, all-cause daily death count Yt, 

was changed to cause-, age-, and sex-specific daily death count, whereas, the 

structure of predictors was the same as in the final model of all-cause mortality 

analysis. The cause-specific analysis included four categories: non-external (ICD10 

code A00-R99), cardiovascular (ICD10 code I00-I99), respiratory (ICD10 code 

J00-J99) and cancer mortality (ICD10 code C00-D48). The external mortality was 

excluded due to very small number of deaths per day (0.2 daily mean). The age-

specific analysis included two groups: 0-64 years old and >=65 years old (the 0-14 

years old group was not separated due to the small daily deaths). Given the technical 

nature of the statistical model, we invite readers to refer to a previous publication 

by Bhaskaran et al. (Bhaskaran, Gasparrini et al. 2013). 

Definition of high and low temperature effects: To quantify effects of 

temperature on mortality, we calculated relative risk (RR) of low temperature effect 

comparing the 1st temperature percentile (15.8oC) to 50th temperature percentile 

(26.3oC), and RR of high temperature effect comparing the 99th temperature 

percentile (32.4oC) to 50th temperature percentile, using the final DLNM model. 

RRs can be calculated at single lag (from lag 0 to lag 28), or can be can be calculated 

at cumulative lag (lag 0-2 for high temperature effect, and lag 0-28 for low 

temperature effect). For example, the cumulative RR of high temperature effect on 

mortality at lag 0-2 is estimated by exp((β0 + β1+ β2)*(32.4-26.3)), where βi are 

obtained by using a DLNM function of the average temperature with  i = 0, 1, 2 

previous days. 

2.4  Results 

Descriptive statistics 

A total of 6214 all-cause deaths were recorded in the study period from 2009 to 

2013, including 2215 (35.64%) from cardiovascular diseases and 1074 (17.28%) 

from cancer. The other main causes of death in the data were classified as malaise 

(ICD10 code R53), and cachexia (ICD10 code R64), which amounted to 1767 cases 

(accounting for 28.4% of all-cause deaths). These causes of death are, however, 

mainly associated with ageing condition. We decided to not examine the association 

between these specific causes with temperature, because we have already included 
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the association analysis between age-specific mortality and temperature as specified 

in the statistical model section. The proportion of male deaths was slightly higher 

compared to that of female deaths (53.49% vs. 46.51%). The majority of the 

deceased were older than 65 years (65.5%). Table 2.1 shows the descriptive 

statistics of daily mortality and daily weather conditions. On average, all-cause daily 

deaths amounted to three cases and ranged from 0 to 12 cases. The mean daily 

maximum temperature was 29.9°C, average temperature 25.7°C, and minimum 

temperature 21.7°C. These three temperature indicators were strongly associated 

with each other as shown in Figure 2.1.  

Table 2.1. Summary statistics of daily weather conditions and daily mortality 

in Hue, Viet Nam, 2009-2013. 

Variables Mean SD Minimum Percentile Maximum 

25% 50% 75% 

Maximum temperature 

(oC)  

29.9 5.5 15 26.2 31 34.2 42 

Average temperature (oC) 25.7 4.1 14.4 23 26.3 28.9 33.9 

Minimum temperature 

(oC)  

21.7 3.1 12.7 19.8 22.8 24.2 27.5 

Average dew point 

temperature (oC)  

22.1 2.7 12.5 20.6 22.9 24.1 28.5 

Average relative humidity 

(%) 

81.9  12.7 21.9 75.8 85 91.1 100 

All-cause mortality#  3.4 2.2 0 2 3 5 12 

Cause-specific mortality#        

External cause 0.2 0.4 0 0 0 0 4 

Non-external cause 3.2 2.1 0 2 3 4 12 

Cardiovascular 1.2 1.2 0 0 1 2 7 

Respiratory 0.1 0.3 0 0 0 0 2 

Cancer 0.6 0.8 0 0 0 1 5 

Sex-specific mortality#        

Male 1.8 1.5 0 1 2 3 10 

Female 1.6 1.4 0 1 1 2 8 

Age-specific mortality#        

0-14 years old 0.1 0.25 0 0 0 0 2 

15-64 years old 1.1 1.1 0 0 1 2 7 

>=65 years old 2.2 1.7 0 1 2 3 12 
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# the unit of mortality is number of deaths per day 
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Figure 2.1. Histograms, scatter plots and correlation coefficients between 

weather conditions and mortality in Hue, Viet Nam, 2009-2013 
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Temperature-mortality relationship 

The cumulative overall temperature effects on all-cause mortality at different lag 

periods are shown in Figure 2.2. In lags 0-1 and 0-2, the temperature-mortality 

relationship had a J-shaped pattern where only high temperatures increased the risks 

of mortality. In lags 0-3, 0-4 and 0-7, the relation appeared U-shaped wherein both 

high and low temperatures increased the risks of mortality. From lag 0-14 to lag 0-

28, however, the pattern was L-shaped wherein only low temperatures significantly 

increased the risks. These results indicated that the high temperature-related 

mortality was more associated with short lags, whereas, low temperature-related 

mortality was more associated with long lags. 

