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In this thesis, we considered quantum systems coupled to several baths. We sup-
posed that the system state is governed by the quantum master equation (QME). We
investigated the quantum pump and the excess entropy production. When the set
of control parameters a = {a"},, is modulated between times t = 0 and ¢ = 7, the
average change of a time-independent observable O of the baths is given by

(Ao) = /0 "t i (o) + /C da™ A9(a) + (o)),

Here, the summation symbol for n is omitted, oy is « at time ¢, C' is the trajec-
tory in the control parameter space, ij(«;) is the instantaneous steady current of O
and A9(a) is called the Berry-Sinitsyn-Nemenman (BSN) vector. (Ao)™ is a non-
adiabatic term and order of w/I" where w is the modulation frequency of the control
parameters and I is the coupling strength between the system and the baths. If w/T
is sufficiently small, this pumping is called the quantum adiabatic pump. Similarly,
the average entropy production o under quasistatic (w/I" — 0) modulation is given
by

o :/ dt jo (o) +/ da™ A7 ().
0 C

Here, j, (o) is the instantaneous steady entropy production rate and A («) is called
the BSN vector for entropy production. The second term of the right hand side (RHS)
of the above equation is called the excess entropy production, oey.

First, we investigated the quantum pump using the full counting statistics with
quantum master equation (FCS-QME) approach. We studied the non-adiabatic ef-
fect and the showed that the general solution of the QME p(t) is decomposed as
p(t) = polar) + 300 p™(t) + 300, 5™ (t). Here, po(ay) is the instantaneous steady
state of the QME, p(™(t) and (™ (t) are calculable and order (w/T')". 5(™(t) expo-
nentially damps (like e~1*) as a function of time. We showed that the generalized
mater equation (GME) approach provides p(t) = p() (t) +Jp(t) in the Born approxi-
mation. Here, p corresponds to the set of the diagonal components of p in the matrix
representation by the energy eigenstates, p(s (t) corresponds to po(a )+, P (t)
and the term 0p(t) originates from non-Markovian effects. We showed that the FCS-
QME method provides (n + 1)-th order pump current from p(™ (t). We showed that
the quantum pump dose not occur in all orders of the pumping frequency when the
system control parameters and the thermodynamic parameters (the temperatures
and the chemical potentials of the baths) are fixed under the zero-bias condition.

Next, we studied the quantum adiabatic pump of the quantum dot (QD) system
weakly coupled to two leads (L and R) using the FCS-QME. We confirmed the con-
sistency between the FCS-QME approach and the GME approach for a QD of one
quantum level with finite Coulomb interaction. We showed that the pumped charge
and spin coming from the instantaneous steady current are not negligible when the
thermodynamic parameters are not fixed to zero bias. To observe the spin effects,
we considered collinear magnetic fields, which affect the spins through the Zeeman
effect, with different amplitudes applying to the QDs (Bs) and the leads (B, and
Bpg). We focused on the dynamic parameters (Bg, By, g and the coupling strength
between QDs and leads, Ay /r) as control parameters. In one level QD with the
Coulomb interaction U, we studied (B, Bg) pump and (Ay, Bs) pump for the non-
interacting limit (U = 0) and the strong interaction limit (U = oo) at zero-bias. The
difference depending on U appeared through ny (sBg) which is the average number
of the electrons with spin s in the QD. For (By,, Bg) pump, the energy dependences



of the line-width functions are essential. Moreover, we studied the (A7, Bg) pump
for finite U at zero-bias. The effect of U appeared through ny (sBg). When half-
filling condition satisfies, the charge pump does not occur.

We studied quantum diabatic pump for spinless one level QD coupled to two
leads. We calculated {p™ (¢)}2_,, {p™(t)}>_, and particle current up to 6th order
and pumped particle numbers.

In the latter part of the thesis, we investigated the excess entropy production. In
weakly nonequilibrium regime, we analyzed the BSN vector for the entropy produc-
tion and showed

Opo(a)
oa™

A%(a) = —Trg[In p§ V() | +0(2).

