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Abstract

Two-dimensional materials have great deal of attention not only in nanoscience but

also in nanothechnology because of its unique geometric and electronic properties.

The electronic properties of these materials are strongly affected by their edges. How-

ever, it is still unclear the correlation between edge geometry and electronic struc-

ture. In this thesis, we study the energetics and electronic properties of edges of

two-dimensional materials using density functional theory.

First, we study the energetics and electronic properties of graphene edges. Our

calculations showed that the stability of graphene edges strongly depends on the

length of the zigzag edge portion. Near-zigzag edges are less stable than near-armchair

edges because of the large number of states at the Fermi level (EF ) arising from edge

states. Thus, the edge stability strongly correlates with the electronic structures near

the EF of graphene nanoribbons.

Under a lateral electric field, we showed the anomalous screening effect against the

external electric field; the electrostatic potential oscillates rapidly at the atomic site in

zigzag shape, leading to over-screening in the vicinity of edge C atomic sites. The pen-

etration depth of anomalous screening depends on the edge structure of nanoribbons.

We also showed that the nearly free electron (NFE) state emerges in the vacuum

region outside the leftmost edge of the ribbons and shifts downward with increas-

ing the lateral electric field. Electrons are injected into the NFE state of graphene

nanoribbons by the critical electric field. NFE states strongly depend on the mutual

arrangements of graphene nanoribbons with respect to the electric field, while the π

electron states are insensitive. We clarified that the electric field concentration around

the edges leads to the orientation dependence of the NFE states on the field.

Next, we study the energetics and electronic properties of hexagonal boron ni-

tride (h-BN) nanoribbons. Our calculations showed that the stability of h-BN edges

strongly depends on the edge termination. In the case of hydrogenated edges, the

formation energy is constant for all edge shapes ranging from armchair to zigzag,

indicating that h-BN may exhibit rich variation in their edge atomic arrangements

under static conditions. The hydrogenated h-BN nanoribbons are insulators with an

energy gap of 4 eV irrespective of edge shape. In contrast, the formation energy
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of h-BN nanoribbons with clean edges monotonically increases as the edge shape is

changed from armchair to zigzag because of the increase of density of states at the

EF arising from dangling bond states. We also study the polar properties of h-BN

nano-flakes by evaluating their electrostatic potential. The polarity of the nanorib-

bons is sensitive to their edge shape, edge hydrogen coverage, and uniaxial tensile

strain. By controlling the hydrogen concentration at edges and the uniaxial tensile

strain, we can invert the polarity of h-BN, indicating that h-BN nanoribbons can

exhibit non-polar properties at a particular condition, even though the nanoribbons

essentially have polarity at the edge. We also found that the edge angle affects the

polarity of nanoribbons with hydrogenated edges.
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Chapter 1

Introduction

Layered materials, such as graphite [1.1–1.3], hexagonal boron nitride (h-BN) [1.4],

transition metal dichalcogenides (TMDCs) [1.5, 1.6], and black phosphorus [1.7–1.9]

are starting materials of two-dimensional atomic layer materials. Because each layer

is weakly bound via van der Waals interaction, it is expected to exfoliate the atomic

layer from these layered materials. Indeed, several two-dimensional materials have

been successfully synthesized, ever since the mechanical exfoliation of graphene from

graphite in 2004 [1.1]. These materials have great deal of attention not only in

nanoscience but also in nanothechnology because of its unique geometric and elec-

tronic properties.

Graphene [Fig. 1.1(a)] has a honeycomb network structure of sp2 C atoms that

form an ultimate thin film with single-atom thickness. This honeycomb network of

sp2 C atoms means that graphene behaves as a metal with a vanishing density of

states at the Fermi level (EF ) because of the presence of two linear dispersion bands

at the EF (Fig. 1.2). An angular-resolved photoelectron spectroscopy experiment

on graphene indeed demonstrated the emergence of a pair of linear dispersion bands

at the EF [1.10]. These linear dispersion bands lead to massless electrons near the

EF , which endow graphene with a rich variety of interesting physical properties. For

example, the mobility limit of a graphene sheet is expected to exceed the highest

known mobility of inorganic semiconductors and semiconducting carbon nanotubes

(CNTs) [1.11]. Furthermore, this also leads to the unusual quantum Hall effect [1.12–

1.15].

On the other hand, the electronic structure of graphene is known to be fragile

with respect to foreign materials such as insulating substrates [1.16–1.18], metal elec-

trodes [1.19,1.20], other graphene/graphite layers [1.21–1.24], and an external electric

field [1.25–1.30]. Among the various foreign elements that can form hybrid structures

with graphene, electric fields are one of the important factors for determining their

electronic properties in device structures. Because an electric field is essential for
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operating and functionalizing electronic devices, it is necessary to understand the

fundamental behavior of graphene under the electric fields.

h-BN [Fig. 1.1(b)] is insulating version of graphene which consists of boron and

nitrogen atoms. Chemical difference between B and N atoms make h-BN an insulator

with a large energy gap of 5 eV between the top of the valence band and the bottom

of conduction band localized on N and B atoms, respectively (Fig. 1.3). Insulating

property and atomically flat networks of h-BN make them a supporting substrate for

graphene without substantial modification of their fundamental properties, leading

to the remarkable carrier mobility [1.31–1.34]. h-BN itself have also attracted much

attention because of their structural similarities and electronic differences to those of

graphene [1.35–1.38].

TMDCs, such as MoS2 [Fig. 1.1(c)], WSe2, etc., also possess the honeycomb net-

work structure as the case of graphene. In contrast, one transition metal atom is

combined with six chalcogen atoms situated above and below the transition metal

layer. Thus, TMDCs does not have single-atom thickness in contrast to graphene

and h-BN. Electronic structure of TMDCs strongly depend on the number of layers.

Monolayer and multilayer TMDCs are the direct and indirect gap semiconductor, re-

spectively (Fig. 1.4). Absence of the inversion symmetry and substantial spin-orbit

interaction leads to the new valley degree of freedom, which makes possible selective

photoexcitation of carriers by using circularly polarized light [1.39].

Phosphorene [Fig. 1.1(d)] is the monolayer of black phosphorus, which is the most

stable allotrope of phosphorus at room temperature. Its structure is corrugated hon-

eycomb network of phosphorus atoms, which also posses the internal structure per-

pendicular to the layer as in the case of TMDCs. Phosphorene is the direct gap

semiconductor with energy gap of about 1 eV. Energy gap monotonically decrease

with increasing the number of layers, and finally saturate the energy gap of bulk

black phosphorus (0.3 eV).

Because of the two dimensionality, electronic properties of these materials are

strongly affected by their edges. It is well known that the electronic structure of

graphene depends on their edge structures. In the case of graphene nanoribbons with

armchair edges [Fig. 1.6(a)], energy gap possesses the triple periodicity with ribbon

width (Fig. 1.7) [1.40]. Energy gap asymptotically decreases with increasing their

width. In contrast, graphene nanoribbons with zigzag edges [Fig. 1.6(b)] are a metal

possessing peculiar electronic structure at the EF [1.41–1.43]. Graphene nanoribbons

with zigzag edges have a pair of flat bands at the EF and in the zone boundary of

one-dimensional Brillouin zone (Fig. 1.8). These flat band states exhibit an unusual

feature depending on the wave number k: The states are perfectly localized at the

edge atomic site at k = π (Fig. 1.9). They are gradually penetrated with decreasing
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(a) (b)

(c) (d)

Figure1.1 Geometric structure of (a) graphene, (b) h-BN, (c) TMDC (MoS2),

and (d) phosphorene monolayer. Upper and lower panels are top and side views

of layers, respectively. Black, violet, pale blue, magenta, yellow, and gray circles

denote carbon, boron, nitrogen, molybdenum, sulfur, and phosphorus atoms,

respectively.

Figure1.2 Electronic structure of graphene [1.3].
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Figure1.3 Electronic structure of h-BN [1.49].
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Figure1.4 Electronic structure of bulk and monolayer MoS2 [1.6].

the wave number k, and finally are extended throughout the sheet as the bulk π state

nature of graphene at K point of two-dimensional Brillouin zone. According to the

distribution, the states known to be the edge states, which are common in the other

two-dimensional materials with hexagonal network. The flat bands at the EF are

known to be split into upper and lower branches under the infinitesimal on-site U ,

leading to the spin polarization around the edge atomic sites. Thus, the graphene

can be applicable for spin related nanodevices by controlling their sizes and shapes.

Additionally, the edge roughness induces further variations in their electronic struc-

tures [1.44,1.45]. However, it is still unclear the correlation between edge atomic and

electronic structures.
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Figure1.5 Electronic structure and the energy gap as a function of the number

of layers of phosphorene [1.8].

(a) (b)

Figure1.6 Representative edge structure of graphene. (a) Armchair and (b) zigzag edges.

Figure1.7 Energy gap of graphene nanoribbons with armchair edges as a func-

tion of the ribbon width [1.40].
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Figure1.8 Electronic structure of graphene nanoribbons with zigzag edges [1.41].

Figure1.9 Wave function distribution of graphene nanoribbons with zigzag edges

at (a) k = π, (b) 8π/9, (c) 7π/9, and (d) 2π/3 [1.41].

Layered materials mentioned above inherently possess large spacings between their

dense and flat atomic networks. Because of the large spacing between covalent atomic

networks, these layered materials possess unusual electronic states in their unoccu-

pied state below the vacuum level, which plays a decisive role in their excited state

spectrum, and even in ground state electronic properties upon the intercalation of

foreign atoms or molecules into the spacing [1.46–1.51]. The states have their am-

plitude in the vacuum region between the atomic layers with a free electron nature

along the lateral directions. Thus, the states are known as nearly free electron (NFE)

states or interlayer states in these materials. Furthermore, the state shifts down-

ward upon electron injection, leading to unusual transport properties because of the

attractive potential resulting from guest intercalant materials [1.46]. In addition to

layered materials, similar free electron states are also found in the interunit spacing of

nanoscale materials [1.52–1.55] and on the surfaces of conventional metals [1.56–1.58]



7

and semiconductors [1.59] because of the quantum spill of electrons outside the atomic

networks of these materials, which acts as the attracting potential for the unoccupied

state in the vacuum region.

It has been reported that NFE states are tunable by applying an external electric

field normal to the atomic layers of these layered materials [1.51,1.60–1.62]. The NFE

states of few-layered graphite shift downward under an external electric field, and cross

the EF at a certain critical electric field that strongly depends on the thickness of the

graphite thin films. Similar downward shifts have been also observed in h-BN thin

films [1.62] and TMDC thin films [1.51], whose electric field dependence is similar

to that of graphite thin films. In these cases, electrons are injected into NFE states

under the critical electric field, which depends on both the thickness of the thin films

and the constituent atom species of these materials. These downward shifts of the

NFE states by the perpendicular electric field are ascribed to the potential gradient

outside the films by the electric field that effectively leads to an attractive potential

for the NFE states. In addition to two-dimensional conventional surfaces, NFE states

also emerge outside the edges of graphene nanoribbons, which can be regarded as

the one-dimensional version of surfaces [1.63]. Furthermore, the NFE states shift

downward with the injection of electrons and under the lateral electric field.

In this thesis, we aim to theoretically investigate the energetics and electronic prop-

erties of edges of two-dimensional materials. In particular, we investigate the edge

stability and the electronic structure of graphene and h-BN nanoribbons with various

edge structure ranging form armchair to zigzag. Then, we also aim to investigate the

electronic properties of graphene nanoribbons with various edge angles under a par-

allel electric field to give theoretical insight into the fundamental issues for utilizing

graphene in electronic devices.
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Chapter 2

Calculation Methods

2.1 Density Functional Theory

In N electrons system, Schrödinger equation is

HΨ(r1, · · · , rN ) = EΨ(r1, · · · , rN ) (2.1)

where

H =

N∑
i=1

(
− h̄2

2m
∇2

i

)
+

1

2

N∑
i 6=j

e2

|ri − rj |
+

N∑
i=1

v(ri)

= T + U + V. (2.2)

To solve the ground state of this system, we consider the density operator as

n̂(r) =
N∑
i=1

δ(r− ri). (2.3)

Electron density can be obtained as an expectation of a density operator

n(r) = (Ψ, n̂Ψ)

=

∫
Ψ∗(r1, · · · , rN )n̂(r)Ψ(r1, · · · , rN )dr1 · · · drN . (2.4)

By using this operator, an expectation of external potential V is

(Ψ, VΨ) =

∫
Ψ∗

[
N∑
i=1

v(ri)

]
Ψdr1 · · · drN

=

∫
Ψ∗

[∫ N∑
i=1

v(r)δ(r− ri)dr

]
Ψdr1 · · · drN

=

∫
v(r)n(r)dr. (2.5)

Here, we consider the following Hohenberg–Kohn theorems [2.1].
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Theorem 1
An external potential v(r) is unique functional of the electron density n(r) when the

ground state is determined.

