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In this thesis, we considered quantum systems coupled to several baths. We sup-
posed that the system state is governed by the quantum master equation (QME). We
investigated the quantum pump and the excess entropy production. When the set
of control parameters α = {αn}n is modulated between times t = 0 and t = τ , the
average change of a time-independent observable O of the baths is given by

⟨∆o⟩ =
∫ τ

0
dt issO(αt) +

∫
C
dαn AO

n (α) + ⟨∆o⟩(na).

Here, the summation symbol for n is omitted, αt is α at time t, C is the trajec-
tory in the control parameter space, issO(αt) is the instantaneous steady current of O
and AO

n (α) is called the Berry-Sinitsyn-Nemenman (BSN) vector. ⟨∆o⟩(na) is a non-
adiabatic term and order of ω/Γ where ω is the modulation frequency of the control
parameters and Γ is the coupling strength between the system and the baths. If ω/Γ
is sufficiently small, this pumping is called the quantum adiabatic pump. Similarly,
the average entropy production σ under quasistatic (ω/Γ → 0) modulation is given
by

σ =

∫ τ

0
dt jσ(αt) +

∫
C
dαn Aσ

n(α).

Here, jσ(αt) is the instantaneous steady entropy production rate and Aσ
n(α) is called

the BSN vector for entropy production. The second term of the right hand side (RHS)
of the above equation is called the excess entropy production, σex.

First, we investigated the quantum pump using the full counting statistics with
quantum master equation (FCS-QME) approach. We studied the non-adiabatic ef-
fect and the showed that the general solution of the QME ρ(t) is decomposed as
ρ(t) = ρ0(αt)+

∑∞
n=1 ρ

(n)(t)+
∑∞

n=0 ρ̃
(n)(t). Here, ρ0(αt) is the instantaneous steady

state of the QME, ρ(n)(t) and ρ̃(n)(t) are calculable and order (ω/Γ)n. ρ̃(n)(t) expo-
nentially damps (like e−Γt) as a function of time. We showed that the generalized
mater equation (GME) approach provides p(t) = p(ss)(t)+δp(t) in the Born approxi-
mation. Here, p corresponds to the set of the diagonal components of ρ in the matrix
representation by the energy eigenstates, p(ss)(t) corresponds to ρ0(αt)+

∑∞
n=1 ρ

(n)(t)
and the term δp(t) originates from non-Markovian effects. We showed that the FCS-
QME method provides (n+ 1)-th order pump current from ρ(n)(t). We showed that
the quantum pump dose not occur in all orders of the pumping frequency when the
system control parameters and the thermodynamic parameters (the temperatures
and the chemical potentials of the baths) are fixed under the zero-bias condition.

Next, we studied the quantum adiabatic pump of the quantum dot (QD) system
weakly coupled to two leads (L and R) using the FCS-QME. We confirmed the con-
sistency between the FCS-QME approach and the GME approach for a QD of one
quantum level with finite Coulomb interaction. We showed that the pumped charge
and spin coming from the instantaneous steady current are not negligible when the
thermodynamic parameters are not fixed to zero bias. To observe the spin effects,
we considered collinear magnetic fields, which affect the spins through the Zeeman
effect, with different amplitudes applying to the QDs (BS) and the leads (BL and
BR). We focused on the dynamic parameters (BS , BL/R and the coupling strength
between QDs and leads, ∆L/R) as control parameters. In one level QD with the
Coulomb interaction U , we studied (BL, BS) pump and (∆L, BS) pump for the non-
interacting limit (U = 0) and the strong interaction limit (U = ∞) at zero-bias. The
difference depending on U appeared through nU (sBS) which is the average number
of the electrons with spin s in the QD. For (BL, BS) pump, the energy dependences
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of the line-width functions are essential. Moreover, we studied the (∆L, BS) pump
for finite U at zero-bias. The effect of U appeared through nU (sBS). When half-
filling condition satisfies, the charge pump does not occur.

We studied quantum diabatic pump for spinless one level QD coupled to two
leads. We calculated {ρ(n)(t)}5n=1, {ρ̃(n)(t)}5n=1 and particle current up to 6th order
and pumped particle numbers.

In the latter part of the thesis, we investigated the excess entropy production. In
weakly nonequilibrium regime, we analyzed the BSN vector for the entropy produc-
tion and showed

Aσ
n(α) = −TrS

[
ln ρ

(−1)
0 (α)

∂ρ0(α)

∂αn

]
+O(ε2).

Here, TrS denotes the trace of the system, and ε is a measure of degree of nonequi-
librium. ρ

(−1)
0 (α) is the instantaneous steady state obtained from the QME with

reversing the sign of the Lamb shift term. In general, the potential S(α) such that
Aσ

n(α) =
∂S(α)
∂αn + O(ε2) dose not exist. This is the most important result of this the-

sis. The origins of the non-existence of the potential S(α) are a quantum effect (the
Lamb shift term) and the breaking of the time-reversal symmetry. The non-existence
of the potential means that the excess entropy essentially depends on the path of the
modulation. In contrast, if the system Hamiltonian is non-degenerate or the Lamb
shift term is negligible, we obtain σex = SvN(ρ0(ατ )) − SvN(ρ0(α0)) +O(ε2δ). Here,
SvN(ρ) = −TrS [ρ ln ρ] is the von Neumann entropy, and δ describes the amplitude
of the change of the control parameters. For systems with time-reversal symmetry,
there exists a potential S(α), which is the symmetrized von Neumann entropy. Ad-
ditionally, we pointed out that the expression of the entropy production obtained in
the classical Markov jump process is different from our result and showed that these
are approximately equivalent only in the weakly nonequilibrium regime.
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Chapter 1

Introduction

1.1 Background

The properties of the isolated static quantum system in the equilibrium state have
been studied deeply. The studies of more general systems are important, however,
uncompleted and are actively being studied. This thesis focus on the following three
points of view. The first is (1) time-dependence. In the isolated quantum system with
time-dependent parameters, the Berry phase [27] is important. The second is (2)
open quantum system. The quantum dot (QD) system coupled to several leads is an
instance of the open quantum system. A theoretical method to study the open quan-
tum system is the quantum master equation (QME). The third is the (3) nonequilib-
rium steady state (NESS). The entropy production under operations between NESSs
of the classical system is being studied actively.

In particular, in this thesis, we study the quantum pump and the excess entropy
production. In a mesoscopic system, even at zero bias, a charge or spin current is
induced by a modulation of the control parameters [39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49]. This phenomenon, called the quantum pump, is theoretically interesting
because its origins are quantum effects and nonequilibrium effects. The entropy
production under operations between NESSs is composed of the time integral of the
instantaneous steady entropy production rate and the excess entropy production.
The excess entropy production is intensively being studied as a generalization of the
entropy concept.

Recently, Ref.[19] had been applied the Berry-Sinitsyn-Nemenman (BSN) phase
to the excess entropy production in the classical system. The BSN phase is the “Berry
phase” of the modified master equation including the counting fields which is a tool
of the full counting statistics (FCS). For quantum system described by the QME,
Ref.[23] had applied the BSN phase using the FCS-QME [26] to study the quantum
adiabatic pump. The FCS-QME had also been applied the excess entropy production
in the quantum system [20]. However, we point out that this study has serious flaws
[98].

1.2 Full counting statistics

In this section, we consider two terminals system. In a mesoscopic system, we can
see quantum properties through the conducting property. By recent development of
experimental techniques, the transfered charge Q within a time interval τ and the
variance ⟨(Q− ⟨Q⟩)2⟩ and higher cumulants can be measured (⟨· · ·⟩ is the statistical
average). The notion of obtaining all cumulants is called the full counting statistics
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(FCS)[26, 74, 75, 76]. The n-th order cumulant ⟨Qn⟩c is defined by

⟨Qn⟩c
def
=

∂nSτ (χ)

∂(iχ)n

∣∣∣
χ=0

, (1.1)

where

Sτ (χ) = ln

∫
dQ Pτ (Q)eiQχ, (1.2)

is the cumulant generating function of Q. Pτ (Q) is the probability distribution of Q.
χ is called the counting field. The cumulants up to fourth order are given by

⟨Q⟩c = ⟨Q⟩,
⟨Q2⟩c = ⟨Q2⟩ − ⟨Q⟩2,
⟨Q3⟩c = ⟨Q3⟩ − 3⟨Q2⟩⟨Q⟩+ 2⟨Q⟩3

= ⟨(Q− ⟨Q⟩)3⟩,
⟨Q4⟩c = ⟨Q4⟩ − 4⟨Q3⟩⟨Q⟩ − 3⟨Q2⟩2 + 12⟨Q2⟩⟨Q⟩2 − 6⟨Q⟩4

= ⟨(Q− ⟨Q⟩)4⟩ − 3⟨(Q− ⟨Q⟩)2⟩2.

The third and fourth cumulants describe the skewness and sharpness, respectively.
The noise ⟨Q2⟩c is composed of the thermal noise (the Johnson-Nyquis noise) and

the shot noise. The shot noise appears when |eV | > kBT where V is the voltage and
T is the temperature. The shot noise S relates with the current I = ⟨Q⟩

τ as

S = 2eFI, (1.3)

where F is the Fano factor. For classical shot noise (Poisson noise), F = 1 holds.
Then, effective charge e∗ is defined by

S = 2e∗I. (1.4)

e∗ = e/3 had been observed for the fractional quantum Hall state ν = 1/3 [88, 89].
The FCS [26, 74, 75, 76] is the method to calculate the generating function. From

the FCS of entropy production, the fluctuation theorem [90, 91, 92] is derived [26, 76].
The fluctuation theorem leads to

S(0) = 2kBTG
(1), (1.5)

S(1) = kBTG
(2). (1.6)

Here, the noise S and the current I are expanded as

S = S(0) + S(1)V + S(2)V 2 + · · · , (1.7)
I = G(1)V +G(2)V 2 + · · · . (1.8)

(1.5) is the Johnson-Nyquist relation, which can be derived from the linear response
theory. (1.6) is a relation of the non-linear response. This relation had been tested by
experiments [93, 94].
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1.3 Quantum adiabatic pump

In a mesoscopic system, even at zero bias, a charge or spin current is induced by
a slow modulation of control parameters [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].
This phenomenon, called the quantum adiabatic pump, is theoretically interesting
because its origins are quantum effects and nonequilibrium effects. The quantum
adiabatic pump is also expected to be applied to the single electron transfer devices
and the current standard[50, 51].

1.3.1 Closed system

For a closed quantum system, the Berry phase [27, 95] appear when the parameter of
the Hamiltonian is changed adiabatically (slowly). The quantization of the quantum
Hall coefficient is proposed by Thouless et al. [39] in 1982. In 1983, for the sys-
tem which only the x-direction is periodic, Thouless showed [39] that the transfered
charge by the cyclic adiabatic modulation of the potential is quantized.

1.3.2 Brouwer formula

The adiabatically pumped quantity is described by a geometric expression in the
control parameter space, although the pumped quantity coming from second or
higher order of the pumping frequency is not geometric. In noninteracting systems,
the quantum adiabatic pump had extensively been studied by the Brouwer formula
[31, 52, 53, 54, 55, 56, 57, 58, 59], which describes the pumped charge by the scattering
matrix. The Brouwer formula is discovered in 1998 by Brouwer [31].

When n-th control parameter αn is changed to αn + δαn, the change of the av-
erage number of the electrons of the bath b is given by ENb

n (α)δαn. ENb
n (α) is called

emissivity. For absolute zero temperature,

ENb
n (α) =

1

2π

∑
B

∑
A∈b

Im
[∂SAB(α)

∂αn
S∗
AB(α)

]
, (1.9)

holds [96]. Here,A andB are labels of electron in the baths and S(α) is the scattering
matrix. By slow modulation of the control parameters between time t = 0 and t = τ ,
the change of the average number of the electrons of the bath ⟨∆Nb⟩ is given by

⟨∆Nb⟩ =
∫ τ

0
dt
dαn

t

dt
ENb
n (αt) =

∫
C
dαn ENb

n (α). (1.10)

The summation symbol
∑

n is omitted. C is the trajectory in the control parameters.
In particular, for cyclic modulation α0 = ατ , using the Stokes theorem,

⟨∆Nb⟩ =
∫
S
dαm ∧ dαn 1

2
FNb
mn(α), (1.11)

holds. S is the surface enclosed by C. FNb
mn is given by

FNb
mn(α)

def
=

∂ENb
n (α)

∂αm
− ∂ENb

m (α)

∂αn

=
1

π

∑
B

∑
A∈b

Im
[∂SAB(α)

∂αn

∂S∗
AB(α)

∂αm

]
. (1.12)
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If the electrons of the bath b are labeled by b and energy ε and the scattering is elastic

Sbε,b′ε′(α) = Sb,b′(ε, α)δε,ε′ , (1.13)

FNb
mn(α) at zero-bias is given by

FNb
mn(α) =

1

π

∑
b′

Im
[∂Sb,b′(µ, α)

∂αn

∂S∗
b,b′(µ, α)

∂αm

]
. (1.14)

Here, µ is the chemical potential of the baths.
On the other hand, it is difficult to calculate the scattering matrix in the interact-

ing systems. In the interacting system, the Brouwer formula had only been applied
in mean field treatments [60, 61] or in the Toulouse limit [62].

1.3.3 Recent studies of the quantum pump

Recently, the quantum pump in interacting systems have been actively researched.
There are three theoretical approaches. The first is the Green’s function approach
[32, 63, 64, 99, 100]. The second is the generalized master equation (GME) [65, 66,
33, 67, 68, 69, 70, 71] approach which uses the GME that is equivalent[72, 73] to
the quantum master equation (QME) derived using the Nakajima-Zwanzig projec-
tion operator technique [28]. Particularly, Ref.[69] derived a geometric expression
similar to the Brouwer formula and the Berry-Sinitsyn-Nemenman (BSN) vector ex-
plained later. The third is the full counting statistics[26, 74, 75] (FCS) with quantum
master equation (FCS-QME, which is also called the generalized quantum master
equation[26]) approach proposed in Ref.[23].

The adiabatic modulation of the control parameters induces a Berry-phase-like[27]
quantity called the BSN phase in the FCS-QME with the Markov approximation.
Sinitsyn and Nemenman[22] studied the adiabatically pumped charge using the
FCS and had shown that it is characterized by the BSN vector, which results from
the BSN phase. The BSN vector was applied to the spin boson system [77]. The
FCS-QME approach can treat the Coulomb interaction, which can not be treated in
the Brouwer formula. The derived formula of the BSN vector depends on the ap-
proximations used for the QME. The Born-Markov approximation with or without
the rotating wave approximation [28](RWA) is frequently used. The QME in the
Born-Markov approximation without RWA sometimes violates the non-negativity
of the system reduced density operator [78]. The QME of the RWA or the coarse-
graining approximation[29, 30](CGA) is the Lindblad type which guarantees the
non-negativity [28].

Some recent papers [68, 69, 23] showed that the Coulomb interaction induces
the quantum pump. In Refs.[68, 69], it was shown that in a one level interacting
quantum dot (QD) weakly coupled to two leads, the pumped charge (also spin in
Ref.[69]) induced by an adiabatic modulation of the energy level of the QD and the
bias between the two leads vanishes in the noninteracting limit. In particular, Yuge
et al.[23] studied the pumped charge coming from the BSN curvatures by adiabatic
modulation of the thermodynamic parameters (the chemical potentials and the tem-
peratures) in spinless QDs weakly coupled to two spinless leads and showed that
the BSN curvatures are zero in noninteracting QDs although they are nonzero for
finite interaction.
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1.4 Thermodynamic entropy

We review the thermodynamic entropy based on Ref.[97].

1.4.1 Principles of thermodynamics

A macro systemA is generally imposed internal constraints which describe the char-
acters of the internal structures. For instance, the subsystem of A is enclosed by the
wall which does not transmit heat. A can be decomposed to the simple systems
{Ai}i. The simple system is the macro system which has not internal constraints and
of which spatial non-uniformity in the equilibrium state due to the external fields is
negligible. The equilibrium state is the state which all macro variables of the system
do not change (as functions of time). As a principle, for arbitrary macro system A,
it is requested that if A is isolated (static external fields can exist) and is left suffi-
ciently long time, A becomes the equilibrium state. As principles, the followings are
requested: (i) If A is in the equilibrium state, the entropy S exist uniquely.
(ii) The entropy Si of Ai is a function of the internal energy Ui of Ai and the set of
additive variables of Ai, {Xα

i }
mi
α=1: Si = Si(Ui, X

1
i , · · · , X

mi
i ). Ui, X

1
i , · · · , X

mi
i are

called the natural variables.
(iii) Si(Ui, X

1
i , · · · , X

mi
i ) is continuously differentiable for the natural variables. In

particular, kBβi
def
= ∂Si/∂Ui is positive and its lower limit is 0 and the upper limit

does not exist. Here, kB is the Boltzmann constant and βi is the inverse temperature
of Ai.
(iv) A is in the equilibrium state if and only if all Ai are in the equilibrium states

and Ŝ
def
=
∑

i Si(Ui, X
1
i , · · · , X

mi
i ) is maximized. The entropy S of A is given by

S = max{Ui,X1
i ,··· ,X

mi
i } Ŝ where max is the maximization under the permitted area.

The values of the natural variables which provide the S are those in the equilibrium
state.

1.4.2 Heat and entropy

The workW is the transfered energy described by the macro variables. In general,W
is the summation of the mechanical work WM and the work due to particle transfer
WC and etc. The heat Q is defined by U −W where U is the total transfered energy
from the external system. Because U is the change of the internal energy ∆U , Q =
∆U −W holds.

The process in which a systemB can be regarded as always be in the equilibrium
state is called the quasistatic process for B.

From the principles of § 1.4.1, the following theorem is derived. We consider
a process that a general system A receives the heat from external systems B1, B2,
· · · , BM exchanging mechanical work with the external systems C1, C2, · · · , CN .
WhenA contacts withBi,A does not contact with {Bb}b ̸=i. The set {(b, k) ∈ {1, 2, · · · ,M}×
{1, 2, · · · , N}|Bb = Ck} may not be an empty set. We suppose that this process is
quasistatic process for {Bb}Mb=1. Then, the change of the entropy ∆S of A satisfies

∆S ≤
∑
b

∫ f (b)

i(b)
kBβbd

′Q. (1.15)

Here, βb is the inverse temperature ofBb, and i(b)(f (b)) denotes the initial (final) state
contacting Bb. In particular, the equality holds if the following conditions satisfy: (i)



16

This process is also quasistatic process for A. (ii) While A contacts to Bb, the inverse
temperature of A equals to βb.

In the following of this subsection, we consider a simple system A. We denote
the natural variables of the entropy S of A by U and {Xα}mα=1. From the principles
of § 1.4.1, S(U, {Xα}mα=1) is convex upward for each natural variable. The equation
S = S(U, {Xα}mα=1) can solve for U uniquely: U = U(S, {Xα}mα=1). We introduce

T
def
= ∂U/∂S and Pα

def
= ∂U/∂Xα. T is the temperature of A and T = 1/(kBβ) holds

with kBβ = ∂S/∂U . IfXα is the total particle numberN , µ def
= ∂U/∂N is the chemical

potential.
We denote the work by changing of Xα by Wα. For a quasistatic process for A,

the work is defined by

d′Wα def
= PαdX

α (quasistatic process). (1.16)

Using dU = TdS +
∑

α PαdX
α and the definition of the heat,

dS = βd′Q (quasistatic process), (1.17)

hold. This is called the Clausius equality. For the general system (which is not simple
system), the Clausius equality holds if the temperature is uniform in the system. In
particular, if

∑M
α=1 PαdX

α = µdN holds, d′Q = dU − µdN and

dS = β(dU − µdN) (quasistatic process), (1.18)

hold. Here and in the following this thesis, we set kB = 1. In general process, it
is difficult to define the heat. For a quasistatic process for B, QB can be defined as
explained above. In (1.15), d′Q is defined by −d′Qb where d′Qb is the heat to Bb.

In the equilibrium classical (quantum) system, the entropy is given by the Shan-
non entropy of the probability distribution (von Neumann entropy of the density
matrix) of states.

1.5 Nonequilibrium steady state

Let us consider a system A coupled to the baths {Bb}Mb=1 (M > 1). We suppose
that {Bb}b∈C are the canonical baths and {Bb}b∈G are the grand canonical baths. We
denote the inverse temperature of Bb by βb and the chemical potential of Bb (b ∈ G)
by µb. If all βb and µb are the same (βb = β for all b and µb = µ for all b ∈ G),
the total system is referred as zero-bias or equilibrium. For the nonequilibrium total
system fixing (control) parameters, if A is left sufficiently long time and becomes a
steady state, this state of A or the total system is called the nonequilibrium steady
state (NESS). For quantum system described by the QME, the NESS exists uniquely.

As the instance, we consider spinless one level QD coupled to several leads. |0⟩
(|1⟩) denotes the state that the QD is empty (occupied). The diagonal components
pn(t) = ⟨n|ρ(t)|n⟩ (n = 0, 1) of the system state ρ are governed by the master equa-
tion:

d

dt

(
p0(t)
p1(t)

)
= K

(
p0(t)
p1(t)

)
. (1.19)
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The Liouvillian is given by

K =
∑
b

Γb

(
−fb 1− fb
fb −(1− fb)

)
. (1.20)

Here, Γb is the line-width function of the lead b, fb = [eβb(ε−µb) + 1]−1 is the Fermi
distribution function, ε is the energy level of the QD. In this section the parameters
are fixed. The solution of the master equation is(

p0(t)
p1(t)

)
=

(
1− F
F

)
+ e−Γt

(
−p1(0) + F
p1(0)− F

)
, (1.21)

where Γ =
∑

b Γb and

F =
∑
b

fb
Γb

Γ
. (1.22)

The first term of the RHS of (1.21) is the NESS.

1.6 Excess entropy

The investigation of thermodynamic structures of NESSs has been a topic of active
research in nonequilibrium statistical mechanics [1, 2, 3, 4, 5, 6, 7, 8, 9]. For instance,
the extension of the relations in equilibrium thermodynamics, such as the Clausius
equality, to NESSs has been one of the central subjects. Recently there has been
a progress in the extension of the Clausius equality to NESSs [10, 11, 12] (see also
Refs.[13, 14, 15, 16, 17, 18]). In these studies, the excess heat Qb,ex (of the bath b)
[2], which describes an additional heat induced by a transition between NESSs with
time-dependent external control parameters, has been introduced instead of the total
heat Qb. The excess heat Qb,ex is defined by subtracting from Qb the time integral of
the instantaneous steady heat current from the bath b. In the weakly nonequilibrium
regime, it is proposed that there exists a scalar potential S in the control parameter
space which approximately satisfies the extended Clausius equality∑

b

βbQb,ex ≈ ∆S. (1.23)

Here, βb is the inverse temperature of the bath b, ∆S = S(αtf )−S(αti), αt is the value
of the set of the control parameters at time t, and ti and tf are initial and final times
of the operation. In classical systems, S is the symmetrized Shannon entropy [11].
In quantum systems with the time-reversal symmetry, S is the symmetrized von
Neumann entropy [12]. In general, the left hand side (LHS) of (1.23) is replaced by

the excess entropy σex
def
= σ−

∫ tf
ti
dt Jσ

ss(αt) where σ is the average entropy production
and Jσ

ss(αt) is the instantaneous steady entropy production rate [19, 20, 21]. In the
quasistatic operation, the excess entropy is given by

σex = ∆S +O(ε2δ), (1.24)

where ε is a measure of degree of nonequilibrium and δ describes the amplitude of
the change of the control parameters. Sagawa and Hayakawa [19] studied the full
counting statistics (FCS) of the entropy production for classical systems described
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by the Markov jump process and showed that the excess entropy is characterized by
the Berry-Sinitsyn-Nemenman (BSN) phase [22].

The method of Ref.[19] was generalized to quantum systems and applied to stud-
ies of the quantum pump [23, 24, 25]. We explain the studies of the quantum pump.
At t = 0 and t = τ , we perform projection measurements of a time-independent
observable O of the baths and obtain the outcomes o(0) and o(τ). The generating
function of ∆o = o(τ) − o(0) is Zτ (χ) =

∫
d∆o Pτ (∆o)e

iχ∆o where Pτ (∆o) is the
probability density distribution of ∆o and χ is called the counting field. To calcu-
late the generating function, the method using the quantum master equation (QME)
with the counting field (FCS-QME) [26] had been proposed. The solution of the FCS-
QME ρχ(t) provides the generating function as Zτ (χ) = TrS [ρχ(τ)]. TrS denotes the
trace of the system. The Berry phase [27] of the FCS-QME is the BSN phase. The
average of the difference of the outcomes is given by ⟨∆o⟩ =

∫ τ
0 dt i

O(t) where iO(t)
is the current of an operator O. If the state of the system at t = 0 is the instantaneous
steady state and the modulation of the control parameters is slow, the relation

⟨∆o⟩ =
∫ τ

0
dt iOss(αt) +

∫
C
dαn AO

n (α), (1.25)

holds. Here, the summation symbol for n is omitted. iOss(αt) is the instantaneous
steady current of O and AO

n (α) is the BSN vector derived from the BSN phase. αn

is n-th component of the control parameters, and C is the trajectory from α0 to ατ .
The derived formula of the BSN vector depends on the approximations used for the
QME.

Because of (1.18), the entropy production rate of the bath b is σ̇b(t) = βb(t)[i
Hb(t)−

µb(t)i
Nb(t)] where µb is the chemical potential of the bath b, and iHb(t) and iNb(t) are

energy and particle currents from the system to the bath b, respectively. Hb and Nb

are the Hamiltonian and the total particle number of the bath b, respectively. Then,

it is natural to identify σ̇(t) def
= −

∑
b σ̇b(t) =

∑
b βb(t)[−iHb(t)− µb(t){−iNb(t)}] with

the average entropy production rate of the system. σ def
=
∫ τ
0 dt σ̇(t) is the average

entropy production. Because of (1.25), σ =
∫ τ
0 dt J

σ
ss(αt) +

∫
C dαn Aσ

n(α) holds with

Jσ
ss(α)

def
=
∑

b βb[−iHb
ss (α)− µb{−iNb

ss (α)}] and

Aσ
n(α)

def
=
∑
b

βb[−AHb
n (α)− µb{−ANb

n (α)}]. (1.26)

Here, iHb
ss (α) and iNb

ss (α) are the instantaneous steady currents of the energy and
particle from the system to the bath b. AHb

n (α) and ANb
n (α) are the BSN vectors of Hb

and Nb. The excess entropy production is given by

σex =

∫
C
dαn Aσ

n(α). (1.27)

Yuge et al. [20] applied the FCS-QME approach to the excess entropy production

of the quantum system. They identified σ′ def= ⟨a(τ)−a(0)⟩with the average entropy
production. Here, a(0) and a(τ) are the outcomes of A(t) = −

∑
b βb(t)[Hb−µb(t)Nb]

at t = 0 and t = τ . However, σ′ is not the average entropy production σ. σ′ ≈
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Trtot[A(τ)ρtot(τ)]− Trtot[A(0)ρtot(0)] can be rewritten as

σ′ ≈ −
∫ τ

0
dt
∑
b

[dβb(t)
dt
⟨Hb⟩t −

d[βb(t)µb(t)]

dt
⟨Nb⟩t

]
+

∫ τ

0
dt
∑
b

[
βb(t){−

d

dt
⟨Hb⟩t} − βb(t)µb(t){−

d

dt
⟨Nb⟩t}

]
. (1.28)

Here, ⟨•⟩t
def
= Trtot[•ρtot(t)], ρtot(t) is the total system state and Trtot denotes the

trace of the total system. The integrand of the second term of the RHS of (1.28)
roughly equals to σ̇ [36]. However, the physical meaning of the first term is not
clear. Then, because of the presence of the first term, σ′ ̸= σ is concluded. Moreover,
they improperly used the FCS-QME applicable only for time-independent observable
to calculate σ′ although A(t) is time-dependent. These two issues are the problems
of Ref.[20].

1.7 Aim of this thesis

There are several theoretical approaches to analyze the quantum pump. However,
the relations among these are not clear. Then, the first aim of this thesis is to clarify
these relations (in particular, the relation between the FCS-QME approach and the
GME approach). Moreover, in the previous works, the charge pump had been stud-
ied mainly. However, for applications to the spintronics and quantum information
processing, the spin degree of freedom is important. Then, we consider the spin
degree of freedom and study the spin pump.

Recently, the excess entropy of the classical system is established. However, one
for the quantum system is not sufficient as we explained in § 1.6. The second aim
of this thesis is to develop the excess entropy of the quantum system. Moreover,
we compare between our results and previous results of both classical and quantum
systems.

1.8 Outline of the thesis

The outline of the thesis is as follows. First, we review the FCS and the FCS-QME
(Chap.2). In § 2.1, we derive the modified von Neumann equation including the
counting fields. In § 2.2, we derive and the FCS-QME with the CGA. In § 2.3, we
explain the RWA. In § 2.4, we derive the detailed balance condition.

Next, we move to the original results (§ 3.2,§ 3.3 and before (3.21) are review
parts). Chap.3 and Chap.4 are based on Ref.[25]. Chap.6, Chap.7 and Chap.8 are
based on Ref.[98]. We apply the FCS-QME to the quantum pump (Chap.3). In § 3.1,
we derive the expression for current without any approximation and introduce the
BSN vector. The BSN vector is also derived from the BSN phase (§ 3.2). In § 3.3, we
introduce the BSN curvature used to cyclic adiabatic pump. In § 3.4, we expand the
general solution of the QME ρ(t) by the modulation frequency ω as

ρ(t) = ρ0(αt) +

∞∑
n=1

ρ(n)(t) +

∞∑
n=0

ρ̃(n)(t). (1.29)

Here, ρ0(αt) is the instantaneous steady state of the QME, ρ(n)(t) and ρ̃(n)(t) are
calculable and order (ω/Γ)n. Γ is the coupling strength between the system and the
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baths. ρ̃(n)(t) exponentially damps as a function of time. In the expansion (1.29), a
pseudo-inverse of the Liouvillian is used. In § 3.5, we proof the expansion (1.29) is
independent of the choice of the pseudo-inverse. In § 3.6, we show that the GME
provides an expansion corresponding to ρ0(αt) +

∑∞
n=1 ρ

(n)(t).
In Chap.4, we apply the FCS-QME with the RWA to the quantum adiabatic pump

of the quantum dots (QDs) coupled to two leads (L and R). In § 4.1, we explain the
model. We show that the pumped charge and spin coming from the instantaneous
steady current are not negligible when the thermodynamic parameters are not fixed
to zero bias in noninteracting QDs (§4.2.2) and an interacting QD (§4.3.2). To observe
the spin effects, we consider collinear magnetic fields, which relate to spins through
the Zeeman effect, with different amplitudes applying to the QDs (BS) and the leads
(BL and BR). We focus on the dynamic parameters (BS , BL/R and the coupling
strength between QDs and leads, ∆L/R) as control parameters. In one level QD with
the Coulomb interaction U , we analytically calculate the BSN curvatures of spin and
charge of (BL, BS) pump and (∆L, BS) pump for the noninteracting limit (U = 0, §
4.2.3) and the strong interaction limit (U = ∞, § 4.3.3) at zero-bias. Moreover, we
study the (∆L, BS) pump for finite U at zero-bias (§ 4.3.5).