 



28 
 

Figure 2.2. Cumulative overall temperature effects on all-cause mortality at 

different lag periods.  

 

The final NCS-NCS model defined by DLNM cross-basis functions with 4 df for 

temperature dimension and 5 df for lag dimension. The reference was at the 

median of temperature. The red lines are the cumulative RRs, and grey regions are 

95% confidence intervals. 

Figure 2.3 shows the cumulative overall temperature effects on age-, and sex-

specific mortality. There was no separate analysis for the 0-14 age group due to the 

small number of daily deaths. The elderly group (>=65 years old) displayed higher 

risk of mortality at both high and low temperatures compared to 0-64 years old 

group. The high temperature effects in short lags (lag 0-2) were similar between 

male and female. In contrast, the low temperature effects in long lags (lag 0-28) 

were more prominent among females compared to males. In the cause-specific 

analysis (Figure 2.4), we observed a similar pattern with that of all-cause analysis, 

wherein high temperature effects were observed in short lags and low temperature 

effects in long lags, respectively. The exception, however, was cardiovascular 

mortality where the high temperature effects manifested in short lags and lasted in 

long lags. The pattern of temperature-mortality in respiratory-related case at long 

lags was not clear. One of the possible explanations for that is the number of 

respiratory deaths per day are insufficient.  
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Figure 2.3. Cumulative overall temperature effects on age-, and sex-specific 

mortality.  

Red lines are the cumulative RRs, and grey regions are 95% confidence intervals. 
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Figure 2.4. Cumulative overall temperature effects on cause-specific mortality.  

Red lines are the cumulative RRs, and grey regions are 95% confidence intervals. 

Figure 2.5 displays high and low temperature effects on all-cause and cause-

specific mortality at single lag (please refer to “definition of high and low 

temperature effects” in methods section for more detail). Both high and low 

temperature effects caused an immediate increase in the risk of all-cause mortality 
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as well as cause-specific mortality, with high temperatures being affected more 

acutely than low temperatures (high temperature effects occurred in day 0 vs. low 

temperature effects occurred after 2 days). In addition, high temperatures induced 

mortality displacement, while low temperatures did not show mortality 

displacement (except for cancer mortality where low temperatures also induced 

mortality displacement). 

 

Figure 2.5. The lag structures of high and low temperature effects on all-cause and 

cause-specific mortality.  
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The high temperature effect (left) is the effect of the 99th temperature percentile 

(32.4oC) relative to the 50th temperature percentile (26.3oC). The low temperature 

effect is the effect of the 1st temperature percentile (15.8oC) relative to the 50th 

temperature percentile (26.3oC).The red lines are the RRs at single lag, and grey 

regions are 95% confidence intervals. 

Table 2.2 shows the cumulative RRs of high temperature effect in lag 0-2, and low 

temperature effect in lag 0-28 in cause-, age-, and sex-specific mortality. In all-

category mortality (i.e. including cause-, age-, and sex-specific mortality), the RRs 

of low temperature effect were higher than RRs of high temperature effect (except 

for respiratory disease). We observed elevated temperature-mortality risk in 

vulnerable groups such as: elderly people (high temperature effect, RR= 1.42, 95% 

CI=1.11–1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52 ), female (low 

temperature effect, RR=2.19, 95% CI=1.14–4.21), respiratory disease (high 

temperature effect, RR=2.45, 95% CI=0.91–6.63), and cardiovascular (high 

temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 

95% CI = 0.92 – 4.28). 

Table 2.2. The cumulative effects of high and low temperatures on cause-, 

age-, and sex-specific mortality. 

Statistic High temperature effect a 

(95%CI)  

Low temperature effect b 

(95%CI)  

All–cause mortality 1.28 (1.04–1.58)* 1.78 (1.10–2.88)* 

Cause–specific 

mortality 

  

Non–external 1.32 (1.07–1.63)* 1.88 (1.15–3.07)* 

Cardiovascular 1.6 (1.15–2.22)* 1.99 (0.92–4.28) 

Respiratory 2.45 (0.91–6.63) 0.47 (0.03–8.19) 

Cancer 1.08 (0.69 – 1.68) 1.71 (0.58–5.05) 

Sex–specific 

mortality 

  

Male 1.28 (0.99–1.67) 1.42 (0.77–2.63) 

Female 1.27 (0.95–1.7) 2.19 (1.14–4.21)* 

Age–specific 

mortality 

  

0–64 years old 1.05 (0.76–1.46) 1.43 (0.65–3.14) 

>=65 years old 1.42 (1.11–1.83)* 2.0 (1.13–3.52)* 
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a High temperature effect is the cumulative RR comparing 99th temperature percentile (32.4oC) 

relative to 50th temperature percentile (26.3oC) in lag 0-2 
b Low temperature effect is the cumulative RR comparing 1st temperature percentile (15.8oC) 

relative to 50th temperature percentile (26.3oC) in lag 0-28 

* Significant at p value<0.05 

 