This theorem means that v(r) and Ψ(r1, · · · , rN ) correspond uniquely with n(r).

v(r) ⇔ n(r) (2.6)

In other words, all physical quantities of the ground state are functionals of the

electron density. For example, energy of the ground state E can be written as

Ev[n(r)] = F [n(r)] +

∫
v(r)n(r)dr (2.7)

F [n(r)] = (Ψ, (T + U)Ψ) (2.8)

where F [n(r)] is a functional of n(r) which is independent of external potential v(r).

Theorem 2
True density n(r) minimizes the energy of the ground state Ev[n(r)].

The expression of the N -electron system based on these theorem is strict discussion

about the ground state.

2.2 Kohn–Sham Equation

Equation (2.8) shows that F [n(r)] is an energy functional about kinetic energy of

electrons and Coulomb interaction. By using the expression of non-interacting N -

electron system,

F [n(r)] = Ts[n(r)] +
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n(r)] (2.9)

where Ts[n(r)] is kinetic energy of non-interacting electron system. Exc is exchange-

correlation energy arising from electron-electron interaction except the Hartree energy,

defined by

Exc[n(r)] = 〈T 〉+ 〈U〉 − Ts[n(r)]−
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′. (2.10)

Then, Eq. (2.7) can be rewritten as

Ev[n(r)] =Ts[n(r)] +

∫
v(r)n(r)dr
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+
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n(r)]. (2.11)

Under the condition that the number of electrons is constant

N =

∫
n(r)dr, (2.12)

taking variation Eq. (2.11) is

δTs[n]

δn(r)
+ v(r) + e2

∫
n(r′)

|r− r′|
dr′ +

δExc[n]

δn(r)
− µ = 0 (2.13)

where µ is the Lagrange multiplier. It is led to the following self-consistent equations[
− h̄2

2m
∇2 + veff (r)

]
ψi(r) = εiψi(r), (2.14)

n(r) =
N∑
i=1

|ψi(r)|2. (2.15)

where

veff (r) = v(r) + e2
∫

n(r′)

|r− r′|
dr′ +

δExc[n]

δn(r)
. (2.16)

According to the theorems, a problem solving the ground state of the N -electron

system can be interpreted the problem solving self-consistent equations (2.14) and

(2.15) under the effective potential veff (r) given by Eq. (2.16). Equation (2.14) is

known to be the Kohn–Sham equation [2.2]. However, this can not be solved because

the functional form of Exc[n(r)] is unknown. For practical application of Kohn–Sham

equation, appropriate approximations of Exc[n(r)] are necessary.

2.3 Local Density Approximation

In local density approximation [2.3, 2.4], we consider that density of exchange-

correlation energy can be written as the product of the local exchange-correlation

density of the homogeneous electron gas εxc and its density n(r).

Exc[n(r)] =

∫
εxc[n(r)]n(r)dr (2.17)

Therefore, the local density approximation is strict in many-electron system in which

electron density is homogeneous.

When exchange correlation energy is expressed as (2.17), functional differential of

the density, which comparable to exchange correlation potential of electrons, is also
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local expression as

µxc(r) =
δExc[n(r)]

δn(r)
=
d(εxc(n)n)

dn

∣∣∣∣
n=n(r)

. (2.18)

Then, (2.16) become

veff (r) = v(r) + e2
∫

n(r′)

|r− r′|
dr′ + µxc(r). (2.19)

2.4 Generalized Gradient Approximation

In generalized gradient approximation [2.5,2.6], gradient of electron density is included

to improve the accuracy of calculation.

Exc[n(r)] =

∫
f [n(r), |∇n(r)|]dr (2.20)

Because of inhomogeneous distribution of electron density in real system, generalized

gradient approximation with judiciously choice f , which must be parameterized an-

alytic functions, can improve the physical quantities of atoms, molecules, and solids

obtained by the local density approximation.

2.5 Pseudopotential

In practical calculations using density functional theory (DFT) on real materials, it

takes large computational cost for treating all atomic potentials because high energy

wave functions are necessary to express core region. A concept of pseudopotential

is reduction of computational cost without decrease in accuracy of valence electron

states by replacing the deep potential at core region with the shallow pseudopotential.

Let us start with the Schrödinger equation

Ĥ |ψn〉 = En |ψn〉 (2.21)

with n = c, v which denote the core and valence electrons. To express the valence

wave functions |ψv〉 by smooth functions |φv〉, which is called pseudo wave functions,

|ψv〉 is written as

|ψv〉 = |φv〉+
∑
c

|ψc〉 〈ψc|φv〉 . (2.22)

Then, Eq. (2.21) become

Ĥ |φv〉 = Ev |φv〉+
∑
c

(Ec − Ev) |ψc〉 〈ψc|φv〉 (2.23)
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This equation means that the pseudo wave functions |φv〉 satisfy the Schrödinger

equation with the pseudopotential V̂ PP :

(T̂ + V̂ PP ) |φv〉 = Ev |φv〉 (2.24)

where

V̂ PP = V̂ −
∑
c

(Ec − Ev) |ψc〉 〈ψc| (2.25)

where V̂ is the true potential.

In this thesis, we use the ultrasoft pseudopotential developed by Vanderbilt [2.7].

An all-electron calculation is carried out on a free atom in some reference config-

uration, leading to a screened potential V AE(r) and the all-electron wave function∣∣ψAE
i

〉
:

(T + V AE − εi)
∣∣ψAE

i

〉
= 0 (2.26)

where i is a set of quantum number {nlm}. The pseudo wave function |φi〉 and the

local pseudopotential Vloc is constructed under constraint that they smoothly join to∣∣ψAE
i

〉
and V AE at cutoff radius rc:

φi(r) = ψAE
i (r) (r ≥ rc), (2.27)

Vloc(r) = V AE(r) (r ≥ rc). (2.28)

The local wave function, which vanishes at and beyond R where all pseudo– and

all-electron quantities agree, is defined as

|χi〉 = (εi − T − Vloc) |φi〉 (2.29)

and then, forming the matrix of inner products

Bij = 〈φi|χj〉 (2.30)

and defining a set of local wave functions, which are dual to the |φi〉,

|βi〉 =
∑
j

(B−1)ji |χj〉 (2.31)

where j is a composite index as i. The deficit charge density is defined as

Qij(r) = ψ∗AE
i (r)ψAE

j (r)− φ∗i (r)φj(r) (2.32)

Qij =

∫
d3rQij(r) (2.33)
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and the matrix Dij is constructed as

Dij = Bij + εjQij . (2.34)

It is straightforward to verify that the |φk〉 obey the secular equation:T + Vloc +
∑
ij

Dij |βi〉 〈βi|

 |φk〉 = εk

1 +
∑
ij

Qij |βi〉 〈βi|

 |φk〉 (2.35)

where k is a composite index as i and j.

2.6 Effective Screening Medium Method

In conventional first-principles calculation, Poisson equation, which express the elec-

trostatic interaction, is solved under periodic boundary condition. However, we can

not obtain reasonable results because of the unphysical dipole interaction with the

image cells in the case of electrostatic potentials do not connect to each other at the

cell boundaries, arising from the external electric field, polarity of the target mate-

rials, and so on. The Effective screening medium (ESM) method [2.8] can overcome

the problem by considering the semi-infinite media of appropriate permittivity at the

cell boundaries.

As ordinary DFT calculations, wave functions are solved under the periodic bound-

ary condition with cell length of 2z0, where the electrons are confined to the region

z ∈ [−z0, z0], in ESM method. The total-energy functional is modified as

E[ρe, V ] = T [ρe] + Exc[ρe]−
∫
dr

[
ε(r)

8π
|∇V (r)|2 + ρtot(r)V (r)

]
(2.36)

where ρtot(r) and V (r) denote the total charge density and the electrostatic potential,

respectively. By taking the variation by electrostatic potential, we can get a modified

Poisson equation

∇ · [ε(r)∇]V (r) = −4πρtot(r). (2.37)

This Poisson equation contains spatially nonuniform relative permittivity. By intro-

ducing the Green’s function, the Poisson equation becomes

∇ · [ε(r)∇]G(r, r′) = −4πδ(r− r′). (2.38)

Then, electrostatic potential V (r) is expressed as

V (r) =

∫
dr′G(r, r′)ρtot(r

′). (2.39)
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Here, we assumed that the relative permittivity only depends on z. Then, the Poisson

equation

{∂z[ε(z)∂z] + ε(z)∇2
‖}G(r‖ − r′‖, z, z

′) = −4πδ(r‖ − r′‖)δ(z − z′), (2.40)

becomes

∂z[ε(z)∂z]− ε(z)g2‖G(g‖, z, z
′) = −4πδ(z − z′), (2.41)

where g‖ and g‖ denote the wave vector parallel to the surface and absolute value of

g‖. Green’s function is determined under appropriate boundary conditions. In this

thesis, we use the following two boundary conditions.

(i) Open boundary condition

∂zV (g‖, z)|z=±∞ = 0, ε(z) = 1;

(ii) Metal/vacuum/metal condition

V (g‖, z1) = 0, ε(z) =

 1 if |z| ≤ z1

∞ if |z| ≥ z1
;

Note that, in condition (ii), we can apply electric field to the system by setting the

potential difference between two ESMs.
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Chapter 3

Geometric and Electronic Properties

of Graphene Edges

3.1 Introduction

In recent years, graphene has attracted much attention in the fields of nanoscience and

nanotechnology because of its unique electronic and geometric properties [3.1, 3.2].

A honeycomb network of sp2 C atoms with single-atom thickness causes a pair of

linear dispersion bands at the Fermi level (EF ) [3.3], leading to peculiar physical

properties such as the unusual quantum Hall effect [3.4–3.7]. On the other hand,

the electronic structure of graphene is known to be fragile with respect to external

perturbations such as insulating substrates [3.8–3.10], metal electrodes [3.11, 3.12],

other graphene/graphite layers [3.13–3.16], and an external electric field [3.17–3.22].

For example, graphene has an energy gap of a few tens of meV when adsorbed on SiO2

surfaces [3.9]. Bilayer graphene possesses quadric dispersion bands at the EF with

zero band gap, rather than the linear dispersion band, that are tunable from metallic

to semiconducting by applying a normal electric field [3.17–3.22]. In addition to the

hybrid structure perpendicular to the layer, hybrid structures within the layer also

affect their electronic properties. Atomic defects and edges are regarded as negative

foreign atoms, which strongly modulate the electronic structure of graphene [3.23–

3.28]. Furthermore, heterogeneous sheets with h-BN also modulate the characteristic

electronic structure of graphene [3.29]. These are serious problems when incorporating

graphene as an emerging material in future nanoscale devices because some of these

hybrid structures are inherent and essential in such devices.

To utilize graphene for the devices, it is important to precisely control their

geometric and electronic structures under hybrid structures with foreign materials

and external environments. The geometric and electronic structures of graphene
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edges have been intensively studied for the past two decades because edges are the

one of important procedures for electronic structure tuning and functionalization

of graphene [3.30]. It is well known that graphene nanoribbons possess peculiar

electronic structures depending on their width and edge atomic arrangements:

graphene nanoribbons with zigzag edges possess edge localized states known as

edge states [3.23–3.26, 3.29] arising from the topological condition, while ribbons

with armchair edges have either metallic or semiconducting properties depending on

the discretized conditions imposed on graphene. Additionally, the edge roughness

induces further variations in their electronic structures [3.31, 3.32]. The energetics

of graphene nanoribbons in terms of the edge structures has been also theoretically

studied. Previous theoretical works have pointed out that the armchair edge is

energetically more stable than the zigzag edge because of the small density of states

(DOS) at the EF [3.32–3.37]. However, despite much effort devoted to elucidate

the energetics and electronic structure of the edges of graphene [3.32–3.38], the

correlation between energetics and electronic structures of graphene nanoribbons

with respect to the edge atomic structures is still not fully understood.

Among the various external factors that can form hybrid structures with graphene,

electric fields are one of the main factors determining the electronic properties of

graphene in device structures. Because an electric field is essential for operating

and functionalizing electronic devices, it is necessary to understand the fundamental

behavior of graphene under the influence of electric fields. There have been several

theoretical studies investigating the fundamental properties of graphene under normal

electric fields [3.20–3.22]. However, it is still unknown how the electronic properties

of graphene are influenced by a lateral electric field [3.39,3.40]. In the case of carbon

nanotubes, which are tubular structure of graphene sheets, screening against an exter-

nal electric field strongly depends on local atomic arrangement [3.45–3.47]. Therefore,

because of the similarity of the local atomic structures of graphene to carbon nan-

otubes, graphene is also expected to exhibit unusual field screening against a lateral

electric field.