We study the quantum diabatic pump for spinless one level QD coupled to two
leads (Chap.5). We calculate {ρ(n)(t)}5n=1, {ρ̃(n)(t)}5n=1 and particle current up to 6th
order and pumped particle numbers.

Next, we introduce the generalized QME (Chap.6) used to analyze the BSN vec-
tor of the entropy production. In Chap.7 and Chap.8, we focus on the RWA. In§ 7.1,
the BSN vector Aσ

n in the equilibrium is discussed. In § 7.2, one of the main result of
this thesis

Aσ
n(α) = −TrS

[
ln ρ

(−1)
0 (α)

∂ρ0(α)

∂αn

]
+O(ε2), (1.30)

is derived without any assumption on the time-reversal symmetry [98]. ρ(−1)
0 (α) is

the instantaneous steady state obtained from the QME with reversing the sign of the
Lamb shift term. In § 7.3, we consider the time-reversal operation. We show that if
the time-reversal symmetry is broken and the system Hamiltonian is degenerated,
S(α) such thatAσ

n(α) = ∂S(α)/∂αn+O(ε2) dose not exist. This is the most important
result of this thesis. Next we mention the results in the Born-Markov approximation
(§ 7.4). In Chap.8, we compare preceding study on of the entropy production in the
classical Markov jump process [21, 37] with ours.

At last (Chap.9), we summarize this thesis. In Appendix A, the Liouvillian for the
Born-Markov approximation is discussed. In Appendix B, the Liouville space[80, 26]
and the matrix representation of the Liouvillian are explained. In Appendix C, we
derive (3.23). In Appendix D, we discuss the validity of the adiabatic expansion
in Chap.3. In Appendix E, we discuss the derivation of (3.52). In the Appendix F,
we discuss the solutions of the GME expanded by the modulation frequency and
the coupling strength between the system and the baths. In the Appendix G, we
calculate the energy current operator. In the Appendix H, we derive the formula of
the derivative of the von Neumann entropy. In the Appendix I, we proof (7.66). In
the Appendix J, we explain the definition of entropy production of the Markov jump
process and a result of Ref.[21].
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Chapter 2

Full counting statistics and
quantum master equation

2.1 Full counting statistics

We consider the system S coupled with the bath system B:

Htot(t) = HS(t) +HB(t) +Hint(t). (2.1)

The bath system may contain several baths. The simultaneous eigenstate of a set of
the bath’s observables {Oµ} is given by

Oµ|{oν}, r⟩ = oµ|{oν}, r⟩, (2.2)
⟨{oν}, r|{o′ν}, s⟩ = δr,sδ{oν},{o′ν}. (2.3)

Here, r and s denote the label of degeneracy, and δ{oν},{o′ν} =
∏n

ν=1 δoν ,o′ν is the
kronecker delta. The projection operator to {oµ} is given by

P{oµ} =
∑
r

|{oµ}, r⟩⟨{oµ}, r|. (2.4)

This has the following properties：

P{oν}P{o′ν} = δ{oν},{o′ν}P{oν}, (2.5)∑
{oν}

P{oν} = 1. (2.6)

The total system state ρtot(t) is governed by the von Neumann equation:

d

dt
ρtot(t) = −i[Htot(t), ρtot(t)]. (2.7)

In this thesis, we set ℏ = 1. The formal solution is given by

ρtot(t) = V (t)ρtot(0)V
†(t), (2.8)

where V (t) is the solution of

d

dt
V (t) = −iHtot(t)V (t), (2.9)
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with V (0) = 1. At t = 0, we perform projection measurements of {Oµ}. The proba-
bility getting {o(0)µ } is given by

P [{o(0)µ }] = Trtot[P{o(0)µ }ρtot(0)P{o(0)µ }]. (2.10)

Trtot denotes the trace over the total system. The state just after measuring {o(0)µ } is

ρ
{o(0)µ }
tot (0) =

P{o(0)µ }ρtot(0)P{o(0)µ }

P [{o(0)µ }]
. (2.11)

After the time evolution by (2.7), the state at time t is

ρ
{o(0)µ }
tot (t) = V (t)ρ

{o(0)µ }
tot (0)V †(t)

=
V (t)P{o(0)µ }ρtot(0)P{o(0)µ }V

†(t)

P [{o(0)µ }]
. (2.12)

Under this condition, we perform projection measurements of {Oµ} at t = τ . The
probability getting {o(τ)µ } is given by

P [{o(τ)µ }|{o(0)µ }] = Trtot[P{o(τ)µ }ρ
{o(0)µ }
tot (τ)P{o(τ)µ }]

=
1

P [{o(0)µ }]
Trtot[P{o(τ)µ }V (τ)P{o(0)µ }ρtot(0)P{o(0)µ }V

†(τ)P{o(τ)µ }].(2.13)

The probability getting {o(0)µ } at t = 0 and {o(τ)µ } at t = τ is

P [{o(τ)µ }, {o(0)µ }] = P [{o(0)µ }] · P [{o(τ)µ }|{o(0)µ }]
= Trtot[P{o(τ)µ }V (τ)P{o(0)µ }ρtot(0)P{o(0)µ }V

†(τ)P{o(τ)µ }]. (2.14)

The probability density distribution of {o(τ)µ − o(0)µ } is given by

Pτ [{∆oµ}]
def
= Prob.[{o(τ)µ − o(0)µ = ∆oµ}] (2.15)

=
∑

{o(0)µ },{o(τ)µ }

P [{o(τ)µ }, {o(0)µ }]
∏
µ

δ(o(τ)µ − o(0)µ −∆oµ). (2.16)

The generating function is defined by

Zτ (χ)
def
=

∫
(

n∏
ν=1

d∆oν) Pτ ({∆oµ})ei
∑n

µ=1 χµ∆oµ . (2.17)

Here, χµ is a real number called the counting field for Oµ. χ denotes the set of the
counting fields. The cumulant generating function is defined by

Sτ (χ)
def
= lnZτ (χ). (2.18)

The n-th order cumulant ⟨∆oµ1∆oµ2 . . .∆oµn⟩c is given by

⟨∆oµ1∆oµ2 . . .∆oµn⟩c =
∂nSτ (χ)

∂(iχµ1)(iχµ2) · · · (iχµn)

∣∣∣
χ=0

. (2.19)
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In particular,

⟨∆oν⟩c =
∂Sτ (χ)

∂(iχν)

∣∣∣
χ=0

= ⟨∆oν⟩, (2.20)

is the average of ∆oν .
Substituting (2.16) to (2.17), we obtain

Zτ (χ) =
∑

{o(0)µ },{o(τ)µ }

P [{o(τ)µ }, {o(0)µ }]e
i
∑

µ χµ[o
(τ)
µ −o

(0)
µ ]. (2.21)

Substituting (2.14) to the above equation, we obtain

Zτ (χ)

=
∑

{o(0)µ },{o(τ)µ }

Trtot[P{o(τ)µ }V (τ)P{o(0)µ }ρtot(0)P{o(0)µ }V
†(τ)P{o(τ)µ }]e

i
∑

µ χµ[o
(τ)
µ −o

(0)
µ ].

(2.22)

Now, we introduce

ρ̄tot(0)
def
=

∑
{o(0)µ }

P{o(0)µ }ρtot(0)P{o(0)µ }. (2.23)

Properties

e−iχνOν/2P{o(0)µ } = e−iχνo
(0)
ν /2P{o(0)µ }, P{o(0)µ }e

−iχνOν/2 = e−iχνo
(0)
ν /2P{o(0)µ }, (2.24)

lead

e−i
∑

µ χµOµ/2ρ̄tot(0)e
−i

∑
µ χµOµ/2 =

∑
{o(0)µ }

e−iχµo
(0)
µ P{o(0)µ }ρtot(0)P{o(0)µ }. (2.25)

Then, (2.22) becomes

Zτ (χ)

=
∑
{o(τ)µ }

Trtot[P{o(τ)µ }V (τ)e−i
∑

µ χµOµ/2ρ̄tot(0)e
−i

∑
µ χµOµ/2V †(τ)P{o(τ)µ }]e

i
∑

µ χµo
(τ)
µ .

(2.26)

Moreover, from

P{o(τ)µ }e
iχνOν/2 = e−iχνo

(τ)
ν /2P{o(τ)µ }, e

iχνOν/2P{o(τ)µ } = eiχνo
(τ)
ν /2P{o(τ)µ }, (2.27)
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we obtain

Zτ (χ) =
∑
{o(τ)µ }

Trtot[P{o(τ)µ }e
iχµOµ/2V (τ)e−iχµOµ/2ρ̄tot(0)e

−iχµOµ/2V †(τ)eiχµOµ/2P{o(τ)µ }]

=
∑
{o(τ)µ }

Trtot[P{o(τ)µ }P{o(τ)µ }e
iχµOµ/2V (τ)e−iχµOµ/2ρ̄tot(0)e

−iχµOµ/2V †(τ)eiχµOµ/2]

= Trtot[
∑
{o(τ)µ }

P{o(τ)µ }e
iχµOµ/2V (τ)e−iχµOµ/2ρ̄tot(0)e

−iχµOµ/2V †(τ)eiχµOµ/2]

= Trtot[eiχµOµ/2V (τ)e−iχµOµ/2ρ̄tot(0)e
−iχµOµ/2V †(τ)eiχµOµ/2]

= Trtot[Vχ(τ)ρ̄tot(0)V
†
−χ(τ)]

= Trtot[ρ
χ
tot(τ)]. (2.28)

Here, we used (2.5) and (2.6). Here and in the following of this section, χµOµ ≡∑
µ χµOµ. Vχ(t) and ρχtot(t) are defined by

Vχ(t)
def
= eiχµOµ/2V (t)e−iχµOµ/2, (2.29)

ρχtot(t)
def
= Vχ(t)ρ̄tot(0)V

†
−χ(t). (2.30)

Vχ(0) and ρχtot(0) are given by

Vχ(0) = 1,

ρχtot(0) = ρ̄tot(0) =
∑
{o(0)µ }

P{o(0)µ }ρ(0)P{o(0)µ }. (2.31)

Vχ(t) is governed by

d

dt
Vχ(t) = eiχµOµ/2

[ d
dt
V (t)

]
e−iχµOµ/2

= eiχµOµ/2
[
− iHtot(t)V (t)

]
e−iχµOµ/2

= −ieiχµOµ/2Htot(t)e
−iχµOµ/2eiχµOµ/2V (t)e−iχµOµ/2

= −iHtot,χ(t)Vχ(t), (2.32)

with

Htot,χ(t)
def
= eiχµOµ/2Htot(t)e

−iχµOµ/2. (2.33)

Htot,χ(t) is a Hermitian operator：

H†
tot,χ(t) = Htot,χ(t). (2.34)

From the Hermitian conjugate of (2.32), we obtain

d

dt
V †
−χ(t) = iV †

−χ(t)Htot,−χ(t). (2.35)
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From (2.30), (2.32) and the above equation, ρχtot(t) is governed by

d

dt
ρχtot(t) =

d

dt
[Vχ(t)ρ̄tot(0)V

†
−χ(t)]

= −iHtot,χ(t)Vχ(t)ρ̄tot(0)V
†
−χ(t) + iVχ(t)ρ̄tot(0)V

†
−χ(t)Htot,−χ(t)

= −i[Htot,χ(t)ρ
χ
tot(t)− ρ

χ
tot(t)Htot,−χ(t)]. (2.36)

2.2 Quantum master equation with counting fields

2.2.1 Derivation of FCS-QME

We consider system S weakly coupled to several baths. The total Hamiltonian is
given by

Htot(α
′(t)) = HS(αS(t)) +

∑
b

[Hb(α
′
b(t)) +HSb(αSb(t))]. (2.37)

HS(αS) is the system Hamiltonian and αS denotes a set of control parameters of the
system. Hb(α

′
b) is the Hamiltonian of the bath b and α′

b is a set of control parameters.
HSb(αSb) is the coupling Hamiltonian between S and the bath b, and αSb is a set
of control parameters. We suppose that the states of the baths for b = 1, 2, · · · , nC
are the canonical distributions and these for b = nC + 1, · · · , nC + nGC are the grand
canonical distributions. We denote {1, · · · , nC} and {nC+1, · · · , nC+nGC} by C and
G. We denote the inverse temperature of the bath b by βb and the chemical potential
of the bath b ∈ G by µb. α′′

b denotes βb for b ∈ C and the set of βb and βbµb for b ∈ G.
We symbolize the set of all control parameters (αS , {αSb}b, {α′

b}b, {α′′
b}b) by α, (αS ,

{αSb}b, {α′
b}b) by α′, {α′′

b}b by α′′, (α′
b, α

′′
b ) by αb, and {αb}b by αB . While α′ are

dynamical parameters, α′′ are thermodynamical parameters. We denote the set of
all the linear operators of S by B.

The modified von Neumann equation (2.36) [26] is

d

dt
ρχtot(t) = −i[Htot(t), ρ

χ
tot(t)]χ. (2.38)

Here, [A,B]χ
def
= AχB −BA−χ and Aχ

def
= ei

∑
µ χOµOµ/2Ae−i

∑
µ χOµOµ/2. χOµ is χµ of

§ 2.1. We suppose

ρtot(0) = ρ(0)⊗ ρB(αB(0)), (2.39)

where ρB(αB(0))
def
=
⊗

b ρb(αb(0)) and ρb(αb(0))
def
= e−βb(0)Hb(α

′
b(0))/Zb(αb(0)) with

Zb(αb)
def
= Trb[e−βbHb(α

′
b)] for b ∈ C and ρb(αb(0))

def
= e−βb(0)[Hb(α

′
b(0))−µb(0)Nb]/Ξb(αb(0))

with Ξb(αb)
def
= Trb[e−βb[Hb(α

′
b)−µbNb]] for b ∈ G. Trb denotes the trace of the bath b and

Nb (b ∈ G) is the total number operator of the bath b. Then,

ρχtot(0) = ρ(0)⊗
∑
{oν}

P{oν}ρB(αB(0))P{oν}, (2.40)

obeys. We suppose [Hb, Nb] = 0. We suppose that Oµ commute with Hb and Nb:

[Oµ,Hb] = 0, [Oµ, Nb] = 0. (2.41)
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Then, P{oν} commutes with ρB(αB(0)) and

ρχtot(0) = ρ(0)⊗ ρB(αB(0)), (2.42)

holds because (2.5) and (2.6).
We defined

ρχ(t)
def
= TrB[ρ

χ
tot(t)], (2.43)

which provides the generating function

Zτ (χ) = TrS [ρχ(t = τ)]. (2.44)

TrB denotes the trace over all baths’ degrees of freedom. We assume ρtot(t) ≈ ρ(t)⊗
ρB(αB(t)) (0 < t ≤ τ), where

ρB(αB(t))
def
=
⊗
b

ρb(αb(t)), (2.45)

ρb(αb(t))
def
=

{
e−βb(t)Hb(α

′
b(t))/Zb(αb(t)) b ∈ C

e−βb(t)[Hb(α
′
b(t))−µb(t)Nb]/Ξb(αb(t)) b ∈ G . (2.46)

and

ρ(t)
def
= TrB[ρtot(t)]. (2.47)

First, we introduce the CGA. An operator in the interaction picture correspond-
ing to A(t) is defined by

AI(t) = U †
0(t)A(t)U0(t), (2.48)

with

dU0(t)

dt
= −i[HS(αS(t)) +

∑
b

Hb(α
′
b(t))]U0(t), (2.49)

and U0(0) = 1. The system reduced density operator in the interaction picture is
given by

ρI,χ(t) = TrB[ρ
I,χ
tot (t)], (2.50)

where

ρI,χtot (t) = U †
0(t)ρ

χ
tot(t)U0(t). (2.51)

ρI,χtot (t) is governed by

dρI,χtot (t)

dt
= −i[HI

int(t), ρ
I,χ
tot (t)]χ, (2.52)

with

Hint
def
=
∑
b

HSb. (2.53)
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Up to the second order perturbation in Hint, we obtain

ρI,χ(t+ τCG) = ρI,χ(t)

−
∫ t+τCG

t
du

∫ u

t
ds TrB

{
[HI

int(u), [H
I
int(s), ρ

I,χ(t)ρB(αB(t))]χ]χ
}

≡ ρI,χ(t) + τCGL̂
χ
τCG

(t)ρI,χ(t), (2.54)

using the large-reservoir approximation

ρI,χtot (t) ≈ ρI,χ(t)⊗ ρB(αB(t)), (2.55)

and supposing

TrB[HI
int(u)ρB(αB(t))] = 0. (2.56)

The arbitrary parameter τCG (> 0) is called the coarse-graining time. The CGA
[29, 30] is defined by

d

dt
ρI,χ(t) = L̂χ

τCG
(t)ρI,χ(t). (2.57)

In the Schrödinger picture, (2.57) is described as

dρχ(t)

dt
= −i[HS(αS(t)), ρ

χ(t)] +
∑
b

Lχb,τCG
(αt)ρ

χ(t). (2.58)

At χ = 0, this is the Lindblad type. If τCG ≪ τ , the super-operatorLχb,τCG
is described

as a function of the set of control parameters at time t. αt = α(t) is the value of α at
time t. In this thesis, we suppose

τCG ≪ τ. (2.59)

Moreover, τCG should be much shorter than the relaxation time of the system, τS :

τCG ≪ τS . (2.60)

For the adiabatic modulation, τS ≪ τ should hold, then τCG ≪ τS ≪ τ holds.
In general, the FCS-QME is given by

dρχ(t)

dt
= −i[HS(αS(t)), ρ

χ(t)] +
∑
b

Lχb (t)ρ
χ(t), (2.61)

with the initial condition

ρχ(0) = ρ(0). (2.62)

Lχb (t) describes the coupling effects between S and the bath b and depends on used
approximations. In this thesis, we suppose

Lχb (t) = L
χ
b (αt). (2.63)
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The Born-Markov approximation without or within the RWA and the CGA satisfy
this equation. Then, the FCS-QME is given by

dρχ(t)

dt
= K̂χ(αt)ρ

χ(t). (2.64)

Here,

K̂χ(α)• = −i[HS(αS), •] +
∑
b

Lχb (α)•, (2.65)

is the Liouvillian. Here and in the following, • denotes an arbitrary liner operator of
the system.

The Born-Markov approximation is given by

dρI,χ(t)

dt
= −

∫ ∞

0
ds TrB

{
[HI

int(t), [H
I
int(t− s), ρI,χ(t)ρB(αB(t))]χ]χ

}
. (2.66)

2.2.2 Coarse-graining approximation

In general, the interaction Hamiltonian is given by

HSb(αSb) =
∑
µ

sbµRb,µ(αSb) =
∑
µ

R†
b,µ(αSb)s

†
bµ. (2.67)

Here, sbµ is an operator of the system and Rb,µ(αSb) is an operator of the bath b. We
suppose

Trb[ρb(αb(t))Rb,µ(αSb(s))] = 0, (2.68)

corresponding to (2.56). Then,

TrB
{
[HI

int(u), [H
I
int(s), ρ

I,χ(t)ρB(αB(t))]χ]χ

}
=
∑
b

∑
µ,ν

(
sI†bν(u)s

I
bµ(s)ρ

I,χ(t)Trb[R
I†
b,ν,χ(u)R

I
b,µ,χ(s)ρb(αb(t))]

−sIbµ(s)ρI,χ(t)s
I†
bν(u)Trb[RI

b,µ,χ(s)ρb(αb(t))R
I†
b,ν,−χ(u)]

−sIbν(u)ρI,χ(t)s
I†
bµ(s)Trb[RI

b,ν,χ(u)ρb(αb(t))R
I†
b,µ,−χ(s)]

+ρI,χ(t)sI†bµ(s)s
I
bν(u)Trb[ρb(αb(t))R

I†
b,µ,−χ(s)R

I
b,ν,−χ(u)]

)
, (2.69)

holds. In the calculation of Trb[R
I†
b,ν,χ(u)R

I
b,µ,χ(s)ρb(αb(t))], the values of the control

parameters can be approximated by αt. Then, we obtain

Trb[R
I†
b,ν,χ(u)R

I
b,µ,χ(s)ρb] ≈ Trb[ρbR

†
b,ν(u− s)Rb,µ] ≡ Cb,νµ(u− s), (2.70)

Trb[RI
b,µ,χ(s)ρbR

I†
b,ν,−χ(u)] ≈ Trb[ρbR

†
b,ν,−2χ(u− s)Rb,µ] ≡ Cχ

b,νµ(u− s), (2.71)

Trb[RI
b,ν,χ(u)ρbR

I†
b,µ,−χ(s)] ≈ Trb[ρbR

†
b,µ,−2χ(s− u)Rb,ν ] = Cχ

b,µν(s− u), (2.72)

Trb[ρbR
I†
b,µ,−χ(s)R

I
b,ν,−χ(u)] ≈ Trb[ρbR

†
b,µ(s− u)Rb,ν ] = Cb,µν(s− u), (2.73)

with

R†
b,ν(v) = eiHb(αb(t))vR†

b,ν(αSb(t))e
−iHb(αb(t))v. (2.74)
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Here, ρb = ρb(αb(t)) and Rb,µ = Rb,µ(αb(t)). Then, (2.69) becomes

TrB
{
[HI

int(u), [H
I
int(s), ρ

I,χ(t)ρB(αB(t))]χ]χ

}
=
∑
b

∑
µ,ν

(
sI†bν(u)s

I
bµ(s)ρ

I,χ(t)Cb,νµ(u− s)− sIbµ(s)ρI,χ(t)s
I†
bν(u)C

χ
b,νµ(u− s)

−sIbν(u)ρI,χ(t)s
I†
bµ(s)C

χ
b,µν(s− u) + ρI,χ(t)sI†bµ(s)s

I
bν(u)Cb,µν(s− u)

)
, (2.75)

and

Lχb,τCG
(αt) •

= − 1

τCG

∫ t+τCG

t
du

∫ u

t
ds
∑
µ,ν

(
sI†bν(u, t)s

I
bµ(s, t) • Cb,νµ(u− s)

−sIbµ(s, t) • s
I†
bν(u, t)C

χ
b,νµ(u− s)

−sIbν(u, t) • s
I†
bµ(s, t)C

χ
b,µν(s− u) + •s

I†
bµ(s, t)s

I
bν(u, t)Cb,µν(s− u)

)
, (2.76)

holds. Here,

sIbµ(s, t) = US(t)U
†
S(s)sbµUS(s)U

†
S(t). (2.77)

and US(t) is the solution of dUS(t)
dt = −iHS(αS(t))US(t) for US(0) = 1. In the calcu-

lation of sIbµ(s, t), the values of the control parameters can be approximated by αt.
Then, we obtain

sIbµ(s, t) =
∑
ω

e−iω(s−t)sbµ(ω), (2.78)

sI†bν(u, t) =
∑
ω

eiω(u−t)[sbν(ω)]
†. (2.79)

Here, the eigenoperator sbµ(ω) is defined by

sbµ(ω) =
∑

n,m,r,s

δωmn,ω|En, r⟩⟨En, r|sbµ|Em, s⟩⟨Em, s|, (2.80)

with ωmn = Em − En and

HS |En, r⟩ = En|En, r⟩. (2.81)

r denotes the label of the degeneracy. ω is one of the elements of
{ωmn| ⟨En, r|sbµ|Em, s⟩ ̸= 0 ∃µ}. sbµ(ω) and ω depend on αS . The eigenoperators
satisfy ∑

ω

sbµ(ω) = sbµ, (2.82)

and

[HS , sbµ(ω)] = −ωsbµ(ω). (2.83)
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Then, we obtain

Lχb,τCG
(α)• = − 1

τCG

∫ t+τCG

t
du

∫ t+τCG

t
ds
∑
µ,ν

∑
ω,ω′

θ(u− s)

×
({

[sbν(ω
′)]†sbµ(ω) • Cb,νµ(u− s)

−sbµ(ω) • [sbν(ω′)]†Cχ
b,νµ(u− s)

}
e−iω(s−t)eiω

′(u−t)

+
{
− sbµ(ω) • [sbν(ω′)]†Cχ

b,νµ(s− u)

+ • [sbν(ω′)]†sbµ(ω)Cb,νµ(s− u)
}
eiω

′(s−t)e−iω(u−t)
)
. (2.84)

In last two terms, we swapped µ and ν. θ(u− s) is the step function.
Now, we introduce

Φχ
b,νµ(Ω)

def
=

∫ ∞

−∞
du Cχ

b,νµ(u)e
iΩu. (2.85)

Then, ∫ ∞

−∞
du Cχ

b,νµ(u)θ(u)e
iωu =

1

2π

∫ ∞

0
du

∫ ∞

−∞
dΩ Φχ

b,νµ(Ω)e
−iΩueiωu

=
1

2π

∫ ∞

−∞
dΩ
[
πδ(Ω− ω)− i P

Ω− ω

]
Φχ
b,νµ(Ω)

=
1

2
Φχ
b,νµ(ω)−

i

2
Ψχ

b,νµ(ω) = Φ
(+)χ
b,νµ (ω), (2.86)

holds. Here, P denotes the Cauchy principal value and

Ψχ
b,νµ(ω)

def
=

P

π

∫ ∞

−∞
dΩ

Φχ
b,νµ(Ω)

Ω− ω
, (2.87)

Φ
(±)χ
b,νµ (Ω)

def
=

1

2
Φχ
b,νµ(ω)∓

i

2
Ψχ

b,νµ(ω). (2.88)

(2.86) leads

Cχ
b,νµ(u− s)θ(u− s) =

∫ ∞

−∞
dΩ

Φ
(+)χ
b,νµ (Ω)

2π
e−iΩ(u−s). (2.89)

Similarly,

Cχ
b,νµ(s− u)θ(u− s) =

∫ ∞

−∞
dΩ

Φ
(−)χ
b,νµ (Ω)

2π
eiΩ(u−s), (2.90)
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holds. Then, we obtain

Lχb,τCG
(α)• = − 1

τCG

∫ t+τCG

t
du

∫ t+τCG

t
ds

∫ ∞

−∞

dΩ

2π

∑
µ,ν

∑
ω,ω′

×
({

[sbν(ω
′)]†sbµ(ω) • Φ

(+)
b,νµ(Ω)

−sbµ(ω) • [sbν(ω′)]†Φ
(+)χ
b,νµ (Ω)

}
e−iΩ(u−s)e−iω(s−t)eiω

′(u−t)

+
{
− sbµ(ω) • [sbν(ω′)]†Φ

(−)χ
b,νµ (Ω)

+ • [sbν(ω′)]†sbµ(ω)Φ
(−)
b,νµ(Ω)

}
eiΩ(u−s)eiω

′(s−t)e−iω(u−t)
)
, (2.91)

with Φ
(±)
b,νµ = Φ

(±)χ
b,νµ

∣∣
χ=0

. The integrals for u and s are performed as∫ t+τCG

t
du e−iΩueiω

′(u−t) = τCGe
−iΩt−i[Ω−ω′]τCG/2sinc([Ω− ω′]τCG/2), (2.92)∫ t+τCG

t
ds eiΩse−iω(s−t) = τCGe

iΩt+i[Ω−ω]τCG/2sinc([Ω− ω]τCG/2), (2.93)

then

Lχb,τCG
(α)• = −

∑
µ,ν

∑
ω,ω′

e−i(ω−ω′)/τCG

2π

∫ ∞

−∞
dΩ
(
[sbν(ω

′)]†sbµ(ω) • Φ
(+)
b,νµ(Ω)

−sbµ(ω) • [sbν(ω′)]†Φ
(+)χ
b,νµ (Ω)

−sbµ(ω) • [sbν(ω′)]†Φ
(−)χ
b,νµ (Ω) + •[sbν(ω′)]†sbµ(ω)Φ

(−)
b,νµ(Ω)

)
×τCGsinc

[Ω− ω′]τCG

2
sinc

[Ω− ω]τCG

2
,

(2.94)

holds. Here, sinc(x) = sinx/x. The above equation can be rewritten as

Lχb,τCG
(α)• = −i[hb,τCG

(α), •] + Πχ
b,τCG

(α)•, (2.95)

Πχ
b,τCG

(α)• =
∑
ω,ω′

∑
µ,ν

[
Φχ
b,µν(τCG, ω, ω

′)sbν(ω
′) • [sbµ(ω)]†

−1

2
Φb,µν(τCG, ω, ω

′) • [sbµ(ω)]†sbν(ω′)

−1

2
Φb,µν(τCG, ω, ω

′)[sbµ(ω)]
†sbν(ω

′) •
]
, (2.96)

with

hb,τCG
(α) = −1

2

∑
ω,ω′

∑
µ,ν

Ψb,µν(τCG, ω, ω
′)[sbµ(ω)]

†sbν(ω
′). (2.97)

Here,

Xχ(τCG, ω, ω
′)

=
ei(ω−ω′)τCG/2

2π

∫ ∞

−∞
dΩXχ(Ω)τCGsinc

(τCG(Ω− ω)
2

)
sinc

(τCG(Ω− ω′)

2

)
,(2.98)
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with X = Φb,µν ,Ψb,µν . Πb,τCG
= Πχ

b,τCG

∣∣
χ=0

is the Lindblad type. By the way, from

[Cb,µν(t)]
∗ = Cb,νµ(−t), (2.99)

relations

[Φb,µν(Ω)]
∗ = Φb,νµ(Ω), (2.100)

and [Ψµν(Ω)]
∗ = Ψνµ(Ω) hold. Then,

[Φb,µν(τCG, ω, ω
′)]∗ = Φb,νµ(τCG, ω

′, ω), (2.101)

holds.
For super-operator J , J † is defined by

TrS(Y †JX) = TrS([J †Y ]†X), (2.102)

where X,Y ∈ B. If J • =
∑

aAa •Ba holds,

J †• =
∑
a

A†
a •B†

a, (2.103)

is obtained. Here, Aa, Ba ∈ B. (2.101) leads

Π†
b,τCG

(α)• =
∑
ω,ω′

∑
µ,ν

[
Φb,µν(τCG, ω, ω

′)[sbµ(ω)]
† • sbν(ω′)

−1

2
Φb,µν(τCG, ω, ω

′) • [sbµ(ω)]†sbν(ω′)

−1

2
Φb,µν(τCG, ω, ω

′)[sbµ(ω)]
†sbν(ω

′) •
]
. (2.104)

This leads

Π†
b,τCG

(α)1 = 0, (2.105)

which means the conservation of the probability.