Here, Trg denotes the trace of the system, and ¢ is a measure of degree of nonequi-
librium. pé_l)(a) is the instantaneous steady state obtained from the QME with

reversing the sign of the Lamb shift term. In general, the potential S(«) such that

A% () = Bg OES) + O(e?) dose not exist. This is the most important result of this the-
sis. The origins of the non-existence of the potential S(«) are a quantum effect (the
Lamb shift term) and the breaking of the time-reversal symmetry. The non-existence
of the potential means that the excess entropy essentially depends on the path of the
modulation. In contrast, if the system Hamiltonian is non-degenerate or the Lamb
shift term is negligible, we obtain oex = Syn(po(ar)) — Syn(po(ao)) + O(e26). Here,
Sun(p) = —Trg[plnp] is the von Neumann entropy, and ¢ describes the amplitude
of the change of the control parameters. For systems with time-reversal symmetry,
there exists a potential S(«), which is the symmetrized von Neumann entropy. Ad-
ditionally, we pointed out that the expression of the entropy production obtained in
the classical Markov jump process is different from our result and showed that these
are approximately equivalent only in the weakly nonequilibrium regime.
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Chapter 1

Introduction

1.1 Background

The properties of the isolated static quantum system in the equilibrium state have
been studied deeply. The studies of more general systems are important, however,
uncompleted and are actively being studied. This thesis focus on the following three
points of view. The first is (1) time-dependence. In the isolated quantum system with
time-dependent parameters, the Berry phase [27] is important. The second is (2)
open quantum system. The quantum dot (QD) system coupled to several leads is an
instance of the open quantum system. A theoretical method to study the open quan-
tum system is the quantum master equation (QME). The third is the (3) nonequilib-
rium steady state (NESS). The entropy production under operations between NESSs
of the classical system is being studied actively.

In particular, in this thesis, we study the quantum pump and the excess entropy
production. In a mesoscopic system, even at zero bias, a charge or spin current is
induced by a modulation of the control parameters [39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49]. This phenomenon, called the quantum pump, is theoretically interesting
because its origins are quantum effects and nonequilibrium effects. The entropy
production under operations between NESSs is composed of the time integral of the
instantaneous steady entropy production rate and the excess entropy production.
The excess entropy production is intensively being studied as a generalization of the
entropy concept.

Recently, Ref.[19] had been applied the Berry-Sinitsyn-Nemenman (BSN) phase
to the excess entropy production in the classical system. The BSN phase is the “Berry
phase” of the modified master equation including the counting fields which is a tool
of the full counting statistics (FCS). For quantum system described by the QME,
Ref.[23] had applied the BSN phase using the FCS-QME [26] to study the quantum
adiabatic pump. The FCS-QME had also been applied the excess entropy production
in the quantum system [20]. However, we point out that this study has serious flaws
[98].

1.2 Full counting statistics

In this section, we consider two terminals system. In a mesoscopic system, we can
see quantum properties through the conducting property. By recent development of
experimental techniques, the transfered charge () within a time interval 7 and the
variance ((Q — (Q))?) and higher cumulants can be measured ((- - -) is the statistical
average). The notion of obtaining all cumulants is called the full counting statistics
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(FCS)[26, 74, 75, 76]. The n-th order cumulant (Q"). is defined by

ny def 0"S7(x)
(@) = )" o (1.1)
where
500 = In [ 4@ PA(@)e (1.2)

is the cumulant generating function of Q). P-(Q) is the probability distribution of Q.
X is called the counting field. The cumulants up to fourth order are given by

Q) = (Q),
(@ = (@) — (@),
(@ = (@%) —3(Q*)(Q) +2(Q)*
= ((Q— (@))%,
(@Ye = (@) —4@Q*)(Q) — 3(Q*)* + 12(Q*)(Q)* — 6(Q)*
(

The third and fourth cumulants describe the skewness and sharpness, respectively.
The noise (Q?).. is composed of the thermal noise (the Johnson-Nyquis noise) and

the shot noise. The shot noise appears when |eV'| > kT where V is the voltage and

T is the temperature. The shot noise S relates with the current I = @ as

S = 2FI, (1.3)

where F' is the Fano factor. For classical shot noise (PPoisson noise), F' = 1 holds.
Then, effective charge e* is defined by

S = 2¢*1. (1.4)

e* = e/3 had been observed for the fractional quantum Hall state v = 1/3 [88, 89].