In this chapter, we show the edge stability and the electronic structures of graphene

nanoribbons with various edge shapes, from armchair to zigzag edges, with and with-

out hydrogen termination. In addition, we also show the electronic properties of

graphene nanoribbons with various edge angles under a parallel electric field to give

theoretical insight into the fundamental issues for utilizing graphene in electronic

devices, because the external electric field is essential for functionalizing graphene

nanoribbons as in electronic device structures.
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(a) (b) (c)

(d) (e)

Figure3.1 Optimized geometries of graphene nanoribbons with (a) armchair

edge (θ = 0◦), chiral edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and (e)

zigzag edge (θ = 30◦). Black and white circles denote carbon and hydrogen

atoms, respectively. Dark shaded, pale shaded, and white bonds indicate short

(–1.41 Å), medium (1.41–1.42 Å), and long (1.42 Å–) bonds, respectively. White

bonds situated at the edge of the nanoribbons correspond to C–H bonds.

3.2 Energetics and Electronic structure

We considered several edge structures between armchair and zigzag of graphene to

investigate the energetics and electronic structures of graphene edges. To simulate

graphene edges with various edge shapes, we considered nanoribbons with hydro-

genated and clean edges with edge angles of 0 (armchair), 8, 16, 23, and 30◦ (zigzag)

(Figs. 3.1 and 3.2). To make quantitative discussion of the energetics of the nanorib-

bons with various edge shapes, the ribbons possessed similar widths and unit lengths

of about 1.8–2.1 and 1.7–2.0 nm, respectively. The geometric structures of graphene

nanoribbons were optimized until the force acting on atoms was less than 0.005 Ry/Å

under the fixed lattice parameter along the ribbons, which was determined by the

bulk bond length of 1.42 Å.
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(a) (b) (c)

(d) (e)

Figure3.2 Optimized geometries of graphene nanoribbons with (a) armchair

edge (θ = 0◦), chiral edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and (e)

zigzag edge (θ = 30◦). Black circles denote carbon atoms. Dark shaded, pale

shaded, and white bonds indicate short (–1.41 Å), medium (1.41–1.42 Å), and

long (1.42 Å–) bonds, respectively.

3.2.1 Hydrogenated Edges

Figure 3.1 shows the optimized structures of hydrogenated graphene nanoribbons with

various edge angles. In all cases, the bond lengths of nanoribbons are not equivalent to

each other: covalent bonds associated with hydrogenated carbon atoms are found to

be shorter than the other bonds. The optimized bond lengths are 1.37 Å or shorter.

This short bond length is ascribed to the environment arising from the hydrogen

atoms attached to the carbon atoms. In this case, because of the chemical species

difference, one of three bonds of the carbon atoms is not equivalent to the remaining

two. The bonds adjacent to these short bonds are basically longer than the initial

bond length of 1.42 Å. For ribbons with near-armchair edges, there is a clear bond

alternation with respect to the C2 dimer rows along the ribbon direction. This bond

alternation leads to stepwise screening against the external electric field, which will

be discussed later. In contrast, for ribbons with near-zigzag edges, bond alternation

rapidly decreases approaching an inner region of the ribbons. Indeed, the bond length

at the center of the ribbons is almost equivalent to the initial length of 1.42 Å.

Figure 3.3(a) shows the edge formation energy of hydrogenated graphene nanorib-
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Figure3.3 (a) Edge formation energy and (b) energy gap of hydrogenated

graphene nanoribbons as a function of the edge angle θ.

bons as a function of the edge angle. The edge formation energy Eedge is evaluated

using the following formula:

Eedge = (Etotal −NCµC −NHµH)/Ledge (3.1)

where Etotal, NC, NH, µC, µH, and Ledge denote the total energy of ribbons, the num-

ber of carbon atoms, the number of hydrogen atoms, the chemical potential of carbon

atoms, the chemical potential of hydrogen atoms, and the edge length in a unit cell,

respectively. The chemical potentials of carbon and hydrogen atoms are evaluated by

the total energies per atom of graphene and hydrogen in benzene molecules, respec-

tively. As shown in Fig. 3.3(a), the edge formation energy remains constant up to

θ = 16◦. Because the edge formation energy remains constant up to the edge angle of

16◦, the graphene flakes preferentially possess armchair edges with a small portion of

zigzag edges. This result implies that the armchair edges of graphene inherently pos-

sess edge roughness, containing zigzag edges under thermal equilibrium conditions. In

sharp contrast, above the critical angle of θ = 16◦, the edge formation energy rapidly

increases with increasing edge angle, so that the edge formation energy sensitively

correlates with the portion of perfect zigzag edges [3.38]. This fact corroborates that

the edges of graphene prefer armchair or near-armchair shapes over a zigzag shape.

However, it is well known that the graphene with zigzag edges have been occasion-

ally observed in transmission electron microscope and scanning tunneling microscope
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experiments. These implies that the edge shape of graphene flakes strongly depends

on their formation process. Note that it has been reported that the formation energy

of hydrogenated nanoribbons with armchair and zigzag edges is almost constant with

respect to the ribbon width except ribbons narrower than 10 Å [3.34].

Figure 3.3(b) shows the energy gap between the highest occupied (HO) and the

lowest unoccupied (LU) states of graphene nanoribbons studied here. We found that

graphene nanoribbons with edge angles up to 15◦ are semiconductors. From armchair

to the edge angle of 15◦, the band gap monotonically decreases with increasing edge

angle. Finally, at 16◦, the graphene nanoribbon is a zero gap semiconductor. Fur-

thermore, nanoribbons with near-zigzag edges are metals. By comparing Figs. 3.3(a)

and 3.3(b), we found a correlation between the edge formation energy and the en-

ergy gap: semiconducting graphene nanoribbons have small edge formation energy.

It should be noted that the edge formation energy is insensitive to the detailed elec-

tronic structure of the graphene nanoribbons with a finite energy gap [3.34]. On the

other hand, metallic graphene nanoribbons have higher edge formation energy which

increase with increasing the edge angle. Thus, the energetics of graphene edges with

near zigzag shapes depends on their detailed electronic structures.

Figure 3.4 shows the electronic structure of hydrogenated graphene nanoribbons

with various edge angles. The HO and LU states lose their dispersion with increasing

edge angle. We found a pair of flat bands around the Γ point at the EF for graphene

nanoribbons of which edge angle θ equals to or larger than 16◦. The flat band region

monotonically increases with increasing edge angle. Indeed, in the ribbon with the

edge angle of θ = 23◦, the HO and LU states are perfectly degenerated and have flat

dispersion throughout the Brillouin zone. In the case of θ = 30◦, we found that four

flat dispersion bands including HO and LU states emerge at the EF . Thus, the number

of states at the EF monotonically increases with increasing edge angle θ from 16 to

30◦. This is the origin of the increase in the edge formation energy of the near-zigzag

edges, as the large number of states at the EF leads to instability for the electron

system. Note that we impose eight times periodicities along the ribbon direction for

the ribbon with zigzag edges to guarantee numerical accuracy for comparing the total

energies of ribbons in these calculations. Thus, flat band states associated with the

edge states are folded multiple times into the Γ point.

The flat band nature of the HO and LU states implies that these states possess an

edge state nature [3.23–3.25, 3.29]. To unravel the origin of the flat band states, we

investigate the wave function of the electron states near the EF . Figure 3.5 shows

the contour plots of squared wave functions of the electronic states at the Γ point

within the energy range from EF −∆ to EF + ∆, where ∆ = 0.2 eV. For graphene

nanoribbons with armchair edges, the states extend throughout the ribbon, showing
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Figure3.4 Electronic structure and density of states (DOS) of hydrogenated

graphene nanoribbons. Each figure denote the nanoribbons with (a) armchair

edge (θ = 0◦), chiral edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and (e) zigzag

edge (θ = 30◦). Red and blue lines indicate the highest occupied state and lowest

unoccupied state, respectively. Energies are measured from the EF and the top

of the valence bands for metallic and semiconducting nanoribbons, respectively.

Unit of DOS is states/eV.

the conventional π electron nature. However, the wave functions of the nanoribbons

with edge angle θ = 8◦ show a localized nature near the edge atomic site. With fur-

ther increase in the edge angle, the wave functions are more concentrated at the edge

atomic site in the nanoribbons, as in the case of edge angles of θ = 16 and 23◦, indi-

cating their edge state nature. For graphene nanoribbons with zigzag edges, θ = 30◦,

the states are perfectly localized at the edge atomic sites. Therefore, the flat disper-

sion bands in the graphene nanoribbons with finite edge angles θ are classified as edge

states. These facts indicate that the edge states are basically observed on the various

graphene flakes of ribbons in scanning tunneling microscope experiments because the

edge roughness is inherent in graphene edges with respect to the energetics.
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Figure3.5 Contour plots of wave functions at the Γ point near the EF of hy-

drogenated graphene nanoribbons. Each figure denote the nanoribbons with (a)

armchair edge (θ = 0◦), chiral edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and

(e) zigzag edge (θ = 30◦).
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Figure3.6 (a) Edge formation energy and (b) energy gap of graphene nanorib-

bons with clean edges as a function of the edge angle θ.

3.2.2 Clean Edges

We discuss the geometric and electronic structures of graphene nanoribbons with

clean edges. Fig. 3.2 shows the optimized geometries of graphene nanoribbons with

clean edges of which angles are θ=0 (armchair), 8, 16, 23, and 30◦ (zigzag). In

all nanoribbons with any edge angles, structural reconstruction occurs at the edge

atoms to reduce electron energy arising from the dangling bonds with increasing

lattice energies. In particular, the bonds forming the armchair edge are remarkably

shrunken by the structural reconstruction. The calculated bond length is about 1.23

Å, possessing an sp nature rather than sp2. This value is consistent with an early

calculation on armchair ribbons with clean edges [3.41]. In the case of zigzag edges,

the relaxed bond length near the edges is still shorter than that of conventional sp2

bonds.

Because of the dangling bonds at the edge atomic sites, it is thought that the clean

edges are more unstable than the hydrogenated edges. Figure 3.6(a) shows the edge

formation energies of graphene nanoribbons with clean edges as a function of the edge

angles evaluated by the following equation.

Eedge = (Etotal −NCµC)/Ledge (3.2)

where Etotal, NC, µC, and Ledge denote the total energy of ribbons, the number
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of carbon atoms, the chemical potential of carbon atoms evaluated with respect to

the graphene energy, and the edge length of a unit cell, respectively. As shown in

Fig. 3.6(a), the formation energy of clean edges is 7 to 8 times larger than that

of hydrogenated edges. In contrast to nanoribbons with hydrogenated edges, the

edge formation energy monotonically increases with increasing edge angle without

any plateaus. By analogy with the relation between edge formation energies and

electronic structure in hydrogenated edges, the monotonic increase of the edge energy

implies that nanoribbons with clean edges are metals with a number of electron states

near the EF .

Figure 3.6(b) shows the energy gap of graphene nanoribbons with clean edges. In

contrast to nanoribbons with hydrogenated edges, we found that the ribbon with arm-

chair edges is a semiconductor, while the others are all metals. The semiconducting

nature of the armchair ribbons makes the armchair edge the most energetically stable

edge among the five edge angles. In the case of nanoribbons with armchair edges, as

stated above, the edge carbon atoms are tightly dimerized with each other, forming

a short bond of which length is 1.23 Å. Because of this strong dimerization, these

atoms possess an sp nature, rather than sp2, so they do not possess dangling bonds

even though they are not terminated by hydrogen atoms. By focusing on the detailed

edge atomic arrangement for the finite edge angles, we find that the armchair regions

of these edges tend to form a C-C dimer with a short bond length of 1.2 Å. Thus, the

monotonic increase in the edge formation energy is ascribed to the decrease in the

amount of C-C dimer structures at the edges.

By comparing Figs. 3.6(a) and 3.6(b), as in the case of hydrogenated edges, we

also found a correlation between edge formation energy and energy gap in the case of

clean edges. Semiconducting armchair nanoribbons have the smallest edge formation

energy. For the other metallic nanoribbons, the edge formation energy is larger than

that of the armchair nanoribbon.

Figure 3.7 shows the electronic structure of nanoribbons with clean edges. Compar-

ing with the electronic structures of nanoribbons with hydrogenated edges, nanorib-

bons with clean edges have extra states near the EF , of which the dispersion is very

small, arising from the dangling bonds of carbon atoms situated at the edges. Because

of the localized nature of the dangling bonds, these states are basically degenerate

each other. As stated above, the dangling bonds are absent at the atomic sites asso-

ciated with the armchair edges. Thus, the increase in the states corresponds to that

of the portion of zigzag edges. Because of the edge states and dangling bond states,

the number of states at the EF monotonically increases with increasing edge angle

θ from 8 to 30◦. As in the case of hydrogenated nanoribbons, this large number of

states at the EF induces instability in edges with angles θ from 8 to 30◦.
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Figure3.7 Electronic structures and density of states (DOS) of graphene

nanoribbons with clean edges. Each figure denote the nanoribbons with (a)

armchair edge (θ = 0◦), chiral edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and

(e) zigzag edge (θ = 30◦). Red and blue lines indicate the highest occupied state

and lowest unoccupied state, respectively. Energies are measured from the EF .