2.2.3 Concrete model

In this subsection, we consider b = nC + 1, · · · , nC + nGC. Now we suppose

HSb(αSb) =
∑
α

a†αBbα + h.c., Bbα =
∑
k,σ

Vbkσ,α(αSb)cbkσ (b ∈ G), (2.106)

where aα and cbkσ are single-particle annihilation operators of the system and of the
bath b. Using

Trb[ρbBI
bα(t

′)BI
bβ(t

′′)] = 0 = Trb[ρbB
I†
bα(t

′)BI†
bβ(t

′′)], (2.107)
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we obtain

Lχb,τCG
(α)• = −i[hb,τCG

(α), •] + Πχ
b,τCG

(α)•,

Πχ
b,τCG

(α)• =
∑
ω,ω′

∑
α,β

[
Φ−,χ
b,αβ(τCG, ω, ω

′)aβ(ω
′) • [aα(ω)]†

−1

2
Φ−
b,αβ(τCG, ω, ω

′) • [aα(ω)]†aβ(ω′)

−1

2
Φ−
b,αβ(τCG, ω, ω

′)[aα(ω)]
†aβ(ω

′) •

+Φ+,χ
b,αβ(τCG, ω, ω

′)[aβ(ω
′)]† • aα(ω)

−1

2
Φ+
b,αβ(τCG, ω, ω

′) • aα(ω)[aβ(ω′)]†

−1

2
Φ+
b,αβ(τCG, ω, ω

′)aα(ω)[aβ(ω
′)]† •

]
, (2.108)

and

hb,τCG
(α) =

∑
ω,ω′

∑
α,β

[
− 1

2
Ψ−

b,αβ(τCG, ω, ω
′)[aα(ω)]

†aβ(ω
′)

+
1

2
Ψ+

b,αβ(τCG, ω, ω
′)aα(ω)[aβ(ω

′)]†
]
. (2.109)

The eigenoperators aα(ω) are given by

aα(ω) =
∑

n,m,r,s

δωmn,ω|En, r⟩⟨En, r|aα|Em, s⟩⟨Em, s|. (2.110)

ω is one of the elements of {ωmn| ⟨En, r|aα|Em, s⟩ ̸= 0 ∃α}. aα(ω) satisfy∑
ω

aα(ω) = aα, (2.111)

and

[HS , aα(ω)] = −ωaα(ω), [NS , aα(ω)] = −aα(ω). (2.112)

NS is total number operator of the system. Here and in the following, we suppose

[NS ,HS ] = 0. (2.113)

If nGC = 0, existence of NS and the above equation are not required. In (2.108) and
(2.109),

X±,χ(τCG, ω, ω
′)

=
e±i(ω−ω′)τCG/2

2π

∫ ∞

−∞
dΩX±,χ(Ω)τCGsinc

(τCG(Ω− ω)
2

)
sinc

(τCG(Ω− ω′)

2

)
,

(2.114)
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and X±(τCG, ω, ω
′) = X±,χ(τCG, ω, ω

′)
∣∣
χ=0

. Here, X±,χ(Ω) denotes one of Φ±,χ
b,α,β(Ω),

Ψ±,χ
b,αβ(Ω), where

Φ−,χ
b,αβ(Ω) =

∫ ∞

−∞
du Trb[ρbBI

bα,−2χ(u)B
†
bβ]e

iΩu, (2.115)

Φ+,χ
b,αβ(Ω) =

∫ ∞

−∞
du Trb[ρbB

†I
bα,−2χ(u)Bbβ]e

−iΩu, (2.116)

Ψ±,χ
b,αβ(Ω)

def
=

P

π

∫ ∞

−∞
dΩ′ Φ

±,χ
b,αβ(Ω

′)

Ω′ − Ω
. (2.117)

We set {Oµ} = {Nb}b∈G + {Hb}b, where

Nb =
∑
k,σ

c†bkσcbkσ. (2.118)

Whenever Hb is an element of {Oµ}, we suppose α′
b are fixed. We introduce the

eigenoperator

Bbα(Ωb) =
∑

n,m,r,s

δΩb,mn,Ωb
|Eb,n, r⟩⟨Eb,n, r|Bbα|Eb,m, s⟩⟨Eb,m, s|, (2.119)

with Ωb,mn = Eb,m − Eb,n and Hb|Eb,n, r⟩ = Eb,n|Eb,n, r⟩. r denotes the label of the
degeneracy. Ωb is one of the elements of {Ωb,mn| ⟨Eb,n, r|Bbα|Eb,m, s⟩ ̸= 0 ∃α}. The
relations ∑

Ωb

Bbα(Ωb) = Bbα, (2.120)

and

[Hb, Bbα(Ωb)] = −ΩbBbα(Ωb), [Nb, Bbα(Ωb)] = −Bbα(Ωb) (2.121)

hold. Then, we obtain

BI
bα,−2χ(u) =

∑
Ωb

Bbα(Ωb)e
−iΩbu+iχHb

Ωb+iχNb , (2.122)

B†I
bα,−2χ(u) =

∑
Ωb

[Bbα(Ωb)]
†eiΩbu−iχHb

Ωb−iχNb , (2.123)

and

Φ−,χ
b,αβ(Ω) = 2π

∑
Ωb

δ(Ω− Ωb)e
iχHb

Ωb+iχNb Trb(ρbBbα(Ωb)B
†
bβ)

= eiχHb
Ω+iχNb2π

∑
Ωb

δ(Ω− Ωb)Trb(ρbBbα(Ωb)[Bbβ(Ωb)]
†), (2.124)

Φ+,χ
b,αβ(Ω) = 2π

∑
Ωb

δ(Ω− Ωb)e
−iχHb

Ωb−iχNb Trb(ρb[Bbα(Ωb)]
†Bbβ)

= e−iχHb
Ω−iχNb2π

∑
Ωb

δ(Ω− Ωb)Trb(ρb[Bbα(Ωb)]
†Bbβ(Ωb)). (2.125)
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Here, we used (2.120) and Trb(ρbBbα(Ωb)[Bbβ(Ω
′
b)]

†) = 0 and
Trb(ρb[Bbα(Ωb)]

†Bbβ(Ω
′
b)) = 0 for Ωb ̸= Ω′

b. Then, we obtain

Φ±,χ
b,αβ(Ω) = e∓(iχHb

Ω+iχNb
)Φ±

b,αβ(Ω), (2.126)

with Φ±
b,αβ(Ω) = Φ±,χ

b,αβ(Ω)
∣∣
χ=0

and

Ψ−
b,αβ(Ω) = 2

∑
Ωb

P
1

Ωb − Ω
Trb(ρbBbα(Ωb)[Bbβ(Ωb)]

†), (2.127)

Ψ+
b,αβ(Ω) = 2

∑
Ωb

P
1

Ωb − Ω
Trb(ρb[Bbα(Ωb)]

†Bbβ(Ωb)). (2.128)

Φ±
b,αβ(Ω) satisfy

[Φ±
b,αβ(Ω)]

∗ = Φ±
b,βα(Ω), (2.129)

Φ+
b,αβ(Ω) = e−βb(Ω−µb)Φ−

b,βα(Ω). (2.130)

The latter is the Kubo-Martin-Schwinger (KMS) condition. (2.130) is derived from
ρbBbα(Ωb) = eβb(Ωb−µ)Bbα(Ωb)ρb (derived from (2.121)) and (2.124) and (2.125).

Here, we suppose the free Hamiltonian of the bath b:

Hb(α
′
b) =

∑
k,σ

εbkσ(α
′
b)c

†
bkσcbkσ, (2.131)

and {Oµ} = {Nbσ}bσ with

Nbσ =
∑
k

c†bkσcbkσ. (2.132)

In this case, α′
b can depend on time and

Φ−,χ
b,αβ(Ω) = 2π

∑
k,σ

Vbkσ,αV
∗
bkσ,βF

−
b (εbkσ)e

iχbσδ(εbkσ − Ω), (2.133)

Φ+,χ
b,αβ(Ω) = 2π

∑
k,σ

V ∗
bkσ,αVbkσ,βF

+
b (εbkσ)e

−iχbσδ(εbkσ − Ω), (2.134)

Ψ−,χ
b,αβ(Ω) = 2

∑
k,σ

Vbkσ,αV
∗
bkσ,βF

−
b (εbkσ)e

iχbσP
1

εbkσ − Ω
, (2.135)

Ψ+,χ
b,αβ(Ω) = 2

∑
k,σ

V ∗
bkσ,αVbkσ,βF

+
b (εbkσ)e

−iχbσP
1

εbkσ − Ω
, (2.136)

hold. χbσ denotes the counting fields for Nbσ. If the baths are fermions, F+
b (ε) =

fb(ε)
def
= [exp(βb(ε − µb)) + 1]−1 and F−

b (ε) = 1 − fb(ε). If the baths are bosons,

F+
b (ε) = nb(ε)

def
= [exp(βb(ε− µb))− 1]−1 and F−

b (ε) = 1 + nb(ε).
(2.106) can be generalized as

HSb(αSb) =
∑
n,ξ

s†(n)ξBb,(n)ξ + h.c. (b ∈ G), (2.137)
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with

[s(n)ξ(ω), NS ] = −ns(n)ξ(ω), [Bb,(n)ξ(Ωb), Nb] = −nBb,(n)ξ(Ωb). (2.138)

Here, n = 1, 2, · · · , and s(n)ξ(ω) and Bb,(n)ξ(Ωb) are the eigenoperators.

2.3 Rotating wave approximation

In the CGA or Born-Markov approximation, the FCS-QME is described by aα(ω) and
[aα(ω

′)]† (ω, ω′ ∈ W). If HS is time dependent, the generalization of usual RWA [28]
with static HS is unclear. In this thesis, the RWA is defined as the limit τCG → ∞
(τCG ·minω ̸=ω′ |ω − ω′| ≫ 1) of the CGA. In this limit,

Φχ
b,µν(τCG, ω, ω

′) ≈ Φχ
b,µν(ω)δω,ω′ , Ψχ

b,µν(τCG, ω, ω
′) ≈ Ψχ

b,µν(ω)δω,ω′ , (2.139)

hold because of the fact that

lim
τCG→∞

τCGsinc
τCG(Ω− ω)

2
sinc

τCG(Ω− ω′)

2
= 2πδω,ω′δ(Ω− ω). (2.140)

If HS is time independent, this RWA is equivalent to usual RWA. Lχb (α) is given by

Lχb (α)• = Πχ
b (α) • −i[hb(α), •], (2.141)

where hb(α) is a Hermitian operator describing the Lamb shift. HL(α)
def
=
∑

b hb(α)
is called the Lamb shift Hamiltonian. Πχ

b (α) and hb(α) are given by

Πχ
b (α)• =

∑
ω

∑
µ,ν

[
Φχ
b,µν(ω)sbν(ω) • [sbµ(ω)]

†

−1

2
Φb,µν(ω) • [sbµ(ω)]†sbν(ω)−

1

2
Φb,µν(ω)[sbµ(ω)]

†sbν(ω) •
]
,(2.142)

hb(α) = −1

2

∑
ω

∑
µ,ν

Ψb,µν(ω)[sbµ(ω)]
†sbν(ω). (2.143)

Because of (2.83), hb(α) commutes with HS(αS):

[hb(α),HS(αS)] = 0. (2.144)

We introduce projection super-operators P(αS) and Q(αS) by

P(αS)|En, r⟩⟨Em, s| = δEn,Em |En, r⟩⟨Em, s|, (2.145)

and Q(αS) = 1 − P(αS). We define BP
def
= {X ∈ B|PX = X} and BQ

def
= {X ∈

B|QX = X}. K̂χP• ∈ BP holds. Then, K̂χQ• ∈ BQ and

QK̂χP = 0 = PK̂χQ, (2.146)

hold. This implies that the right eigenvalue equations (3.3) are decomposed into two
closed systems of equations for Pρχn and for Qρχn. Thus, ρχn is an element of BP or
BQ. In particular, ρχ0 ∈ BP. Then, the matrix representation of ρ0(α) by |En, r⟩ is
block diagonalized. This implies

[HS(αS), ρ0(α)] = 0. (2.147)
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For (2.106), Πχ
b (α) in (2.141) is given by

Πχ
b (α)• =

∑
ω

∑
α,β

[
Φ−,χ
b,αβ(ω)aβ(ω) • [aα(ω)]

† − 1

2
Φ−
b,αβ(ω) • [aα(ω)]

†aβ(ω)

−1

2
Φ−
b,αβ(ω)[aα(ω)]

†aβ(ω) •+Φ+,χ
b,αβ(ω)[aβ(ω)]

† • aα(ω)

−1

2
Φ+
b,αβ(ω) • aα(ω)[aβ(ω)]

† − 1

2
Φ+
b,αβ(ω)aα(ω)[aβ(ω)]

† •
]
. (2.148)

The Lamb shift is given by

hb(α) =
∑
ω

∑
α,β

(
− 1

2
Ψ−

b,αβ(ω)[aα(ω)]
†aβ(ω) +

1

2
Ψ+

b,αβ(ω)aα(ω)[aβ(ω)]
†
)
.(2.149)

The second equation of (2.112) leads

[hb(α), NS ] = 0. (2.150)

2.4 Detailed balance condition

In this section, we consider the RWA. If we suppose (2.106),

Πb(•e−βb(HS−µbNS)) = (Π†
b•)e

−βb(HS−µbNS) (b ∈ G), (2.151)

holds using (2.130). This is the detailed balance condition. If we suppose (2.137), the
above relation also holds. From L†b1 = Π†

b1 = 0 (see (2.105)) and (2.151) for • = 1
lead

Πbe
−βb(HS−µbNS) = Lbe−βb(HS−µbNS) = 0, (2.152)

using (2.144) and (2.150). If the bath b is fermion, (2.106) or (2.137) are general.
In the following of this section, we consider canonical baths (b ∈ C). (2.143) leads

Π†
b(α)• =

∑
ω

∑
µ,ν

[
Φb,µν(ω)[sbµ(ω)]

† • sbν(ω)

−1

2
Φb,µν(ω) • [sbµ(ω)]†sbν(ω)−

1

2
Φb,µν(ω)[sbµ(ω)]

†sbν(ω) •
]
.(2.153)

Then, we obtain

(Π†
b(α)•)e

−βbHS =
∑
ω

∑
µ,ν

[
Φb,µν(ω)e

−βbω[sbµ(ω)]
† • e−βbHSsbν(ω)

−1

2
Φb,µν(ω) • e−βbHS [sbµ(ω)]

†sbν(ω)

−1

2
Φb,µν(ω)[sbµ(ω)]

†sbν(ω) • e−βbHS

]
, (2.154)
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using (2.83). Then,

Πb(•e−βbHS )− (Π†
b•)e

−βbHS

=
∑
ω

∑
µ,ν

[
Φb,µν(ω)sbν(ω) • e−βbHS [sbµ(ω)]

†

−Φb,µν(ω)e
−βbω[sbµ(ω)]

† • e−βbHSsbν(ω)
]

=
∑
ω

∑
µ,ν

[
ϕb,µν(ω)[sbν(ω)]

† • e−βbHSsbµ(ω)

−Φb,µν(ω)e
−βbω[sbµ(ω)]

† • e−βbHSsbν(ω)
]
, (2.155)

holds. Here, we used∑
ω

∑
µ,ν

Φb,µν(ω)sbν(ω) • [sbµ(ω)]† =
∑
ω

∑
µ,ν

ϕb,µν(ω)[sbν(ω)]
† • sbµ(ω), (2.156)

with

ϕb,µν(ω) =

∫ ∞

−∞
du Db,µν(u)e

−iωu, (2.157)

Db,µν(u) = Trb[ρbRI
b,µ(u)R

†
b,ν ], ρb = e−βbHb/Trb(e−βbHb). (2.158)

Using

Trb[ρbRI
µ(u)R

†
ν ] = Trb[RI

b,µ(u+ iβb)ρbR
†
b,ν ]

= Trb[ρbR
I†
b,ν(−u− iβb)Rb,µ] = Cb,νµ(−u− iβb), (2.159)

ϕb,µν(ω) is given by

ϕb,µν(ω) =

∫ ∞

−∞
du Cb,νµ(−u− iβb)e−iωu

=

∫ ∞

−∞
du

∫ ∞

−∞
dΩ Φb,νµ(Ω)e

iΩu−βbΩe−iωu

= Φb,νµ(ω)e
−βbω. (2.160)

Substituting this into (2.155), we obtain

Πb(•e−βbHS ) = (Π†
b•)e

−βbHS (b ∈ C). (2.161)

Substituting • = 1 to this equation, we get

Πbe
−βbHS = 0. (2.162)

If nGC > 0, we suppose

[sbµ(ω), NS ] = 0 (b ∈ C). (2.163)

Then,

Πb(•e−βb(HS−µ′
bNS)) = (Π†

b•)e
−βb(HS−µ′

bNS) (b ∈ C), (2.164)
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and

Πbe
−βb(HS−µ′

bNS) = Lbe−βb(HS−µ′
bNS) = 0, (2.165)

hold. (2.164) is the detailed balance condition. Here, µ′b is an arbitrary real number,
and we used

[hb(α), NS ] = 0, (2.166)

derived from (2.163). (2.163) and (2.104) lead

Π†
bNS = 0 (b ∈ C). (2.167)
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Chapter 3

FCS-QME and quantum pump

3.1 Currents

Generally, Lχb (α) has the form:

Lχb (α)• =
∑
a

cχba(α)Aa •Ba, (3.1)

where Aa and Ba belong to B and depend on αS , and cχba(α) is a complex number
which depends on αS , αSb and αb. If and only if Aa, Ba ̸= 1, cχba(α) depends on χ.
In this chapter, we assume only Markov property (i.e., K̂χ just depends on αt). At
χ = 0, the FCS-QME becomes the quantum master equation (QME)

dρ(t)

dt
= K̂(αt)ρ(t). (3.2)

K̂(αt) equals K̂χ(αt) at χ = 0. In the following, a symbol X without χ denotes
Xχ|χ=0.

In the Liouville space [25, 26], the left and right eigenvalue equations of the Li-
ouvillian are

K̂χ(α)|ρχn(α)⟩⟩ = λχn(α)|ρχn(α)⟩⟩, (3.3)
⟨⟨lχn(α)|K̂χ(α) = λχn(α)⟨⟨lχn(α)|. (3.4)

In the Liouville space, A ∈ B is described by |A⟩⟩. The inner produce is defined
by ⟨⟨A|B⟩⟩ = TrS(A†B) (A,B ∈ B). In particular, ⟨⟨1|A⟩⟩ = TrSA holds. A super-
operator which operates to a liner operator of the system becomes an operator of the
Liouville space. The left eigenvectors lχn(α) and the right eigenvectors ρχm(α) satisfy

⟨⟨lχn(α)|ρχm(α)⟩⟩ = δnm. (3.5)

The mode which has the eigenvalue with the maximum real part is assigned by the
label n = 0. Because the conservation of the probability d

dt⟨⟨1|ρ(t)⟩⟩ = ⟨⟨1|K̂(αt)|ρ(t)⟩⟩ =
0 leads

⟨⟨1|K̂(α) = 0, (3.6)

in the limit χ → 0, λχ0 (α) becomes 0 and ⟨⟨lχ0 (α)| becomes ⟨⟨1| (i.e., l0(α) is identity
operator). In addition, |ρ0(α)⟩⟩ determined by

K̂(α)|ρ0(α)⟩⟩ = 0, (3.7)

represents the instantaneous steady state.
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The formal solution of the FCS-QME (2.64) is

|ρχ(t)⟩⟩ = Texp
[ ∫ t

0
ds K̂χ(αs)

]
|ρ(0)⟩⟩, (3.8)

where T denotes the time-ordering operation. Using this, we obtain the averages

⟨∆oµ⟩t =
∂

∂(iχOµ)
⟨⟨1|ρχ(t)⟩⟩

∣∣∣
χ=0

=

∫ t

0
du ⟨⟨1|K̂Oµ(αu)|ρ(u)⟩⟩ ≡

∫ t

0
du iOµ(u), (3.9)

where XOµ(α)
def
= ∂Xχ(α)

∂(iχOµ )

∣∣
χ=0

when X is an (super)operator or c-number. Here, we

used ⟨⟨1|K̂(α) = 0. Moreover, using ⟨⟨l0(α)| = ⟨⟨1|, λ0(α) = 0 and (3.4), we obtain

⟨⟨1|K̂Oµ(α) = λ
Oµ

0 (α)⟨⟨1| − ⟨⟨lOµ

0 (α)|K̂(α). (3.10)

Here, ⟨⟨lOµ

0 (α)| is defined by ∂⟨⟨lχ0 (α)|
∂(iχOµ )

∣∣
χ=0

, then

l
Oµ

0 = − ∂lχ0 (α)

∂(iχOµ)

∣∣∣
χ=0

, (3.11)

holds. The current iOµ(t) is given by [24]

iOµ(t) = ⟨⟨1|K̂Oµ(αt)|ρ(t)⟩⟩

= λ
Oµ

0 (αt)− ⟨⟨l
Oµ

0 (αt)|K̂(αt)|ρ(t)⟩⟩

= λ
Oµ

0 (αt)− ⟨⟨l
Oµ

0 (αt)|
d

dt
|ρ(t)⟩⟩. (3.12)

The current can also be written as

iOµ(t) = ⟨⟨1|WOµ(αt)|ρ(t)⟩⟩, (3.13)

where WOµ(α) is the current operator defined by

⟨⟨1|WOµ(α) = ⟨⟨1|K̂Oµ(α), (3.14)

i.e., TrS [WOµ(α)•] = TrS [K̂Oµ(α)•] for any • ∈ B. Therefore, using (3.1), the current
operator is given by

WOµ(α) =
∑
b,a

c
Oµ

ba (α)BaAa. (3.15)

Using (3.10), the instantaneous steady current is given by

⟨⟨1|WOµ(α)|ρ0(α)⟩⟩ = λ
Oµ

0 (α) ≡ issOµ
(α). (3.16)

In the following, we suppose ρ(0) = ρ0(α0). In this case, as we will show, ρ(t) =
ρ0(αt) +O(ω/Γ) holds where ω = 2π/τ and

Γ = min
n̸=0,α∈C

{−Re[λn(α)]}. (3.17)
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In ω ≪ Γ limit, we obtain

iOµ(t) = issOµ
(αt)− ⟨⟨l

Oµ

0 (αt)|
d

dt
|ρ0(αt)⟩⟩+O

(ω2

Γ

)
, (3.18)

which leads to

⟨∆oµ⟩τ =

∫ τ

0
dt issOµ

(αt) +

∫
C
dαn A

Oµ
n (α) +O

(ω
Γ

)
. (3.19)

Here, αn is the n-th component of the control parameters, C is the trajectory from α0

to ατ ,

A
Oµ
n (α)

def
= −⟨⟨lOµ

0 (α)| ∂
∂αn
|ρ0(α)⟩⟩, (3.20)

is the BSN vector, and the summation symbol
∑

n is omitted. As we will show, the
BSN vector is also given by [25]

A
Oµ
n (α) = ⟨⟨1|WOµ(α)R(α) ∂

∂αn
|ρ0(α)⟩⟩, (3.21)

whereR(α) is the pseudo-inverse of the Liouvillian defined by

R(α)K̂(α) = 1− |ρ0(α)⟩⟩⟨⟨1|. (3.22)

In the research of adiabatic pumping, the expression of (3.19) is essential. In
Refs.[23, 24, 25], (3.19) with (3.20) was used to study the quantum pump. On the
other hand, in Ref.[34], (3.19) was derived using the generalized master equation
[33] and without using the FCS. In Ref.[34], AOµ

n (α) was described by the quan-
tity corresponding to the current operator and the pseudo-inverse of the Liouvil-
lian, as shown in (3.21). In this chapter, we show the equivalence between the
FCS-QME approach and the generalized master equation approach (with the Born-
approximation) for all orders of the pumping frequency [25] (see also Ref.[35]).

3.2 Berry-Sinitsyn-Nemenman phase

The expression of (3.19) was originally derived like the following. The formal solu-
tion of the FCS-QME is expanded as

|ρχ(t)⟩⟩ =
∑
n

cχn(t)e
∫ t
0 ds λχ

n(αs)|ρχn(αt)⟩⟩. (3.23)

Because e
∫ t
0 ds λχ

n(αs) (n ̸= 0) exponentially damps as a function of time, only n = 0
term remains if Γτ ≫ 1. Solving the time evolution equation of cχ0 (t) in ω ≪ Γ limit,
we obtain

cχ0 (τ) = cχ0 (0) exp
[
−
∫ τ

0
dt ⟨⟨lχ0 (αt)|

d

dt
|ρχ0 (αt)⟩⟩

]
, (3.24)

using (C.8) and the fact that the second term of RHS of (C.8) for m = 0 exponen-
tially damps as a function of time. Here, the argument of the exponential function is
called the BSN phase. Substituting this expression and cχ0 (0) = ⟨⟨l

χ
0 (α0)|ρ0(α0)⟩⟩ into

(3.23), we obtain the expression of ρχ(τ) which provides (3.19). However, when we
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consider only the average of ∆oµ, the BSN phase is not essential. All informations
of the counting fields up to the first order are included in WOµ .

Substituting (3.24) and cχ0 (0) = ⟨⟨l
χ
0 (α0)|ρ(0)⟩⟩ into (3.23), we obtain

|ρχ(τ)⟩⟩ ≈ ⟨⟨lχ0 (α0)|ρ(0)⟩⟩e−
∫ τ
0 dt ⟨⟨lχ0 (αt)| d

dt
|ρχ0 (αt)⟩⟩e

∫ τ
0 dt λχ

0 (αt)|ρχ0 (ατ )⟩⟩, (3.25)

and the cumulant generating function Sτ (χ) = lnZτ (χ) = ln⟨⟨1|ρχ(τ)⟩⟩ :

Sτ (χ) =

∫ τ

0
dt λχ0 (αt)−

∫
C
dαn ⟨⟨lχ0 (α)|

∂|ρχ0 (α)⟩⟩
∂αn

+ ln⟨⟨lχ0 (α0)|ρ(0)⟩⟩+ ln⟨⟨1|ρχ0 (ατ )⟩⟩. (3.26)

(3.26) is the same with Yuge et al.[23] except for that χ denotes a multi-counting field.
The averages ⟨∆oµ⟩τ = ∂Sτ (χ)

∂(iχµ)

∣∣
χ=0

are

⟨∆oµ⟩τ =

∫ τ

0
dt λ

Oµ

0 (αt) +

∫
C
dαn A

Oµ
n (α) + ⟨⟨lOµ

0 (α0)|ρ(0)⟩⟩+ ⟨⟨1|ρµ0 (α0)⟩⟩.(3.27)

Here, we used −
∫
C dα

n ⟨⟨l0(α)|
∂|ρµ0 (α)⟩⟩

∂αn = −⟨⟨1|ρµ0 (ατ )⟩⟩+ ⟨⟨1|ρµ0 (α0)⟩⟩ because

⟨⟨l0(α)|
∂|ρµ0 (α)⟩⟩

∂αn = ∂
∂αn ⟨⟨1|ρµ0 (α)⟩⟩. The integrand of the first time integral, λOµ

0 (αt), are
the instantaneous steady currents of Oµ at time t; if the control parameters are fixed
to α and the state is ρ0(α), the current of Oµ is λOµ

0 (α). The third and fourth terms of
the right side of (3.27) cancel if the initial condition is the instantaneous steady state
ρ0(α0).

3.3 Cyclic pump

For ατ = α0, the second term of the right side of (3.27) can be described as a surface
integral over the surface S enclosed by C using the Stokes theorem :

⟨∆oµ⟩τ = ⟨∆oµ⟩ssτ + ⟨∆oµ⟩Berry
S , (3.28)

⟨∆oµ⟩ssτ =

∫ τ

0
dt λ

Oµ

0 (αt), (3.29)

⟨∆oµ⟩Berry
S =

∫
S
dαm ∧ dαn 1

2
F

Oµ
mn(α). (3.30)

Here, ∧ is the wedge product and the summation symbol
∑

n,m is omitted. BSN

curvature FOµ
mn(α) is given by

F
Oµ
mn(α) =

∂A
Oµ
n (α)

∂αm
− ∂A

Oµ
m (α)

∂αn
. (3.31)

Yuge et al.[23] focus on only the second term of (3.28) subtracting the first term, and
they did not evaluate ⟨∆oµ⟩ssτ . In § 4.2.2, we show that this contribution is usually
dominant if the thermodynamic parameters are modulated although the steady cur-
rents λOµ

0 (αt) are zero if the thermodynamic parameters are fixed to zero bias.
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3.4 Expansion by frequency

Applying the pseudo-inverseR(α) to the QME (3.2), we obtain[
1−R(αt)

d

dt

]
|δρ(t)⟩⟩ = R(αt)

d

dt
|ρ0(αt)⟩⟩, (3.32)

with δρ(t) def
= ρ(t)− ρ0(αt). One of the solution of (3.32) is

|δρ(ss)(t)⟩⟩ =
∞∑
n=1

[
R(αt)

d

dt

]n
|ρ0(αt)⟩⟩ ≡

∞∑
n=1

|ρ(n)(t)⟩⟩. (3.33)

⟨⟨1|ρ(n)(t)⟩⟩ = 0 holds (we show this at § 3.5). The general solution of (3.32) is

|δρ(t)⟩⟩ = |δρ(ss)(t)⟩⟩+ |ρ̃(t)⟩⟩, (3.34)

where ρ̃(t) is the solution of[
1−R(αt)

d

dt

]
|ρ̃(t)⟩⟩ = 0, (3.35)

with ρ̃(0) = δρ(0) − δρ(ss)(0). By the way, applying K̂(α) to (3.22) from the left, we
obtain

K̂(α)R(α)K̂(α) = K̂(α). (3.36)

This leads

K̂(α)R(α) = 1− |σ(α)⟩⟩⟨⟨1|, ⟨⟨1|σ(α)⟩⟩ = 1. (3.37)

Applying K̂(α) to (3.32) from the left and using the above relation and ⟨⟨1|ρ̃(t)⟩⟩ = 0,
we obtain

d

dt
|ρ̃(t)⟩⟩ = K̂(α)|ρ̃(t)⟩⟩, (3.38)

which is the same form with the original QME. The solution is |ρ̃(t)⟩⟩ = Û(t)|ρ̃(0)⟩⟩
with

Û(t)
def
= Texp

[ ∫ t

0
ds K̂(αs)

]
. (3.39)

Because ⟨⟨1|ρ̃(0)⟩⟩ = 0, |ρ̃(t)⟩⟩ is described as |ρ̃(t)⟩⟩ =
∑

n̸=0 c
′
n(t)e

∫ t
0 ds λn(αs)|ρn(αs)⟩⟩.