2.5  Discussion 

The study examined the temperature-mortality relationship in Hue, Viet Nam during 

the period 2009-2013. We found that the temperature-mortality cumulative overall 

curves changed through lag periods (Figure 2.2). Considering short lags, only high 

temperature effects were significant (formed a J-shape). However, considering long 

lags, only low temperature effects were significant (formed an L-shape). McMichael 

et al. (McMichael, Wilkinson et al. 2008) and Wu et al. (Wu, Xiao et al. 2013) found 

the same phenomenon happened in other tropical and subtropical cities. This 

phenomenon raised an important issue with regard to choosing the adequate lag 

periods for modeling the temperature-mortality relationship. For example, most 

studies chose lag 0-1 to model high temperature effects on mortality, and the authors 

found significant effects of high temperature on mortality (Hajat, Kovats et al. 2007). 

By restricting the study to short lags for high temperatures, however, other 

characteristics of high temperatures in long lags, such as mortality displacement, 

may not be fully described.   

The cumulative effects of temperature on all-cause mortality had an L-shape in lags 

0-14, 0-21 and 0-28 (Figure 2.2), which was induced by mortality displacement 

occurring in high temperatures (Figure 2.5). Mortality displacement refers to a 

phenomenon whereby excess daily deaths result from short-term displacement of 

the time of death (e.g. occurring in most frail individuals whose deaths have only 

been brought forward by a few days) (Basu 2009). Another study showed an L-

shaped temperature-mortality relationship when quantifying the effect of 

temperature on mortality in Ha Noi (Xuan le, Egondi et al. 2014). Ha Noi is in the 

northeast of Viet Nam and has a similar tropical climate and temperature 

distribution to Hue. The study in Ha Noi, however, used monthly data, therefore the 

occurrence of mortality displacement could not be fully examined. In addition, other 

studies using daily mortality data in tropical/subtropical regions also showed an L-

shaped pattern (Wu, Xiao et al. 2013, Bai, Cirendunzhu et al. 2014). The lag 

structures of these studies, nevertheless, had not been described in detail to confirm 

whether or not mortality displacement occurred. Basu et al. (Basu and Malig 2011) 

and Hajat et al. (Hajat, Armstrong et al. 2005) addressed the presence or absence of 
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mortality displacement depending on several factors including the baseline health 

status of population (presence of chronic diseases), the population at risk (elderly 

people), and other local factors. Mortality displacement occurring in Hue is 

understandable, because a majority of deaths were attributed to chronic diseases 

(35.64% cardiovascular diseases and 17.28% from cancer diseases) and the 

proportion of the deaths in the elderly older than 65 years was quite high (65.5% of 

the total deaths).  

Previous studies tried to project the impact of heat-related death on a global scale 

(Takahashi, Honda et al. 2007). As pointed out by Honda et al. (Honda, Kondo et 

al. 2014) the estimation of optimum temperature (OT) and the risk function of 

temperature on mortality in each area were needed to conduct the projection on a 

global scale. To estimate the OT, the temperature-mortality had to be assumed to 

have a V-shape (where the OT is the base of the V-shape). In Hue, however, and in 

other tropical/subtropical cities (as shown in Additional file 1, Figure S1), the 

temperature-mortality relationship had an L-shape with long lags. Therefore, the 

spatial pattern of temperature-mortality should also be taken into account when 

projecting the impact of heat-related death on a global scale. Hajat et al. (Hajat and 

Kosatky 2010) and Seposo et al. (Seposo, Dang et al. 2015) showed a huge paucity 

of research on the effect of temperature on mortality in tropical/subtropical 

developing areas compared to temperate/cold developed areas. Thus, for a better 

heat-related death projection on a global scale, more studies from 

tropical/subtropical developing areas warrant further exploration.   

In Hue, a subtropical city of Viet Nam showed higher mortality risk induced by low 

temperatures (in long lags) compared to high temperatures (in short lags) in all-

category mortality (Table 2.2). Other studies in subtropical regions (i.e. Brisbane, 

Australia and Guangzhou, China) reported that mortality in winter was higher than 

in summer (Ou, Song et al. 2013, Chau and Woo 2015). In a multi-country study, 

Gasparrini et al. (Gasparrini, Guo et al. 2015) found that the attributable deaths were 

more pronounced for low than for high temperatures, and the differences in 

attributable deaths between low and high temperatures were even more distant in 

tropical or subtropical cities (see Additional file 1, Figure S1). These results 

suggest that population in subtropical region suffers more from low temperature 

effects than high temperature effects. Within the context of global warming, many 

previous studies focused on the high temperature effects rather than low temperature 

effects. However, this finding indicated that the government of Hue City should pay 

attention to both high and low temperature effects when developing health policies 

in order to reduce impact of temperature effects. In addition, the acute low 
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temperature effects in this study (Figure 2.5) was also observed in other 

tropical/subtropical regions such as in Chiang Mai city, Thailand (Kȍppen tropical 

wet and dry climate-Aw) (Guo, Punnasiri et al. 2012), Monterey, California 

(Kȍppen-dry summer subtropical climate-Csb), Saō Paulo (Kȍppen-humid 

subtropical climate-Cfa), Mexico (Kȍppen-subtropical highland climate-Cwb) 

(McMichael, Wilkinson et al. 2008). These phenomena could be understood since 

people in tropical/subtropical regions were not well acclimatized to cold weather.  