Unit of DOS is states/eV.

It is worth investigating the detailed properties of the flat band states that appeared

around the EF . To unravel the origin of the states, we calculate the wave function

of the electron states near the EF . Fig. 3.8 shows the squared wave function of

nanoribbons with edge angles of 0, 8, 16, 23, and 30◦ at the Γ point near the EF .

In the case of the nanoribbon with armchair edges, the states extend throughout the

ribbons, revealing their π and π∗ natures. On the other hand, for nanoribbons with

finite edge angles except θ = 30◦, the wave functions are localized and distributed

aside on the edge atomic sites, especially constituting of zigzag shapes. Thus, the

states are classified as dangling bond states arising from the unsaturated covalent

bond of carbon atoms at the apex of the edge with zigzag shapes. It should be noted

that such states are absent at the atomic sites belonging to the edge with armchair
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Figure3.8 Contour plots of wave functions at the Γ point near the EF of

graphene nanoribbons with clean edges. Each figure denote the nanoribbons

with (a) armchair edge (θ = 0◦), chiral edges (b) θ = 8◦, (c) θ = 16◦, (d)

θ = 23◦, and (e) zigzag edge (θ = 30◦).
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z

y

Figure3.9 Structural models of graphene nanoribbons under parallel electric

fields. Dark shaded rectangles represent metal electrodes simulated by the ef-

fective screening medium method.

shapes. In this case, the dimerization of edge atoms leads to substantial upward and

downward shift for states with antibonding and bonding natures, respectively. For

nanoribbons with zigzag edges, we can see the hybridized nature of the wave function

of edge states and that of dangling bond states because they are almost degenerate.

3.3 Electrostatic Potential under an Electric Field

To simulate the behavior of nanoribbons under a lateral electric field, we used the ef-

fective screening medium method to solve the Poisson equation including the external

electric field. We applied a parallel electric field between two metal electrodes sim-

ulated by the effective screening medium that were situated alongside the rightmost

and leftmost atoms of the nanoribbons with 8 Å vacuum regions (see Fig. 3.9). Here,

we considered several edge structures between armchair and zigzag to investigate the

effect of edge structure on electric field screening. We constructed nanoribbons with

five representative edge shapes with indexes of armchair (4,4), (5,3), (6,2), (7,1), and

zigzag (9,0) (Fig. 3.1). The width of these nanoribbons was about 20 Å to exclude

the size effect from the screening phenomenon. The atomic structures were fully op-

timized under zero electric field until the force acting on each atom was less than 5

mRy/Å. During calculations under the condition of a finite electric field of 0.25 V/Å,

the geometries were fixed to those under the condition of a zero electric field. Force

acting on atoms under the electric field is less than about 10−4 HR/au. Therefore,

the atomic displacement due to the electric field is hardly expected to occur.

Figure 3.10 shows the calculated electrostatic potential at each atomic site of the

nanoribbons under an electric field. The electrostatic potential strongly depends on

the local atomic arrangement. In the case of armchair edges [the (4,4)-H ribbon],

the potential exhibits a stepwise profile along the direction of the electric field, which

can be explained by considering the geometric properties of the nanoribbon. The

potential is almost constant between the atoms that are connected by short covalent
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Figure3.10 Electrostatic potential along the direction of electric field at each

atomic site of graphene nanoribbons with (a) armchair edge (θ = 0◦), chiral

edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and (e) zigzag edge (θ = 30◦). The

squares denote the electrostatic potentials at the atomic sites indicated by the

circles.
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bonds of less than 1.415 Å. In contrast, a substantial potential gradient is found at the

atomic sites associated with long covalent bonds of longer than 1.415 Å. These trends

indicate that short C-C bonds lead to strong screening against an external electric

field, while long C-C bonds provide weak screening. This behavior can be explained

by considering the chemical bonding of the atoms: short bonds possess double-bond

character, in which the electron density is higher than that of the long bonds cor-

responding to single bonds. Therefore, the stepwise potential profile is ascribed to

the bond alternation of the nanoribbons, which results from the H-terminated carbon

atoms at their edges.

In contrast to the (4,4)-H nanoribbon with armchair edges, the electrostatic po-

tential exhibits anomalous features in other types of nanoribbons. The potential

oscillates near the edge atomic site where the potential gradient near the edge atomic

sites is opposite to the external electric field. In this region, therefore, the electrons

are subjected to potential barriers to transfer through the nanoribbons under the in-

fluence of an external field. This fact also indicates that the electrons injected via the

electrodes are intrinsically scattered by the oscillating local potential near the edges

of the nanoribbons, except for those with armchair edges, under a finite bias volt-

age between the source and drain electrodes, despite the nanoribbons forming ohmic

contacts with the metal electrodes.

The anomalous behavior of the electrostatic potential of the nanoribbons is found

to depend on the portion of the edges with zigzag atomic arrangement. In the case

of (8,0)-H ribbons with zigzag edges, the potential oscillation is damped rapidly; the

oscillation penetrates the second sub-edge atomic site, and the inner part of the ribbon

has almost constant potential profile. In sharp contrast, in the cases of other ribbons

with general edge shapes (imperfect zigzag edges), the potential oscillation penetrates

inside the nanoribbons slightly. We also deduced that the penetration length of the

potential oscillation increases with decreasing ratio of zigzag structure. However, in all

cases, the modulation is localized around the edge of the nanoribbon. These results

imply that the anomalous potential profile is caused by the unique edge-localized

states (edge states) of graphene nanoribbons with zigzag edges [3.23–3.25,3.29]. The

edge state is perfectly localized at the edge atomic site, at the zone boundary of

the one-dimensional Brillouin zone, while being extended throughout the nanoribbon

at two-thirds of the one-dimensional Brillouin zone corresponding to the K point of

two-dimensional graphene.

Figure 3.11 shows the wave function distribution at the Γ point of the highest

branch of the valence band for the nanoribbons with different edge structures. These

states are basically localized at the edge atomic sites except for the armchair edges, in-

dicating the features of the edge state of graphene nanoribbons at the zone boundary.
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Figure3.11 Electrostatic potential and contour plots of wave functions at the Γ

point near the EF of hydrogenated graphene nanoribbons with (a) armchair edge

(θ = 0◦), chiral edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and (e) zigzag edge

(θ = 30◦). Circle colors correspond with the potential depth.

More importantly, the distribution of the edge-localized states of these nanoribbons

helps us to uncover the physical mechanisms of over-screening around the edges of the

nanoribbons. By focusing on one of two edges, the wave function is only distributed

at one of two sublattices in the hexagonal network: substantial distribution is ob-

served at the edge and third sub-edge atomic sites, while the second sub-edge sites

are nodal points of the wave function distribution. Because of the absence of wave

function distribution at the second sub-edge atomic sites, these sites are not affected
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by the electric field compared with the edge atomic sites where the wave function

shows a substantial distribution. In accordance with the wave function distribution,

the over-screening between adjacent atomic sites occurs near the edges of the zigzag

nanoribbons.

It is worth investigating the detailed electrostatic potential and electric field

in/around the graphene nanoribbons in terms of the edge shapes and edge termi-

nation. Figures 3.12 and 3.13 show the contour plots of the electrostatic potential

of graphene nanoribbons with hydrogenated and clean edges, together with the

corresponding electric field. For ribbons with hydrogenated edges, there is a

substantial potential gradient inside the ribbon with armchair edges. As pointed

above, the potential gradient is ascribed to the bond alternation arising from the

edge C-H bonds. With increasing edge angle, the potential gradient inside the ribbon

monotonically decreases. For instance, the sizable potential gradient is absent inside

the ribbon with zigzag edges, and the potential drop only occurs at the edge carbon

atoms.

The electric field outside the edges strongly depends on the edge shape and termi-

nation. In the case of hydrogenated edges, the electric field is strongly concentrated at

the protuberant regions of edges where the armchair and zigzag edges coexist. Thus,

field emission may occur at protuberances on the hydrogenated graphene nanorib-

bons [3.42, 3.43]. By removing the hydrogen atoms, we found a different field distri-

bution outside the edges: in contrast to the hydrogenated edges, the field concentrates

at the atoms belonging to the zigzag edge close to the protuberant region. In this

case, edge reconstruction flattens the atomic sites at the convex region to reduce the

energy cost arising from the dangling bonds. Therefore, the zigzag edges are dominant

for field emission in graphene nanoribbons with clean edges.

3.4 Electron Injection into Nearly Free Electron States

To investigate the electronic structure of graphene under a parallel electric field, we

consider zigzag and armchair graphene nanoribbons with various ribbon widths whose

edge atomic sites are fully terminated by hydrogen atoms. This eliminates the dan-

gling bonds at the edge atomic site possessing two-fold coordination, allowing the

investigation of the effects of the edge structure and width on the electric field. To

simulate the behavior of nanoribbons in a lateral electric field, we adopted effective

screening medium method to solve the Poisson equation, including the external elec-

tric field. We applied a parallel electric field between two metal electrodes, simulated

by effective screening medium, which are situated alongside the rightmost and the

leftmost edges of the nanoribbons with 6 Å vacuum regions (Fig. 3.9). In the case,
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Figure3.12 Contour and vector plots of the electrostatic potential and electric

field, respectively, of hydrogenated graphene nanoribbons under an external elec-

tric field. Each figure denote the nanoribbons with (a) armchair edge (θ = 0◦),

chiral edges (b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and (e) zigzag edge (θ = 30◦).

For both plots, the deep attractive potentials arising from nuclei are subtracted

by taking the difference between the potentials with and without the external

electric field. Black and gray circles denote carbon and hydrogen atoms, respec-

tively.
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Figure3.13 Contour and vector plots of the electrostatic potential and electric

field, respectively, of clean graphene nanoribbons under an external electric field.

Each figure denote the nanoribbons with (a) armchair edge (θ = 0◦), chiral edges

(b) θ = 8◦, (c) θ = 16◦, (d) θ = 23◦, and (e) zigzag edge (θ = 30◦). For both

plots, the deep attractive potentials arising from nuclei are subtracted by taking

the difference between the potentials with and without the external electric field.

Black circles denote carbon atoms.



42 Chapter 3 Geometric and Electronic Properties of Graphene Edges

(a) (b)
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Figure3.14 Electronic energy band of (a) hydrogenated zigzag graphene

nanoribbon with 1.8 nm width and (b) hydrogenated armchair graphene rib-

bon with 2.1 nm width under zero and 0.35 V/Å lateral electric fields. The

energies are measured from that of the Fermi level EF . The label α denotes the

NFE state.

the anode and cathode electrodes are set to the leftside (z = −z0) and the rightside

(z = z0) of the unit cell as shown in Fig. 3.9. The atomic structures were fully op-

timized under a zero electric field until the force acting on each atom was less than

5 mRy/Å. Integration over Brillouin zone was carried out using equidistant k-point

sampling in which 4 and 6 k-points were taken along a ribbon direction in the arm-

chair and the zigzag edges, respectively. During calculations under the condition of

a finite electric field up to 1.0 V/Å, the geometries were fixed to those under the

condition of a zero electric field. Force acting on atoms under the electric field is less

than about 10−4 HR/au. Therefore, the atomic displacement due to the electric field

is hardly expected to occur.

Figure 3.14 shows the electronic energy band of graphene nanoribbons under lateral

electric fields of zero and 0.35 V/Å. In both zigzag and armchair ribbons, a quadric

dispersion band emerges near the EF around the Γ point in the electric field, while

such a state is absent in the case of a zero electric field. The quadric dispersion seems

to be similar to the case of the nearly free electron (NFE) state of a graphene sheet in

a perpendicular electric field, which is distributed both above and below the atomic

layer.

To elucidate the physical properties of the quadric dispersion band, we depict the

contour plot of the wave function of the state at the Γ point in Fig. 3.15. The maxima

of the state are distributed alongside the leftmost edges of the zigzag and armchair

ribbons, with 3.6 and 3.4 Å vacuum region, respectively. The state is primarily
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Figure3.15 Top and side views of contour plots of the NFE states of (a) zigzag

ribbon and (b) armchair ribbon under the lateral electric field of 0.35 V/Å. Black

and gray circles denote atomic positions of carbon and hydrogen, respectively.

distributed at the vacuum region dislodged from the leftmost edge atomic site and is

also slightly distributed at the atomic site near the edge atomic site. Furthermore,

the state is extended in the direction parallel to the ribbon with almost uniform

distribution in the vacuum region. The characteristic distribution of the state as well

as the quadric dispersion band allows it to be classified as an NFE state at the edge

of the atomic networks.