This damps exponentially as a function of time. Then, the state reaches to a “steady
state"

ρ(ss)
def
= ρ0(αt) + δρ(ss)(t). (3.40)

ρ̃(0) = δρ(0) − δρ(ss)(0) is the difference of the initial state from the “steady state".
We introduce

|ρ̃(n)(t)⟩⟩ def
= −Û(t)|ρ(n)(0)⟩⟩, (3.41)

|ρ̃(0)(t)⟩⟩ def
= Û(t)|δρ(0)⟩⟩. (3.42)



46

The general solution of the QME is given by

|δρ(t)⟩⟩ =
∞∑
n=1

[
|ρ(n)(t)⟩⟩+ |ρ̃(n)(t)⟩⟩

]
+ |ρ̃(0)(t)⟩⟩. (3.43)

⟨⟨1|ρ̃(n)(t)⟩⟩ = −⟨⟨1|ρ(n)(0)⟩⟩ = 0 and ⟨⟨1|ρ̃(0)(t)⟩⟩ = ⟨⟨1|δρ(0)⟩⟩ = 0 holds. The current
iOµ(t) is given by

iOµ(t) = issOµ
(αt) + δi

(ss)
Oµ

(t) + ĩOµ(t), (3.44)

δi
(ss)
Oµ

(t)
def
= ⟨⟨1|WOµ(αt)|δρ(ss)(t)⟩⟩, (3.45)

ĩOµ(t)
def
= ⟨⟨1|WOµ(αt)|ρ̃(t)⟩⟩. (3.46)

δi
(ss)
Oµ

(t) =
∞∑
n=1

i
(n)
Oµ

(t), i
(n)
Oµ

(t)
def
= ⟨⟨1|WOµ(αt)|ρ(n)(t)⟩⟩, (3.47)

ĩOµ(t) =

∞∑
n=0

ĩ
(n)
Oµ

(t), ĩ
(n)
Oµ

(t)
def
= ⟨⟨1|WOµ(αt)|ρ̃(n)(t)⟩⟩. (3.48)

Let’s consider the relation between (3.12) and (3.44). In§ 3.2, we used χ-adiabatic
approximation (3.25), which becomes |ρ(t)⟩⟩ ≈ |ρ0(αt)⟩⟩ at χ = 0. Substituting it to
(3.13), we obtain iOµ(t) ≈ issOµ

(t). So, we cannot obtain δi
(ss)
Oµ

(t) + ĩOµ(t). However,
from the χOµ derivative of (3.25), we obtain

iOµ(t) ≈ λ
Oµ

0 (αt)− ⟨⟨l
Oµ

0 (αt)|
d

dt
|ρ0(αt)⟩⟩. (3.49)

This is equivalent to (3.27) for ρ(0) = ρ0(α0). (3.49) suggests

i
(1)
Oµ

(t) = −⟨⟨lOµ

0 (αt)|
d

dt
|ρ0(αt)⟩⟩. (3.50)

In fact, this is equivalent to i(1)Oµ
(t) = ⟨⟨1|WOµ(αt)|ρ(1)(t)⟩⟩, namely

i
(1)
Oµ

(t) = ⟨⟨1|WOµ(αt)R(αt)
d

dt
|ρ0(αt)⟩⟩, (3.51)

because of

⟨⟨1|WOµ(α)R(α) = −⟨⟨lOµ

0 (α)|+ cOµ(α)⟨⟨1|. (3.52)

Here, cOµ(α) are constants shown in (E.10). We prove (3.52) in Appendix E. (3.52)
leads (3.21) and

i
(n+1)
Oµ

(t) = ⟨⟨1|WOµ(αt)R(αt)
d

dt
|ρ(n)(t)⟩⟩

= −⟨⟨lOµ

0 (αt)|
d

dt
|ρ(n)(t)⟩⟩. (3.53)

By the way, (3.12) is

iOµ(t) = issOµ
(αt)− ⟨⟨l

Oµ

0 (αt)|
d

dt
|ρ(t)⟩⟩. (3.54)
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Substituting

ρ(t) = ρ0(αt) +
∑
n=1

ρ(n)(t) +
∑
n=0

ρ̃(n)(t) = ρ(ss)(t) +
∑
n=0

ρ̃(n)(t), (3.55)

to the RHS of (3.54), ρ0 provides i(1)Oµ
and ρ(n) provides i(n+1)

Oµ
. ρ(ss) provides δi(ss)Oµ

.

ρ̃(n) provides ĩ(n)Oµ
：

−⟨⟨lOµ

0 (αt)|
d

dt
|ρ̃(n)(t)⟩⟩

= −⟨⟨lOµ

0 (αt)|K̂(αt)|ρ̃(n)(t)⟩⟩
= ⟨⟨1|WOµ(αt)R(αt)K̂(αt)|ρ̃(n)(t)⟩⟩ − cOµ(αt)⟨⟨1|K̂(αt)|ρ̃(n)(t)⟩⟩
= ⟨⟨1|WOµ(αt)(1− |ρ0(αt)⟩⟩⟨⟨1|)|ρ̃(n)(t)⟩⟩
= ĩ

(n)
Oµ
. (3.56)

The third and fourth terms of (3.27), ⟨∆oµ⟩3+4
τ = ⟨⟨lOµ

0 (α0)|ρ(0)⟩⟩ + ⟨⟨1|ρ
Oµ

0 (α0)⟩⟩,
result from this relaxation. The contribution of ⟨∆oµ⟩τ from δρ(0) is

⟨∆oµ⟩iniτ
def
= −

∫ τ

0
dt ⟨⟨lOµ

0 (αt)|
d

dt
|ρ̃(0)(t)⟩⟩

= ⟨⟨lOµ

0 (α0)|ρ̃(0)(0)⟩⟩ − ⟨⟨l
Oµ

0 (ατ )|ρ̃(0)(τ)⟩⟩

+

∫ τ

0
dt
d⟨⟨lOµ

0 (αt)|
dt

|ρ̃(0)(t)⟩⟩. (3.57)

The first term of the right side of (3.57) is ⟨∆oµ⟩3+4
τ . Because we can obtain

⟨⟨lOµ

0 (α)|ρ0(α)⟩⟩+ ⟨⟨1|ρ
Oµ

0 (α)⟩⟩ = 0 from the normalization ⟨⟨lχ0 (α)|ρ
χ
0 (α)⟩⟩ = 1,

⟨∆oµ⟩3+4
τ is given by

⟨∆oµ⟩3+4
τ = ⟨⟨lOµ

0 (α0)
[
|ρ(0)⟩⟩ − |ρ0(α0)⟩⟩

]
= ⟨⟨lOµ

0 (α0)|ρ̃(0)(0)⟩⟩. (3.58)

The second term of the right side of (3.57) is exponentially small since ρ̃(0)(τ) ∼ e−Γτ .

The order of the third term isO(ωΓ ) with ω = 2π/τ because d⟨⟨lOµ
0 (αt)|
dt = O(ω) and the

integral range is restricted up to 1/Γ since ρ̃(0)(t) ∼ e−Γt. Hence

⟨∆oµ⟩iniτ = ⟨∆oµ⟩3+4
τ +O(ω

Γ
). (3.59)

Since d
dtαt = O(ω) andR(αt) = O( 1Γ),

ρ(n)(t) = O
(ω
Γ

)n
. (3.60)

In Appendix D, we discuss the reasonable range of n of ρ(n)(t) and show that with
the larger non-adiabaticity (ωΓ ), the reasonable range becomes wider. We have

ρ̃(n) = O(ω
n

Γn
e−Γt), ρ̃(0) = O(e−Γt). (3.61)

The above equations and WOµ = O(Γ) lead

i
(n)
Oµ

= O( ωn

Γn−1
), ĩ

(n)
Oµ

= O( ωn

Γn−1
e−Γt), ĩ

(0)
Oµ

= O(Γe−Γt). (3.62)
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This leads

⟨∆oµ⟩(n)τ
def
=

∫ τ

0
dt i

(n)
Oµ

(t) = O(ω
n−1

Γn−1
), (3.63)

⟨̃∆oµ⟩
(n)

τ
def
=

∫ τ

0
dt ĩ

(n)
Oµ

(t) = O(ω
n

Γn
), (3.64)

⟨∆oµ⟩iniτ =

∫ τ

0
dt ĩ

(0)
Oµ

(t) = O(1). (3.65)

In particular, the contribution from the BSN vector is

⟨∆oµ⟩BSN
τ

def
= ⟨∆oµ⟩(1)τ = −

∫
C
dαn ⟨⟨lOµ

0 (α)|∂|ρ0(α)⟩⟩
∂αn

= O(1). (3.66)

Moreover, although the BSN phase is derived under the χ-adiabatic condition
which makes (3.24) and cχn(τ)eΛ

χ
n(τ) ≈ 0 (n ̸= 0) appropriate, its origin is probably a

non-adiabatic effect that comes from ω
Γ , because (3.50) shows that the BSN phase has

the information of the non-adiabatic part of the QME (δρ(t) = ρ(t)− ρ0(αt)).
For the RWA, at equilibrium (zero-bias) case, ρ0(α) is the grand canonical distri-

bution

ρgc(αS ;β, βµ)
def
=

e−β(HS(αS)−µNS)

Ξ(αS ;β, βµ)
. (3.67)

Cf.(A.11). Here, Ξ(αS ;β, βµ)
def
= TrS [e−β(HS(αS)−µNS)], β is the inverse temperature

of all baths and µ is the chemical potential for b ∈ G. (3.67) is derived from (2.152)
and (2.165). At zero-bias, for pumping by only α′ (α′′ are fixed), (3.20), (3.33) and
(3.41) lead that the pumping dose not occur in all orders of ω when αS are fixed.

3.5 Arbitrariness of pseudo-inverse

General solution ofRK̂(αt) = 1− |ρ0(αt)⟩⟩⟨⟨1| is given by

R(t) = |ρi(t)⟩⟩⟨⟨1|+R0(αt), (3.68)

whereR0(α) is one of the solution of

R0(α)K̂(α) = 1− |ρ0(α)⟩⟩⟨⟨1|. (3.69)

ρi(t) can depend on the initial values of the QME. In the following of this section,

we show that |ρ(n)(t)⟩⟩ =
[
R(t) d

dt

]n
|ρ0(αt)⟩⟩ is independent of ρi(t). Then, ρ(n) and

ρ̃(n) are independent of the choice of the pseudo-inverse.
ρ(1)(t) is given by

|ρ(1)(t)⟩⟩ = |ρi(t)⟩⟩⟨⟨1|
d

dt
|ρ0(αt)⟩⟩+R0(αt)

d

dt
|ρ0(αt)⟩⟩

= R0(αt)
d

dt
|ρ0(αt)⟩⟩. (3.70)
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Then, ρ(1)(t) is independent of the choice of the pseudo-inverse. Next, ρ(2)(t) is given
by

|ρ(2)(t)⟩⟩ = |ρi(t)⟩⟩
d

dt

[
⟨⟨1|R0(αt)

d

dt
|ρ0(αt)⟩⟩

]
+R0(αt)

d

dt

[
R0(αt)

d

dt
|ρ0(αt)⟩⟩

]
.(3.71)

By the way, applying ⟨⟨1| to (3.69), we obtain

⟨⟨1|R0(α)K̂(α) = ⟨⟨1| − ⟨⟨1|ρ0(α)⟩⟩⟨⟨1| = 0. (3.72)

This leads

⟨⟨1|R0(α) = C(α)⟨⟨1|. (3.73)

Then, |ρ(2)(t)⟩⟩ and |ρ(n)(t)⟩⟩ do not depend on the choice of the pseudo-inverse. In
fact,

|ρ(n+1)(t)⟩⟩ = |ρi(t)⟩⟩
d

dt
⟨⟨1|ρ(n)(t)⟩⟩+R0(αt)

d

dt
|ρ(n)(t)⟩⟩, (3.74)

leads

⟨⟨1|ρ(n+1)(t)⟩⟩ = ⟨⟨1|ρi(t)⟩⟩
d

dt
⟨⟨1|ρ(n)(t)⟩⟩+ C(αt)

d

dt
⟨⟨1|ρ(n)(t)⟩⟩. (3.75)

Then, ⟨⟨1|ρ(n)(t)⟩⟩ = 0 leads ⟨⟨1|ρ(n+1)(t)⟩⟩ = 0. Because of this and ⟨⟨1|ρ(1)(t)⟩⟩ = 0
derived from (3.70) and (3.73), we obtain

⟨⟨1|ρ(n)(t)⟩⟩ = 0 (n = 1, 2, 3, · · · ). (3.76)

This and (3.74) lead

|ρ(n+1)(t)⟩⟩ = R0(αt)
d

dt
|ρ(n)(t)⟩⟩. (3.77)

3.6 Generalized mater equation approach

It is important to recognize the relations between the FCS-QME approach and the
GME approach [66, 33, 67, 68, 69, 70, 71]. In the GME approach, pi(t) = ⟨i|ρ(t)|i⟩ are
governed by the generalized master equation (GME)

d

dt
pi(t) =

∑
j

∫ t

−∞
dt′ Wij(t, t

′)pj(t
′), (3.78)

where |i⟩ are the energy eigenstates of the system Hamiltonian. The kernel Wij(t, t
′)

can include the higher order contribution of the tunneling interaction between baths

and the system. In the GME, pj(t′) is given by pj(t) +
∑∞

k=1
(t′−t)k

k!
dkpj(t)

dtk
[66, 33].

Moreover, Wij(t, t
′) and pj(t) are expanded as Wij(t, t

′) =
∑∞

n=0

∑∞
m=1W

(n)
ij(m)(t; t−

t′) and pj(t) =
∑∞

n=0

∑∞
m=−n p

(n)
j(m)(t), where W (n)

ij(m)(t; t − t
′) and p

(n)
j(m)(t) are of the

order of ωnΓm. In particular, W (0)
ij(m)(t; t− t

′) = W
(0)
ij(m)(αt; t− t′) is the kernel where

the control parameters are fixed to αt. Up to the second order of the tunneling in-
teraction (in the following we consider this level of approximation), we obtain (see
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Appendix F) [33, 70]

0 =
∑
j

K
(0)
ij (αt)p

(0)
j (αt), (3.79)

dp
(n)
i(−n)(t)

dt
=
∑
j

K
(0)
ij (αt)p

(n+1)
j(−n−1)(t), (3.80)

for n = 0, 1, · · · , with

K
(0)
ij (αt) =

∫ t

−∞
dt′ W

(0)
ij(1)(αt, t− t′), (3.81)

which is the instantaneous Liouvillian corresponding to our K̂(αt). (3.79) is just
the definition of the instantaneous steady state p(0)j (αt) ≡ p

(0)
j(0)(t), which satisfies∑

i p
(0)
i (αt) = 1. Additionally, p(n)i(m)(t) for n ≥ 1 satisfies

∑
i p

(n)
i(m)(t) = 0. The

conservation of the probability leads to
∑

iK
(0)
ij (αt) = 0, which corresponds to our

⟨⟨1|K̂(αt) = 0. The charge or spin current iOµ(t) is given by [69, 70]

iOµ(t) =
∑
i,j

w
Oµ

ij (αt)pj(t), (3.82)

corresponding to our (3.13). wOµ

ij (αt) is the instantaneous current matrix of Oµ in the
present approximation, which corresponds to our WOµ(αt) and is linear in Γ (see
(8.15)). iOµ(t) can be rewritten as

iOµ(t) =
∑
j

w
Oµ

j (αt)pj(t), w
Oµ

j (α)
def
=
∑
i

w
Oµ

ij (α). (3.83)

w
Oµ

j (α) corresponds to ⟨j|WOµ(αt)|j⟩. Substituting pj(t) ≈
∑∞

n=0 p
(n)
j(−n)(t) into (3.82),

we obtain

iOµ(t) =
∞∑
n=0

i
(n)
Oµ

(t), i
(n)
Oµ

(t)
def
=
∑
i,j

w
Oµ

ij (αt)p
(n)
j(−n)(t). (3.84)

(3.80) for n = 0 leads to [69]

p
(1)
j(−1)(t) =

∑
i

Rji(αt)
dp

(0)
i (αt)

dt
. (3.85)

Here, Rji(αt) is the pseudo-inverse of K(0)
ij (αt) corresponding to our R(αt) and it is

given by [69]

Rji(αt) = (K̃−1)ji, K̃ji = K
(0)
ji −K

(0)
jj . (3.86)
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Substituting (3.85) into (3.84), we obtain [69]

i
(1)
Oµ

(t) =
∑
i

φ
Oµ

i (αt)
dp

(0)
i (αt)

dt
, (3.87)

φ
Oµ

i (αt) =
∑
k,j

w
Oµ

kj (αt)Rji(αt) =
∑
j

w
Oµ

j (αt)Rji(αt). (3.88)

A similar method has been used in Ref.[66]. φOµ

i (αt) and (3.87) respectively corre-
spond to our ⟨⟨1|WOµ(α)R(α) and (3.51). Moreover, (3.80) for arbitrary n leads to

p
(n+1)
j(−n−1)(t) =

∑
i

Rji(αt)
dp

(n)
i(−n)(t)

dt
, (3.89)

which corresponds to our (3.33). Because of these relations, the GME approach is
equivalent to the FCS-QME approach in the calculation up to the second order of the
tunneling interaction. Additionally, we discuss corrections due to the non-adiabatic
effect of the FCS-QME in Appendix D. The first equation of (D.7) is consistent with
p
(1)
j(0)(t) = O(ωτB) derived in Appendix F. Here, τB is the relaxation time of the baths.

In this chapter, we proved the equivalence between (3.12) and (3.44) using a key
relation (3.52) and showed the origin of the BSN phase is a non-adiabatic effect, and
connected the FCS-QME approach and the GME approach [69]. These are among
the most important results of the first half of this thesis.
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Chapter 4

Quantum adiabatic pump

4.1 Model

In this chapter, we consider quantum dots (QDs) (denoted by a symbol S) weakly
coupled to several leads. The total Hamiltonian isHtot(α

′(t)) = HS(αS(t))+
∑

b[Hb(α
′
b(t))+

HSb(αSb(t))]. Here, HS(αS(t)) is the system (QDs) Hamiltonian, Hb(α
′
b(t)) is the

Hamiltonian of the lead b, and HSb(αSb(t)) is the tunneling interaction Hamiltonian
between S and the lead b. To observe the spin effects, we suppose that the leads and
the system are applied to collinear magnetic fields with different amplitudes, which
relate to spins through the Zeeman effect. The leads are noninteracting:

Hb(α
′
b(t)) =

∑
k,σ

(εbk + σgbBb(t))c
†
bkσcbkσ. (4.1)

Here, σ =↑, ↓= ±1 is spin label,

gb =
1

2
µBg

∗
b , (4.2)

where g∗b is the g-factor of the lead b, µB is the Bohr magneton and Bb(t) is the
strength of the magnetic field of the lead b. c†bkσ(cbkσ) is the creation (annihilation)
operator of an electron with spin σ and momentum k in the lead b. The system
Hamiltonian is

HS(αS(t)) =
∑

n,m,s,s′

εns,ms′(BS(t))a
†
nsams′ +HCoulomb, (4.3)

where a†ns is the creation operator of an electron with orbital n and spin s. εns,ms′(BS(t))
means the energy of the electron for n = m, s = s′ and the tunneling amplitude be-
tween orbitals for (n, s) ̸= (m, s′) which depends on the magnetic field of the system.
HCoulomb denotes Coulomb interaction. The tunneling interaction Hamiltonian is

HSb(αSb(t)) =
∑

k,σ,n,s

√
∆b(t)vbkσ,nsa

†
nscbkσ + h.c., (4.4)

where ∆b(t) is a dimensionless parameter, and vbkσ,ns is the tunneling amplitude.
We assume BS , {Bb}b and {∆b}b are control parameters (denoted

α′ = (BS , {Bb}b, {∆b}b) and are called the dynamic parameters). The thermody-
namic parameters (the chemical potentials and inverse temperatures of the leads,
{µb}b and {βb}b) are also considered as control parameters in § 4.2.2 and § 4.3.2. We
denote α′′ = {βb, µb}b and α = α′ + α′′. Yuge et al.[23] chose the set of control pa-
rameters as only α′′. However we are interested in α′ for the reason explained in §
4.2.2.
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We choose the measured observables {Oµ} = {Nbσ}b,σ=↑,↓ withNbσ =
∑

k c
†
bkσcbkσ.

The pumped charge (spin) of the lead b is given by ⟨∆Nb↑⟩±⟨∆Nb↓⟩. ⟨∆Nbσ⟩ are cal-
culated by (3.28). In fact, what we call the pumped charge, ⟨∆Nb↑⟩ + ⟨∆Nb↓⟩, is the
pumped electron number (actual pumped charge is given by −e[⟨∆Nb↑⟩ + ⟨∆Nb↓⟩],
where e (> 0) is the elementary charge).

In § 4.2.3 and § 4.3 we consider a one level system

HS(αS(t)) =
∑
s=↑,↓

ωs(BS(t))a
†
sas + Ua†↑a↑a

†
↓a↓, (4.5)

as a special model of (4.3). Here, s =↑, ↓= ±1,

ωs(BS) = ω0 + sgSBS , (4.6)

with ω0 the electron energy at BS = 0, and

gS =
1

2
µBg

∗
S , (4.7)

where g∗S is the g factor of the QD.
In the following of this chapter, we apply the FCS-QME with RWA.

4.2 Non-interacting system

In this section, we consider a noninteracting system (HCoulomb = 0). The system
Hamiltonian (4.3) can be diagonalized

HS =

2N∑
i=1

ω̃ib
†
ibi, (4.8)

by a unitary transform ans =
∑2N

i=1 Uns,ibi. The tunneling interaction Hamiltonian
(4.4) is

HSb =
∑
k,σ,i

Wbkσ,ib
†
icbkσ + h.c., (4.9)

with

Wbkσ,i =
∑
n,s

√
∆bvbkσ,nsU

∗
ns,i. (4.10)

In § 4.2.1, the Liouvillian and its instantaneous steady state are explained. In §
4.2.2, we consider the contribution of (3.29) and show that this cannot be neglected
in general if the chemical potentials and the temperatures are not fixed. In§ 4.2.3, we
calculate the BSN curvatures for two combinations of modulated control parameters
(BL, BS) and (∆L, BS).
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4.2.1 Liouvillian

The Liouvillian in the RWA is given by

K̂χ(α) =
2N∑
i=1

K̂χ
i (α), (4.11)

K̂χ
i (α)• = −i[ω̃ib

†
ibi, •] + Π̂χ

i (α) • −i[HL,i, •], (4.12)

if {ω̃i} are not degenerated. Here, super-operator Π̂χ
i (α) operates to an arbitrary

operator • as

Π̂χ
i (α)• =

{
Φ+,χ
b,i b

†
i • bi −

1

2
Φ+
i • bib

†
i −

1

2
Φ+
i bib

†
i •

+Φ−,χ
b,i bi • b

†
i −

1

2
Φ−
i • b

†
ibi −

1

2
Φ−
i b

†
ibi •

}
, (4.13)

with

Φ±,χ
i = 2π

∑
b,k,σ

|Wbkσ,i|2f±b (ω̃i)e
∓iχbσδ(εbk + σgbBb − ω̃i). (4.14)

Here, f+b (ω) = [eβb(ω−µb)+1]−1 is the Fermi distribution function, f−b (ω) = 1−f+b (ω),
χbσ is the counting field for Nbσ. The Lamb shift Hamiltonian is given by

HL,i = Ωi(α
′)b†ibi, (4.15)

with

Ωi(α
′) = −1

2

(
Ψ−

i +Ψ+
i

)
, (4.16)

Ψ±
i = 2

∑
b,k,σ

|Wbkσ,i|2f±b (ω̃i)P
1

εbk + σgbBb − ω̃i
. (4.17)

Here, P denotes the Cauchy principal value. Φ±,χ
i satisfies

Φ±
i = Φ±,χ

i

∣∣
χ=0

=
∑
b,σ

Φ±
bσ,i, (4.18)

and

Φ±,χ
i

∂(iχbσ)

∣∣∣
χ=0

= ∓Φ±
bσ,i, (4.19)

with

Φ±
bσ,i = 2π

∑
k

|Wbkσ,i|2f±b (ω̃i)δ(εbk + σgbBb − ω̃i). (4.20)

We set

Γi =
∑
b,σ

Γbσ,i =
∑
b

Γb,i, (4.21)
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with

Γbσ,i = 2π
∑
k

|Wbkσ,i|2δ(εbk + σgbBb − ω̃i). (4.22)

Then,

Γi = Φ+
i +Φ−

i , (4.23)

and

Φ±
bσ,i = Γbσ,if

±
b (ω̃i), (4.24)

hold. The matrix representation of K̂χ
i (α) (see Appendix B) by the number states of

b†ibi (|0⟩i and |1⟩i) is a 4 × 4 matrix which is block diagonalized to {|0⟩ii⟨0|, |1⟩ii⟨1|}
space and {|0⟩ii⟨1|, |1⟩ii⟨0|} space. The {|0⟩ii⟨0|, |1⟩ii⟨1|} part is given by

Kχ
i (α) =

(
−Φ+

i Φ−,χ
i

Φ+,χ
i −Φ−

i

)
|00⟩⟩i
|11⟩⟩i

. (4.25)

{|0⟩ii⟨1|, |1⟩ii⟨0|} part does not relate to the instantaneous steady state of K̂χ
i (α). The

eigenvalue of the instantaneous steady state of K̂χ
i (α) is given by

λχ0,i(α) = −
Φ+
i (α) + Φ−

i (α)

2
+
√
Dχ

i (α), (4.26)

with

Dχ
i (α) = [Φ+

i +Φ−
i ]

2/4− [Φ+
i Φ

−
i − Φ−,χ

i Φ+,χ
i ]. (4.27)

The corresponding left and right eigenvectors are |ρχ0,i(α)⟩⟩ = Cχ
i (α)|00⟩⟩i+E

χ
i (α)|11⟩⟩i

and ⟨⟨lχ0,i(α)| = i⟨⟨00|+ vχi (α)i⟨⟨11|with Cχ
i (α) =

Φ−,χ
i Φ+,χ

i

[λχ
0,i+Φ+

i ]2+Φ−,χ
i Φ+,χ

i

,

Eχ
i (α) =

Φ+,χ
i (λχ

0,i+Φ+
i )

[λχ
0,i+Φ+

i ]2+Φ−,χ
i Φ+,χ

i

, and

vχi (α) =
Φ+
i − Φ−

i + 2
√
Dχ

i (α)

2Φ+,χ
i

. (4.28)

At χbσ = 0, Eχ
i (α) becomes

Ei(α) =
Φ+
i

Φ+
i +Φ−

i

(4.29)

and Cχ
i (α) becomes Ci(α) = 1− Ei(α). We have

λχ0 (α) =
∑
i

λχ0,i(α), (4.30)

ρ0(α) =
⊗
i

ρ0,i(α), (4.31)

lχ0 (α) =
⊗
i

lχ0,i(α). (4.32)
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4.2.2 Instantaneous steady currents

The instantaneous steady current is given by issbσ(α) =
∂λχ

0 (α)
∂(iχbσ)

∣∣
χ=0

. (4.30) leads to

issbσ(α) =
∑
i

issbσ,i(α). (4.33)

Here, issbσ,i(α) =
∂λχ

0,i(α)

∂(iχbσ)

∣∣
χ=0

are calculated from (4.26) as

issbσ,i(α) =
Φ−
bσ,iΦ

+
i − Φ−

i Φ
+
bσ,i

Γi
. (4.34)

From (4.18), we obtain ∑
b,σ

issbσ,i(α) = 0. (4.35)

From (4.24), we obtain

issbσ,i(α) =
Γbσ,i

∑
b′ (̸=b) Γb′,i[fb′(ω̃i)− fb(ω̃i)]

Γi
. (4.36)

issbσ,i(α) vanishes at zero bias (βb = β, µb = µ). Let us consider the modulation of
only the thermodynamic parameters (α′′) similar to Refs.[23, 79, 24, 83]. The fac-
tor depending on α′′ of issbσ,i(αt) is fβb′ (t),µb′ (t)

(ω̃i) − fβb(t),µb(t)(ω̃i) with fβ,µ(ω) =

[eβ(ω−µ) + 1]−1. Hence

⟨∆Nbσ⟩ssτ =
∑
i

Γbσ,i

Γi

∑
b′ (̸=b)

Γb′,i

∫ τ

0
dt [fβb′ (t),µb′ (t)

(ω̃i)− fβb(t),µb(t)(ω̃i)], (4.37)

is generally nonzero and is much lager than ⟨∆Nbσ⟩Berry
S because the period τ is large

for adiabatic pumps. Similarly, we can show that ⟨∆Nbσ⟩ssτ is generally nonzero for
interacting system (§ 4.3.2). Reference[24] considered special modulations of only
thermodynamic parameters which satisfy ⟨∆Nbσ⟩ssτ = 0. In fact, the instantaneous
steady currents are always zero for arbitrary modulations of only the dynamics pa-
rameters at zero bias.

The pumped charge and spin due to the instantaneous steady currents (back-
grounds) are generally nonzero even if the time averages of the bias are zero.
References[68, 69] (two leads case) chose V = µL − µR as one of the modulating
parameters and considered a pumping such that 1

τ

∫ τ
0 dt V (t) = 0 and ⟨∆Nbσ⟩ssτ ̸= 0.