Regarding the age-specific analysis, the effects of both high and low temperature 

were greater among the elderly (>=65 years old) compared to 0-64 years old group 

(Figure 2.3 and Table 2.2). Numerous studies have provided similar evidence that 

the elderly population is among the most vulnerable groups (Basu 2009). Aging 

induces a decrease in thermoregulatory abilities, together with the increased 

prevalence of chronic diseases, which are likely contribute to vulnerability to 

temperature effects in elderly people (Gasparrini, Armstrong et al. 2012). We found 

that low temperature effects were more pronounced for females than for males, 

which is in light with Ou et al.’s study (Ou, Song et al. 2013). The high temperature 

effects, however, were not significantly different in females compared to males. So 

far the evidence that sex modifies the effects of high temperature on mortality 

depends on location and population (Basu and Ostro 2008). We also observed that 

the RR of high temperature was highest in respiratory mortality through it did not 

reach significant level (Table 2.2). One of the physiological mechanisms that 

triggers respiratory deaths induced by high temperatures is that high temperatures 

can affect the lung function of chronically-ill and older people (Worfolk 2000, 

D'Ippoliti, Michelozzi et al. 2010). It should be noted that the effects were observed 

in cardiovascular mortality in both high and low temperature (Figure 2.4 and Table 

2.2). It implies that patients with cardiovascular disease should be taken care of 

during both hot and cold periods. Losing water and salt from sweating during 

exposure to high temperatures can cause haemoconcentration, which in turn leads 

to thrombosis. Moreover, exposure to low temperatures will slow down blood flow 

to the skin in order to preserve heat; increases blood cholesterol, levels of red blood 

cell counts and plasma fibrinogen. This will also induce thrombosis due to 

haemoconcentration (Carder, McNamee et al. 2005).   

Selecting an appropriate model is crucial when examining the temperature effects 

on mortality, as it can affect the ability to make a prediction (Anderson and Bell 

2009). In this study we proposed an objective-oriented DLNM approach based on 

the AIC rule in analyzing the temperature-mortality relationship rather than making 

strong prior assumptions. For example, choosing the df for time variable to control 
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seasonality and long-term trend, choosing the best temperature indicators (i.e. 

maximum, average or minimum temperature), as well as choosing the best fit df for 

NCS-NCS in temperature dimension and lag dimension.  

Our research contained some limitations, such as the lack of control for air pollution. 

The effect modification by air pollution, however, seems to be negligible, thus its 

inclusion might not really alter the relationship (Basu, Feng et al. 2008, Pinheiro, 

Saldiva et al. 2014). The information of A6 mortality data contained some missing 

values and the causes of death were misclassified in some cases (i.e. inconsistencies 

between the cause of death in text and ICD codes). In order to ensure the quality of 

mortality data, we sent our facilitators to every community health centers for 

random checking and collecting of missing values. 

2.6  Conclusion 

This is the first study using daily all-cause and cause-specific mortality data to 

examine the effects of temperature on mortality in Hue, Viet Nam. In Hue, high 

temperature-related mortality was more associated with short lags, whereas, low 

temperature-related mortality was more associated with long lags. Both high and 

low temperature effects occurred acutely, but low temperature effects lasted longer 

than high temperature effects and the high temperature effects induced mortality 

displacement. The low temperatures increased higher risk in all-category mortality 

compared to high temperatures. We observed that elderly people, females, patients 

with cardiovascular and respiratory disease were the most vulnerable groups 

affected by temperatures. These findings may provide a foundation for developing 

adequate policies to address the effects of temperature on health in Hue City. 

 

2.7. Supplement material chapter 2 

Please refer to the online version at: 

http://www.globalhealthaction.net/index.php/gha/rt/suppFiles/28738  
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3.1  Abstract 

Introduction: Previous studies have examined the intra-city variation in heat-

related mortality; of these, however, no study directly quantifies magnitude of the 

urban heat island (UHI) attributable risks to mortality. The purpose of this study is 

to investigate the attributable deaths due to UHI within Ho Chi Minh (HCM) city, a 

mega city of Vietnam using dynamic downscaling with a regional weather model. 

Methods: The analysis consists of the following steps: (1) We used dynamic 

downscaled weather model to estimate spatial temperatures of each districts with in 

HCM city. (2) For each district we calculated mortality attributable fractions (AFs) 

due to total heat, extreme-heat, and mild-heat, following the previous method by 

Gasparrini et al. (3) The difference of AF due to total heat between central districts 

(centers) and outer districts (outers) is then calculated, which we define as AF due 

to UHI effect. (4) We then perform linear regression between AFs with green space 

percentage of each district. 