Next, we investigate how the NFE state of the graphene nanoribbon depends on the

lateral electric field. Figure 3.16 shows the eigenvalue of the NFE state with respect

to the EF as a function of the lateral electric field. The NFE state monotonically

shifts downward with increasing electric field strength and eventually crosses the

EF . The NFE state is located 3.1 eV above the EF under a zero electric field and

crosses the EF under electric fields of 0.35 V/Å and 0.46 V/Å for armchair and zigzag

nanoribbons, respectively. This downward shift is qualitatively the same as that

observed in graphite thin films under the perpendicular electric field. Furthermore,

once the state crosses the EF , the NFE state remains almost constant with increasing

electric field strength above the critical values.

It is worth to discuss the physical origin of the remarkable shift of the NFE state.

The NFE is the empty state and distributed in the vacuum region where atoms and

electrons are absent. Therefore, the NFE state directly feels the potential gradient

in the vacuum region due to electric field, resulting in the downward shift of the
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Figure3.16 NFE position of the zigzag ribbon with 1.8 nm width and the arm-

chair ribbon with 2.1 nm as a function of the lateral electric field. The energies

are measured from that of the Fermi level EF . Triangles and squares denote the

values for the zigzag and armchair ribbons, respectively.

state. In sharp contrast to the NFE state, the remaining states, π and σ states,

are occupied states which are distributed on and in the atomic network, so that the

electrons distributed in the atomic networks screen the electric field preventing the

downward shift of these state. The mechanism well explain the weak field dependence

of the NFE state on the electric field above the critical field: electrons accommodated

into the state screen the external field and prevent the further downward shift of the

NFE state against the field.

Figure 3.17 shows the plane-averaged electrostatic potential of graphene nanorib-

bons under the parallel electric field along the z direction. The armchair and zigzag

ribbons screen the external electric field, while the potential gradient appears in the

vacuum regions. In both ribbons, we find a substantial gradient of the electrostatic

potential outside the leftmost edge atomic sites because of the external electric field.

The gradient outside the ribbon where the NFE state is distributed and the unoc-

cupied nature of the NFE state leads to a substantial downward shift of the state

with respect to the external electric field. It should be noted that the EF is still

located below the bottom of the potential at the left electrode, excluding the physi-

cally irrelevant origin of the state caused by the extrinsic spilled electrons at the left

electrode.
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Figure3.17 Plane-averaged electrostatic potential along the z direction of (a)

zigzag and (b) armchair ribbons. Dotted horizontal lines denote the Fermi level

EF .

The critical electric field inducing electron injection into the NFE state for the

armchair ribbon is slightly different from that for the zigzag ribbon. The widths of

these ribbons are slightly different from each other. Therefore, the results indicate

that the critical electric field for electron injection is expected to depend on the width

of the ribbon. Figure 3.18 shows the critical electric field for electron injection into the

NFE state as a function of the width of the graphene nanoribbon. The critical electric

field depends on the width of the ribbon and monotonically decreases with increasing

ribbon width. Note that the width dependence of the critical field is ascribed to the

modulation of the potential gradient in the vacuum region from the initially applied

field due to the strong screening at the atomic networks of graphene ribbons.

Finally, we focused on the electronic structure of the armchair ribbon under the

electric field in addition to the NFE state. The dispersion relation of the top of the

π and the bottom of the π∗ state near the Γ point is modulated from that under the

zero electric field. Under the lateral electric field, the dispersions of these states are

modulated from that under zero electric field. The π and π∗ states possess narrower

dispersion comparing with that they are in a zero field, resulting in an increase in

their effective masses for electrons and holes. The increase in the effective masses

is ascribed to the small potential gradient inside the armchair nanoribbon leading

to the decrease of the electron transfer between adjacent dimer lows, in which the

potential exhibits a stepwise profile normal to the ribbon direction because of the

bond alternation as mentioned in Sec. 3.3 [3.48].
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Figure3.18 Critical electric field for electron injection into the NFE state as a

function of the width of the graphene ribbons. Triangles and squares denote the

values for zigzag and armchair ribbons, respectively.

3.5 Influence of Local Electric Field on Nearly Free Electron

States

To investigate the influence of the electric field direction on the NFE states of graphene

nanoribbons, we consider zigzag and armchair graphene nanoribbons whose edge

atomic sites are fully terminated by hydrogen atoms. We applied an electric field

between two parallel metal electrodes, simulated by an effective screening medium,

which are situated alongside the rightmost and the leftmost edges of the nanoribbons

with d = 6 Å vacuum regions (Fig. 3.19). We set the potential barrier with a height

of 6.0 eV at 3.5 Å from the rightmost edges of the nanoribbons to prevent the un-

intentional electron spill under a strong electric field. To investigate the electronic

structures of the graphene nanoribbons with respect to the relative direction to the

electric field, we rotated the nanoribbons around the ribbon axis with angles between

0◦ and 90◦. The atomic structures of the nanoribbons were fully optimized under

a zero electric field until the force acting on each atom was less than 5 mRy/Å. In-

tegration over the Brillouin zone was carried out using equidistant k-point sampling

in which 4 and 6 k-points were taken in the ribbon direction for the armchair and
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Figure3.19 Structural model of graphene nanoribbons under an electric field.

Dark shaded rectangles represent metal electrodes simulated by the effective

screening medium method.

the zigzag ribbons, respectively. During the calculations under the condition of a

finite electric field up to 0.5 V/Å, the atomic positions were fixed to those under the

condition of a zero electric field. Force acting on atoms under the electric field is less

than about 10−4 HR/au. Therefore, the atomic displacement due to the electric field

is hardly expected to occur.

Figure 3.20 shows the electronic energy band of graphene nanoribbons under zero

and 0.5 V/Å electric fields. For both zigzag and armchair ribbons, the NFE states

shift to lower energies for all rotation angles under the external electric field. The

downward shift of the NFE states strongly depends on the rotation angle θ. For

θ = 0◦, the lowest branch of the NFE states is shifted by 2.84 and 3.44 eV compared

with those under zero field for zigzag and armchair ribbons, respectively. In contrast,

shifts from the zero-field values are 0.36 and 0.22 eV for zigzag and armchair ribbons,

respectively, with the rotation angle of θ = 90◦.

Figure 3.21 shows the contour plots of the squared wave function of NFE states

above the EF under a parallel electric field of 0.5 V/Å. For the ribbons with a rotation

angle of θ = 0◦, the lowest unoccupied (LU) state has NFE nature with the maximum

distribution existing outside the graphene edge and also extending along the edge in

both the zigzag and armchair ribbons. By focusing on the higher branches of the

quadric dispersion bands above the EF at the Γ point, we found that the LU+2 in

the zigzag ribbon and LU+3 in the armchair ribbon exhibit NFE state nature, which

is also distributed outside the rightmost atomic sites with a node with respect to the

ribbon layer.

The NFE states exhibit a hybrid nature with the π, σ, and other NFE states for the
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Figure3.20 (Color online) Electronic energy band of (a) zigzag and (b) armchair

graphene nanoribbons under zero and 0.5 V/Å electric field. The energies are

measured from that of the Fermi level EF .

rotation angle of 60◦. The LU state is mainly distributed in the vacuum region outside

the zigzag ribbon along with a small distribution on the π states [Fig. 3.21(a): LU

state under θ=60◦]. A similar hybrid nature on the localized states of the graphene

ribbons is also observed in the LU+3 in the zigzag ribbon and the LU+4 in the

armchair ribbon. The LU+3 in the zigzag ribbon has a hybridized nature between

the NFE states alongside the edge and above and below the ribbon [Fig. 3.21(a):

LU+3 state under θ=60◦]. On the other hand, the NFE state is hybridized with σ

states in the LU+4 in the armchair ribbon [Fig. 3.21(b): LU+4 state under θ=60◦].

For the zigzag ribbons with a rotation angle of θ = 90◦, we can observe two different

distributions of the NFE states: the lowest branch of the NFE is distributed outside

both edges of the ribbon while the next lowest branch of the NFE states is distributed

above the ribbon, as observed for the conventional NFE states of bulk graphene.

For these NFE states, the external electric field dislodges their distributions to the

electrode side. In sharp contrast, in the case of an armchair ribbon with a rotation
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Figure3.21 Side views of contour plots of the NFE states of (a) zigzag and (b)

armchair nanoribbons under a 0.5 V/Å electric field. Black and gray circles de-

note the atomic positions of carbon and hydrogen, respectively. Gray rectangles

denote the potential barriers to prevent unintentional electron spill. Thick black

lines on the left and right sides of the cell denote the positions of the electrodes.

angle of 90◦, no NFE states are observed in the lower conduction bands. These

results indicate that the distribution of NFE states strongly depends on the mutual

arrangement of the graphene nanoribbons with respect to the electric field.

Next, we investigate how the NFE states of the graphene nanoribbons depend on the
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Figure3.22 (Color online) NFE positions for the zigzag ribbon where rotation

angles θ are (a) 0◦ and (b) 90◦ as a function of the electric field. The energies are

measured from that of the Fermi level EF . Triangles and squares denote the NFE

states that are distributed beside and on the plane of the ribbons, respectively.

electric field strength. Figure 3.22 shows the NFE position of the zigzag nanoribbon

as a function of the parallel electric field. For the zigzag ribbon with a rotation

angle of θ = 0◦, the NFE state distributed at the ribbon side rapidly shifts to lower

energy with increasing electric field, while the NFE states distributed above the plane

gradually shift downward with increasing electric field. For the ribbon with an angle

of θ = 90◦ or with a perpendicular field, both NFE states weakly depend on the

external field. The magnitude of the downward shifts is a tenth smaller than that

for the side NFE state under a parallel field. Thus, the NFE state at the ribbon side

depends sensitively on the parallel electric field. It should be noted that the NFE

states rapidly shift downward by removing the potential barriers at the right side of

the cell, because of the increase of the vacuum region that decreases the kinetic energy

of the states.

To elucidate the physical origin of the influence of the field direction on the NFE

states, we investigated the electrostatic potential on the ribbons as well as the electric

field evaluated by taking the gradient of the potential. Figure 3.23 shows the con-

tour and vector plots of the electrostatic potential and the calculated electric field,

respectively. For the zigzag ribbons with a rotation angle of θ = 0◦, the electric field

is highly concentrated around the graphene edge. By increasing θ, the field concen-

tration decreases, and the ribbon finally does not modulate the external field for a

rotation angle of θ = 90◦. By comparing Fig. 3.22 with Fig. 3.23, we observed that the

distribution of the NFE states is qualitatively the same as the regions where an elec-

tric field concentration occurs. The electric field concentration causes a substantial

electrostatic potential gradient around the edge atomic sites, leading to the downward
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Figure3.23 (Color online) Contour and vector plots of the electrostatic potential

and electric field, respectively, of zigzag ribbons with rotation angles θ of (a)

0◦, (b) 30◦, (c) 60◦, and (d) 90◦ under a 0.5 V/Å electric field. Black and

gray circles denote carbon and hydrogen atomic positions, respectively. Gray

rectangles denote the potential barriers to prevent unintentional electron spill.

shift of NFE states alongside the edge. Thus, the electric field concentration is the

physical origin of the sensitivity of NFE states with respect to the field direction and

strength.

Our results indicate that the graphene nanoribbons could provide one-dimensional

free electron carriers in the vacuum space alongside the ribbon under a lateral elec-

tric field. Since the NFE carriers are free from scatterers, such as atomic vacancies

and adatoms on the atomic network, the carriers are expected to possess moderate

mobility with remarkable stability. Furthermore, the emergence of the NFE states

near the EF under the electric field also provide a theoretical insight into the field

emission images from the edge of the graphene nanoribbons.
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3.6 Conclusion

In this chapter, we studied the geometric and electronic structures of graphene

nanoribbons with edge angles from armchair to zigzag using density functional

theory. Our calculations showed that the edge stability and electronic structure

of graphene nanoribbons strongly depends on the detailed edge structures. The

edge formation energy retains a constant value around the armchair edges, while

it monotonically increases with increasing a portion of zigzag shapes. This fact

indicates that graphene nanoribbons and nanoflakes inherently possess edge rough-

nesses within the angle deviation of ±16◦ around the armchair edges. Furthermore,

the edge stability strongly correlates with the electronic structures of graphene

nanoribbons: ribbons with near-armchair edges are semiconductors with a finite

energy gap, while ribbons with near-zigzag edges are metals in which the DOS at the

EF monotonically increases with increasing a portion of zigzag edges. By analyzing

the wave functions near the EF , we found that the edge state soon appeared around

the EF , even though the nanoribbons do not have perfect zigzag edges. Based

on these facts, we conclude that edge states induced by the zigzag portion of the

graphene edges crucially determine the stability of the edge structure of nanoribbons

and nanoflakes of graphene. For ribbons with clean edges, because the dangling bond

states appeared near the EF , the edge formation energy monotonically increases

with increasing a portion of zigzag edges.