In such pumping, the (thermal or voltage) bias is effectively nonzero.
Even if the backgrounds do not vanish, one can detect the BSN curvatures by

subtracting the backgrounds by using zero-frequency measurements or by lock-in
measurements. However, if one wants to apply the adiabatic pump to the current
standard[50, 51], the instantaneous steady currents should be zero at all times be-
cause the backgrounds are sensitive to the velocity of the modulation of the control
parameters and its trajectory. In contrast, the pumped charge and spin due to the
BSN curvatures are robust against the modulation of the velocity and the trajectory.
Hence, if one wants to directly apply the BSN curvatures to, for instance, the current
standard, one should fix the thermodynamic parameters at zero bias.
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4.2.3 BSN curvatures

In the following of this subsection, we consider one level system of which the Hamil-
tonian is (4.5) at U = 0. The instantaneous steady state is given by |ρ0(α)⟩⟩ =
⊗s=↑,↓|ρ0,s(α)⟩⟩ because the Liouvillian is described by a summation (K̂χ =

∑
s=↑,↓ K̂

χ
s ).

Similarly, the corresponding left eigenvalue is given by ⟨⟨lχ0 (α)| = ⊗s=↑,↓⟨⟨lχ0,s(α)|.
The BSN vectors are given by

Abσ
n (α) = −

∑
s=↑,↓

vbσs (α′)
∂Es(α)

∂αn
, (4.38)

where

vbσs (α′) =
∂vχs (α)

∂(iχbσ)

∣∣∣
χ=0

=
Γbσ,s

Γs
, (4.39)

with

Γbσ,s(α
′) = 2π∆b

∑
k

|vbkσ,s|2δ(εbk + σgbBb − ω0 − sgSBS). (4.40)

vbσs (α′) dose not depend on α′′.
∑

b,σ v
bσ
s (α′) = 1 leads

∑
b,σ

Abσ
n (α) = −

∑
s=↑,↓

∂Es(α)

∂αn
. (4.41)

This equation and (4.35) lead∑
b,σ

⟨∆Nbσ⟩ = −
∑
s=↑,↓

[Es(ατ )− Es(α0)]. (4.42)

The RHS is (−1) times the change of the total electron average number of the QD.
The above equation describes the conservation of the total electron number. (4.38)
leads to an expression of the BSN curvatures

F bσ
mn(α) = −

∑
s=↑,↓

[∂vbσs (α′)

∂αm

∂Es(α)

∂αn
− (m↔ n)

]
. (4.43)

We emphasize that (4.43) is consistent with the results of Refs.[68, 69, 23], which
showed that the pumped charge (and also spin in Ref.[69]) vanishes at the noninter-
acting limit in these settings. The set of control parameters α was α′′ (for Ref.[23])
and {ω0, V = µL − µR} (for Refs.[68, 69]). If αm or αn is an element of α′′, F bσ

mn(α) is
consistently zero. In Refs.[68, 69], the line-width functions were energy-independent,
namely Γbσ,s(α

′) = δσ,sΓb=constant. Hence ∂Γbσ,s(α
′)

∂ω0
= 0 =

∂Γbσ,s(α
′)

∂V and F bσ
ω0,V

(α) =
0 hold consistently.

To calculate F bσ
mn(α), we need to assume the energy dependences of Γbσ,s. For the

simplicity, we assume that

Γbσ,s = δσ,s[Γb + Γ′
b · (sgSBS − σgbBb)]

= δσ,s∆b[γb + γ′b · (sgSBS − σgbBb)], (4.44)

where Γ′
b are energy differential coefficients of the line-width functions at Bb =

BS = 0. Namely, we disregard spin flips induced by tunneling between the QD
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and the leads. (4.44) is always appropriate when |Γ′
b(gSBS − gbBb)| ≪ Γb is satisfied.

Additionally, we fix α′′ to zero bias (βb = β, µb = µ), in which Es(α) is given by
Es(α) = f(ω0+sgSBS) with f(ω) = [eβ(ω−µ)+1]−1. In the following this subsection,
we suppose two leads (b = L,R) case. (αm, αn) = (BL, BS), (∆L, BS) components
of the charge and spin BSN curvatures of the lead L are

FL↑
BL,BS

± FL↓
BL,BS

= gSgLΓ
′
L[f

′(ω0 + gSBS)± f ′(ω0 − gSBS)]
ΓR

Γ2
tot

−gSgLΓ′
L[f

′(ω0 + gSBS)∓ f ′(ω0 − gSBS)]

×
(
Γ′
L(gSBS − gLBL)

2ΓR

Γ3
tot

+ Γ′
R(gSBS − gRBR)

ΓR − ΓL

Γ3
tot

)
, (4.45)

FL↑
∆L,BS

± FL↓
∆L,BS

= −gS [f ′(ω0 + gSBS)∓ f ′(ω0 − gSBS)]
γLγR∆R

(γL∆L + γR∆R)2

−gS [f ′(ω0 + gSBS)± f ′(ω0 − gSBS)]γ
′
L(gSBS − gLBL)

γR∆R − γL∆L

(γL∆L + γR∆R)2
.

(4.46)

Here f ′(ω) = ∂f(ω)
∂ω and Γtot = ΓL + ΓR. The pumped charge (spin) induced by a

slow cycle modulation of (αn, BS) (αn = BL,∆L) are given by

⟨∆NL↑⟩ ± ⟨∆NL↓⟩ =
∫
Sn

dαndBS (FL↑
αn,BS

± FL↓
αn,BS

), (4.47)

where Sn are areas enclosed by the trajectories of (αn, BS). F
L↑
αn,BS

± FL↓
αn,BS

(αn =
BL,∆L) are invariant under the transformation γb → cγ, γ′b → cγ′b (for any c > 0).
Hence relevant quantities are γ′b/Γtot. The coupling strength Γtot itself is not impor-
tant. FL↑

BL,BS
±FL↓

BL,BS
are proportional to gSgL and FL↑

∆L,BS
±FL↓

∆L,BS
are proportional

to gS . The first terms of the right side of (4.45) and (4.46) are dominant terms. In the
limit γ′L → 0, FL↑

BL,BS
± FL↓

BL,BS
and the second term of (4.46) vanish; however, the

dominant term of (4.46) remains. At ω0 = µ, f ′(ω0 + gSBS)− f ′(ω0 − gSBS) vanish.
Hence, at ω0 = µ, the dominant terms of the spin BSN curvature of (BL, BS) pump
and the charge BSN of (∆L, BS) pump vanish. The contour plots of these BSN cur-
vatures are shown in Figs. 4.1(a) and 1(b) and Figs. 4.2(a) and 2(b). The details are
explained in § 4.3.3.

It is important to remark that (αm, αn) = (BL, BR), (∆L,∆R) components of the
charge and spin BSN curvatures are zero at zero bias because, in (4.43), Es(α) =
f(ω0 + sgSBS) are independent of BL/R and ∆L/R. As we showed in § 3.4, for
general model, the pumping dose not occur for all orders of the pumping frequency
when αS are fixed.

4.3 Interacting system

In this section, we study the interacting system (4.5). First, we explain the Liouvillian
for 0 ≤ U ≤ ∞ (§ 4.3.1). Next, the instantaneous steady charge and spin currents
are calculated at U = ∞ (§ 4.3.2). In § 4.3.3, we confirm the consistency between
our results and Ref.[69] for 0 ≤ U ≤ ∞. The BSN curvatures corresponding to (4.45)
and (4.46) are calculated at U = ∞ and differences of the results between U = 0
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and U = ∞ are discussed (§ 4.3.3). Finally, in § 4.3.5, we study the pumping for
0 ≤ U ≤ ∞ in the wide-band limit (i.e., (4.44) with Γ′

b = 0).

4.3.1 Liouvillian

We explain the Liouvillian for kBT > Γ, in which the Born-Markov approximation is
appropriate. The matrix representation of the Liouvillian of the RWA by the number
states {|n↑n↓⟩} (ns = 0, 1 are the numbers of an electron with spin s =↑, ↓) is a
16 × 16 matrix which is block diagonalized to the “diagonal" space (spanned by
{|n↑n↓⟩⟨n↑n↓|}n↑,n↓=0,1) and the “off-diagonal" space (spanned by
{|n↑n↓⟩⟨m↑m↓|}(n↑,n↓) ̸=(m↑,m↓)). The “diagonal" block is given by

Kχ(α) =


−[Φ+

↑ +Φ+
↓ ] Φ−,χ

↑ Φ−,χ
↓ 0

Φ+,χ
↑ −[Φ−

↑ + ϕ+↓ ] 0 ϕ−,χ
↓

Φ+,χ
↓ 0 −[Φ−

↓ + ϕ+↑ ] ϕ−,χ
↑

0 ϕ+,χ
↓ ϕ+,χ

↑ −[ϕ−↑ + ϕ−↓ ]


|0000⟩⟩
|1010⟩⟩
|0101⟩⟩
|1111⟩⟩

,(4.48)

with

ϕ±,χ
s = 2π

∑
b

∆b

∑
k,σ

|vbkσ,s|2f±b (ω0 + sgSBS + U)

×e∓iχbσδ(εbk + σgbBb − ω0 − sgSBS − U), (4.49)

and Φ±,χ
s = ϕ±,χ

s |U=0. ϕ±,χ
s satisfies

ϕ±s = ϕ±,χ
s

∣∣
χ=0

=
∑
b,σ

ϕ±bσ,s, (4.50)

and

ϕ±,χ
s

∂(iχbσ)

∣∣∣
χ=0

= ∓ϕ±bσ,s, (4.51)

with

ϕ±bσ,s = 2π∆b

∑
k

|vbkσ,s|2f±b (ω0 + sgSBS + U)

×e∓iχbσδ(εbk + σgbBb − ω0 − sgSBS − U). (4.52)

The off-diagonal block is a (12 × 12)-diagonal matrix, which dose not relate to the
instantaneous steady state. AtU = 0,Kχ(α) becomesKχ

↑ (α)⊗1↓+1↑⊗Kχ
↓ (α), where

Kχ
s (α)(s =↑, ↓) are given by (4.25) and 1s are identity matrices. In the opposite limit

U →∞, Kχ(α) reduces to

Kχ(∞)(α) =

−[Φ
+
↑ +Φ+

↓ ] Φ−,χ
↑ Φ−,χ

↓
Φ+,χ
↑ −Φ−

↑ 0

Φ+,χ
↓ 0 −Φ−

↓

 |0000⟩⟩|1010⟩⟩
|0101⟩⟩

, (4.53)

because the density of states of the leads vanish at high energy (ϕ±s → 0).
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FIGURE 4.1: (a) BSN curvature of charge of (BL, BS) pump, [FL↑
BL,BS

+

FL↓
BL,BS

]/
(
µB

Γ

)2 at U = 0, (b) the BSN curvature of spin, [FL↑
BL,BS

−
FL↓
BL,BS

]/
(
µB

Γ

)2 at U = 0, (c) [FL↑
BL,BS

+ FL↓
BL,BS

]/
(
µB

Γ

)2 at U =∞, and

(d) [FL↑
BL,BS

−FL↓
BL,BS

]/
(
µB

Γ

)2 at U =∞. The values of the parameters
used for these plots are ΓL = ΓR = Γ, Γ′

L = Γ′
R = 0.1, β = 0.5/Γ,

ω0 = µ− 3Γ, and BR = 0, and all g factors (g∗L, g∗R, g∗S) are−0.44 (bulk
GaAs).
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FIGURE 4.2: (a) BSN curvature of charge of (∆L, BS) pump,
[FL↑

∆L,BS
+ FL↓

∆L,BS
]/µB

Γ at U = 0, (b) the BSN curvature of spin,
[FL↑

∆L,BS
− FL↓

∆L,BS
]/µB

Γ at U = 0, (c) [FL↑
∆L,BS

+ FL↓
∆L,BS

]/µB

Γ at U =∞,
and (d) [FL↑

∆L,BS
− FL↓

∆L,BS
]/µB

Γ at U = ∞. The values of the parame-
ters used for these plots are γL = ΓR = Γ, γ′L = Γ′

R = 0.1, and BL = 0
and other conditions are the same as Fig. 4.1.
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FIGURE 4.3: (a)nS(B), (b)[n′S(B)+n′S(−B)] ·Γ, (c)[n′S(B)−n′S(−B)] ·
Γ for U/Γ =0, 1.5, 3, 4,5, 6, 7.5, 9, ∞. Here, n′U (±BS) =
1
gS

∂nU (B)
∂B |B=±BS

and nU (BS) is defined by (4.92). The conditions are
the same as Fig. 4.1.
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4.3.2 Instantaneous steady currents for U →∞

In this subsection, we set U =∞. The characteristic polynomial of Kχ(∞) is denoted
as

C3(χ, λ) = det(Kχ(∞) − λ) =
2∑

n=0

Cn(χ)λ
n − λ3. (4.54)

Because of C0(0) = 0, λ = 0 is one of the solutions at χ = 0. Now we set χbσ as
infinitesimal and other counting fields are zero. Then, the eigenvalue corresponding
to the instantaneous steady state is given by λ = λχ0 = iχbσ · issbσ +O(χ2

bσ). It leads to
0 = C3(χ, λ

χ
0 ) = C1(0)iχbσi

ss
bσ + iχbσC

bσ
0 with Cbσ

0 = ∂C0(χ)
∂(iχbσ)

∣∣
χ=0

, and we obtain

issbσ = − Cbσ
0

C1(0)
, (4.55)

with C1(0) = −[Φ+
↑ Φ

−
↓ + Φ−

↑ Φ
+
↓ + Φ−

↑ Φ
−
↓ ]. From C0(χ) = −[Φ+

↑ + Φ+
↓ ]Φ

−
↑ Φ

−
↓ +

Φ−,χ
↓ Φ−

↑ Φ
+,χ
↓ +Φ−

↓ Φ
−,χ
↑ Φ+,χ

↑ , we have

issbσ =
Φ−
↑ (Φ

−
bσ,↓Φ

+
↓ − Φ−

↓ Φ
+
bσ,↓) + Φ−

↓ (Φ
−
bσ,↑Φ

+
↑ − Φ−

↑ Φ
+
bσ,↑)

Φ+
↑ Φ

−
↓ +Φ−

↑ Φ
+
↓ +Φ−

↑ Φ
−
↓

. (4.56)

The total instantaneous steady current vanishes:∑
b,σ

issbσ = 0. (4.57)

issbσ can be rewritten as

issbσ =

∑
s=↑,↓Φ

−
−sΓbσ,s

∑
b′ (̸=b) Γb′,s[fb′(ωs)− fb(ωs)]

Φ+
↑ Φ

−
↓ +Φ−

↑ Φ
+
↓ +Φ−

↑ Φ
−
↓

. (4.58)

Here, Φ−
−s (s =↑, ↓) describes Φ−

↓ for s =↑ and Φ−
↓ for s =↓. At zero bias, the instan-

taneous steady currents vanish. Similar to § 4.2.2, ⟨∆Nbσ⟩ssτ are generally nonzero
when α′′ is not fixed at zero bias.

4.3.3 BSN curvatures for U →∞

The instantaneous steady state ρ0(α) and corresponding left eigenvector lχ0 (α) are
written as

ρ0 = ρ0|00⟩⟨00|+ ρ↑|10⟩⟨10|+ ρ↓|01⟩⟨01|+ ρ2|11⟩⟨11|, (4.59)

and

lχ0 = |00⟩⟨00|+ lχ↑ |10⟩⟨10|+ lχ↓ |01⟩⟨01|+ lχ2 |11⟩⟨11|. (4.60)

The BSN vectors are given by

Abσ
n (α) = −

∑
c=↑,↓,2

lbσc (α)
∂ρc(α)

∂αn
, (4.61)
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where lbσc (α) = ∂[lχc (α)]
∗

∂(iχbσ)

∣∣
χ=0

. It leads to the BSN curvatures

F bσ
mn(α) = −

∑
c=↑,↓,2

∂lbσc (α)

∂αm

∂ρc(α)

∂αn
− (m↔ n). (4.62)

We confirmed the consistency between our results and Ref.[69], which studied the
similar system for 0 ≤ U ≤ ∞ using the wide-band limit. As we explained in Chap.3,
φ
Oµ
κ (α) of (3.88) corresponds to −⟨⟨lOµ

0 (α)|, namely −lbσc (α). In the condition of the
wide-band limit, we calculated lbσc (α) (c =↑, ↓, 2) for 0 ≤ U ≤ ∞ and confirmed
numerically the correspondence between φ

Oµ
c (α) (c =↑, ↓, 2) and −[lb↑c (α) ± lb↓c (α)]

for the charge and spin pump.
Particularly, in the limit U →∞, ρ2 vanishes and F bσ

mn(α) reduces to

F bσ(∞)
mn (α) = −

∑
s=↑,↓

∂l
bσ(∞)
s (α)

∂αm

∂ρ
(∞)
s (α)

∂αn
− (m↔ n), (4.63)

where ρ(∞)
s (α) and l

bσ(∞)
s (α) are the limits U → ∞ of ρs(α) and lbσs (α), respectively.

From (4.53) we obtain

ρ(∞)
s (α) =

Φ+
s Φ

−
−s

Φ−
↑ Φ

−
↓ +Φ−

↑ Φ
+
↓ +Φ+

↑ Φ
−
↓
, (4.64)

{l(∞)
s (α)}∗ =

Φ−,χ
s

Φ−
s + λχ0

, (4.65)

and

lbσ(∞)
s (α) =

Φ−
bσ,s − i

ss
bσ(α)

Φ−
s

. (4.66)

(4.57) leads
∑

b,σ l
bσ(∞)
s (α) = 1. Then, we obtain

∑
b,σ

Abσ(∞)
n (α) = −

∑
c=↑,↓,2

∂ρ
(∞)
c (α)

∂αn
. (4.67)

This equation and (4.57) lead∑
b,σ

⟨∆Nbσ⟩ = −
∑
s=↑,↓

[ρ(∞)
c (ατ )− ρ(∞)

c (α0)]. (4.68)

The RHS is (−1) times the change of the total electron average number of the QD.
The above equation describes the conservation of the total electron number. In the
following of this subsection, we fix α′′ to zero bias (βb = β, µb = µ) and suppose
(4.44). Then, lbσ(∞)

s (α) equals vbσs (α′) given by (4.39) and ρ(∞)
s (α) are given by

ρ(sBS) =
e−β(ωs−µ)

1 + e−β(ω↓−µ) + e−β(ω↑−µ)
. (4.69)

We emphasize that F bσ(∞)
mn (α) can be obtained by just a replacement,

Es(α) = f(ωs)→ ρ(sBS), (4.70)
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in (4.43). In the following this subsection, we suppose two leads (b = L,R) case.
The charge and spin BSN curvatures of (BL, BS), (∆L, BS) pump are given by a

replacement f ′(ω0±gSBS)→ ρ′(±BS) in (4.45) and (4.46), where ρ′(BS)
def
= 1

gS

∂ρ(BS)
∂BS

.
Similar to U = 0, the charge and spin BSN curvatures of (BL, BR), (∆L,∆R) pump
are zero.

In Figs. 4.1(a)-4.1(d), we plot the BSN curvatures of (BL, BS) pump normalized
by (µB/Γ)

2, where Γ = ΓL = ΓR and µB = 57.88 µeV/T is the Bohr magneton. For
U = 0, the charge and spin BSN curvatures are shown in Fig. 4.1(a) and Fig. 4.1(b),
and for U =∞ these are shown in Figs. 4.1(c) and 4.1(d). The horizontal and vertical
axes of these plots are the strength of the magnetic fields BS and BL normalized
by Γ/µB. The values of the parameters used for these plots are ΓL = ΓR = Γ,
Γ′
L = Γ′

R = 0.1, β = 0.5/Γ, ω0 = µ − 3Γ, BR = 0, and g∗L = g∗R = g∗S = −0.44
(bulk GaAs). The BSN curvatures of (∆L, BS) pump normalized by µB/Γ are shown
similarly in Figs. 4.2(a)-4.2(d). In all plots, γL = ΓR = Γ, γ′L = Γ′

R = 0.1, BL = 0,
and other conditions are the same as in Fig. 4.1. In Figs. 4.1 and 4.2, the maximum
values of |Γ′

b(gSBS − gbBb)|/Γb are 0.44 and 0.22 (<1), respectively. The pumped
charges and spins are given by (4.47).

Figure 4.3(a) shows the instantaneous average numbers of the up spin electron
of the QD, nU (BS) defined by (4.92) at U/Γ =0, 1.5, 3, 4.5, 6, 7.5, 9,∞ for β = 0.5/Γ,
ω0 = µ−3Γ, and gS = −0.44×µB/2. In particular, n0 = f(ω0+gSBS) and n∞(BS) =
ρ(BS) hold. Because two electrons cannot occupy a QD at U =∞, the magnetic field
dependence of ρ(BS) is more sensitive than f(ω0 + gSBS). Figures 4.3(b) and 4.3(c)
show n′U (BS)± n′U (−BS) normalized by 1/Γ, where n′U (±BS) =

1
gS

∂nU (B)
∂B |B=±BS

.
In Figs. 4.2(a) and 4.2(c), the charge BSN curvatures of (∆L, BS) pump vanish at

BS = 0. This is because the first term of (4.46) vanishes since n′(BS)− n′(−BS) = 0
(n denotes n0 or n∞) forBS = 0 and the second term vanishes since gSBS−gbBb = 0
for BS = 0 = BL. Similarly, in Figs. 4.1(b) and 4.1(d), the spin BSN curvatures of
(BL, BS) pump vanish at BS = 0 = BL. The zero lines in these plots relate to the
cancellation between the first and second terms of (4.45). Figures. 4.1(a), 4.1(c) and
Figs. 4.1(b), 4.1(d) are respectively symmetric and antisymmetric under the transfor-
mation (BS , BL)→ (−BS ,−BL). Similarly, Figs. 4.2(b), 4.2(d) and Figs. 4.2(a), 4.2(c)
are respectively symmetric and antisymmetric under the transformationBS → −BS .
We emphasize that pure charge and pure spin pumps are respectively realized for
(BL, BS) pump and (∆L, BS) pump such that the areas Sn in (4.47) are symmetric
under the above transformations. An instance of symmetric area of (BL, BS) pump
is a disk of which the center is BS = 0 = BL.

In ω0 > µ region, the larger ω0−µ, the less difference between U = 0 and U =∞
becomes. The Coulomb interaction prevents two electrons from occupying the QD.
This effect is conspicuous in the ω0 < µ region, although it is not important in the
ω0 > µ region.

As shown in Figs. 4.1(a), 4.1(c) and Figs. 4.2(b), 4.2(d), the BS dependence of the
charge BSN curvature of (BL, BS) pump and the spin BSN curvature of (∆L, BS)
pump at U = 0 are more gentle than those at U =∞. It results from the behavior of
n′(BS) + n′(−BS) as shown in Fig. 4.3(b).

As shown in Figs. 4.1(b), 4.1(d) and in Figs. 4.2(a), 4.2(c), the BS dependence of
the spin BSN curvature of (BL, BS) pump and the charge BSN curvature of (∆L, BS)
pump are opposite. This is because the leading term (in weak magnetic field region)
of these are proportional to n′(BS)− n′(−BS) and its BS dependence is opposite in
U = 0 and U =∞ for ω0−µ < 0 as indicated in Fig. 4.3(b). This inversion is realized
for only ω0 − µ < 0 region. At ω0 = µ, f ′(ω0 + gSBS) − f ′(ω0 − gSBS) vanish. In
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ω0 > µ region, the signs of f ′(ω0 + gSBS)− f ′(ω0 − gSBS) and ρ′(BS)− ρ′(−BS) are
the same.

In Figs. 4.1 and 4.2, absolute values of the normalized BSN curvatures are smaller
than unity. However, we can improve this problem by tuning g factors. The first and
second terms of the right side of (4.45) are the second and third order in the g factors,
and the first and second terms of the right side of (4.46) are the first and second order
in the g factors. If all g factors change to−20 (for example for the materials like InAs,
InSb), the first, second, and third order terms become about 45, 2 000, and 90 000
times. In fact, for these values of g factors, the assumption (4.44) is not appropriate
for magnetic fields that are not small; we need concrete energy dependence of the
line-width functions.

4.3.4 Instantaneous steady currents

The characteristic polynomial of (4.48) is

det(Kχ − λ) =
3∑

n=0

cn(χ)λ
n + λ4. (4.71)

Similar to (4.3.2), we obtain

issbσ = − cbσ0
c1(0)

, (4.72)

with cbσ0 = ∂c0(χ)
∂(iχbσ)

∣∣
χ=0

. c0(χ) is given by

c0(χ) = K00K↑↑K↓↓K22 −K00K↓↓ϕ
−,χ
↓ ϕ+,χ

↓ −K00K↑↑ϕ
−,χ
↑ ϕ+,χ

↑

−K↓↓K22Φ
−,χ
↑ Φ+,χ

↑ −K22K↑↑Φ
−,χ
↓ Φ+,χ

↓

−Φ−,χ
↑ Φ+,χ

↓ ϕ−,χ
↓ ϕ+,χ

↑ +Φ−,χ
↑ Φ+,χ

↑ ϕ−,χ
↑ ϕ+,χ

↑

+Φ−,χ
↓ Φ+,χ

↓ ϕ−,χ
↓ ϕ+,χ

↓ − Φ−,χ
↓ Φ+,χ

↑ ϕ−,χ
↑ ϕ+,χ

↓ . (4.73)

Then, we obtain

cbσ0 = −K00K↓↓[ϕ
−
bσ,↓ϕ

+
↓ − ϕ

−
↓ ϕ

+
bσ,↓]−K00K↑↑[ϕ

−
bσ,↑ϕ

+
↑ − ϕ

−
↑ ϕ

+
bσ,↑]

−K↓↓K22[Φ
−
bσ,↑Φ

+
↑ − Φ−

↑ Φ
+
bσ,↑]−K22K↑↑[Φ

−
bσ,↓Φ

+
↓ − Φ−

↓ Φ
+
bσ,↓]

−[Φ−
bσ,↑Φ

+
↓ − Φ−

↑ Φ
+
bσ,↓]ϕ

−
↓ ϕ

+
↑ − Φ−

↑ Φ
+
↓ [ϕ

−
bσ,↓ϕ

+
↑ − ϕ

−
↓ ϕ

+
bσ,↑]

+[Φ−
bσ,↑Φ

+
↑ − Φ−

↑ Φ
+
bσ,↑]ϕ

−
↑ ϕ

+
↑ +Φ−

↑ Φ
+
↑ [ϕ

−
bσ,↑ϕ

+
↑ − ϕ

−
↑ ϕ

+
bσ,↑]

+[Φ−
bσ,↓Φ

+
↓ − Φ−

↓ Φ
+
bσ,↓]ϕ

−
↓ ϕ

+
↓ +Φ−

↓ Φ
+
↓ [ϕ

−
bσ,↓ϕ

−
↓ − ϕ

+
↓ ϕ

+
bσ,↓]

−[Φ−
bσ,↓Φ

+
↑ − Φ−

↓ Φ
+
bσ,↑]ϕ

−
↑ ϕ

+
↓ − Φ−

↓ Φ
+
↑ [ϕ

−
bσ,↑ϕ

+
↓ − ϕ

−
↑ ϕ

+
bσ,↓]. (4.74)

Here,

ϕ±bσ,s = 2π∆b

∑
k

|vbkσ,s|2f±b (ωs + U)δ(εbk + σgbBb − ωs − U), (4.75)
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and Φ±
bσ,s = ϕ±bσ,s

∣∣
U=0

. c1(0) is given by

c1(0) = −K00K↑↑K↓↓ −K00K↑↑K22 −K00K↓↓K22 −K↑↑K↓↓K22

+K↓↓(ϕ
−
↓ ϕ

+
↓ +Φ−

↑ Φ
+
↑ ) +K00(ϕ

−
↓ ϕ

+
↓ + ϕ−↑ ϕ

+
↑ )

+K↑↑(ϕ
−
↑ ϕ

+
↑ +Φ−

↓ Φ
+
↓ ) +K22(Φ

−
↑ Φ

+
↑ +Φ−

↓ Φ
+
↓ ). (4.76)∑

b,σ c
bσ
0 = 0 leads

∑
b,σ i

ss
bσ = 0. At zero-bias, issbσ vanishes.