Results: Overall, centers were hotter and drier compared to outers. The mean of 

average temperature of centers was 0.9oC higher compared to outers (28.4oC vs. 

27.5oC); whereas, the means of average relative humidity in centers and outers were 

68.6%, and 75.1% respectively. In addition, number of hot days (average 

temperature >= 30oC) was higher in centers compared to outers (108 days vs. 42 

days). The AFs due to total heat, extreme-heat, and mild-heat were 1.42%, 0.3%, 

and 1.12% respectively in centers; and were 1%, 0.26%, and 0.74% respectively in 

outers. Therefore, the AF due to UHI effect was 0.42%. Every increase in 1 km2 

green space per 1,000 people can prevent 7.4 deaths attributable to heat in HCM 

city 

Conclusions: The study found a difference in weather conditions, and AFs due to 

heat components between central districts and outer districts. The AF due to UHI 

effect in HCM city was substantial at 0.42%, and every km2 green space increase 

per 1,000 people can prevent 7.4 deaths due to heat. This information is valuable 

for authorities in considering how much the UHI effect on mortality may be 

minimized by implementing appropriate planning and intervention.  
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4.1  Abstract 

Background: Temperature-mortality relationship has described as J-, U-, V- shapes, 

in which the base of the shape is minimum mortality temperature (MMT). This 

study aims to propose a novel method to estimate the 95% confidence interval (CI) 

of MMT, and use that method to investigate direction as well as speed of MMT 

temporal movement in Japan using 40 years data. 

Methods: The analysis consists of the following steps: (1) Divided Japanese data 

into four decades. For each decade we modeled prefecture temperature-mortality 

relationship using distributed lag non-linear model (DLNM). (2) For calculating 

MMT and empirical 95% CI of MMT, we used a simulation method with 1000 times 

repetition. (3) A linear model: MMT = α + β1*time (time=1 for first, =2 for the 

second decade, etc.) + β2*Tmax85 (85th maximum temperature percentile for each 

decade) is constructed to explore the speed of MMT movement as well as to predict 

MMT using Tmax85 variable. 

Results: We successful estimated the 95% CI of MMT in each decades from 1973-

2012 of 47 prefectures in Japan. In overall, the MMT moved to the right over 40 

years in Japan, implies some level of adaptation to the heat. The linear model to 

estimate MMT from Tmax85, controlling for time trend of MMT is MMT = 11.18 

+ 0.87*decade + 0.52*Tmax85 

Conclusions: The study found a increased trend of MMT in Japan, which indicates 

considerable adaptation to the heat. Our method is quite promising in estimation of 

uncertainty of MMT as well as estimation of MMT using Tmax85; it can be used to 

determine threshold for heat-health action plan, and the heat-related projection 

model.  
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Chapter 5: General discussions 

5.1. Significance of the study 

This thesis (hopefully) can contribute to literature in the field of temperature 

and health by main points below: 

Chapter 2 characterized temperature and mortality relationship in Hue, a subtropical 

city in Vietnam using a flexible distributed lag non-linear model (DLNM). The 

results from chapter 2 could help to achieve a better understanding of the 

temperature-mortality relationship in tropical/subtropical developing cities, which 

is crucial for the establishment of local intervention strategies against temperature 

effects, and contributes to projection studies on a global scale.  

Chapter 3, to the best of our knowledge, for the first time quantified the attributable 

deaths due to urban heat island, and provided information about the attributable 

deaths can be prevented by an increase of green space. Such kind of information 

would be valuable for authorities in implementing appropriate planning and 

intervention policy in order to mitigate the health effects of temperature. In addition, 

this study used dynamic downscaling with a regional weather model (WRF model) 

to estimate the climate condition (e.g. temperature, humidity) at the district levels 

within a city. This WRF model can overcome the limitation of previous studies, in 

which they usually use one weather station or average value of several weather 

stations in a city as a approximate of city-wide temperature (Guo, Barnett et al. 

2013). More ever, so far the studies projecting heat related mortality at global scale 

have not yet considered the UHI effect in projection (Honda, Kondo et al. 2014). 

The results of chapter 3, however, showed a substantial UHI effect on mortality, 

which suggest that considering UHI can results a better projection in future studies. 

Chapter 4 proposed a novel statistical method to estimate MMT and its 95% CI. 