We also studied the electronic properties of graphene nanoribbons with several edge

structures under a parallel electric field using density functional theory with the effec-

tive screening medium method. Our calculations showed that the edge atomic sites

of the nanoribbons with zigzag edges anomalously screen an electric field. In these

nanoribbons, the electrostatic potential oscillates rapidly, leading to over-screening

in the vicinity of edge carbon atomic sites. The penetration depth of the anomalous

screening also depends on the edge structure of nanoribbons. The anomalous screen-

ing occurs at the edge and second sub-edge atomic sites of perfect zigzag edges, and

around edge atomic sites with a depth of up to a few angstroms depending on the

portion of zigzag-shaped edge in a nanoribbon. Our detailed analysis indicated that

anomalous screening arises from the edge state that is inherent in zigzag edges of sp2

carbon materials. Conversely, in the case of the nanoribbon with perfect armchair

edges, the potential exhibits a stepwise profile reflecting the bond alternation arising

from the C-H bonds situated at the edge atomic sites. We also investigate the electric

field profile around the edge atomic sites. In the case of edge termination by hydrogen

atoms, the electric field is concentrated at the protuberant region corresponding with



3.6 Conclusion 53

the boundary of zigzag and armchair edges. In sharp contrast, the field is concen-

trated at the edge atomic sites with zigzag shapes for clean edges. These facts give

theoretical insights in the practical application of graphene edges for field emission

devices.

In the analysis of the electronic structure of graphene under the electric field, we

also found that the NFE state appears not only in the vacuum region above the atomic

layer of graphene, but also in the vacuum region outside the leftmost or rightmost

atomic sites. Furthermore, the NFE state substantially shifts downward with the

application of a lateral electric field, and it eventually crosses the EF , at which the

nearly free electron carriers are injected outside the graphene nanoribbons. We also

demonstrated that the critical electric field for injecting electrons into the NFE state

strongly depends on the width of the graphene nanoribbon. The present findings

indicate the possibility of an unusual one-dimensional electron system outside and

along the edge atomic site of graphene in a lateral electric field. Furthermore, the

accumulated electrons may decrease the contact resistance between graphene and

metal electrodes.

To further investigate the NFE states of graphene, we study the electronic struc-

ture under an electric field in terms of the field direction and strength. We found that

the NFE states strongly depend on the mutual arrangements of graphene nanoribbons

with respect to the electric field. The NFE states distributed outside the edge depend

sensitively on the lateral electric field, while the states weakly depend on the normal

electric field. In contrast, the NFE states above and below the ribbons weakly de-

pend on the electric field irrespective of the field directions. Detailed analysis on the

electrostatic potential of the graphene ribbons under an electric field clarified that

the physical origin of the field direction dependence is the electric field concentra-

tion around the ribbon edges as in classical electrodynamics. The field concentration

around the edges enhances the gradient of electrostatic potential around the edge

atomic sites, leading to a substantial downward shift of NFE states with an increas-

ing electric field.
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Chapter 4

Geometric and Electronic Properties

of h-BN

4.1 Introduction

Hexagonal boron nitride (h-BN) is known to be a prototypical layered material in

which each layer is composed of B and N atoms arranged in a hexagonal network

like the C atoms of graphite [4.1–4.3]. Along the direction normal to each layer, in

sharp contrast to graphite, each layer is weakly bound in an AA’ arrangement, in

which N atoms are situated just above/below B atoms in adjacent layers, and vice

versa, due to the interlayer Coulomb interaction between B and N atoms [4.4]. The

chemical difference between B and N atoms makes h-BN an insulator with a large

energy gap of 5 eV between the valence-band top (VBT) and conduction-band bottom

(CBB) at a K point localized on N and B atoms, respectively [4.5, 4.6]. Due to its

atomically flat network, h-BN has been used as the supporting substrates for graphene

devices that exhibit remarkable carrier mobility [4.7–4.10]. On the other hand, h-BN

itself is attracting attention because of its structural similarity to graphene [4.11–

4.14]. By the analogy with the graphene, h-BN can form various derivatives being

applicable to wide-ranging areas of modern technology: nanoscale tubes and flakes

of h-BN have been synthesized by rolling or cutting h-BN sheets with appropriate

boundary conditions [4.15–4.25]. For many of the applications of nanoscale h-BN

derivatives, it is critical to precisely control their geometric and electronic structures.

In particular, the energetics of the nanoflakes yield fundamental insights into the

practical procedures to control the structures of nanoscale h-BN derivatives.

Ribbons with nanometer width are a relevant structural model to investigate the

energetics and electronic structures of h-BN nanoflakes. Several studies have demon-

strated the stability and electronic structures of h-BN nanoribbons with armchair



58 Chapter 4 Geometric and Electronic Properties of h-BN

and zigzag edges [4.26–4.31]. However, the stability and electronic structure of h-BN

with chiral edges are still unknown because these h-BN nanoflakes may possess edges

with arbitrary shapes. In the case of graphene nanoribbons, energetics and electronic

structure strongly correlate with their detailed edge structure and edge termination

as mentioned in Sec. 3.2. Because of the structural similarity between h-BN and

graphene, an analogous correlation between the edge geometries and physical proper-

ties of h-BN nanoribbons with arbitrary edge shapes to that of graphene is expected.

In addition, the edges in such planar h-BN nanostructures possess an intrinsic polar-

ity, except for perfect armchair edge, because of the nonstoichiometric appearance of

B and N atoms at the edges. Polarity at the edges or surfaces of semiconducting and

insulating materials can cause unusual geometric and electronic properties, which can

be applicable in optoelectronic and piezoelectric devices.

In this chapter, we show the correlation between the edge shape and physical proper-

ties of hydrogenated and clean h-BN nanoribbons with various edge shapes, including

armchair, zigzag, and chiral edges. In addition, we also show the polar properties of

h-BN nanoribbons with respect to the edge shape, hydrogenation, and uniaxial strain.

4.2 Energetics and Electronic Structure

We considered several edge structures between armchair and zigzag of h-BN to in-

vestigate their energetics and electronic structures. To simulate h-BN edges with

various edge shapes, we considered nanoribbons with hydrogenated and clean edges

with edge angles of 0 (armchair), 5, 8, 14, 16, 22, 23, and 30◦ (zigzag) (Figs. 4.1

and 4.2). To allow quantitative discussion of the energetics of the nanoribbons with

various edge shapes, the ribbons possessed similar widths and unit lengths of about

1.8–2.2 and 1.5–2.0 nm, respectively. The geometric structures of h-BN nanoribbons

were optimized until the force acting on atoms was less than 0.005 Ry/Å under the

fixed lattice parameter along the ribbons, which was determined by the bulk bond

length of 1.45 Å.

The effective screening medium (ESM) method was adopted to avoid unphysical

dipole interactions with the periodic images arising from their polar edges in the

framework of the conventional DFT calculations. This is because h-BN nanorib-

bons with arbitrary edge shapes intrinsically possess lateral polarization arising from

the chemical difference between B and N atoms. In this case, to simulate the open

boundary condition in lateral inter-ribbon directions, we put ESM with a relative per-

mittivity of 1, which simulates vacuum conditions in this region (ε0 = 8.854× 10−12

Fm−1), at the cell boundaries with vacuum spacing of 8 Å to the rightmost and

leftmost atoms of the nanoribbons (Fig. 4.3).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure4.1 Optimized geometries of h-BN nanoribbons with (a) an armchair edge

(θ = 0◦), chiral edges with (b) θ = 5◦, (c) θ = 8◦, (d) θ = 14◦, (e) θ = 16◦, (f)

θ = 22◦, (g) θ = 23◦, and (h) a zigzag edge (θ = 30◦). Black, gray, and white

circles denote nitrogen, boron, and hydrogen atoms, respectively. Black, gray,

and white bonds indicate short (–1.44 Å), medium (1.44–1.45 Å), and long (1.45

Å–) bonds, respectively. White bonds situated at the edge of the nanoribbons

correspond to B–H and N–H bonds.

4.2.1 Hydrogenated edges

Figure 4.1 shows the optimized structures of h-BN nanoribbons with various edge

angles. In all cases, the bond lengths of the nanoribbons are not equivalent. Bonds

associated with hydrogenated N atoms are shorter than the other bonds. The bond

lengths around hydrogenated N atoms are 1.44 Å or shorter due to the inward struc-

tural reconstruction increasing the π nature of edge N atoms to accommodate excess

electrons provided by H atoms. For a ribbon with armchair edges, there is a symmet-
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure4.2 Optimized geometries of h-BN nanoribbons with (a) an armchair edge

(θ = 0◦), chiral edges with (b) θ = 5◦, (c) θ = 8◦, (d) θ = 14◦, (e) θ = 16◦, (f)

θ = 22◦, (g) θ = 23◦, and (h) a zigzag edge (θ = 30◦). Black, gray, and white

circles denote nitrogen, boron, and hydrogen atoms, respectively. Black, gray,

and white bonds indicate short (–1.44 Å), medium (1.44–1.45 Å), and long (1.45

Å–) bonds, respectively.

ric bond alternation along the ribbon direction. In contrast, for other ribbons, bond

alternation is asymmetric because of the asymmetric atomic arrangement at edges.

In particular, significant asymmetric structural reconstruction occurs in the ribbons

with zigzag edges. In this case, the bond length retains its bulk value near the N edge

while substantial bond alternation occurs near the B edge.

Before investigating the energetics of h-BN ribbons with hydrogenated edges with

arbitrary edge shapes, we investigated the edge formation energy of h-BN nanorib-

bons with armchair and zigzag edges with respect to ribbon width, because the edge

formation energy of graphene nanoribbons strongly depends on their width [4.32].



4.2 Energetics and Electronic Structure 61

z

E

S

M

E

S

M

Figure4.3 Structural model of h-BN nanoribbons under the open boundary con-

dition in which the ribbon is sandwiched by two ESM situated at the cell bound-

aries.
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Figure4.4 Edge formation energy of h-BN nanoribbons with (a) hydrogenated

and (b) clean edges as a function of ribbon width. Red squares and blue triangles

denote the edge formation energy of nanoribbons with armchair and zigzag edges,

respectively.

Figure 4.4(a) shows the edge formation energy of hydrogenated h-BN nanoribbons as

a function of ribbon width. The edge formation energy Eedge was evaluated using the

following formula:

Eedge = (Etotal −NBNµBN −NHµH)/Ledge (4.1)

where Etotal, NBN, NH, µBN, µH, and Ledge denote the total energy of ribbons, the

number of pairs of B and N atoms, the number of H atoms, the energy potential of

h-BN per BN pair, the chemical potential of H atoms, and the edge length of a unit

cell, respectively. µH is evaluated by the total energy per atom of H2 molecules. As

shown in Fig. 4.4(a), edge formation energy of the hydrogenated h-BN nanoribbons is

almost constant up to a width of 22 Å for both zigzag and armchair ribbons. Thus, the
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Figure4.5 Edge formation energy and energy gap of h-BN nanoribbons with (a)

hydrogenated and (b) clean edges as a function of edge angle θ.

edge formation energy of the H-terminated h-BN nanoribbons is nearly independent

of the ribbon width and edge shape. Note that the edge formation energy contains a

numerical error of 5 meV, which arises from the total energies of ribbons with different

numbers of BN pairs depending on their unit cell size.

Although the edge energy of the hydrogenated h-BN nanoribbon with zigzag edges

is almost the same as that with armchair edges, it is worth investigating the detailed

edge angle dependence of the edge formation energy. Figure 4.5(a) shows the edge

formation energy and the energy gap between VBT and CBB of hydrogenated h-

BN nanoribbons as a function of the edge angle. As shown in Fig. 4.5(a), the edge

formation energy retains a constant value for all edge angles. Thus, based on the

energetics, i.e. the constant edge formation energy, h-BN flakes are unlikely to possess

preferential edge shape under static conditions. This result implies that the h-BN

flakes inherently possess edge roughness. The h-BN nanoribbons are insulators with

an energy gap of about 5 eV, irrespective of the edge angle θ. In the case of graphene

nanoribbons with hydrogenated edges, the edge formation energy retains constant up

to the angle θ = 16◦, where the ribbons possess semiconducting electronic structure

with a finite energy gap. Thus, the constant edge formation energy of the h-BN

nanoribbons is ascribed to their insulating electronic structure.