4.3.5 BSN curvatures

(lχc )∗ are given by

(lχ↑ )
∗ =

[−K↓↓ + λχ0 ][−K00 + λχ0 ]ϕ
+,χ
↓ + ϕ+,χ

↑ Φ−,χ
↑ Φ+,χ

↓ − ϕ+,χ
↓ Φ−,χ

↓ Φ+,χ
↓

[−K↓↓ + λχ0 ]Φ
+,χ
↑ ϕ+,χ

↓ + [−K↑↑ + λχ0 ]Φ
+,χ
↓ ϕ+,χ

↑
, (4.77)

(lχ↓ )
∗ =

[−K↑↑ + λχ0 ][−K00 + λχ0 ]ϕ
+,χ
↑ + ϕ+,χ

↓ Φ−,χ
↓ Φ+,χ

↑ − ϕ+,χ
↑ Φ−,χ

↑ Φ+,χ
↑

[−K↑↑ + λχ0 ]Φ
+,χ
↓ ϕ+,χ

↑ + [−K↓↓ + λχ0 ]Φ
+,χ
↑ ϕ+,χ

↓
, (4.78)

(lχ2 )
∗ =

−Φ−,χ
↑ + [−K↑↑ + λχ0 ](l

χ
↑ )

∗

ϕ+,χ
↓

. (4.79)

Similarly, we obtain ρc = ρ0rc (c =↑, ↓, 2) with

r↑ =
K↓↓K00ϕ

−
↓ + ϕ−↑ Φ

+
↑ Φ

−
↓ − ϕ

−
↓ Φ

+
↓ Φ

−
↓

−K↓↓Φ
−
↑ ϕ

−
↓ −K↑↑Φ

−
↓ ϕ

−
↑

, (4.80)

r↓ =
K↑↑K00ϕ

−
↑ + ϕ−↓ Φ

+
↓ Φ

−
↑ − ϕ

−
↑ Φ

+
↑ Φ

−
↑

−K↑↑Φ
−
↓ ϕ

−
↑ −K↓↓Φ

−
↑ ϕ

−
↓

, (4.81)

r2 =
−Φ+

↑ −K↑↑r↑

ϕ−↓
, (4.82)

ρ0 =
1

1 +
∑

c=↑,↓,2 rc
. (4.83)

In the following of this subsection, we suppose zero-bias. Then, ρ0 and ρc become

ρ0 =
1

Ξ
, ρs =

e−β(ωs−µ)

Ξ
, ρ2 =

e−β(ω↑+ω↓+U−2µ)

Ξ
. (4.84)

Here,

Ξ = 1 + e−β(ω↑−µ) + e−β(ω↓−µ) + e−β(ω↑+ω↓+U−2µ). (4.85)

In the following of this subsection, we suppose that the line-width functions do
not depend on the energy. Then, we obtain

lbσs =
Γbσ,s

Γ
= vbσs , (4.86)

lbσ2 =
Γbσ,↑ + Γbσ,↓

Γ
= lbσ↑ + lbσ↓ . (4.87)



69

Substituting these two equations to (4.62), we obtain

F bσ
mn(α) = −

∑
s=↑,↓

( ∂

∂αm

Γbσ,s

Γ

)∂ns(α)
∂αn

− (m↔ n). (4.88)

Here,

ns = ρs + ρ2 =
e−β(ωs−µ) + e−β(2ω0+U−2µ)

Ξ
, (4.89)

is the average number of the electrons in the QD with spin s. Because the line-width
functions are energy-independent, the BSN curvatures of (Bb, BS)-pump vanish. In
the following this subsection, we suppose two leads (b = L,R) case. If we suppose

Γbσ,s(ω) = δσ,sΓb = δσ,s∆bγb, (4.90)

the BSN curvatures of (∆L, BS)-pump are given by

FL↑
∆L,BS

± FL↓
∆L,BS

= −gS [n′U (BS)∓ n′U (−BS)]
γLγR∆R

(γL∆L + γR∆R)2
, (4.91)

where

nU (BS)
def
= n↑ =

e−β(ω↑−µ) + e−β(2ω0+U−2µ)

1 + e−β(ω↑−µ) + e−β(ω↓−µ) + e−β(2ω0+U−2µ)
, (4.92)

n′U (BS)
def
=

1

gS

∂nU (B)

∂B

∣∣∣
B=±BS

. (4.93)

Because n0 = f(ω0 + gSBS) and n∞(BS) = ρ(BS), (4.91) confirms with the results of
§ 4.2.3 and § 4.3.3. n′U (sBS) and n′U (BS)∓ n′U (−BS) are given by

n′U (sBS)

= −β e
−β(ω0−µ)[e−sβgSBS + esβgSBSe−β[2(ω0−µ)+U ] + 2e−β(ω0−µ)]

{1 + e−β(ω0−µ)[eβgSBS + e−βgSBS ] + e−β[2(ω0−µ)+U ]}2
, (4.94)

n′U (BS)− n′U (−BS)

= β[1− e−β[2(ω0−µ)+U ]]
e−β(ω0−µ)(eβgSBS − e−βgSBS )

{1 + e−β(ω0−µ)[eβgSBS + e−βgSBS ] + e−β[2(ω0−µ)+U ]}2
,

(4.95)
n′U (BS) + n′U (−BS)

= −β e
−β(ω0−µ)[1 + e−β[2(ω0−µ)+U ]](eβgSBS + e−βgSBS ) + 4e−2β(ω0−µ)

{1 + e−β(ω0−µ)[eβgSBS + e−βgSBS ] + e−β[2(ω0−µ)+U ]}2
. (4.96)

In particular, at

ω0 − µ = −U
2
, (4.97)

n′U (BS)−n′U (−BS) = 0 and FL↑
∆L,BS

+FL↓
∆L,BS

= 0 hold. (4.97) is called the half-filling
condition. Under this condition, pure spin pump is realized. n′U (BS) − n′U (−BS) is

proportional to FU
def
= 1 − e−β[2(ω0−µ)+U ]. This factor becomes F0 = 1 − e−β[2(ω0−µ)]

at U = 0 and F∞ = 1 at U →∞. If ω0 − µ < 0, F0 < 0 holds and n′U (BS)− n′U (−BS)
is negative for 0 ≤ U < −2(ω0 − µ) and 0 for U = −2(ω0 − µ) and positive for
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U > −2(ω0 − µ). If ω0 − µ > 0, n′U (BS)− n′U (−BS) is always positive.
We focus on a cyclic pump of an area ∆−

L ≤ ∆ ≤ ∆+
L , B−

S ≤ BS ≤ B+
S . The

pumped charge and spin are given by

⟨∆NL↑⟩ ± ⟨∆NL↓⟩

=

∫ ∆+
L

∆−
L

d∆L

∫ B+
S

B−
S

dBS (FL↑
∆L,BS

± FL↓
∆L,BS

)

= −
∫ ∆+

L

∆−
L

d∆L
γLγR∆R

(γL∆L + γR∆R)2

∫ B+
S

B−
S

dBS gS [n
′
U (BS)∓ n′U (−BS)]

= −γR∆R

[ 1

γL∆
−
L + γR∆R

− 1

γL∆
+
L + γR∆R

]
×[nU (B+

S )− nU (B
−
S )± {nU (−B

+
S )− nU (−B

−
S )}]. (4.98)

In particular, if γL∆−
L ≪ γR∆R, γL∆+

L ≫ γR∆R,

⟨∆NL↑⟩ ± ⟨∆NL↓⟩ = −[nU (B+
S )− nU (B

−
S )∓ {nU (−B

−
S )− nU (−B

+
S )}], (4.99)

holds. For instance, if the g-factor of the system is negative and B±
S = ±∞,

⟨∆NL↑⟩+ ⟨∆NL↓⟩ = 0, (4.100)
⟨∆NL↑⟩ − ⟨∆NL↓⟩ = −2, (4.101)

hold.
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Chapter 5

Quantum diabatic pump

5.1 Spinless one level quantum dot

In this section, we consider spinless one level QD coupled to two leads (b = L,R).
|0⟩ (|1⟩) denotes the state that the QD is empty (occupied). The diagonal components
pn = ⟨n|ρ|n⟩ (n = 0, 1) of the system state ρ are governed by the master equation:

d

dt

(
p0(t)
p1(t)

)
= K(αt)

(
p0(t)
p1(t)

)
. (5.1)

The Liouvillian is given by

K =
∑
b

Γb

(
−fb 1− fb
fb −(1− fb)

)
. (5.2)

Here, Γb is the line-width function of the lead b, fb = [eβb(ε−µb) + 1]−1 is the Fermi
distribution function, βb and µb are inverse temperature and chemical potential of
the lead b, ε is the energy level of the QD. The right eigenvectors of the Liouvillian
are the instantaneous steady state

pss(α) =

(
pss0 (α)
pss1 (α)

)
=

(
1− F (α)
F (α)

)
, (5.3)

and (
−1
1

)
, (5.4)

with the eigenvalue (−Γ). Here,

F (α)
def
=

∑
b Γbfb
Γ

, Γ
def
=
∑
b

Γb. (5.5)

As a specialty of this model, (5.4) is time-independent. We introduce p(m)
n = ⟨n|ρ(m)|n⟩

(m = 1, 2, · · · ) and p̃(m)
n = ⟨n|ρ̃(m)|n⟩ (m = 0, 1, · · · ). p̃(0)n are given by(

p̃
(0)
0 (αt)

p̃
(1)
1 (αt)

)
= e−

∫ t
0 ds Γ(s)[p(0)− pss(α0)] = e−

∫ t
0 ds Γ(s)

(
−p1(0) + F (α0)
p1(0)− F (α0)

)
. (5.6)
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We suppose p(0) = t(p0(0), p1(0)) = pss(α0). Then, p̃(0)n = 0 holds. We choose the
K̃−1(α) of (3.86) as the pseudo-inverse of K(α). We have

K̃−1 =
1

Γ

(
0 1
1 0

)
. (5.7)

From ρ(n)(t) = [R(αt)
d
dt ]

nρ0(αt), we obtain p(n) = t(p
(n)
0 , p

(n)
1 ) as

p(1)(αt) = K̃−1(αt)
d

dt
pss(αt)

=
1

Γ(t)

(
0 1
1 0

)
d

dt

(
1− F (αt)
F (αt)

)
= − 1

Γ(t)

d

dt

(
−F (αt)
F (αt)

)
, (5.8)

and

p(n+1)(t) = K̃−1(αt)
d

dt
p(n)(t)

= − 1

Γ(t)

d

dt

(
−p(n)1 (t)

p
(n)
1 (t)

)
. (5.9)

p̃(n) = t(−p̃(n)1 , p̃
(n)
1 ) (n = 1, 2, · · · ) is given by

p̃
(n)
1 (t) = −e−

∫ t
0 ds Γ(s)p

(n)
1 (0). (5.10)

For by only modulating Γb at zero-bias, the pump dose not occur for all orders
(p(n)(t) = 0) because pss(α) dose not change.

We consider the particle current to the lead b. From discussion of § 4.2.3, we
obtain

⟨⟨lNb
0 | = (0,

Γb

Γ
). (5.11)

Then, we get

i
(1)
Nb

= −⟨⟨lb0|
d

dt
pss(αt) = −

Γb(t)

Γ(t)

d

dt
F (t), (5.12)

and

i
(n+1)
Nb

= −Γb(t)

Γ(t)

d

dt
p
(n)
1 (t). (5.13)
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ĩ
(n)
Nb

is given by

ĩ
(n)
Nb

= −Γb(t)

Γ(t)

d

dt
p̃
(n)
1 (t)

= −Γb(t)

Γ(t)
[K(αt)p̃

(n)(t)]1

= −Γb(t)

Γ(t)

[
Γ(t)

(
−F (αt) 1− F (αt)
F (αt) −1 + F (αt)

)(
−p̃(n)1 (t)

p̃
(n)
1 (t)

)]
1

= −Γb(t)

Γ(t)

[
− Γ(t)

(
−p̃(n)1 (t)

p̃
(n)
1 (t)

)]
1

= Γb(t)p̃
(n)
1 (αt)

= −Γb(t)e
−

∫ t
0 ds Γ(s)p

(n)
1 (0). (5.14)

5.2 Numerical calculation

We set the time-dependence of the control parameters as

Γ(t) = ΓL(t) + ΓR, ΓL(t) = γ[1 + g sinω(t+ δ))], ΓR = γ, (5.15)

fL(t) = fR(t) = f(t) =
1

eβ(ε(t)−µ) + 1
, ε(t)− µ = ε0 sinωt. (5.16)

For the numerical calculation, we set

g = 0.5, ω = 0.3γ, βε0 = 1, δ = 0,
π

2
. (5.17)

Γ of (3.17) is given by γ(2− g) = 1.5γ. Then,

ω

Γ
=

0.3

1.5
= 0.2, (5.18)

holds.
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For δ = π/2, the pumped particle numbers of the first one cyclic are given by

⟨∆NL⟩ = 7.69464× 10−2,

⟨∆NL⟩BSN +
5∑

n=1

[⟨̃∆NL⟩
(n)

+ ⟨∆NL⟩(n+1)] = 7.69583× 10−2,

⟨∆NL⟩BSN = 9.71762× 10−2,

⟨̃∆NL⟩
(1)

= −1.79649× 10−2,

⟨∆NL⟩(2) = 0,

⟨̃∆NL⟩
(2)

= 0,

⟨∆NL⟩(3) = −0.270724× 10−2,

⟨̃∆NL⟩
(3)

= 0.0336304× 10−2,

⟨∆NL⟩(4) = 0,

⟨̃∆NL⟩
(4)

= 0,

⟨∆NL⟩(5) = 0.0133644× 10−2,

⟨̃∆NL⟩
(5)

= −0.00156459× 10−2,

⟨∆NL⟩(6) = 0. (5.19)

Figure 5.1(b) shows that p1(t) and f(t), Fig.5.1(a) shows that δp1(t)
def
= p1(t) − f(t),

p
(1)
1 (t) and p(1)1 (t) + p

(2)
1 (t), and Fig.5.1(c) shows that δp1 − p(1)1 − p

(2)
1 and p(3)1 (t).

For δ = 0, the pumped particle numbers of the first one cyclic are given by

⟨∆NL⟩ = −0.466997× 10−2,

⟨∆NL⟩BSN +

5∑
n=1

[⟨̃∆NL⟩
(n)

+ ⟨∆NL⟩(n+1)] = −0.464558× 10−2,

⟨∆NL⟩BSN = 0,

⟨̃∆NL⟩
(1)

= −1.9376× 10−2,

⟨∆NL⟩(2) = 1.52006× 10−2,

⟨̃∆NL⟩
(2)

= −0.0726599× 10−2,

⟨∆NL⟩(3) = 0,

⟨̃∆NL⟩
(3)

= 0.0572197× 10−2,

⟨∆NL⟩(4) = −0.0462914× 10−2,

⟨̃∆NL⟩
(4)

= 0.0148158× 10−2,

⟨∆NL⟩(5) = 0,

⟨̃∆NL⟩
(5)

= −0.00221088× 10−2,

⟨∆NL⟩(6) = 0.00210926× 10−2. (5.20)

Figure 5.2(b) shows that p1(t) and f(t), Fig.5.2(a) shows that δp1(t) = p1(t) − f(t),
p
(1)
1 (t) and p(1)1 (t) + p

(2)
1 (t), and Fig.5.2(c) shows that δp1 − p(1)1 − p

(2)
1 and p(3)1 (t).
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FIGURE 5.1: (a)δp1(t)
def
= p1(t) − f(t)(dashed line), p(1)1 (t)(red line)

and p
(1)
1 (t) + p

(2)
1 (t), (b)p1(t)(dashed line) and f(t), (c)δp1 − p

(1)
1 −

p
(2)
1 (dashed line) and p(3)1 (t) for δ = π/2.
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FIGURE 5.2: (a)δp1(t) = p1(t) − f(t)(dashed line), p(1)1 (t)(red line)
and p

(1)
1 (t) + p

(2)
1 (t), (b)p1(t)(dashed line) and f(t), (c)δp1 − p

(1)
1 −

p
(2)
1 (dashed line) and p(3)1 (t) for δ = 0.
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Chapter 6

Generalized quantum master
equation for entropy production

6.1 Definition of entropy production

In this chapter and Chap.7 and Chap.8, we suppose that {Hb}b are time-independent.
It is natural to identify the average entropy production rate with

σ̇(t)
def
=
∑
b∈C

βb(t)[−iHb
(t)] +

∑
b∈G

βb(t)[−iHb
(t)− µb(t){−iNb

(t)}]. (6.1)

This is given by σ̇(t) = TrS [W σ(αt)ρ(t)] with

W σ(α)
def
=
∑
b∈C

βb[−WHb(α)] +
∑
b∈G

βb[−WHb(α)− µb{−WNb(α)}]. (6.2)

The average entropy production is given by

σ
def
=

∫ τ

0
dt σ̇(t)

=

∫ τ

0
dt J ss

σ (αt) +

∫
C
dαn Aσ

n(α) +O
(ω
Γ

)
, (6.3)

where

J ss
σ (α)

def
=
∑
b∈C

βb[−issHb
(α)] +

∑
b∈G

βb[−issHb
(α)− µb{−issNb

(α)}], (6.4)

and

Aσ
n(α)

def
=
∑
b∈C

βb[−AHb
n (α)] +

∑
b∈G

βb[−AHb
n (α)− µb{−ANb

n (α)}]. (6.5)

Here, we used (3.18) for {Oµ} = {Hb}b + {Nb}b∈G . The excess entropy production is
defined by

σex
def
= σ −

∫ τ

0
dt J ss

σ (αt) =

∫
C
dαn Aσ

n(α) +O
(ω
Γ

)
. (6.6)

While we can calculate the average of the entropy production, our formalism is not
compatible to discuss the higher moments of the entropy production. Although
(3.19) is the average of the difference between outcomes at t = τ and t = 0 of Oµ, σ
is not that of some bath’s operator if α′′ are modulated.
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6.2 Introduction of generalized QME

We consider a kind of generalized quantum master equation (GQME)

d

dt
ρλ(t) = Kλ(αt)ρ

λ(t), (6.7)

with the initial condition ρλ(0) = ρ(0). Here, λ is a single real parameter. We suppose
that the Liouvillian is given by

Kλ(α)• = −i[HS(αS), •] +
∑
b

Lλb (α)•, (6.8)

with

Lλb (α)• =
∑
a

cλba(α)Aa •Ba, (6.9)

and

cλba(α)
∣∣
λ=0

= cba. (6.10)

While cχba(α) of (3.1) depend on χ if and only if Aa, Ba ̸= 1, cλba(α) can depend on λ
for all a. We suppose that the solution of (6.7) satisfies

TrS [ρ′(τ)] = σ, (6.11)

where X ′ def= ∂Xλ

∂(iλ)

∣∣∣
λ=0

. This condition is equivalent to

⟨⟨1|K′(α) = ⟨⟨1|W σ(α). (6.12)

Let’s consider

⟨⟨lλ0 (α)|Kλ(α) = λλ0(α)⟨⟨lλ0 (α)|, (6.13)

corresponding to (3.4) for n = 0. Similar to (3.16) and (3.20),

λ′0(α) = ⟨⟨1|W σ(α)|ρ0(α)⟩⟩ = J ss
σ (α), (6.14)

and

Aσ
n(α) = −⟨⟨l′0(α)|

∂

∂αn
|ρ0(α)⟩⟩ = ⟨⟨1|W σ(α)R(α) ∂

∂αn
|ρ0(α)⟩⟩, (6.15)

hold. Although λλ0(α) and lλ0 (α) depend on the choice of Kλ(α), λ′0(α) and Aσ
n(α) do

not depend, as can be seen in the RHS of the (6.14) and (6.15). The LHS of (6.12) is
given by

⟨⟨1|K′(α) = ⟨⟨1|
∑
b,a

c′ba(α)BaAa. (6.16)

Using this and (3.15), (6.12) becomes∑
b,a

c′ba(α)BaAa =
∑
a

[−
∑
b

βbc
Hb
ba (α) +

∑
b∈G

βbµbc
Nb
ba (α)]BaAa. (6.17)



79

Infinite solutions of this equation exist. One choice of Kλ(α) satisfying this relation
is χHb

→ −βbλ (for all b) and χNb
→ βbµbλ (for b ∈ G) limit of K̂χ(α).

“Higher moments” ∂n

∂(iλ)n TrS [ρλ(τ)]
∣∣
λ=0

(n = 2, 3, · · · ) depend on the choice of
Kλ(α) and seems have no physical meening. In contrast, the higher moments of the
entropy production could be considered for the classical Markov jump process. In
Appendix J, we review the entropy production of the Markov jump process [21, 37],
and in Chap.8, we compare that and (6.3).

6.3 Current operators

The particle and energy current operators from the system into bath b, wNb(α) and
wHb(α), are usually defined by

wXb(α)
def
= −[L†b(α)XS ]

† = −L†b(α)XS (X = N,H). (6.18)

For a super-operator J , J † is defined by ⟨⟨J †X|Y ⟩⟩ = ⟨⟨X|J Y ⟩⟩ (X,Y ∈ B).

L†b(α)• =
∑
a

c∗ba(α)A
†
a •B†

a, (6.19)

holds. wXb(α) is a Hermitian operator and is given by

wXb(α) = −
∑
a

cba(α)BaXSAa (X = N,H). (6.20)

In general, for the RWA,

wHb =WHb(α) =
∑
ω

∑
µ,ν

ωΦb,µν(ω)[sbµ(ω)]
†sbν(ω), (6.21)

holds (Appendix G). For the Born-Markov approximation and the CGA, wHb(α) ̸=
WHb(α). From (2.163), (2.166) and (2.167),

wNb(α) = 0 (b ∈ C), (6.22)

holds for the RWA, the Born-Markov approximation, and the CGA. In the following,
we set

WNb(α)
def
= wNb(α) = 0 (b ∈ C), (6.23)

and

issNb
(α)

def
= TrS [wNb(α)ρ0(α)] = 0 (b ∈ C). (6.24)

Here, we suppose (2.106) for b ∈ G. The generalization to (2.137) case is straightfor-
ward. For {Oµ} = {Nb}b∈G + {Hb}b, (2.126) holds in (2.148). For the Born-Markov
approximation and the CGA, wNb(α) = WNb , however, wHb(α) ̸= WHb(α). For the
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RWA,

wNb(α) =WNb(α)

=
∑
ω

∑
α,β

{
Φ−
b,αβ(ω)[aα(ω)]

†aβ(ω)− Φ+
b,αβ(ω)aα(ω)[aβ(ω)]

†
}
(b ∈ G), (6.25)

wHb(α) =WHb(α)

=
∑
ω

∑
α,β

{
ωΦ−

b,αβ(ω)[aα(ω)]
†aβ(ω)− ωΦ+

b,αβ(ω)aα(ω)[aβ(ω)]
†
}
(b ∈ G),(6.26)

hold. Therefore, (6.2) and (6.18) imply that W σ(α) is given by

W σ(α) =
∑
b

L†b(α)(βbHS − βbνbNS) =
∑
b

Π†
b(α)(βbHS − βbνbNS). (6.27)

Here,

νb
def
=

{
µ′b b ∈ C
µb b ∈ G . (6.28)

µ′b is an arbitrary real number.
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Chapter 7

Geometrical expression of excess
entropy production

In this chapter and Chap.8, we focus on the RWA. We use

WHb = wHb (b ∈ C), (7.1)
WHb = wHb , WNb = wNb (b ∈ G), (7.2)

and

Πb(•e−βb(HS−νbNS)) = (Π†
b•)e

−βb(HS−νbNS), (7.3)

and

[hb(α), NS ] = 0. (7.4)

If we suppose (2.163) for b ∈ C and (2.106) or (2.137) for b ∈ G, these relations hold.
If nGC = 0, existence of NS , (2.163), (7.2) and (7.4) are not required and the system S
does not have to be described by the annihilation and creation operators (S can be
spin chain or few level system, etc.). Using L†b1 = Π†

b1 = 0 (see (2.105)) for (7.3) with
• = 1, we obtain

Πbe
−βb(HS−νbNS) = Lbe−βb(HS−νbNS) = 0. (7.5)

Here, we used (2.144) and (7.4).

7.1 Equilibrium state

In this section, we consider equilibrium state βb = β (for all b) and µb = µ (b ∈ G),
and α denotes the set of (αS , {αSb}b, β, βµ). We show that Aσ

n(α) is a total derivative
of the von Neumann entropy of the instantaneous steady state. Differentiating (6.13)
by λ, we obtain

⟨⟨l′0(α)|K̂(α) + ⟨⟨1|K′(α) = λ′0(α)⟨⟨1|. (7.6)

In the RHS, λ′0(α) = J ss
σ (α) = 0 holds. The second term of the LHS is ⟨⟨1|W σ(α).

(6.27) leads

W σ(α) = β
∑
b

L†b(α)[HS − µNS ] = βK̂†(α)[HS − µNS ], (7.7)
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i.e.,

⟨⟨β[HS − µNS ]|K̂(α) = ⟨⟨1|W σ(α). (7.8)

Then, (7.6) leads [
⟨⟨l′0(α)|+ ⟨⟨β[HS − µNS ]|

]
K̂(α) = 0. (7.9)

This implies

⟨⟨l′0(α)| = −⟨⟨β[HS − µNS ]|+ c(α)⟨⟨1|, (7.10)

i.e., {l′0(α)}† = −β[HS − µNS ] + c(α) where c(α) is unimportant complex number.
By the way, ρ0(α) is given by

ρ0(α) = ρgc(αS ;β, βµ)
def
=

e−β(HS(αS)−µNS)

Ξ(αS ;β, βµ)
, (7.11)

with Ξ(αS ;β, βµ)
def
= TrS [e−β(HS(αS)−µNS)]. This is derived from (7.5) (Cf.(A.11)).

Then,

{l′0(α)}† = ln ρgc(αS ;β, βµ) + c′(α)1, c′(α) = c(α) + lnΞ(αS ;β, βµ), (7.12)

holds. Substituting this equation into (6.15), we obtain

Aσ
n(α) =

∂

∂αn
SvN(ρgc(αS ;β, βµ)), (7.13)

using (H.1).

7.2 Weakly nonequilibrium regime

We introduce

ε1,b
def
= βb − β, ε2,b

def
=

{
0 b ∈ C
βbµb − βµ b ∈ G , ε

def
= max

b

{ |ε1,b|
β

,
|ε2,b|
|βµ|

}
, (7.14)

where β and βµ are the reference values, which satisfy

min
b
βb ≤ β ≤ max

b
βb, (7.15)

min
b∈G

βbµb ≤ βµ ≤ max
b∈G

βbµb. (7.16)

ε is a measure of degree of nonequilibrium. We consider ε ≪ 1 regime. Now, we
introduce

K̂κ(α)•
def
= −i[HS(αS) + κHL(α), •] +

∑
b

Πb(α)•, (7.17)

and corresponding instantaneous steady state ρ(κ)0 (α):

K̂κ(α)ρ
(κ)
0 (α) = 0. (7.18)
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Here, κ is a real parameter satisfying −1 ≤ κ ≤ 1. ⟨⟨1|K̂κ(α) = 0 holds. In the
following, we show

Aσ
n(α) = −TrS

[
ln ρ

(−1)
0 (α)

∂ρ0(α)

∂αn

]
+O(ε2). (7.19)

We use the following notations:

α1,b
def
= βb, α2,b

def
= βbνb, X

def
= X

∣∣
αi,b=αi

. (7.20)

Here, α1 = β and α2 = βµ.
We expand ρ(κ)0 and l′0 as

ρ
(κ)
0 (α) = ρ

(κ)
0 +

∑
b

(ε1,bρ
(κ)
1,b + ε2,bρ

(κ)
2,b ) +O(ε

2), (7.21)

l′0(α) = l′0(α) +
∑
b

(ε1,bk1,b + ε2,bk2,b) +O(ε2), (7.22)

with

ρ
(κ)
0 = ρgc, l′0(α) = −βHS + βµNS + c∗1 = ln ρgc + c′

∗
1. (7.23)

Here, ρgc
def
= ρgc(αS ;β, βµ), c and c′ are the same with c(α) and c′(α) in § 7.1.

First, we investigate ki,b in (7.22). (7.6) can be rewritten as

K̂†(α)l′0(α) + [K′(α)]†1 = J ss
σ (α). (7.24)

Here,

J ss
σ (α) = O(ε2), (7.25)

holds because issHb
(α), issNb

(α) = O(ε) and

J ss
σ (α) =

∑
b

(−issHb
(α)ε1,b + issNb

(α)ε2,b), (7.26)

since ∑
b

issXb
(α) = −TrS [XS

∑
b

Lb(α)ρ0(α)] = 0 (X = N,H). (7.27)

Then we obtain

∂i,bK′†1 +K
†
ki,b + ∂i,bLb

†
l′0 = 0, (7.28)

in O(εi,b). Here, ∂i,bX
def
= ∂X/∂αi,b and K def

= K̂. The first term of the LHS is

∂i,bK′†1 =
∂[K′]†1

∂αi,b

∣∣∣
αi,b=αi

=
∂L†b[α1,bHS − α2,bNS ]

∂αi,b

∣∣∣
αi,b=αi

= ∂i,bLb
†
[βHS − βµNS ] + Πb

†∂[α1,bHS − α2,bNS ]

∂αi,b
. (7.29)
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The third term of the LHS becomes

∂i,bLb
†
l′0 = ∂i,bLb

†
(−βHS + βµNS + c1)

= −∂i,bLb
†
(βHS − βµNS). (7.30)

Here, we used ∂i,bLb
†
1 = 0 derived from K̂†1 = 0. Then, (7.28) becomes

K
†
k1,b +Πb

†
HS = 0, (7.31)

K
†
k2,b −Πb

†
NS = 0. (7.32)

Next, we show the relation between ki,b and ρ(−1)
i,b . (7.18) leads

Kκρ
(κ)
i,b + ∂i,bLbρgc = 0, (7.33)

in O(εi,b). Here, Kκ
def
= K̂κ. By the way, (7.5) is

Lbρgc(αS ;βb, βbνb) = 0. (7.34)

Differentiating this equation by αi,b, we obtain

∂i,bLbρgc = −Lb
ρgc(αS ;βb, βbνb)

∂αi,b
= Lb

∂[α1,bHS − α2,bNS ]

∂αi,b
ρgc(αS ;β, βµ). (7.35)

Substituting these equations into (7.33), we obtain

Kκρ
(κ)
1,b +Πb(HSρgc) = 0, (7.36)

Kκρ
(κ)
2,b −Πb(NSρgc) = 0. (7.37)

Now, we use (7.3), namely,

Πb(•ρgc) = (Πb
†•)ρgc. (7.38)

Using this relation, we rewire (7.36) and (7.37) as

Kκρ
(κ)
1,b + (Πb

†
HS)ρgc = 0, (7.39)

Kκρ
(κ)
2,b − (Πb

†
NS)ρgc = 0. (7.40)

Multiplying ρ−1
gc from the right, we obtain

(Kκρ
(κ)
1,b )ρ

−1
gc +Πb

†
HS = 0, (7.41)

(Kκρ
(κ)
2,b )ρ

−1
gc −Πb

†
NS = 0. (7.42)

(7.38) can be rewritten as

(ΠbY )ρ−1
gc = Πb

†
(Y ρ−1

gc ), (7.43)

for any Y = •ρgc ∈ B by multiplying ρ−1
gc from the right. (7.43) leads

(Πρ
(κ)
i,b )ρ

−1
gc = Π

†
(ρ

(κ)
i,b ρ

−1
gc ), (7.44)
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where Π
def
=
∑

bΠb. By the way, [HS(αS), ρ
(κ)
0 (α)] = 0 holds similarly to (2.147).

Differentiating this equation by αi,b, we obtain

[HS(αS), ρ
(κ)
i,b ] = 0. (7.45)

This relation leads

(H×
κ ρ

(κ)
i,b )ρ

−1
gc = H×

κ (ρ
(κ)
i,b ρ

−1
gc ) = H×

−κ

†
(ρ

(κ)
i,b ρ

−1
gc ), (7.46)

whereH×
κ •

def
= −i[HS(αS)+κHL(α), •]. We used (H×

κ )† = −H×
κ . In the first equality,

we used that ρgc commutes with HS and HL. (7.44) and (7.46) lead

(Kκρ
(κ)
i,b )ρ

−1
gc = K

†
−κ(ρ

(κ)
i,b ρ

−1
gc ). (7.47)

Substituting this into (7.41) and (7.42), we obtain

K
†
−κ(ρ

(κ)
1,b ρ

−1
gc ) + Πb

†
HS = 0, (7.48)

K
†
−κ(ρ

(κ)
2,b ρ

−1
gc )−Πb

†
NS = 0. (7.49)

Subtracting (7.48) ((7.49)) for κ = −1 from (7.31) ((7.32)), we obtain

K
†
(ki,b − ρ

(−1)
i,b ρ−1

gc ) = 0. (7.50)

This means

ki,b = ρ
(−1)
i,b ρ−1

gc + ci,b1, (7.51)

where ci,b is unknown complex number. Using this relation, (7.22) becomes

l′0(α) = ln ρgc(αS ;β, βµ) + C(α)1 +
∑
b

2∑
i=1

εi,bρ
(−1)
i,b ρ−1

gc +O(ε2)

= ln ρ
(−1)
0 (α) + C(α)1 +O(ε2). (7.52)

Substituting this equation into (6.15), we obtain (7.19). Here,C(α) def
= c′

∗
+
∑

b,i ci,bεi,b.