This novel method is quite helpful because it help to justify the hypothesis testing 

of the adaptation level based on MMT in future studies. In addition, the method can 

be useful for determining the threshold of heat warning system because it consider 

the uncertainty of MMT. It is worth to notice that, recently Tobias et.al published a 

paper proposing a similar idea in estimating MMT uncertainty using Spanish data 

[http://www.ag-myresearch.com/2016_tobias_epidem.html]; through Tobias 

method and the method proposing here are independent at the time of discovery. In 

chapter 4, we also used this method to apply for Japan in order to understand the 

adaptation level to heat of Japanese in 40 years, and we provided a better equation 

to estimate MMT from Tmax85 when controlling for the time trend of MMT. 
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5.2. Future development 

Research on projection impact of UHI on mortality 

The study in chapter 3 contains several limitations. Therefore I am going to extend 

this study as below direction: 

Firstly, the study only conducted in Ho Chi Minh City, which is a tropical city with 

rapid urbanization. Therefore, the results of this study may not generalize to other 

cold, temperate climate cities or cities have not the same pace of urbanization 

compared to Ho Chi Minh City. In a near future I want to explore this topic more 

using national-wide Japanese data.  

Secondly, We did not identify vulnerable groups due to UHI effect in the study in 

chapter 3. An association study between UHI and cause-, sex-, age-, social-

economic specific mortality is warranted to overcome this deficit.  

Thirdly, so far we only evaluated the impact of currently UHI impact on mortality. 

However, by applying the same down scaled weather model, we intend to extend 

this study to evaluate the future impact of UHI.\ 

Finally, a cost-benefit of green space intervention is warranted for future study in 

order to fully evaluate the effectiveness of green space intervention in reducing heat-

mortality. 

Research on spatial minimum temperature mortality (MMT), and mortality 

attributable number and fraction 

In chapter 4, we successful develop a method to estimate MMT and its 95% 

confidence interval. We also applied that method to explore the temporal variation 

of MMT in Japan using 40 year data. In a near future, I want to expand this topic by 

using Multi-Country Multi-City (MCC) data. MCC is an international collaborative 

research program on associations between weather and health 

(http://mccstudy.lshtm.ac.uk/). The MCC currently involves an international 

network of 27 researchers from various research institutions (including Prof. 

Yasushi Honda and me), and has an established protocol for data collection, data 

sharing, mode of collaboration and authorship agreement. The dataset currently 

comprises data on mortality, air pollution and weather variables for 410 locations 

within 18 countries around the world, including over 81 million deaths. In addition, 

a time lag between MMT movement and autonomous adaptation is warranted for 

future study 
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I also want to investigate the temporal variation of mortality attributable number 

(AN) and fraction (AF) due to heat and cold.  The AN and AF are very much related 

to MMT, because as MMT they can indicate the autonomous adaptation to climate 

change. But by studying temporal variation of MMT, we can only explore the 

adaptation to the heat, whereas by studying AN and AF, we can explore both the 

adaptation to cold and the heat.  
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Appendix 1 

 

The full paper of Doan Quan Van and Hiroyuki Kusaka can be found online at: 

http://onlinelibrary.wiley.com/doi/10.1002/joc.4582/full 

  

http://onlinelibrary.wiley.com/doi/10.1002/joc.4582/full
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Appendix 2 

R code for the method to estimate uncertanty of MMT in chapter 4 

 

The analysis divided in to 5 main parts, describe below: 

Part 1: Data preparation (65yr, 47 prefectures, 40years) 
load the 40 years Japanese data 

#read the datafile: 65yr_47cities_ver3.csv 
setwd("H:/o dia D may lab thay Honda/o E may tinh core i7_lab thay Hond
a/temp") 
japan.40years <- read.csv("65yr_47cities_ver3.csv",header=T) 
head(japan.40years) 

the code chunk below is to load packages and atributable risk function 

# CITIES 
cities <- as.character(unique(japan.40years$cityname)) 
# LOAD THE FUNCTION attrdl 
source("2014_gasparrini_BMCmrm_RcodeData/attrdl.R") 
#LOAD PACKAGES 
library(dlnm) ; library(mvmeta) ; library(splines);require(MASS);requir
e(lmtest); 
library(tsModel); library(boot) 

Specification of DLNM functions and create matrix to store the results 

  # SPECIFICATION OF THE EXPOSURE FUNCTION 
varfun = "bs" 
vardegree = 2 
varper <- c(10,75,90) 
cenper <- 75 
 
### simple DLNM 
#varfun = "bs" 
#df <- 3 
#degree=2 
 
# lag function 
#lag <- 14 
#lagnk <- 2 
###### 
 
# SPECIFICATION OF THE LAG FUNCTION 
lag <- 21 
lagnk <- 3 
 
# DEGREE OF FREEDOM FOR SEASONALITY 
dfseas <- 8 
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#dfseas <- 4 
 
# MODEL FORMULA 
formula <- all~cb+dow+ns(time,df=dfseas*length(unique(year))) 
 
regions <- data.frame( 
  citycode = unique(japan.40years$citycode), 
  cityname = cities) 
 
# COEFFICIENTS AND VCOV FOR OVERALL CUMULATIVE SUMMARY 
coef <- matrix(NA,nrow(regions),3+2, 
               dimnames=list(cities)) 
vcov <- vector("list",nrow(regions)) 
names(vcov) <- cities 

From now on we will analyze each decade data. 