Figure 4.6 shows the electronic energy bands and density of states (DOS) of hydro-

genated h-BN nanoribbons with various edge angles. All ribbons are insulators with

an energy gap of about 4 eV. This energy gap is considerably narrower than that of

bulk h-BN, indicating that the detailed electronic properties of h-BN ribbons around

the gap are different from those of bulk h-BN. As shown in Fig. 4.6, the CBB retains

a constant value up to the angle of 8◦, and then gradually shifts downward with in-
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Figure4.6 Electronic structure and density of states (DOS) of hydrogenated h-

BN nanoribbons with edge angles θ of (a) 0◦, (b) 5◦, (c) 8◦, (d) 14◦, (e) 16◦, (f)

22◦, (g) 23◦, and (h) 30◦. Red and blue lines indicate the VBT and CBB states,

respectively. Gray lines denote the DOS at the temperature of 1000 K. Energies

are measured from the VBT. Unit of DOS is states/eV.

creasing the edge angle θ, resulting in a decrease of the energy gap. The dependence

of the electronic structure on edge angle implies that the polarization of h-BN around

its edges plays an important role in determining the positions of the lower branches of

the conduction band. For the ribbons with θ = 14◦ or larger, the lowest branch of the

conduction band is separated from the bulk states, leading to an additional structure

in the DOS of unoccupied states. It is worth investigating how the electronic struc-

tures of h-BN nanoribbons depend on the structural corrugation or rippling formed

at elevated temperature. To check the DOS of the ribbons at elevated temperature,

we performed ab initio molecular dynamics calculations at 1000 K. After a simulation

time of 100 fs, all h-BN nanoribbons possess structural corrugation of up to 2 Å. The

structural corrugation due to the finite temperature decreases the band gap of the

nanoribbons, but does not affect the qualitative shape of the DOS.

To unravel the physical origin of the detailed electronic structure modulation in the

lower branches of the conduction band with respect to the edge angle, we investigated

the wave function distribution of VBT and CBB states at the Γ point. Figure 4.7
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Figure4.7 Top (x = 0) and side (y = 0) views of contour plots of wave functions

at the Γ point near the Fermi level EF of hydrogenated h-BN nanoribbons with

edge angles θ of (a) 0◦, (b) 5◦, (c) 8◦, (d) 14◦, (e) 16◦, (f) 22◦, (g) 23◦, and (h) 30◦.

In each figure, upper and lower panels denote VBT and CBB states, respectively.

Black, white, and gray circles denote the atomic positions of nitrogen, boron, and

hydrogen atoms, respectively.

presents the contour plots of squared wave functions of the VBT and CBB states

of h-BN with various edge angles at the Γ point. For the h-BN ribbons with all

edge angles, the VBT state is distributed on N atoms and extended throughout the

ribbon. The distribution is qualitatively the same as that of the VBT of bulk h-

BN. On the other hand, the distribution exhibits different characteristics to that

of graphene nanoribbons. In the case of graphene nanoribbons, except for those

with armchair edges, the VBT state is localized at the edge atomic sites with zigzag
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structure because of its edge state nature. However, as shown in Fig. 4.7, the VBT

state of the h-BN nanoribbon does not exhibit an edge-localized nature even though

the ribbon has perfect zigzag edges.

In contrast to the VBT state, the CBB state exhibits an unusual nature, which is

totally different from those of bulk h-BN and graphene nanoribbons. The CBB state

of all h-BN ribbons is not distributed on the atomic sites but in the vacuum region

where atoms are absent, exhibiting the nearly free electron (NFE) state nature which

is inherent in the layered materials, such as graphene [4.33–4.36], h-BN [4.5, 4.6],

and transition metal dichalcogenides [4.37]. For the ribbons with edge angles up to

8◦, CBB states are distributed in the vacuum region above and below the ribbons,

similar to the conventional NFE states of h-BN sheets and graphene. For ribbons with

zigzag and near-zigzag edges, the maxima of the CBB states are distributed alongside

the rightmost (N-rich) edges of the ribbons with about 3 Å vacuum region. The

states are primarily distributed in the vacuum region separated from the rightmost

edge atomic site and are also slightly distributed at the atomic site near the edge.

Furthermore, the states are extended along the direction parallel to the ribbon with

small undulations in the vacuum region that reflect the edge atomic arrangement.

The characteristic distribution of these states as well as the quadratic dispersion band

indicate that the CBB states of ribbons with near-zigzag and zigzag edges are the NFE

states at the edge of the atomic networks, as in the case of graphene nanoribbons

under a lateral electric field as mentioned in Secs. 3.4 and 3.5 [4.36]. Calculating

the effective electron mass from the energy band revealed that the effective masses

of nanoribbons are ranging from 0.9 to 1.1 me, where me is the bare electron mass.

Thus, the lowest branch of the conduction band of h-BN nanoribbons still possesses

NFE nature. Furthermore, because the NFE nature is sensitive to the electrostatic

potential, the CBB state with edge NFE nature shifts downward with increasing

edge angle, corresponding to an increase in the number of N atoms that deepen the

electrostatic potential outside the ribbon.

4.2.2 Clean edges

As shown in Fig. 4.2, substantial structural reconstruction occurs at edge atoms to

reduce electron energy arising from the dangling bonds with increasing lattice energies

in all nanoribbons except the edge angle of 30◦ (zigzag). In particular, atoms situated

at the armchair portion are remarkably deformed from the ideal sp2 bond angles by

the reconstruction. N atoms protrude from the edges to increase their 2s nature

to accommodate excess electrons. According to the protruding nature of N atoms,

B atoms shift inward to form a linear sp-hybridized chain with neighboring N atoms
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supplying their valence electrons to N atoms. In addition to the substantial structural

reconstruction, the ribbon with near-zigzag edges exhibits bond alternation both along

and normal to the ribbon. For the ribbon with zigzag edges, the bond alternation

normal to the ribbon occurs around the N edge. On the other hand, around the B

edge, long-range bond modulation occurs along the ribbon direction.

Because of the dangling/unsaturated bonds at the edge atomic sites, it is thought

that the clean edges are less stable than the hydrogenated edges. Figure 4.4(b) shows

the edge formation energy of h-BN nanoribbons with clean edges as a function of

ribbon width. The edge formation energy Eedge was evaluated using the following

formula:

Eedge = (Etotal −NBNµBN)/Ledge (4.2)

where Etotal, NBN, µBN, and Ledge denote the total energy of ribbons, the number

of pairs of B and N atoms, the energy potential of h-BN per BN pair, and the edge

length of a unit cell, respectively. As shown in Fig. 4.4(b), the formation energy of

clean edges is six to ten times larger than that of hydrogenated edges. In contrast to

the nanoribbons with hydrogenated edges, edge formation energy of armchair edges

is smaller than that of zigzag edges for the h-BN nanoribbons with clean edges. This

indicates that in the case of h-BN nanoribbons with clean edges, the armchair edges

are more stable than the zigzag edges because the large structural reconstruction

decreases the electron energy arising from the unsaturated B/N bonds. On the other

hand, the edge formation energy remains constant in the ribbons with a width of 7

Å or wider as in the case of hydrogenated edges.

Figure 4.5(b) shows the edge formation energy and the energy gap of h-BN nanorib-

bons with clean edges as a function of the edge angle. In contrast to nanoribbons

with hydrogenated edges, the edge formation energy monotonically increases with

increasing the edge angle without any plateaus. By analogy with the relationship

between edge formation energies and electronic structure in graphene nanoribbons,

the monotonic increase of the edge formation energy implies that nanoribbons with

clean edges are metals with a number of electron states at Fermi level (EF ).

We also found that the ribbons with armchair edges and an edge angle of θ = 5◦ are

semiconductors while the other ribbons are metals, in contrast to nanoribbons with

hydrogenated edges. The ribbons with an edge angle of 0 and 5◦ have fundamental

gaps of 4 and 0.1 eV, respectively. The semiconducting nature of the armchair ribbons

makes the armchair edge the most energetically stable among the eight edge angles.

The semiconducting electronic structure of the ribbon with armchair edges is ascribed

to the substantial atomic reconstruction at the edges. Because of this reconstruction,

B atoms at the armchair edge possess an sp nature with empty π states, while N atoms
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Figure4.8 Electronic structures and density of states (DOS) of h-BN nanorib-

bons with clean edges of which edge angles are (a) 0◦, (b) 5◦, (c) 8◦, (d) 14◦,

(e) 16◦, (f) 22◦, (g) 23◦, and (h) 30◦. Red and blue lines indicate VBT and

CBB states, respectively. Gray lines denote the DOS of the nanoribbons at the

temperature of 1000 K. Energies are measured from EF and VBT for metallic

and semiconducting nanoribbons, respectively. Unit of DOS is states/eV.

possess decomposed s and p states that are fully filled by electrons. In accordance

with the reconstruction, this nanoribbon does not possess unsaturated bonds even

though it is not terminated by H atoms. By focusing on the detailed edge atomic

arrangement of the ribbons with respect to the edge angle, we find that substantial

structural reconstruction occurs around the armchair regions of the edges. Thus,

the monotonic increase in the edge formation energy is ascribed to the decrease of

armchair portions. As shown if Fig. 4.5(b), as in the case of hydrogenated edges,

there is a correlation between edge formation energy and energy gap. Semiconducting

armchair nanoribbons have small edge formation energies while metallic nanoribbons

have edge formation energies larger than that of the armchair nanoribbon.

Figure 4.8 shows the electronic energy band structure and DOS of nanoribbons

with clean edges. Compared with the electronic structures of nanoribbons with hy-

drogenated edges, nanoribbons with clean edges have extra states around EF with less

dispersion, arising from the dangling/unsaturated bonds of B and N atoms situated
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at the edges. Because of the localized nature of the dangling bond states, these states

cause the flat dispersion band at EF . Because of the substantial atomic reconstruc-

tion, the dangling bonds are absent at the atomic sites at the armchair edges. Thus,

the number of states at EF increases with increasing portion of zigzag edges. Indeed,

the DOS at EF monotonically increases with increasing edge angle θ from 5 to 30◦.

This large number of states at EF causes instability in the energy of the edges with

these angles, similar to the case of graphene nanoribbons. As in the case of nanorib-

bons with hydrogenated edges, the electronic structure of nanoribbons with clean

edges is less sensitive to the structural corrugations under the finite temperature.

It is worth investigating the detailed properties of the electronic states at or near

EF . To unravel the origin of these states, we depict the squared wave function of the

electron states of nanoribbons with edge angles of 0, 5, 8, 14, 16, 22, 23, and 30◦ at or

near EF in Fig. 4.9 at the Γ point. For the nanoribbon with armchair edges, its VBT

state is distributed on N atoms with π nature and extends throughout the ribbons.

The CBB state has an NFE nature, which is distributed in the vacuum region above

and below the ribbon, as in the case of the nanoribbons with hydrogenated edges. For

the remaining ribbons, the state at EF is primarily localized on N atoms situated near

the N-rich edges with π and σ natures. By focusing on the wave function of the ribbon

with zigzag edges, we find that VBT and CBB states are localized at the N atoms at

the N-rich edge with σ and π natures, respectively. Thus, the states with σ nature

are classified as dangling bond states arising from the unsaturated bond of N atoms

at the edges with zigzag shapes. It should be noted that such states are absent at

the atomic sites of edges with armchair shapes. In this case, the edge reconstruction

at the armchair region leads to substantial upward and downward shifts of states

induced by a considerable change of orbital hybridization. In contrast to the ribbons

with hydrogenated edges, no delocalized states with NFE nature emerge at or near

EF for the ribbons with finite edge angles.

4.3 Polarity of Edges

To investigate the polar properties of h-BN edges, we considered nanoribbons with

hydrogenated and clean edges with edge angles of 0 (armchair), 5, 8, 14, 16, 22, 23,

and 30◦ (zigzag). The Brillouin zone integration was carried out with an equidistance

1 k -point along the ribbon direction, which correspond to 8 k -points sampling in

the conventional cell of h-BN. This gave sufficient convergence of the total energies

and electronic structures for the h-BN ribbons. The geometric structures of h-BN

nanoribbons were optimized until the force acting on atoms was less than 0.005 Ry/Å

under the fixed lattice parameter along the ribbons, which was determined by the
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Figure4.9 Top (x = 0) and side (y = 0) views of contour plots of wave functions

at the Γ point near the Fermi level EF of h-BN nanoribbons with clean edges of

which edge angles θ of (a) 0◦, (b) 5◦, (c) 8◦, (d) 14◦, (e) 16◦, (f) 22◦, (g) 23◦, and

(h) 30◦. In each figure, upper and lower panels denote VBT and CBB states,

respectively. Black and white circles denote the atomic positions of nitrogen and

boron atoms, respectively.

bulk bond length of 1.45 Å. To simulate the open boundary condition in lateral inter-

ribbon directions because h-BN nanoribbons with arbitrary edge shapes intrinsically

possess polarity, which arises from non-stoichiometric arrangements of B and N atoms

at each edge, we set the ESM with a relative permittivity of 1 alongside the rightmost

and leftmost atoms of the nanoribbons with 8 Å vacuum spacing (Fig. 4.3).