The FCS [26, 74, 75, 76] is the method to calculate the generating function. From
the FCS of entropy production, the fluctuation theorem [90, 91, 92] is derived [26, 76].
The fluctuation theorem leads to

SO = 2k TGW, (1.5)
S = kpTG®, (1.6)

Here, the noise S and the current I are expanded as

S = 5’(0) + S(l)v + S(Q)Vz +oee (1‘7)
=GV +GPv2 4. (1.8)
(1.5) is the Johnson-Nyquist relation, which can be derived from the linear response

theory. (1.6) is a relation of the non-linear response. This relation had been tested by
experiments [93, 94].
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1.3 Quantum adiabatic pump

In a mesoscopic system, even at zero bias, a charge or spin current is induced by
a slow modulation of control parameters [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].
This phenomenon, called the quantum adiabatic pump, is theoretically interesting
because its origins are quantum effects and nonequilibrium effects. The quantum
adiabatic pump is also expected to be applied to the single electron transfer devices
and the current standard[50, 51].

1.3.1 Closed system

For a closed quantum system, the Berry phase [27, 95] appear when the parameter of
the Hamiltonian is changed adiabatically (slowly). The quantization of the quantum
Hall coefficient is proposed by Thouless et al. [39] in 1982. In 1983, for the sys-
tem which only the z-direction is periodic, Thouless showed [39] that the transfered
charge by the cyclic adiabatic modulation of the potential is quantized.

1.3.2 Brouwer formula

The adiabatically pumped quantity is described by a geometric expression in the
control parameter space, although the pumped quantity coming from second or
higher order of the pumping frequency is not geometric. In noninteracting systems,
the quantum adiabatic pump had extensively been studied by the Brouwer formula
[31,52,53,54,55,56,57, 58, 59], which describes the pumped charge by the scattering
matrix. The Brouwer formula is discovered in 1998 by Brouwer [31].

When n-th control parameter o” is changed to o™ + da”, the change of the av-
erage number of the electrons of the bath b is given by £ (a)da™. £Nv(a) is called
emissivity. For absolute zero temperature,

ENa) = 5= 3 S mm[PAE W g )], (19
B Acb

holds [96]. Here, A and B are labels of electron in the baths and S(«) is the scattering
matrix. By slow modulation of the control parameters between timet =0 and t = 7,
the change of the average number of the electrons of the bath (ANy) is given by

T d n
(AN,) = / dt %Eévb(at): / da™ ENv (a). (1.10)
0 C

The summation symbol ), is omitted. C is the trajectory in the control parameters.
In particular, for cyclic modulation g = o, using the Stokes theorem,

(AN,) = / da™ A da™ %Fgg(a), (1.11)
S

holds. S is the surface enclosed by C. FV is given by

det OENv (@) OENY(a
Flie) aai -

2 ZZI [aSAB 35;13(04)]' (1.12)

a™
B Aeb g
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If the electrons of the bath b are labeled by b and energy ¢ and the scattering is elastic
Sbe,bre! (o) = Sb,b’(ev a)65,5’7 (1.13)

FNe () at zero-bias is given by

ZI [351) b (1, ) 055 4 (1, 0‘)]

FNo (o
oam oam

(1.14)

Here, 1« is the chemical potential of the baths.

On the other hand, it is difficult to calculate the scattering matrix in the interact-
ing systems. In the interacting system, the Brouwer formula had only been applied
in mean field treatments [60, 61] or in the Toulouse limit [62].

1.3.3 Recent studies of the quantum pump

Recently, the quantum pump in interacting systems have been actively researched.
There are three theoretical approaches. The first is the Green’s function approach
[32, 63, 64, 99, 100]. The second is the generalized master equation (GME) [65, 66,
33, 67, 68, 69, 70, 71] approach which uses the GME that is equivalent[72, 73] to
the quantum master equation (QME) derived using the Nakajima-Zwanzig projec-
tion operator technique [28]. Particularly, Ref.[69] derived a geometric expression
similar to the Brouwer formula and the Berry-Sinitsyn-Nemenman (BSN) vector ex-
plained later. The third is the full counting statistics[26, 74, 75] (FCS) with quantum
master equation (FCS-QME, which is also called the generalized quantum master
equation[26]) approach proposed in Ref.[23].