Analysis for decade 1 from 1973-1982 

japan1<-japan.40years[japan.40years$decade==1,] 
#japan1<-japan.40years[japan.40years$decade==2,] 
#japan1<-japan.40years[japan.40years$decade==3,] 
#japan1<-japan.40years[japan.40years$decade==4,] 
attach(japan1) 
# CREATE A LIST WITH THE CITY SERIES 
dlist <- lapply(cities,function(x) japan1[japan1$cityname==x,]) 
 
# COMPUTE PERCENTILES 
per <- t(sapply(dlist,function(x)  
  quantile(x$Tmax,c(1,2.5,10,25,50,75,90,97.5,99)/100,na.rm=T))) 

Part2. Obtaint the BLUP for each prefectures 

# RUN THE LOOP 
 
# LOOP 
time <- proc.time()[3] 
for(i in seq(length(dlist))) 
{ 
  #i<-1 
  # PRINT 
  cat(i,"") 
   
  # EXTRACT THE DATA 
  data <- dlist[[i]] 
   
  # DEFINE THE CROSSBASIS 
  #argvar <- list(fun=varfun,degree=degree,df=df) 
  #cb <- crossbasis(data$Tmax,lag=lag,argvar=argvar,arglag=list(knots=l
ogknots(lag,lagnk))) 
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  argvar <- list(fun=varfun,knots=quantile(data$Tmax,varper/100,na.rm=T
),       degree=vardegree,cen=quantile(data$Tmax,cenper/100,na.rm=T))  
   
  cb <- crossbasis(data$Tmax,lag=lag,argvar=argvar,                 arg
lag=list(knots=logknots(lag,lagnk))) 
   
  #summary(cb) 
   
  # RUN THE MODEL AND OBTAIN PREDICTIONS 
  model <- glm(formula,data,family=quasipoisson,na.action="na.exclude") 
  pred <- crosspred(cb,model) 
   
  # REDUCTION TO OVERALL CUMULATIVE 
  red <- crossreduce(cb,model) 
  coef[i,] <- coef(red) 
  vcov[[i]] <- vcov(red) 
}  
 
# CREATE AVERAGE TEMPERATURE AND RANGE AS META-PREDICTORS 
avgtmean <- sapply(dlist,function(x) mean(x$Tmax,na.rm=T)) 
rangetmean <- sapply(dlist,function(x) diff(range(x$Tmax,na.rm=T))) 
#######################################################################
######### 
# META-ANALYSIS 
 
mv <- mvmeta(coef~avgtmean+rangetmean,vcov,data=regions,control=list(sh
owiter=T)) 
summary(mv) 
 
#######################################################################
######### 
# OBTAIN BLUPS 
 
blup <- blup(mv,vcov=T) 

Part3. Determine the MMT 

# RE-CENTERING 
 
# GENERATE THE MATRIX FOR STORING THE RESULTS 
minperccity <- mintempcity <-tmax.dist<- rep(NA,length(dlist)) 
names(mintempcity) <- names(minperccity) <-names(tmax.dist)<- cities 
 
# DEFINE MINIMUM MORTALITY VALUES: EXCLUDE LOW AND VERY HOT TEMPERATURE 
for(i in seq(length(dlist))) { 
  data <- dlist[[i]] 
  predvar <- quantile(data$Tmax,1:99/100,na.rm=T) 
  # REDEFINE THE FUNCTION USING ALL THE ARGUMENTS (BOUNDARY KNOTS INCLU
DED) 
   #argvar <- list(x=predvar,fun=varfun,degree=degree,df=df, Bound=rang
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e(data$Tmax,na.rm=T)) 
   
    argvar <- list(x=predvar,fun=varfun,                 knots=quantile
(data$Tmax,varper/100,na.rm=T),degree=vardegree,                 Bound=
range(data$Tmax,na.rm=T),cen=quantile(data$Tmax,cenper/100,na.rm=T)) 
   
  bvar <- do.call(onebasis,argvar) 
  minperccity[i] <- (1:99)[which.min((bvar%*%blup[[i]]$blup))] 
  mintempcity[i] <- quantile(data$Tmax,minperccity[i]/100,na.rm=T) 
} 