Figure 4.10 shows the electrostatic potential of h-BN nanoribbons with hydro-

genated and clean edges. For the majority of edge angles we found a potential dif-
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Figure4.10 Plane averaged electrostatic potential normal to the h-BN nanorib-

bons with the edge angles of (a) 0, (b) 8, (c) 16, (d) 23, and (e) 30. Left and right

panels denote the hydrogenated and clean edges, respectively. Black, white, and

gray circles denote the atomic positions of N, B, and H atoms, respectively.

ference between the left (B rich edge) and right (N rich edge) vacuum regions of the

nanoribbons, except at 0◦, which corresponded to an armchair edge. These results

indicate that these h-BN nanoribbons have polarity between B and N rich edges.

Interestingly, the direction of the polarity for the hydrogenated nanoribbons was op-

posite to that of nanoribbons with clean edges. However, because of the symmetric

atomic arrangement, with respect to the ribbon axis, no polar properties occurred in

the ribbons with armchair edges.

Figure 4.11 shows the edge angle dependence of polarity which is defined by the

potential difference between the left and right vacuum of the nanoribbons. For the

case of hydrogenated nanoribbons, the polarity was proportional to the edge angle.

The potential difference increased with increasing the edge with zigzag shape, because
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Figure4.11 Potential difference between leftmost and rightmost vacuum of the

h-BN nanoribbons as a function of edge angle θ. Red squares and blue triangles

denote the hydrogenated and clean edges, respectively.

of the imbalance in the number of B and N atoms between the two edge atomic sites.

In contrast, the potential difference was insensitive to the edge angle for the ribbon

with clean edges. The potential difference ranged from 2 to 3 V depending on the

edge angle. This edge angle dependence is attributed to atomic reconstruction of the

clean edges of h-BN nanoribbon: edge atomic structures are sensitive to the edge

angle. In view of the polarity direction, the potential difference of the hydrogenated

nanoribbons was opposite to that of nanoribbons with clean edges at all edge angles.

We also investigated the width dependence of the polarity in h-BN nanoribbons.

Figure 4.12 shows the potential difference of zigzag nanoribbons as a function of

their width. In both nanoribbons with hydrogenated and clean edges, the potential

difference remained almost constant at all widths. The reversal of the direction of

the edge polarization on hydrogenation of the edges was also unchanged. This result

indicated that the polarization of h-BN nanoribbons does not depend on ribbon width,

but only on the atomic arrangement and hydrogenation of the edges.

To investigate the hydrogen concentration dependence of the polarity of the h-BN

ribbons, we calculated the polarity of zigzag h-BN nanoribbons with edges asymmetri-

cally terminated by H atoms. As shown in Fig. 4.13, at most hydrogen concentrations,

the electrostatic potential at the N edge was higher than that at the B edge. In con-

trast, a high H coverage of the N edges caused polarity inversion of the h-BN ribbon,
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Figure4.12 Potential difference between leftmost and rightmost vacuum of the

h-BN nanoribbons as a function of ribbon width. Red squares and blue triangles

denote the hydrogenated and clean edges, respectively.

and the potential at the B edge became higher than that at the N edge. It should be

noted that nanoribbons with hydrogen concentrations of 87.5% and 50∼87.5% at the

N and B edges, respectively, exhibited non-polar properties, although the ribbons pos-

sessed zigzag edges. These results indicate that the polarization of h-BN nanoribbons

might be tunable through changing hydrogen pressure and reaction temperature dur-

ing synthesis that cause the asymmetric hydrogen concentration at the edge atomic

sites.

In addition to hydrogenation, the polarity of the h-BN nanoribbon may also depend

on structural deformation under the strain. Figure 4.14 shows the polarity of the h-

BN ribbons with hydrogenated zigzag edges under uniaxial tensile and compressive

strain along the direction of the ribbons. Under application of the tensile strain, the

polarity monotonically decreased with increasing strain, and changed its direction

at a critical strain. This suggests that the tensile strain can invert the polarity of

h-BN nanoribbons. The critical strain depended slightly on the edge angle, because

the polarity of the ribbons at the zero strain was proportional to the edge angles.

The critical strain for ribbons with the zigzag edges was 16% while those for the

ribbons with shallower angles were between 12% and 15% depending on the edge

angles (Fig. 4.14). In contrast, the polarity of the ribbon slightly increased under

compressive strain, and saturated at a strain of 5% at which the polarity depended
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Figure4.13 A color map of the potential difference between edges of zigzag

nanoribbons as a function of hydrogen concentration at the leftmost (B) and

rightmost (N) edge atomic sites.

on the edge angles. This result indicates that tensile strain also can control the

polarity of h-BN ribbons in addition to the edge structure and edge termination.

4.4 Conclusion

In this chapter, we studied the geometric and electronic structures of h-BN nanorib-

bons with edge angles ranging from armchair to zigzag using density functional the-

ory. Our calculations show that the edge stability and electronic structure of h-BN

nanoribbons strongly depend on the edge termination. In the case of hydrogenated

edges, the edge formation energy retains a constant value for all nanoribbons. This in-

dicates that hydrogenated h-BN nanoribbons and nanoflakes inherently possess edge

roughnesses under static conditions. On the other hand, for ribbons with clean edges,

the edge formation energy monotonically increases with the proportion of zigzag edge.

Furthermore, the edge stability strongly correlates with the electronic structure of h-

BN nanoribbons. Nanoribbons with small edge formation energy are semiconductors

with a finite energy gap, while ribbons with large formation energy are metals with a

large DOS at EF . By analyzing the wave functions near EF , we found that the dan-

gling bond states appeared around EF for nanoribbons with clean edges, except for

that with armchair edges. Based on these findings, the increase in the DOS near EF
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Figure4.14 Potential difference between edges of hydrogenated h-BN nanorib-

bons as a function of strain. Red squares, blue triangles, magenta circles, and

cyan diamonds denote edge angles of 30, 23, 16, and 8◦.

arising from the dangling bond states is the origin of the increase in formation energy

for clean edges. The present results indicate that the shape of the h-BN nanoflakes

is tunable by controlling the edge termination by atoms and molecules. Furthermore,

the energetics provides guiding principles to design heterogeneous layered materials

consisting of h-BN and graphene that possess unusual electronic structures [4.38,4.39].

We also studied the polarity of h-BN nanoribbons with edge angles from armchair to

zigzag by calculating the electrostatic potential using density functional theory. Our

calculations showed that the potential difference between the leftmost and rightmost

edges of nanoribbons with hydrogenated nanoribbons is opposite to that with clean

edges. This indicated that the edge hydrogenation can invert the polarity of h-BN

ribbons. The polarity was sensitive to the edge angle and edge termination, while

it is insensitive to the ribbon width. In the case of hydrogenated nanoribbons, the

polarity increased with increasing the zigzag portion at the edges. On the other

hand, polarity in the ribbons with clean edges seems to be independent of the edge

angle. By analyzing the electrostatic potentials of zigzag edges at different hydrogen

concentrations we found that the potential at the N edge was higher than that at the

B edge for the most hydrogen concentrations, except under hydrogen rich conditions.

Under the high H concentration for both edges, the polarity was opposite to that for

the low H concentration. Thus, the h-BN nanoribbon exhibited non-polar properties
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at certain H concentration, although the zigzag h-BN nanoribbons essentially have

polarity at their edges. In addition to the edge hydrogenation, the uniaxial tensile

strain on hydrogenated ribbons can also invert their polarity at a critical tensile strain

of 12 to 16 %, depending on the edge angles.
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Chapter 5

Summary

Two-dimensional materials have great deal of attention not only in nanoscience but

also in nanothechnology because of its unique geometric and electronic properties.

The electronic properties of these materials are strongly affected by their edges. How-

ever, it is still unclear the correlation between edge geometry and electronic struc-

ture. In this thesis, we study the energetics and electronic properties of edges of

two-dimensional materials using density functional theory.

In Chap. 3, we study the energetics and electronic structure of graphene nanorib-

bons with hydrogenated and clean edges with respect to the detailed edge shapes.

Our calculations showed that the stability of graphene edges strongly depends on the

length of the zigzag edge portion. Near-zigzag edges are less stable than near-armchair

edges because of the large number of states at the Fermi level (EF ) induced at near-

zigzag edges. The edge formation energy retains a constant value up to the edge angle

of 16◦, after which it monotonically increases with increasing zigzag portion or edge

angle. We also found that the edge stability strongly correlates with the electronic

structures near the EF of graphene nanoribbons. Nanoribbons with a small zigzag

portion possess edge states near the EF .

We also showed that the edge atomic sites of the nanoribbons with zigzag shape

anomalously screen the external electric field; the electrostatic potential oscillates

rapidly, leading to over-screening in the vicinity of edge C atomic sites. It is also found

that the penetration depth of anomalous screening depends on the edge structure of

nanoribbons.

Under a lateral electric field, we also showed that the nearly free electron (NFE)

state emerges in the vacuum region outside the leftmost edge of the ribbons and shifts

downward with increasing electric field. We also found that electrons are injected

into the NFE state of graphene nanoribbons by the critical electric field, which is

inversely proportional to the ribbon width. NFE states strongly depend on the mutual

arrangements of graphene nanoribbons with respect to the electric field. In contrast,
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the electronic energy bands associated with the π electrons are insensitive to the

relative direction of the ribbon with respect to the external electric field. We also

observe that the electric field concentration around the edges leads to the orientation

dependence of the NFE states on the field.

In Chap. 4, we study the energetics and electronic structure of hexagonal boron

nitride (h-BN) nanoribbons with hydrogenated and clean edges with respect to the de-

tailed edge shapes. Our calculations showed that the stability of h-BN edges strongly

depends on the edge termination. In the case of hydrogenated edges, the formation

energy is constant for all edge angles ranging from armchair to zigzag, indicating

that h-BN may exhibit rich variation in their edge atomic arrangements under static

conditions. The hydrogenated h-BN nanoribbons are insulators with an energy gap

of 4 eV irrespective of edge shape, in which the lowest branch of the conduction band

exhibits NFE states nature distributed in the vacuum region outside the ribbons. In

contrast, the formation energy of h-BN nanoribbons with clean edges monotonically

increases as the edge angle is changed from armchair to zigzag. Our analysis reveals

that the increase of density of states at the EF arising from dangling bond states

leads to this monotonic increase of edge formation energy in h-BN nanoribbons with

clean edges.

We also study the polarity of h-BN nano-flakes in terms of their edge geometries,

edge hydrogen concentration, and uniaxial strain by evaluating their electrostatic po-

tential. Our calculations showed that the polarity of the nanoribbons is sensitive

to their edge shape, edge hydrogen coverage, and uniaxial tensile strain. Polarity

inversion of the ribbons can be induced by controlling the hydrogen concentration

at edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN

nanoribbons can exhibit non-polar properties at a particular edge hydrogen concen-

tration and tensile strain, even though the nanoribbons essentially have polarity at

the edge. We also found that the edge angle affects the polarity of nanoribbons with

hydrogenated edges.



81

List of Publications

[1] A. Yamanaka and S. Okada, “Electronic properties of carbon nanotubes under

an electric field”, Appl. Phys. Express 5, 095101 (2012).

[2] A. Yamanaka and S. Okada, “Anomalous electric-field screening at the edge

atomic sites of finite-length zigzag carbon nanotubes”, Appl. Phys. Express 6,

045101 (2013).

[3] A. Yamanaka and S. Okada, “Electronic properties of capped carbon nanotubes

under an electric field: inhomogeneous electric-field screening induced by bond

alternation”, Jpn. J. Appl. Phys. 52, 06GD04 (2013).

[4] A. Yamanaka and S. Okada, “Electrostatic potential of hydrogenated finite-

length carbon nanotubes under an electric field”, Phys. Status Solidi C 10, 1624

(2013).

[5] A. Yamanaka and S. Okada, “Structural dependence of electronic properties

of graphene nanoribbons on an electric field”, Jpn. J. Appl. Phys. 53, 06JD05

(2014).

[6] A. Yamanaka and S. Okada, “Electron injection into nearly free electron states

of graphene nanoribbons under a lateral electric field”, Appl. Phys. Express 7,

125103 (2014).

[7] A. Yamanaka and S. Okada, “Energetics and electronic structure of graphene

nanoribbons under a lateral electric field”, Carbon 96, 351 (2016).

[8] A. Yamanaka and S. Okada, “Influence of electric field on electronic states of

graphene nanoribbons under a FET structure”, Jpn. J. Appl. Phys. 55, 035101

(2016).

[9] A. Yamanaka and S. Okada, “Energetics and electronic structure of h-BN

nanoflakes”, Sci. Rep. 6, 30653 (2016).

[10] R. Taira, A. Yamanaka, and S. Okada, “Electronic structure modulation of

graphene edges by chemical functionalization”, Appl. Phys. Express 9, 115102

(2016).