We supposed [ρgc, ρ
(−1)
i,b ] = 0, which leads ln ρ

(−1)
0 (α) = ln ρgc +

∑
i,b εi,bρ

(−1)
i,b ρ−1

gc +

O(ε2). This supposition is satisfied if [NS , ρ
(−1)
0 (α)] = O(ε2) (which leads [NS , ρ

(−1)
i,b ] =

0) or βµ = 0 holds. IfHS is non-degenerate, [NS , ρ
(−1)
0 (α)] = 0 holds, then [NS , ρ

(−1)
i,b ] =

0, [ρgc, ρ
(−1)
i,b ] = 0 and (7.52) hold. If nGC = 0, ρgc is replaced by the canonical distri-

bution and (7.52) holds without any assumption.
If

[HL(α), ρ
(κ)
0 (α)] = 0, (7.53)

holds, ρ(κ)0 (α) is independent of κ (ρ(κ)0 (α) = ρ0(α)), then (7.19) becomes

Aσ
n(α) =

∂

∂αn
SvN(ρ0(α)) +O(ε2), (7.54)

using (H.1). (7.53) holds ifHS is non-degenerate. (7.54) can be shown from [HL, ρ
(1)
i,b ] =

0, which is weaker assumption than (7.53) and is derived from (7.53) for κ = 1. If we
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neglect the Lamb shift Hamiltonian, namely we consider the QME for K̂0(α), (7.54)
holds (with a replacement ρ0 → ρ

(0)
0 ). From (7.54), we obtain

σex = SvN(ρ0(ατ ))− SvN(ρ0(α0)) +O(ε2δ), (7.55)

with δ = maxn,α∈C
|αn−αn

0 |
|ᾱn| . ᾱn is typical value of the n-th control parameter.

Yuge et al. [20] considered the outputs of A(t) = −
∑

b βb(t)[Hb − µb(t)Nb] (for
nC = 0) at t = 0 and t = τ as a(0) and a(τ), and errorneously identified a(τ) −
a(0) with the entropy production. To analyze σ′ def

= ⟨a(τ) − a(0)⟩, improperly, they
took χHb

→ −βbλ and χNb
→ βbµbλ limit of the FCS-QME (2.64) only valid for

time independent observables. The obtained Liouvillian (of which the Lamb shift
Hamiltonian is neglected) incidentally satisfy (6.12). Using that Liouvillian, for the
time-reversal symmetric system, Yuge et al. studied the relation between Aσ

n(α) and
the symmetrized von Neumann entropy. In contrast, up to here, we do not suppose
the time-reversal symmetry. In § 7.3, we consider the time-reversal operations and
show that the potential S(α) such that Aσ

n(α) = ∂S/∂αn +O(ε2) dose not exist if the
time-reversal symmetry is broken.

7.3 Time-reversal operations

We define the time-reversal operation. We denote the time-reversal operator of the
system by θ. We also define

Ỹ
def
= θY θ−1, (7.56)

for all Y ∈ B and

J̃ Ỹ def
= θ(J Y )θ−1, (7.57)

for a super-operator J of the system. The time-reversal of K̂(α)ρ0(α) = 0 is given
by

i[H̃L(α), ρ̃0(α)] +
∑
b

Π̃b(α)ρ̃0(α) = 0, (7.58)

using (2.147). If

H̃L(α) = HL(α), Π̃b(α) = Πb(α), (7.59)

hold, the above equation coincides with the equation of ρ(−1)
0 (α) since [HS , ρ

(κ)
0 ] = 0,

then

ρ̃0(α) = ρ
(−1)
0 (α), (7.60)

holds. If the total Hamiltonian is time-reversal invariant, (7.59) holds [38]. If (7.59)
holds and we neglect the Lamb shift Hamiltonian, the instantaneous steady state is
time-reversal invariant: ρ̃(0)0 = ρ

(0)
0 .

As we will show, for time-reversal symmetric system,

∂

∂αn
Ssym(ρ0(α)) = −TrS

[
ln ρ̃0(α)

∂ρ0(α)

∂αn

]
+O(ε2), (7.61)
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holds. Here,

Ssym(ρ)
def
= −TrS

[
ρ
1

2
(ln ρ+ ln ρ̃)

]
, (7.62)

is the symmetrized von Neumann entropy. Combining (7.19) with (7.60), we obtain

Aσ
n(α) =

∂

∂αn
Ssym(ρ0(α)) +O(ε2), (7.63)

then, the equation (7.55) with SvN → Ssym holds. As analogy, we consider

S′(α)
def
= −TrS

[
ρ0(α)

1

2
(ln ρ0(α) + ln ρ

(−1)
0 (α))

]
, (7.64)

for generally non-time-reversal symmetric system. The difference between ∂S′(α)/∂αn

and the first term of the RHS of (7.19) is

∂S′(α)

∂αn
−
(
− TrS

[
ln ρ

(−1)
0 (α)

∂ρ0(α)

∂αn

])
= −1

2
TrS
[ ∂ρ0
∂αn

(ln ρ0 − ln ρ
(−1)
0 )

]
− 1

2
TrS
[
ρ0

∂

∂αn
ln ρ

(−1)
0

]
. (7.65)

To calculate the RHS of this equation, we use formulas

ln(A+ δB) = lnA+

∫ ∞

0
ds
(
δ

1

A+ s
B

1

A+ s

−δ2 1

A+ s
B

1

A+ s
B

1

A+ s
+O(δ3)

)
, (7.66)

∂

∂αn
lnA(α) =

∫ ∞

0
ds

1

A(α) + s

∂A(α)

∂αn

1

A(α) + s
, (7.67)

where A,B,A(α) ∈ B and δ is small real number. We proof (7.66) in Appendix

I. (7.67) is derived from (7.66). ρ0 − ρ
(−1)
0 = εψ + O(ε2) holds because ρ

(κ)
0 =

ρgc(αS ;β, βµ). Then, the first term of the RHS of (7.65) is given by

−1

2
TrS
[ ∂ρ0
∂αn

(ln ρ0 − ln ρ
(−1)
0 )

]
= −ε

2

∫ ∞

0
ds TrS

[ ∂ρ0
∂αn

1

ρ
(−1)
0 + s

ψ
1

ρ
(−1)
0 + s

]
+O(ε2). (7.68)

The second term of the RHS of (7.65) is given by

−1

2
TrS
[
ρ0

∂

∂αn
ln ρ

(−1)
0

]
= −1

2

∫ ∞

0
ds TrS

[∂ρ(−1)
0

∂αn

1

ρ
(−1)
0 + s

(ρ
(−1)
0 + εψ)

1

ρ
(−1)
0 + s

]
+O(ε2)

= −1

2
TrS
[∂ρ(−1)

0

∂αn

]
− ε

2

∫ ∞

0
ds TrS

[∂ρ(−1)
0

∂αn

1

ρ
(−1)
0 + s

ψ
1

ρ
(−1)
0 + s

]
+O(ε2)

= −ε
2

∫ ∞

0
ds TrS

[∂ρ(−1)
0

∂αn

1

ρ0 + s
ψ

1

ρ0 + s

]
+O(ε2)

= −ε
2

∫ ∞

0
ds TrS

[∂(θρ(−1)
0 θ−1)

∂αn

1

ρ̃0 + s
ψ̃

1

ρ̃0 + s

]
+O(ε2). (7.69)
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Here, we used ε(ρ
(−1)
0 + s)−1 = ε(ρ0 + s)−1 + O(ε2) and TrS• = TrS •̃ if TrS• is real.

In general, the RHS of (7.65) is not O(ε2). However, if ρ̃0 = ρ
(−1)
0 holds, the RHS of

(7.65) becomes O(ε2) since ψ̃ = −ψ, then (7.61) holds. In the proof of (7.61), Yuge et
al. [20] used incorrect equations ∂

∂αn ln ρ̃0 = ρ̃−1
0

∂ρ̃0
∂αn and ln ρ0−ln ρ̃0 = εψρ̃−1

0 +O(ε2).
We introduce the BSN curvature

F σ
mn(α) =

∂Aσ
n

∂αm
− ∂Aσ

m

∂αn
. (7.70)

F σ
mn(α) = O(ε2) and the existence of S(α) such that Aσ

n(α) = ∂S(α)/∂αn+O(ε2) are
equivalent. If F σ

mn(α) = O(ε) holds, S(α) does not exist. F σ
mn(α) is given by

F σ
mn(α) = fmn(α)− fnm(α) +O(ε2), (7.71)

where

fmn(α)
def
= −TrS

(∂ ln ρ(−1)
0

∂αm

∂ρ0
∂αn

)
. (7.72)

fmn(α) is given by

fmn(α) = −
∫ ∞

0
ds TrS

( 1

ρ
(−1)
0 + s

∂ρ
(−1)
0

∂αm

1

ρ
(−1)
0 + s

∂ρ0
∂αn

)
=

∫ ∞

0
ds [F (0)

mn(s) + F (1)
mn(s) +O(ε2)], (7.73)

with

F (0)
mn(s) = −TrS

(
σs
∂ρgc
∂αm

σs
∂ρgc
∂αn

)
, (7.74)

and

σs
def
=

1

ρgc + s
. (7.75)

　 F (1)
mn(s) is given by

F (1)
mn(s) = F (1,0)

mn (s) + F (1,1)
mn (s), (7.76)

F (1,0)
mn (s) = TrS

(
σsη

(−1)σs
∂ρgc
∂αm

σs
∂ρgc
∂αn

+ σs
∂ρgc
∂αm

σsη
(−1)σs

∂ρgc
∂αn

)
, (7.77)

F (1,1)
mn (s) = TrS

(
− σs

∂η(−1)

∂αm
σs
∂ρgc
∂αn

− σs
∂ρgc
∂αm

σs
∂η(1)

∂αn

)
, (7.78)

where

η(κ)(α)
def
=
∑
b

∑
i=1,2

εi,bρ
(κ)
i,b . (7.79)
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ρ0 = ρgc + η(1) + O(ε2) and ρ
(−1)
0 = ρgc + η(−1) + O(ε2) hold. Because of F (0)

mn(s) −
F (0)
nm(s) = 0 and F (1,0)

mn (s)−F (1,0)
nm (s) = 0, we obtain

F σ
mn(α) =

∫ ∞

0
ds [F (1,1)

mn (s)−F (1,1)
nm (s)] +O(ε2)

= ζmn − ζnm +O(ε2), (7.80)

with

ζmn =

∫ ∞

0
ds TrS

(
σs
∂[η(1) − η(−1)]

∂αm
σs
∂ρgc
∂αn

)
= TrS

(∂[η(1) − η(−1)]

∂αm

∂ ln ρgc
∂αn

)
= −TrS

(∂[η(1) − η(−1)]

∂αm

∂[βHS(αS)− βµNS ]

∂αn

)
. (7.81)

Here, we used TrS
(
∂[η(1)−η(−1)]

∂αm
∂ ln Ξ
∂αn

)
= 0 because TrSη(1) = 0 = TrSη(−1). β and βµ

are functions of α′′. Using TrS• = TrS •̃ if TrS• is real, we obtain

ζmn = −TrS
(∂[θη(1)θ−1 − θη(−1)θ−1]

∂αm

∂[βH̃S(αS)− βµÑS ]

∂αn

)
. (7.82)

For time-reversal symmetric system, H̃S = HS , ÑS = NS and θη(1)θ−1 = η(−1) hold.
Then, the above equation becomes ζmn = −ζmn, namely, ζmn = 0 and F σ

mn(α) =
O(ε2) hold. However, if the time-reversal symmetry is broken, θη(1)θ−1 ̸= η(−1)

holds in general. Then, ζmn ̸= −ζmn namely ζmn ̸= 0 hold. ζmn is not symmetric for
m and n. Then, if the time-reversal symmetry is broken andHS is degenerated, S(α)
dose not exist in general. This is the most important result of this thesis.

7.4 Born-Markov approximation

We denote the BSN vector for the entropy production and instantaneous steady state
of the Born-Markov approximation by Aσ,BM

n (α) and ρBM
0 (α). Then,

Aσ,BM
n (α) = Aσ

n(α) +O(v2), (7.83)
SvN(ρ

BM
0 (α)) = SvN(ρ0(α)) +O(v2), (7.84)

Ssym(ρ
BM
0 (α)) = Ssym(ρ0(α)) +O(v2), (7.85)

hold [20]. Here, v = u2 and u(≪ 1) describes the order of HSb. Then, if (7.54) holds,
we obtain

Aσ,BM
n (α) =

∂

∂αn
SvN(ρ

BM
0 (α)) +O(ε2) +O(v2). (7.86)

For time-reversal symmetric system,

Aσ,BM
n (α) =

∂

∂αn
Ssym(ρ

BM
0 (α)) +O(ε2) +O(v2), (7.87)

holds.
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Chapter 8

Comparison of two definitions of
entropy production

In this chapter, we compare preceding study on of the entropy production in the clas-
sical Markov jump process [21, 37] with ours. We consider the Markov jump process
on the states n = 1, 2, · · · ,N , where the definitions are explained in Appendix J. The
probability to find the system in a state n is pn(t) and it obeys the master equation:

dpn(t)

dt
=

N∑
m=1

Knm(αt)pm(t). (8.1)

The Liouvillian is given by

Knm(α) =
∑
b

K(b)
nm(α), (8.2)

whereK(b)
nm originates the couping between the system and the bath b.

∑
nK

(b)
nm(α) =

0 holds. We suppose that K(b)
mn(α) ̸= 0(= 0) holds if K(b)

nm(α) ̸= 0(= 0) for all n ̸= m.
The definition of the entropy production for each Markov jump process (J.1) is (J.4).
The average entropy production σC is given by (see (J.10))

σC =

∫ τ

0
dt
∑
n,m

σCnm(αt)pm(t), (8.3)

where

σCnm(α) = −Knm(α) ln
Knm(α)

Kmn(α)
. (8.4)

We denote the solution of the QME with RWA by ρ(t). We suppose pn(t)
def
=

⟨n|ρ(t)|n⟩ is governed by (8.1) with

K(b)
nm(α) = (Πb(α))nn,mm. (8.5)

Here, |n⟩ is the energy eigenstate of HS(αS),

(Πb(α)•)nm =
∑
k,l

(Πb(α))nm,kl(•)kl, (•)kl
def
= ⟨k| • |n⟩. (8.6)

This supposition implies (7.53). A sufficient condition by which pn(t) obeys (8.1)
is below: (1) HS(αS) is non-degenerate and (2) {αn ∈ αS | ∂

∂αn |n⟩ ̸= 0} are fixed.
The eigenenergy can depend on {αn ∈ αS | ∂

∂αn |n⟩ = 0}. We show that our average
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entropy production (6.3) is given by a similar expression of (8.3):

σ =

∫ τ

0
dt
∑
n,m

σnm(αt)pm(t). (8.7)

Here,

σnm(α)
def
=
∑
b

K(b)
nm(α)θ(b)nm(α) = −

∑
b

K(b)
nm(α) ln

K
(b)
nm(α)

K
(b)
mn(α)

, (8.8)

with

θ(b)nm(α)
def
=

 − ln K
(b)
nm(α)

K
(b)
mn(α)

K
(b)
nm(α) ̸= 0

0 K
(b)
nm(α) = 0

. (8.9)

Because of (6.18), (6.25) and (6.26), the particle and energy currents are given by
iXb

= TrS [WXbρ(t)] with WXb = −(Π†
bXS)

† (X = H,N). (6.20) leads

(WXb)nm = −
∑
k,l

(Πb)lk,mn(XS)kl. (8.10)

We suppose (XS)nm = (XS)nnδnm for X = N,H . Since (XS)kl is a diagonal matrix,
(WXb)nm is also a diagonal matrix. Then,

iXb
=
∑
m

(WXb)mmpm(t), (8.11)

holds. Substituting (WXb)mm = −
∑

nK
(b)
nm(XS)nn into (8.11), we obtain

iXb
= −

∑
n,m

K(b)
nm(XS)nnpm(t)

=
∑
n,m

K(b)
nm[(XS)mm − (XS)nn]pm(t). (8.12)

This equation leads

σ̇(t) = −
∑
n,m

∑
b

K(b)
nmβb(t){[(HS)mm − (HS)nn]− νb(t)[(NS)mm − (NS)nn]}pm(t).(8.13)

Using the local detailed balance condition derived from (7.3)

ln
K

(b)
nm(α)

K
(b)
mn(α)

= βb{[(HS)mm − (HS)nn]− νb[(NS)mm − (NS)nn]}, (8.14)

we obtain (8.7). For b ∈ C, (NS)mm − (NS)nn = 0 holds for n and m such that
K

(b)
nm(α) ̸= 0.

(8.12) can be rewritten as

iXb
=
∑
n,m

wXb
nm(αt)pm(t), wXb

nm(αt)
def
= K(b)

nm[(XS)mm − (XS)nn]. (8.15)

This wXb
nm(αt) corresponds to wOµ

ij (αt) of (3.82).
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Now we introduce Anm = {b|K(b)
nm ̸= 0}. From the assumption, Anm = Amn

holds. If we suppose (2.163) for b ∈ C and (2.137) for b ∈ G, Anm = C for (NS)mm =
(NS)nn and Anm = G for (NS)mm ̸= (NS)nn. Then, (8.14) means

ln
K

(b)
nm(α)

K
(b)
mn(α)

= βb[(HS)mm − (HS)nn] (b ∈ C), (8.16)

with (NS)mm = (NS)nn and

ln
K

(b)
nm(α)

K
(b)
mn(α)

= βb{[(HS)mm − (HS)nn]− µb[(NS)mm − (NS)nn]} (b ∈ G). (8.17)

with (NS)mm ̸= (NS)nn.
Now we introduce a matrix Kλ(α) by

[Kλ(α)]nm
def
=
∑
b

K(b)
nm(α)eiλθ

(b)
nm(α). (8.18)

Then, we obtain

∂

∂(iλ)

∣∣∣
λ=0

∑
n,m

[
Texp

[ ∫ τ

0
dt Kλ(αt)

]]
nm
pm(0) =

∫ τ

0
dt
∑
n,m

σnm(αt)pm(t) = σ.(8.19)

Kλ was originally introduced by Sagawa and Hayakawa [19]. About averages, our
entropy production is the same with Sagawa and Hayakawa.

We show that the difference between σCnm(α) and σnm(α) is O(ε2):

σCnm(α) = σnm(α) +O(ε2). (8.20)

In fact, K(b)
nm can be expanded as

K(b)
nm = K̄(b)

nm +
∑
i=1,2

εi,bK
i,b
nm +O(ε2), (8.21)

then we obtain

σCnm(α) = σC(0,1)
nm + σC(2)

nm (α) +O(ε3), (8.22)
σnm(α) = σ(0,1)nm + σ(2)nm(α) +O(ε3), (8.23)

with

σC(0,1)
nm = −K̄nm ln

K̄nm

K̄mn
+
∑
i,b

εi,b

[
Ki,b

nm ln
K̄nm

K̄mn
+Ki,b

nm −Ki,b
mn

K̄nm

K̄mn

]
, (8.24)

σ(0,1)nm =
∑

b∈Anm

(
− K̄(b)

nm ln
K̄

(b)
nm

K̄
(b)
mn

+
∑
i

εi,b

[
Ki,b

nm ln
K̄

(b)
nm

K̄
(b)
mn

+Ki,b
nm −Ki,b

mn

K̄
(b)
nm

K̄
(b)
mn

])
.

(8.25)

σ
C(2)
nm (α) and σ

(2)
nm(α) are quadratic orders of εi,b. While the former includes εi,bεi′,b′

(b ̸= b′) terms, the latter dose not. Anm = Amn leads

K̄nm =
∑

b∈Anm

K̄(b)
nm, K̄mn =

∑
b∈Anm

K̄(b)
mn. (8.26)
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(8.14) leads K̄(b)
nm/K̄

(b)
mn is independent of b ∈ Anm. Then, we obtain

K̄
(b)
nm

K̄
(b)
mn

=
K̄nm

K̄mn
(b ∈ Anm). (8.27)

The above relation and (8.26) lead

σC(0,1)
nm = σ(0,1)nm , (8.28)

and (8.20). (8.20) leads

σCex = σex +O(ε2δ). (8.29)

Here, σCex is given by (J.13). Then, (J.12), the result of Ref.[21], coincides with (7.55)
when pn(t) = ⟨n|ρ(t)|n⟩ is governed by the master equation (8.1).
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Chapter 9

Conclusion

9.1 General conclusion

In this thesis, for open systems described by the quantum master equation (QME),
we investigated the quantum pump and the excess entropy production.

First, we investigated quantum pump using the FCS-QME (full counting statis-
tics with quantum master equation) approach. We studied the non-adiabatic ef-
fect and the showed that the general solution of the QME ρ(t) is decomposed as
ρ(t) = ρ0(αt) +

∑∞
n=1 ρ

(n)(t) +
∑∞

n=0 ρ̃
(n)(t) (Chap.3). Here, αt is the value of the

set of the control parameters at time t and ρ0(αt) is the instantaneous steady state
of the QME, ρ(n)(t) and ρ̃(n)(t) are calculable and order (ω/Γ)n where ω is the mod-
ulation frequency of the control parameters and Γ is the coupling strength between
the system and the baths. ρ̃(n)(t) exponentially damps (like e−Γt) as a function of
time. We showed that the generalized mater equation (GME) approach provides
p(t) = p(ss)(t) + δp(t) in the Born approximation (Appendix § F). Here, p corre-
sponds to the set of the diagonal components of ρ in the matrix representation by
the energy eigenstates, p(ss)(t) corresponds to ρ0(αt)+

∑∞
n=1 ρ

(n)(t) and the the term
δp(t) originates from non-Markovian effects. The FCS-QME picks out one higher or-
der non-adiabatic piece of information from the solution of the QME, namely, if we
have ρ(n)(t), the FCS-QME method provides (n+ 1)-th order pump currents. More-
over, we showed that the Berry-Sinitsyn-Nemenman (BSN) phase derived under the
“adiabatic" condition which makes the Berry phase like treatment appropriate has
the non-adiabatic (first order of ω) information. We showed that the quantum pump
dose not occur in all orders of the pumping frequency when the system control pa-
rameters and the thermodynamic parameters (the temperatures and the chemical
potentials of the baths) are fixed under the zero-bias condition.

Next, we studied the quantum adiabatic pump of the quantum dot (QD) system
weakly coupled to two leads (L andR) in§4.2 and§4.3 using the FCS-QME with the
rotating wave approximation (RWA) defined as the long coarse-graining time limit
of the coarse-graining approximation (CGA). We confirmed the consistency between
the FCS-QME approach and the GME approach for a QD of one quantum level with
finite Coulomb interaction (§ 4.2.3 and§ 4.3.3). We showed that the pumped charge
and spin coming from the instantaneous steady current are not negligible when the
thermodynamic parameters are not fixed to zero bias (§ 4.2.2 and§ 4.3.2). To observe
the spin effects, we consider collinear magnetic fields, which affect the spins through
the Zeeman effect, with different amplitudes applying to the QDs (BS) and the leads
(BL and BR). We focused on the dynamic parameters (BS , BL/R and the coupling
strength between QDs and leads, ∆L/R) as control parameters. In one level QD with
the Coulomb interaction U , we analytically calculated the BSN curvatures of spin
and charge of (BL, BS) pump and (∆L, BS) pump for the noninteracting limit (U =
0) and the strong interaction limit (U =∞) at zero-bias. The difference depending on
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U appeared through nU (sBS) which is the average number of the electrons with spin
s in the QD. For (BL, BS) pump, the energy dependences of the line-width functions
are essential. Moreover, we studied the (∆L, BS) pump for finite U at zero-bias (§
4.3.5). The effect of U appeared through nU (sBS). When half-filling condition is
satisfied, the charge pump does not occur.

We studied the quantum diabatic pump for spinless one level QD coupled to
two leads (Chap.5). We calculated {ρ(n)(t)}5n=1, {ρ̃(n)(t)}5n=1 and particle current up
to 6th order and pumped particle numbers.

In § 1.6, we newly defined average entropy production rate σ̇(t) using the av-
erage energy and particle currents, which are calculated by using the FCS-QME.
Next, we introduced the generalized QMEs (GQMEs) providing σ̇(t) (Chap.6). The
GQMEs do not relate the higher moments (thus and the FCS) of the entropy produc-
tion. We can calculate only the average of the entropy production. In § 7.2, using
the GQME, in weakly nonequilibrium regime, we analyzed the BSN vector for the
entropy production,Aσ

n(α), which provides the excess entropy production σex under
quasistatic operations between nonequilibrium steady states as σex =

∫
C dαn Aσ

n(α),
and showed Aσ

n(α) = −TrS
[
ln ρ

(−1)
0 (α)∂ρ0(α)∂αn

]
+ O(ε2). Here, α is the set of the

control parameters and αn is n-th component of the control parameters, C is the
trajectory in the control parameter space, TrS denotes the trace of the system, and
ε is a measure of degree of nonequilibrium. ρ

(−1)
0 (α) is the instantaneous steady

state obtained from the QME with reversing the sign of the Lamb shift term. In
general, the potential S(α) such that Aσ

n(α) = ∂S(α)
∂αn + O(ε2) dose not exist (§ 7.3).

This is the most important result of this thesis. The origins of the non-existence of
the potential S(α) are a quantum effect (the Lamb shift term) and the breaking of
the time-reversal symmetry. The non-existence of the potential means that the ex-
cess entropy essentially depends on the path of the modulation. In this case, it is
important to consider the generalization of the entropy concept. In contrast, if the
system Hamiltonian is non-degenerate or the Lamb shift term is negligible, we ob-
tain σex = SvN(ρ0(αtf )) − SvN(ρ0(αti)) + O(ε2δ). Here, SvN(ρ) = −TrS [ρ ln ρ] is the
von Neumann entropy, ti and tf are the initial and final times of the operation, and
δ describes the amplitude of the change of the control parameters. For time-reversal
symmetric system, we showed that S(α) is the symmetrized von Neumann entropy.
Additionally, we pointed out that preceding expression of the entropy production in
the classical Markov jump process is different from ours and showed that these are
approximately equivalent in the weakly nonequilibrium regime. We also checked
that the definition of the average entropy production in the classical Markov jump
process by Ref.[19] is equivalent to ours.

9.2 Future perspective

ρ
(−1)
0 andAσ

n(α) should be calculated for concrete model in which the system Hamil-
tonian is degenerated or/and the time-reversal symmetry is broken. For instance,
multi-level QD system applying the magnetic field is a candidate.