The adiabatic modulation of the control parameters induces a Berry-phase-like[27]
quantity called the BSN phase in the FCS-QME with the Markov approximation.
Sinitsyn and Nemenman[22] studied the adiabatically pumped charge using the
FCS and had shown that it is characterized by the BSN vector, which results from
the BSN phase. The BSN vector was applied to the spin boson system [77]. The
FCS-QME approach can treat the Coulomb interaction, which can not be treated in
the Brouwer formula. The derived formula of the BSN vector depends on the ap-
proximations used for the QME. The Born-Markov approximation with or without
the rotating wave approximation [28](RWA) is frequently used. The QME in the
Born-Markov approximation without RWA sometimes violates the non-negativity
of the system reduced density operator [78]. The QME of the RWA or the coarse-
graining approximation[29, 30](CGA) is the Lindblad type which guarantees the
non-negativity [28].

Some recent papers [68, 69, 23] showed that the Coulomb interaction induces
the quantum pump. In Refs.[68, 69], it was shown that in a one level interacting
quantum dot (QD) weakly coupled to two leads, the pumped charge (also spin in
Ref.[69]) induced by an adiabatic modulation of the energy level of the QD and the
bias between the two leads vanishes in the noninteracting limit. In particular, Yuge
et al.[23] studied the pumped charge coming from the BSN curvatures by adiabatic
modulation of the thermodynamic parameters (the chemical potentials and the tem-
peratures) in spinless QDs weakly coupled to two spinless leads and showed that
the BSN curvatures are zero in noninteracting QDs although they are nonzero for
finite interaction.
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1.4 Thermodynamic entropy

We review the thermodynamic entropy based on Ref.[97].

1.4.1 Principles of thermodynamics

A macro system A is generally imposed internal constraints which describe the char-
acters of the internal structures. For instance, the subsystem of A is enclosed by the
wall which does not transmit heat. A can be decomposed to the simple systems
{A;};. The simple system is the macro system which has not internal constraints and
of which spatial non-uniformity in the equilibrium state due to the external fields is
negligible. The equilibrium state is the state which all macro variables of the system
do not change (as functions of time). As a principle, for arbitrary macro system A4,
it is requested that if A is isolated (static external fields can exist) and is left suffi-
ciently long time, A becomes the equilibrium state. As principles, the followings are
requested: (i) If A is in the equilibrium state, the entropy .S exist uniquely.

(ii) The entropy S; of A; is a function of the internal energy U; of A; and the set of
additive variables of A;, {X*}7,: S; = Si(U;, X}, -+ , X[, U, X} , X" are
called the natural variables.

(i) S; (Ui, X}, -, X ") is continuously differentiable for the natural variables. In

particular, kg/3; def 0S;/0U; is positive and its lower limit is 0 and the upper limit

does not exist. Here, kg is the Boltzmann constant and f; is the inverse temperature
of A;.

(iv) A is in the equilibrium state if and only if all A; are in the equilibrium states
and § & > Si(Us, X} -+, X[™) is maximized. The entropy S of A is given by
S = max (U X1 XY S where max is the maximization under the permitted area.
The values of the natural variables which provide the S are those in the equilibrium
state.

1.4.2 Heat and entropy

The work W is the transfered energy described by the macro variables. In general, W
is the summation of the mechanical work W* and the work due to particle transfer
W and etc. The heat @ is defined by U/ — W where U is the total transfered energy
from the external system. Because U/ is the change of the internal energy AU, @ =
AU — W holds.

The process in which a system B can be regarded as always be in the equilibrium
state is called the quasistatic process for 5.

From the principles of § 1.4.1, the following theorem is derived. We consider
a process that a general system A receives the heat from external systems B, By,
.-+, By exchanging mechanical work with the external systems Cy, Cs, --- ,Cn.
When A contacts with B;, A does not contact with { By }4;. Theset {(b,k) € {1,2,--- ,M}x
{1,2,---,N}|B, = Ci} may not be an empty set. We suppose that this process is
quasistatic process for { B }1£ . Then, the change of the entropy AS of A satisfies

F®

AS < ; /( : kpByd Q. (1.15)

Here, 3 is the inverse temperature of By, and i) (£®)) denotes the initial (final) state
contacting By. In particular, the equality holds if the following conditions satisfy: (i)
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This process is also quasistatic process for A. (ii) While A contacts to Bj, the inverse
temperature of A equals to f3.