Part 4. Plot overall cure and MMT for each decade 

pdf("MMT_dlnmlag21.pdf",width=8,height=9) 
xlab <- expression(paste("Temperature (",degree,"C)")) 
par(mfrow=c(4,3)) 
for(i in seq(length(dlist))) { 
  data <- dlist[[i]] 
  # NB: CENTERING POINT DIFFERENT THAN ORIGINAL CHOICE OF 75TH 
  #argvar <- list(x=data$Tmax,fun=varfun,degree=degree,df=df, cen=minte
mpcity[i]) 
  argvar <- list(x=data$Tmax,fun=varfun,degree=vardegree,              
   knots=quantile(data$Tmax,varper/100,na.rm=T),cen=mintempcity[i]) 
  bvar <- do.call(onebasis,argvar) 
  pred <- crosspred(bvar,coef=blup[[i]]$blup,vcov=blup[[i]]$vcov, 
                    model.link="log",by=0.1) 
  plot(pred,type="n",ylim=c(0,2.5),yaxt="n",lab=c(6,5,7),xlab=xlab,ylab
="RR", 
       main=cities[i]) 
  ind1 <- pred$predvar<=mintempcity[i] 
  ind2 <- pred$predvar>=mintempcity[i] 
  lines(pred$predvar[ind1],pred$allRRfit[ind1],col=4,lwd=1.5) 
  lines(pred$predvar[ind2],pred$allRRfit[ind2],col=6,lwd=1.5) 
  #mtext(cities$countryname[i],cex=0.7,line=0) 
  #axis(1,at=-8:8*5) 
  axis(2,at=1:5*0.5) 
  breaks <- c(min(data$Tmax,na.rm=T)-1,seq(pred$predvar[1], 
                                           pred$predvar[length(pred$pre
dvar)],length=30),max(data$Tmax,na.rm=T)+1) 
  hist <- hist(data$Tmax,breaks=breaks,plot=F) 
  hist$density <- hist$density/max(hist$density)*0.7 
  prop <- max(hist$density)/max(hist$counts) 
  counts <- pretty(hist$count,3) 
  plot(hist,ylim=c(0,max(hist$density)*3.5),axes=F,ann=F,col=grey(0.95)
, 
       breaks=breaks,freq=F,add=T) 
  axis(4,at=counts*prop,labels=counts,cex.axis=0.7) 
  #mtext("N",4,line=-0.5,at=mean(counts*prop),cex=0.5) 
  abline(v=mintempcity[i],lty=3) 
  #abline(v=c(per[i,c("2.5%","97.5%")]),lty=2) 
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  abline(v=c(per[i,c("1%","99%")]),lty=2) 
} 
 
dev.off() 

Part 5. MMT simulation 

library(TTR) 
library(MASS) 
library(tsModel) 
library(splines) 
library(dlnm) 
library(mvtnorm) 
 
DLNM<-matrix(NA,47,4) 
colnames(DLNM)<-c("MMT.temp","MMT.per","MMT95.per","MMT95.temp") 
 
Test <- function (y){ 
  which.min (y) 
} 
 
 
n<-99 
n.sims <- 1000 
y.rep <- array (NA, c(n.sims, n)) 
test.rep <- rep (NA, n.sims) 
test.rep2 <- matrix (NA, n.sims,47) 
 
for (i in 1:47){ 
   
  data<-dlist[[i]] 
   
  #define the pred variable according to Antonio 
  predvar <- quantile(data$Tmax,1:99/100,na.rm=T) 
  # REDEFINE THE FUNCTION USING ALL THE ARGUMENTS (BOUNDARY KNOTS INCLU
DED) 
  argvar <- list(x=predvar,fun=varfun, 
                 knots=quantile(data$Tmax,varper/100,na.rm=T),degree=va
rdegree, 
                 Bound=range(data$Tmax,na.rm=T),cen=quantile(data$Tmax,
cenper/100,na.rm=T)) 
  bvar <- do.call(onebasis,argvar) 
  X<-bvar 
  #MMT 
  mmt.per <- (1:99)[which.min((bvar%*%blup[[i]]$blup))] 
  mmt.temp <- quantile(data$Tmax,mmt.per/100,na.rm=T) 
  DLNM[i,1]<-mmt.temp 
  DLNM[i,2]<-mmt.per 
   
  ### SIMULATION 
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  for (s in 1:n.sims){ 
    X <- bvar 
    newbeta<-rmvnorm(1,blup[[i]]$blup,blup[[i]]$vcov) 
    y.hat <-  exp(X %*% t(newbeta)) 
    y.rep[s,] <- y.hat 
    test.rep2[s,i] <- (1:99)[which.min(y.rep[s,])] 
  } 
} 
 
for (i in 1:47) { 
  data<-dlist[[i]] 
  quant<-quantile(test.rep2[,i],c(0.025,0.975)) 
  quant.temp<-quantile(data$Tmax,quant/100,na.rm = T) 
   
  simul.mmt.per <- round(median(test.rep2[,i]),1) 
  simul.mmt.temp <- quantile(data$Tmax,simul.mmt.per/100,na.rm=T) 
   
  DLNM[i,3]<-paste(simul.mmt.per,"(",round(quant[1],1),",",round(quant[
2],1),")") 
  DLNM[i,4]<-paste(simul.mmt.temp,"(",round(quant.temp[1],1),",",round(
quant.temp[2],1),")") 
} 
 
 
pdf("MMTdist_decade1_1to99_lag21.pdf") 
par(mfrow=c(4,3)) 
 
for (i in 1:47){ 
  hist(test.rep2[,i],main="Empirical Distribution of MMT%", 
       xlab="Maximum temperature (oC)", 
       breaks=100,freq=FALSE,xlim=c(1,99)) 
   
  mtext(regions[i,2],cex=0.8) 
} 
dev.off() 

 

 