If S(α) does not exist, the path dependence of the excess entropy is essential. The
path dependence and the path of which the excess entropy is minimized should be
studied.
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Appendix A

Born-Markov approximation

We denote Lχb in the Born-Markov approximation by Lχb(BM). From (2.66) and (2.75),
we obtain

Lχb(BM)• = −
∫ ∞

0
ds
∑
µ,ν

(
s†bνs

I
bµ(t− s, t) • Cb,νµ(s)− sIbµ(t− s, t) • s

†
bνC

χ
b,νµ(s)

−sbν • sI†bµ(t− s, t)C
χ
b,µν(−s) + •s

I†
bµ(t− s, t)sbνCb,µν(−s)

)
. (A.1)

Cb,µν(s) damps exponentially as e−|s|/τb where τb is the relaxation time of the bath
b. Then, in the calculations of sIbµ(t − s, t) and sI†bµ(t − s, t), the values of the control
parameters can be approximated by αS(t). Then, we obtain

sIbµ(t− s, t) =
∑
ω

eiωssbµ(ω), s
I†
bµ(t− s, t) =

∑
ω

e−iωs[sbµ(ω)]
†, (A.2)

and

Lχb(BM)• = −
∫ ∞

0
ds
∑
µ,ν

∑
ω

({
s†bνsbµ(ω) • Cb,νµ(s)− sbµ(ω) • s†bνC

χ
b,νµ(s)

}
eiωs

+
{
− sbν • [sbµ(ω)]†Cχ

b,µν(−s) + •[sbµ(ω)]
†sbνCb,µν(−s)

}
e−iωs

)
. (A.3)

Here, ∫ ∞

0
ds Cχ

b,νµ(s)e
iωs =

∫ ∞

0
ds

∫ ∞

−∞
dΩ

1

2π
Φχ
b,νµ(Ω)e

i(ω−Ω)s

=

∫ ∞

−∞
dΩ

1

2π

[
πδ(Ω− ω)− iP 1

Ω− ω

]
Φχ
b,νµ(Ω)

= Φ
(+)χ
b,νµ (ω), (A.4)

and ∫ ∞

0
ds Cχ

b,µν(−s)e
−iωs = Φ

(−)χ
b,µν (ω), (A.5)

hold. Then, we get

Lχb(BM)• = −
∑
µ,ν

∑
ω

(
s†bµsbν(ω) • Φ

(+)
b,µν(ω)− sbν(ω) • s

†
bµΦ

(+)χ
b,µν (ω)

−sbν • [sbµ(ω)]†Φ
(−)χ
b,µν (ω) + •[sbµ(ω)]†sbνΦ

(−)
b,µν(ω)

)
= LΦ,χ

b(BM) •+L
Φ,χ
b(BM) • . (A.6)
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Here,

LΦ,χ
b(BM)• = −1

2

∑
µ,ν

∑
ω

(
Φb,µν(ω)s

†
bµsbν(ω) • −Φ

χ
b,µν(ω)sbν(ω) • s

†
bµ

−Φχ
b,µν(ω)sbν • [sbµ(ω)]

† +Φb,µν(ω) • [sbµ(ω)]†sbν
)
, (A.7)

LΨ,χ
b(BM)• =

i

2

∑
µ,ν

∑
ω

1

2

(
Ψb,µν(ω)s

†
bµsbν(ω) • −Ψ

χ
b,µν(ω)sbν(ω) • s

†
bµ

+Ψχ
b,µν(ω)sbν • [sbµ(ω)]

† − •Ψb,µν(ω)[sbµ(ω)]
†sbν

)
. (A.8)

For (2.106), we obtain

LΦ,χ
b(BM)• = −1

2

∑
α,β

∑
ω

(
Φ−
b,αβ(ω)a

†
αaβ(ω) • −Φ

−,χ
b,αβ(ω)aβ(ω) • a

†
α

−Φ−,χ
b,αβ(ω)aβ • [aα(ω)]

† +Φ−
b,αβ(ω) • [aα(ω)]

†aβ

+Φ+
b,αβ(ω)aα[aβ(ω)]

† • −Φ+,χ
b,αβ(ω)[aβ(ω)]

† • aα

−Φ+,χ
b,αβ(ω)a

†
β • aα(ω) + Φ+

b,αβ(ω) • aα(ω)a
†
β

)
, (A.9)

and

LΨ,χ
b(BM)• =

i

2

∑
α,β

∑
ω

(
Ψ−

b,αβ(ω)a
†
αaβ(ω) • −Ψ

−,χ
b,αβ(ω)aβ(ω) • a

†
α

+Ψ−,χ
b,αβ(ω)aβ • [aα(ω)]

† −Ψ−
b,αβ(ω) • [aα(ω)]

†aβ

−Ψ+
b,αβ(ω)aα[aβ(ω)]

† •+Ψ+,χ
b,αβ(ω)[aβ(ω)]

† • aα

−Ψ+,χ
b,αβ(ω)a

†
β • aα(ω) + Ψ+

b,αβ(ω) • aα(ω)a
†
β

)
. (A.10)

By the way,

LΦb(BM)e
−βb(HS−µNS) = 0, (A.11)

holds. Here, LΦb(BM) = LΦ,χ
b(BM)

∣∣
χ=0

. Because of (2.130), 1st and 7th terms of (A.9)
cancel in the LHS of (A.11). Similarly, 2nd and 8th, 3rd and 5th, 4th and 6th terms of
(A.9) cancel. If LΨb(BM) is negligible, ρ0 becomes (3.67) at zero-bias.
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Appendix B

Liouville space

By following correspondence, an arbitrary linear operator (which operates to the
Hilbert space) • =

∑
n,m⟨n| • |m⟩|n⟩⟨m| is mapped to a vector of the Liouville

space[26, 80], |•⟩⟩ =
∑

n,m⟨n| • |m⟩|nm⟩⟩:

|n⟩⟨m| ←→ |nm⟩⟩, (B.1)
Tr(|m⟩⟨n|n′⟩⟨m′|) ←→ ⟨⟨nm|n′m′⟩⟩, (B.2)

Tr(A†B) ←→ ⟨⟨A|B⟩⟩, (B.3)
Tr(•) ←→ ⟨⟨1|•⟩⟩. (B.4)

Here, {|n⟩} is an arbitrarily complete orthonormal basis. The inner product of the
Liouville space is defined by the Hilbert-Schmidt product [(B.3)]. The Hermitian
conjugate of |•⟩⟩ is defined as ⟨⟨•| = (|•⟩⟩)† =

∑
n,m⟨n|•|m⟩∗⟨⟨nm|. An arbitrary linear

super-operator Ĵ which operates to any operator (•) is mapped to a corresponding
operator of the Liouville space (J̌) as

|Ĵ•⟩⟩ = J̌ |•⟩⟩. (B.5)

The matrix representation of J̌ (or Ĵ) is defined by

Jnm,kl = ⟨⟨nm|J̌ |kl⟩⟩. (B.6)

In the main text of this thesis, both J̌ and Ĵ are denoted by Ĵ .
Generally, the Liouvillian K̂χ operates to an operator • as

K̂χ• = −i[HS , •] + Π̂χ•, (B.7)

Π̂χ• =
∑
a

cχaAa •Ba, (B.8)

where HS is the system Hamiltonian, Π̂χ is the dissipator, Aa, Ba are operators, and
cχa(α) is a complex number. The matrix representation of (B.7) is given by∑

k,l

Kχ
nm,kl•kl =

∑
k,l

[
− i{(HS)nkδlm − δnk(HS)lm} •kl

+{
∑
a

cχa(Aa)nk(Ba)lm} •kl
]
, (B.9)
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where •kl = ⟨k| • |l⟩. Hence the matrix representation of K̂χ is given by

Kχ
nm,kl = −iHnm,kl +Πχ

nm,kl, (B.10)
Hnm,kl = (HS)nkδlm − δnk(HS)lm, (B.11)

Πχ
nm,kl =

∑
a

cχa(Aa)nk(Ba)lm. (B.12)

Finally, we consider the current operators defined by (3.14). K̂Oµ = ∂K̂χ(α)
∂(iχOµ )

∣∣
χ=0

is given by

K̂Oµ• =
∑
a

c
Oµ
a Aa •Ba. (B.13)

Hence the current operators defined by (3.14) are given by

WOµ =
∑
a

c
Oµ
a BaAa. (B.14)
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Appendix C

The time evolutions of cχn(t)

In this chapter, we derive the time evolution equations of cχn(t) of (3.23). The LHS of
the FCS-QME, d

dt |ρ
χ(t)⟩⟩ = K̂χ(αt)|ρχ(t)⟩⟩, is

d

dt
|ρχ(t)⟩⟩ =

∑
n

{dcχn(t)
dt

eΛ
χ
n(t)|ρχn(αt)⟩⟩+ cχn(t)e

Λχ
n(t)λn(αt)|ρχn(αt)⟩⟩

+cχn(t)e
Λχ
n(t)

d

dt
|ρχn(αt)⟩⟩

}
. (C.1)

And the RHS of the FCS-QME is

K̂χ(αt)|ρχ(t)⟩⟩ =
∑
n

cχn(t)e
Λχ
n(t)K̂χ(αt)|ρχn(αt)⟩⟩

=
∑
n

cχn(t)e
Λχ
n(t)λn(αt)|ρχn(αt)⟩⟩. (C.2)

Hence we obtain∑
n

{dcχn(t)
dt

eΛ
χ
n(t)|ρχn(αt)⟩⟩+ cχn(t)e

Λχ
n(t)

d|ρχn(αt)⟩⟩
dt

}
= 0. (C.3)

Applying ⟨⟨lχm(αt)| to (C.3), and using ⟨⟨lχn(α)|ρχm(α)⟩⟩ = δnm, we obtain

d

dt
cχm(t) = −

∑
n

cχn(t)e
Λχ
n(t)−Λχ

m(t)⟨⟨lχm(αt)|
d|ρχn(αt)⟩⟩

dt
. (C.4)

By the way, the time derivative of (3.3), K̂χ(αt)|ρχn(αt)⟩⟩ = λχn(αt)|ρχn(αt)⟩⟩, is

dK̂χ(αt)

dt
|ρχn(αt)⟩⟩+ K̂χ(αt)

d|ρχn(αt)⟩⟩
dt

=
dλχn(αt)

dt
|ρχn(αt)⟩⟩+ λχn(αt)

d|ρχn(αt)⟩⟩
dt

.(C.5)

Applying ⟨⟨lχm(αt)| to this equation, we obtain

⟨⟨lχm(αt)|
dK̂χ(αt)

dt
|ρχn(αt)⟩⟩+ λχm(αt)⟨⟨lχm(αt)|

d|ρχn(αt)⟩⟩
dt

=
dλχn(αt)

dt
δmn + λχn(αt)⟨⟨lχm(αt)|

d|ρχn(αt)⟩⟩
dt

, (C.6)

and it leads to

⟨⟨lχm(αt)|
d|ρχn(αt)⟩⟩

dt
= −

⟨⟨lχm(αt)|dK̂
χ(αt)
dt |ρχn(αt)⟩⟩

λχm(αt)− λχn(αt)
, (C.7)
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for λχm(αt) ̸= λχn(αt). Substituting this to (C.4), we obtain

dcχm(t)

dt
= −⟨⟨lχm(αt)|

d

dt
|ρχm(αt)⟩⟩cχm(t)

+
∑

n(̸=m)

cχn(t)e
Λχ
n(t)−Λχ

m(t) ⟨⟨l
χ
m(αt)|dK̂

χ(αt)
dt |ρχn(αt)⟩⟩

λχm(αt)− λχn(αt)
. (C.8)

The above equation can also be written as

dc̃χm(t)

dt
=
∑

n(̸=m)

c̃χn(t)e
Λχ
n(t)−Λχ

m(t)+ηχm(t)−ηχn(t)
⟨⟨lχm(αt)|dK̂

χ(αt)
dt |ρχn(αt)⟩⟩

λχm(αt)− λχn(αt)
, (C.9)

where c̃χm(t) = cχm(t)eη
χ
m(t) with

ηχm(t) =

∫ t

0
ds ⟨⟨lχm(αs)|

d

ds
|ρχm(αs)⟩⟩

=
∑
k

∫
C
dαk ⟨⟨lχm(α)| ∂

∂αk
|ρχm(α)⟩⟩. (C.10)

Here, C is the trajectory from α0 to αt, αk are the k-th component of the control
parameters, and ηχm(t) = O(1) since ⟨⟨lχm(αt)| ddt |ρ

χ
m(αt)⟩⟩ = O(ω) with ω = 2π/τ . In

the RHS of (C.9), the dominant term is n = 0 if m ̸= 0 because Reλχ0 (α) > Reλχn(α).

Using dK̂χ(αt)
dt = O(Γω), λχn(αt) = O(Γ), eη

χ
n(t) = O(1) and cχ0 (t)e

Λχ
0 = O(1), we

obtain

dc̃χm(t)

dt
= O(e−Λχ

m(t)ω), (C.11)

and

cχm(t)eΛ
χ
m(t) = O

(
ω

∫ t

0
ds eΛ

χ
m(t)−Λχ

m(s)
)
= O

(ω
Γ

)
. (C.12)

For χ = 0, (C.12) is also derived from

δρ(t) = ρ(t)− ρ0(αt) =
∑
m̸=0

cm(t)eΛm(t)ρm(αt), (C.13)

and (3.33) and (3.60).
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Appendix D

The validity of the adiabatic
expansion

In the derivation of the QME with CGA, when going from (2.57) to (2.58), we used
the following type of approximation:∫ t+T

t
du

∫ u

t
ds G([α]us ; s, u; t) ≈

∫ t+T

t
du

∫ u

t
ds G([αt]; s, u; t). (D.1)

Here, G([α]us , s, u, t) ∼ e−(u−s)/τB and [α]us = (αt′)
u
t′=s is the control parameter trajec-

tory and [αt] is the trajectory which αt′ = αt (s ≤ t′ ≤ u). τB is the relaxation time of
the baths. Similarly, in the Born-Markov approximation (BM), when going from

dρI,χ(t)

dt
= −

∫ t

0
du TrB

{
[HI

int(t), [H
I
int(u), ρ

I,χ(t)ρB(αt)]χ]χ

}
, (D.2)

to (2.64), we used ∫ t

0
du G([α]tu;u, t; t) ≈

∫ t

−∞
du G([αt];u, t; t). (D.3)

Considering the corrections of the above approximations, the QME is given by

d|ρ(t)⟩⟩
dt

= K(t)|ρ(t)⟩⟩, (D.4)

K(t) = K̂(αt) + K̂(1)(t), K̂(1)(t) = O(ΓωτX), (D.5)

with ω = 2π/τ and τX = τCG for CGA; τX = τB for BM. K̂(1)(t) corresponds to
K

(1)
[1] (t) of Appendix F. The discussions of § 3.4 are correct after replacing K(αt) →
K(t), R(αt) → R̄(t) and ρ0(αt) → ρ̄0(t). Here, ρ̄0(t) and R̄(t) are defined by
K(t)|ρ̄0(t)⟩⟩ = 0 and R̄(t)K(t) = 1− |ρ̄0(t)⟩⟩⟨⟨1|, respectively. (3.33) is corrected to

|δ̄ρ(ss)(t)⟩⟩ =
∞∑
n=1

[
R̄(t) d

dt

]n
|ρ̄0(t)⟩⟩ ≡

∞∑
n=1

|ρ̄(n)(t)⟩⟩, (D.6)

with δ̄ρ(t) def
= ρ(t)− ρ̄0(t). The corrections are given by

ρ̄0 = ρ0[1 +O(ωτX)], R̄ = R[1 +O(ωτX)], (D.7)

and

ρ̄(n)(t)− ρ(n)(t) = O
((ω

Γ

)n
ωτX

)
. (D.8)
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Next, we consider the reasonable range of n of ρ(n)(t). Because ρ(n)(t) = O(ωΓ )
n and

ρ̄0(t)−ρ0(αt) = O(ωτX), the reasonable range is n ≤ nmax, where nmax is determined
by (ω

Γ

)nmax+1
< ωτX ≪

(ω
Γ

)nmax . (D.9)

Let us consider that reasonable concrete values of the parameters in the model of §
4.1: ω = 10p MHz, Γ = 10 µeV=0.116 K, 1/Γ = 65.8 ps, τCG = 1 ps, and τB = 0.1 ps.
These values lead to

ωτCG = 10−6+p, ωτB = 10−7+p,
ω

Γ
= 10−4.18+p, (D.10)

and nmax = [ñmax] with

ñmax =
−6 + p

−4.18 + p
(CGA),

−7 + p

−4.18 + p
(BM). (D.11)

Here, [n] means the biggest integer below n. At p = 0, ñmax = 1.44 (CGA), 1.67 (BM)
and at p = 3, ñmax = 2.54 (CGA), 3.39 (BM). The larger the non-adiabaticity (ωΓ ), the
larger nmax becomes.
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Appendix E

Proof of (3.52)

First, using (3.22) and (3.16), we obtain

⟨⟨1|WOµ(α)R(α)K̂(α) = ⟨⟨1|WOµ(α)− λOµ

0 (α)⟨⟨1|. (E.1)

Next, ⟨⟨l0(α)| = ⟨⟨1|, λ0(α) = 0, and (3.4) and (3.14) lead to

⟨⟨lOµ

0 (α)|K̂(α) = λ
Oµ

0 (α)⟨⟨1| − ⟨⟨1|WOµ(α). (E.2)

Hence, we obtain [
⟨⟨1|WOµ(α)R(α) + ⟨⟨lOµ

0 (α)|
]
K̂(α) = 0, (E.3)

and it leads to (3.52). To prove (3.52) only (3.22) is required and K̂(α)R(α) = 1 −
|ρ0(α)⟩⟩⟨⟨1| is not necessary. Additionally, the pseudo-inverse of the GME approach
(3.86) satisfies ∑

j

RijK
(0)
jk = δik − p

(0)
i ̸=

∑
j

K
(0)
ij Rjk, (E.4)

which corresponds to our

R(α)K̂(α) = 1− |ρ0(α)⟩⟩⟨⟨1| ̸= K̂(α)R(α). (E.5)

(3.52) is shown also as follows. (3.22) and ⟨⟨1|K̂(α) = 0 lead to K̂(α)R(α)K̂(α) =
K̂(α), which implies

K̂(α)R(α) = 1− |σ(α)⟩⟩⟨⟨1|, ⟨⟨1|σ(α)⟩⟩ = 1. (E.6)

Applying ⟨⟨1| to (3.22), we obtain ⟨⟨1|R(α)K̂(α) = 0, which is equivalent to

⟨⟨1|R(α) = C(α)⟨⟨1|. (E.7)

By the way, differentiating (3.4) for n = 0 by iχOµ , we obtain

⟨⟨lOµ

0 (α)|K̂(α) + ⟨⟨1|K̂Oµ(α) = ⟨⟨1|λOµ

0 (α). (E.8)

ApplyingR(α) to this equation and using (E.6) and (E.7), we obtain[19, 84]

⟨⟨lOµ

0 (α)| = −⟨⟨1|K̂Oµ(α)R(α) + cOµ(α)⟨⟨1|, (E.9)

cOµ(α) = C(α)λOµ

0 (α) + ⟨⟨lOµ

0 (α)|σ(α)⟩⟩. (E.10)
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(E.9) becomes (3.52) because of (3.14). Particularly, Yuge[84] used

R(α) = − lim
s→∞

∫ s

0
dt eK̂(α)t(1− |ρ0(α)⟩⟩⟨⟨1|), (E.11)

which satisfies (E.6) and (E.7) with σ(α) = ρ0(α), C(α) = 0 and (3.22) (in Ref.[84],
C(α) was incorrectly set to −1).
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Appendix F

Generalized mater equation and
frequency-expansion

The first half of this chapter is based on [33]. The GME is

d

dt
p(t) =

∫ t

−∞
dt′ W (t, t′)p(t′), (F.1)

where p = t(p1, p2, · · · , pn). W (t, t′) functionally depends on αt. We expand p and
W by the modulation frequency ω of the control parameters:

p(t) =
∞∑
k=0

p(k)(t), W (t, t′) =
∞∑
k=0

W (k)(t; t− t′). (F.2)

p(k) and W (k) are proportional to ωk. In general, p(t) should contain a term which
exponentially damps as e−Γ·(t−t0). Here, Γ is the coupling strength between the sys-
tem and the baths. However, this method suppose t0 → −∞. The RHS of (F.1)
becomes∫ t

−∞
dt′ W (t, t′)p(t′) =

∑
p,q

∫ t

−∞
dt′ W (p)(t; t− t′)p(q)(t′)

=
∑
p,q,k

∫ t

−∞
dt′ W (p)(t; t− t′)(−1)

k(t− t′)k

k!

dkp(q)(t)

dtk

=
∑
p,q,k

1

k!

∂k

∂zk

∣∣∣
z=0

∫ t

−∞
dt′ W (p)(t; t− t′)e−z(t−t′)d

kp(q)(t)

dtk

≡
∑
p,q,k

1

k!
∂kK(p)(t)

dkp(q)(t)

dtk
. (F.3)

Then, (F.1) becomes

d

dt
p(n)(t) =

(n)∑
p,q,k

1

k!
∂kK(p)(t)

dkp(q)(t)

dtk
. (F.4)

∑(n)
p,q,k is the summation over terms which have the same order with the LHS. How

to count the time derivatives of p in this expansion depends on the considered fre-
quency regime. In this chapter, we consider the regime ω ≲ Γ, for which the system
quickly relaxes to an oscillatory steady state with the frequency of αt; i.e., each time
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derivative introduces one power in ω. Then,

n+ 1 = p+ q + k, (F.5)

holds.
Now, we expand p(q) and K(p)(t) by Γ：

K(p)(t) =
∞∑

jK=1

K
(p)
[jK ](t), p

(k)(t) =
∞∑

j
(k)
p =−k

p
(k)

[j
(k)
p ]

(t). (F.6)

[j] indicates terms of order Γj . This matching requires the expansion for p(k)(t) to
start from Γ−k. The matching condition for Γ is

j(n)p = jK + j(q)p . (F.7)

In the following, we consider the Born approximation: K(p)(t) = K
(p)
[1] (t). Then,

(F.7) becomes j(n)p = 1 + j
(q)
p . This can be rewritten as

n+ 1 = q + jn − jq, (F.8)

where j(n)p = −n+ jn and j(q)p = −q + jq. The above equation and (F.5) lead

p+ k + jq = jn. (F.9)

First, we consider jn = 0. Then, solution of (F.9) is only (p, k, jq) = (0, 0, 0). Then,
we obtain

dp
(k)
[−k](t)

dt
= K

(0)
[1] (αt)p

(k+1)
[−(k+1)](t) (k = 0, 1, · · · ). (F.10)

Where, K(0)
[1] (t) is function of only αt. Because the LHS of (F.1) does not have terms

of O(ω0), we get

0 = K
(0)
[1] (αt)p

(0)
[0] . (F.11)

This is the definition of the instantaneous steady state.
Reference[33] considered only the solutions of jn = 0. However, the solutions of

jn > 0 should also be considered. We consider jn = 1. Then, the solutions of (F.9)
are (p, k, jq) = (1, 0, 0), (0, 1, 0), (0, 0, 1):

dp
(k)
[−k+1](t)

dt
= K

(1)
[1] (t)p

(k)
[−k](t) + ∂K

(0)
[1] (αt)

dp
(k)
[−k](t)

dt
+K

(0)
[1] (αt)p

(k+1)
[−k] (t). (F.12)

Here,

p
(k)
[−k](t) = O(

ωk

Γk
),
dp

(k)
[−k](t)

dt
= O(ω

k+1

Γk
), (F.13)

and

K
(1)
[1] (t) = O(ΓωτB), ∂K

(0)
[1] (αt) = O(ΓτB), (F.14)
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hold. τB is the relaxation time of the baths. Then, we obtain

K
(1)
[1] (t)p

(k)
[−k](t) = O(

ωk+1

Γk−1
τB), ∂K

(0)
[1] (αt)

dp
(k)
[−k](t)

dt
= O(ω

k+1

Γk−1
τB). (F.15)

(F.12) leads

p
(k+1)
[−k] (t) = R(αt)

dp
(k)
[−k+1](t)

dt
−R(αt)

[
K

(1)
[1] (t)p

(k)
[−k](t) + ∂K

(0)
[1] (αt)

dp
(k)
[−k](t)

dt

]
.

(F.16)

Here, R(α) is the pseudo-inverse of K(0)
[1] (α)：

R(α)K
(0)
[1] (α) = 1− p

(0)
[0] (α)e, e = (1, · · · , 1). (F.17)

(F.16) for k = 0 leads

p
(1)
[0] (t) = O(ωτB). (F.18)

Here, we used p
(0)
[1] (t) = 0. Then, considering p

(k)
[−k] smaller than O(ωτB) is meaning-

less. This result (F.18) is the same order with that discussed in Appendix D.
Under the Born approximation, the difference between the QME and the GME is

∞∑
k=0

∞∑
j
(k)
p =−k+1

p
(k)

[j
(k)
p ]

(t) = p
(1)
[0] (t) + · · · . (F.19)

The origin of this is the non-Markovian property of the GME.
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Appendix G

Energy current operator

Similar to (2.119), we introduce

[R†
b,µ](Ωb) =

∑
n,m,r,s

δΩb,mn,Ωb
|Eb,n, r⟩⟨Eb,n, r|R†

b,µ|Eb,m, s⟩⟨Eb,m, s|, (G.1)

with Ωb,mn = Eb,m − Eb,n and Hb|Eb,n, r⟩ = Eb,n|Eb,n, r⟩. r denotes the label of the

degeneracy. Ωb is one of the elements of {Ωb,mn| ⟨Eb,n, r|R†
bµ|Eb,m, s⟩ ̸= 0

∃
µ}. We

set {Oµ} = {Hb}b. Then,

RI†
b,µ,−2χ(u) =

∑
Ωb

[R†
b,µ](Ωb)e

−iΩbu+iχHb
Ωb , (G.2)

holds. Using this, we obtain

Φχ
b,αβ(Ω) = 2π

∑
Ωb

δ(Ω− Ωb)e
iχHb

ΩbTrb(ρb[R
†
b,µ](Ωb)Rb,ν). (G.3)

This means

Φχ
b,µν(Ω) = eiχHb

ΩΦb,µν(Ω). (G.4)

Using this, we obtain

WHb(α) =
∑
ω

∑
µ,ν

ωΦb,µν(ω)[sbµ(ω)]
†sbν(ω), (G.5)

for the RWA.
Using (2.153), we obtain

wHb(α) = −
∑
ω

∑
µ,ν

[
Φb,µν(ω)[sbµ(ω)]

†HSsbν(ω)

−1

2
Φb,µν(ω)HS [sbµ(ω)]

†sbν(ω)−
1

2
Φb,µν(ω)[sbµ(ω)]

†sbν(ω)HS

]
= −

∑
ω

∑
µ,ν

Φb,µν(ω)[sbµ(ω)]
†[HS , sbν(ω)]

=
∑
ω

∑
µ,ν

ωΦb,µν(ω)[sbµ(ω)]
†sbν(ω). (G.6)

Then,

WHb(α) = wHb(α), (G.7)
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holds.
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Appendix H

Derivative of the von Neumann
entropy

We show that

∂SvN(ρ0(α))

∂αn
= −TrS

[
ln ρ0(α)

∂ρ0(α)

∂αn

]
. (H.1)

From the definition of the von Neumann entropy, the LHS of the above equation is
given by

∂SvN(ρ0(α))

∂αn
= −TrS

[
ln ρ0(α)

∂ρ0(α)

∂αn

]
− TrS

[∂ ln ρ0(α)
∂αn

ρ0(α)
]
. (H.2)

Using (7.67), the second term of the RHS of the above equation becomes

−TrS
[∂ ln ρ0(α)

∂αn
ρ0(α)

]
= −TrS

[ ∫ ∞

0
ds

1

ρ0(α) + s

∂ρ0(α)

∂αn

1

ρ0(α) + s
ρ0(α)

]
= −TrS

[ ∫ ∞

0
ds

ρ0(α)

(ρ0(α) + s)2
∂ρ0(α)

∂αn

]
= −TrS

[∂ρ0(α)
∂αn

]
= 0. (H.3)

Then, we obtain (H.1).
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Appendix I

Proof of (7.66)

For an arbitrary operator X ,

1

1 + δX
= (1 + δX)−1 = 1− δX + δ2X2 − δ3X3 + · · · , (I.1)

holds if the absolute value of a real number δ is sufficiently small. Using this equa-
tion,

1

A+ δB
= [A(1 + δA−1B)]−1 = (1 + δA−1B)−1A−1

=
1

A
− δ 1

A
B

1

A
+ δ2

1

A
B

1

A
B

1

A
− δ3 1

A
B

1

A
B

1

A
B

1

A
+ · · · , (I.2)

holds for an arbitrary operator A which has A−1. Here, we used (I.1) for X = A−1B.
For an arbitrary operator Y which has Y −1,∫ a

0
ds

1

Y + s
= ln(Y + a)− lnY, (I.3)

holds for a real number a. Using this equation for Y = A and Y = A+δB, we obtain

ln(A+ δB) = lnA+ ln(A+ δB + a)− ln(A+ a)

+

∫ a

0
ds
( 1

A+ s
− 1

A+ δB + s

)
. (I.4)

Using this equation and (I.2), we get

ln(A+ δB) = lnA+ ln(A+ δB + a)− ln(A+ a)

+

∫ a

0
ds
(
δ

1

A+ s
B

1

A+ s
− δ2 1

A+ s
B

1

A+ s
B

1

A+ s
+ · · ·

)
. (I.5)

Because the second and third terms of the RHS are

ln(A+B + a)− ln(A+ a) = ln
(
1 +

A+B

a

)
− ln

(
1 +

A

a

)
= O(1

a
), (I.6)

we obtain

ln(A+ δB) = lnA+

∫ ∞

0
ds
(
δ

1

A+ s
B

1

A+ s
− δ2 1

A+ s
B

1

A+ s
B

1

A+ s
+ · · ·

)
,

(I.7)

for a→∞. The above equation is (7.66).
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We show (I.6). Substituting A = 1 to (I.5), we get

ln(1 + δB) = ln(1 + δB + a)− ln(1 + a)

+

∫ a

0
ds
(
δ

1

(1 + s)2
B − δ2 1

(1 + s)3
B2 + · · ·

)
= ln(1 + δB + a)− ln(1 + a)

+

∫ a

0
ds
(
δ

1

(1 + s)2
B − δ2 1

(1 + s)3
B2 + · · ·

)
= ln

(
1 +

δB

a+ 1

)
+

∞∑
n=1

(−1)n−1

n
δnBn

(
1− 1

(1 + a)n

)
. (I.8)

Using this equation for a→∞, we have

ln(1 + δB) =

∞∑
n=1

(−1)n−1

n
δnBn, (I.9)

which leads to (I.6).
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Appendix J

Definition of entropy production of
the Markov jump process

Except (J.9), this chapter is based on Ref.[21]. We consider the Markov jump process
on the states n = 1, 2, · · · ,N :

n(t) = nk (tk ≤ t < tk+1), t0 = 0 < t1 < t2 · · · < tn < tN+1 = τ. (J.1)

where N = 0, 1, 2, · · · is the total number of jumps. We denote the above path by

n̂ = (N, (n0, n1, · · · , nN ), (t1, t2, · · · , tN )). (J.2)

The probability to find the system in a state n is pn(t) and it obeys the master equa-
tion (8.1). We suppose the trajectory of the control α̂ =

(
α(t)

)τ
t=0

is smooth. Now we
introduce

θnm(α)
def
=

{
− ln Knm(α)

Kmn(α)
Knm(α) ̸= 0

0 Knm(α) = 0
. (J.3)

If n ̸= m, this is entropy production of process m → n. The entropy production of
process (J.2) is defined by

Θα̂[n̂] =

N∑
k=1

θnknk−1
(αtk). (J.4)

Then the weight (the transition probability density) associated with a path n̂ is

T α̂[n̂] =
N∏
k=1

Knknk−1
(αtk) exp

[ N∑
k=0

∫ tk+1

tk

dt Knknk
(αt)

]
. (J.5)

The integral over all the paths is defined by

∫
Dn̂ Y [n̂]

def
=

∞∑
N=0

nk−1 ̸=nk∑
n0,n1,··· ,nN

∫ τ

0
dt1

∫ τ

t1

dt2

∫ τ

t3

dt3 · · ·
∫ τ

tN−1

dtN Y [n̂], (J.6)

and the expectation value of X[n̂] is defined by

⟨X⟩α̂ def
=

∫
Dn̂ X[n̂]pssn0

(α0)T α̂[n̂]. (J.7)
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Here, pssn (α) is the instantaneous stationary probability distribution characterized by∑
mKnm(α)pssm(α) = 0. We introduce a matrix Kλ(α) by

[Kλ(α)]nm
def
= Knm(α)eiλθnm(α). (J.8)

Then, the k-th order moment of the entropy production is given by

⟨(Θα̂[n̂])k⟩α̂ =
∂k

∂(iλ)k

∣∣∣
λ=0

∑
n,m

[
Texp

[ ∫ τ

0
dt Kλ(αt)

]]
nm
pssm(α0). (J.9)

In particular, the average is given by

σC
def
= ⟨Θα̂[n̂]⟩α̂ =

∫ τ

0
dt
∑
n,m

σCnm(αt)pm(t), (J.10)

where

σCnm(α)
def
= Knm(α)θnm(α) = −Knm(α) ln

Knm(α)

Kmn(α)
. (J.11)

According to Ref.[21], for a quasistatic operation,

σCex = SSh[p
ss(ατ )]− SSh[pss(α0)] +O(ε2δ), (J.12)

holds where

σCex
def
= σC −

∫ τ

0
dt
∑
n,m

σCnm(αt)p
ss
m(αt), (J.13)

and SSh[p]
def
= −

∑
n pn ln pn.
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