In the following of this subsection, we consider a simple system A. We denote
the natural variables of the entropy S of A by U and {X“}/_,. From the principles
of § 1.4.1, S(U,{X*}™_,) is convex upward for each natural variable. The equation
S = S(U,{X*}",) can solve for U uniquely: U = U(S,{X*})_;). We introduce

T oU/dS and P, def oU/0X“. T is the temperature of A and 7" = 1/(kg/3) holds

with kg8 = 0S/0U. If X is the total particle number N, 4 ©ou /ON is the chemical

potential.
We denote the work by changing of X* by W<. For a quasistatic process for A,
the work is defined by

dwe % P,dX“ (quasistatic process). (1.16)
Using dU = TdS + ), P.dX® and the definition of the heat,
dS = Bd'Q (quasistatic process), (1.17)

hold. This is called the Clausius equality. For the general system (which is not simple
system), the Clausius equality holds if the temperature is uniform in the system. In
particular, if Zé‘f: | PadX® = pdN holds, d'Q = dU — pdN and

dS = B(dU — udN) (quasistatic process), (1.18)

hold. Here and in the following this thesis, we set kg = 1. In general process, it
is difficult to define the heat. For a quasistatic process for B, (Jp can be defined as
explained above. In (1.15), d'Q is defined by —d'Q;, where d'Qy, is the heat to B,

In the equilibrium classical (quantum) system, the entropy is given by the Shan-
non entropy of the probability distribution (von Neumann entropy of the density
matrix) of states.

1.5 Nonequilibrium steady state

Let us consider a system A coupled to the baths {B,}}, (M > 1). We suppose
that { By }1cc are the canonical baths and { By },cg are the grand canonical baths. We
denote the inverse temperature of By, by 3, and the chemical potential of B, (b € G)
by wp. If all B, and py, are the same (5, = ( for all b and i, = p forall b € G),
the total system is referred as zero-bias or equilibrium. For the nonequilibrium total
system fixing (control) parameters, if A is left sufficiently long time and becomes a
steady state, this state of A or the total system is called the nonequilibrium steady
state (NESS). For quantum system described by the QME, the NESS exists uniquely.

As the instance, we consider spinless one level QD coupled to several leads. |0)
(]1)) denotes the state that the QD is empty (occupied). The diagonal components
pn(t) = (n|p(t)|n) (n = 0,1) of the system state p are governed by the master equa-

tion:
1) -+ 38)
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The Liouvillian is given by
—fo L—fp )
K = r . 1.20
; b<fb —(1=1/p) (120

Here, T’ is the line-width function of the lead b, f;, = [eﬁb(sf“b) + 1]7! is the Fermi
distribution function, ¢ is the energy level of the QD. In this section the parameters
are fixed. The solution of the master equation is

(2(18) - (1 ;F> e <;zz1((()()))_+FF> : (1.21)
whereI' =, I', and

F = Zf,,%. (1.22)
b

The first term of the RHS of (1.21) is the NESS.

1.6 Excess entropy

The investigation of thermodynamic structures of NESSs has been a topic of active
research in nonequilibrium statistical mechanics [1, 2, 3, 4, 5, 6, 7, 8, 9]. For instance,
the extension of the relations in equilibrium thermodynamics, such as the Clausius
equality, to NESSs has been one of the central subjects. Recently there has been
a progress in the extension of the Clausius equality to NESSs [10, 11, 12] (see also
Refs.[13, 14, 15, 16, 17, 18]). In these studies, the excess heat (), x (of the bath b)
[2], which describes an additional heat induced by a transition between NESSs with
time-dependent external control parameters, has been introduced instead of the total
heat Q. The excess heat @y, ox is defined by subtracting from @, the time integral of
the instantaneous steady heat current from the bath b. In the weakly nonequilibrium
regime, it is proposed that there exists a scalar potential S in the control parameter
space which approximately satisfies the extended Clausius equality

> ByQbex ~ AS. (1.23)
b

Here, 3, is the inverse temperature of the bath b, AS = S(a ; )—S(ay,), oy is the value
of the set of the control parameters at time ¢, and ¢; and ¢ are initial and final times
of the operation. In classical systems, S is the symmetrized Shannon entropy [11].
In quantum systems with the time-reversal symmetry, S is the symmetrized von
Neumann entropy [12]. In general, the left hand side (LHS) of (1.23) is replaced by

the excess entropy oex © tif dt JZ(ou) where o is the average entropy production
and JZ (o) is the instantaneous steady entropy production rate [19, 20, 21]. In the
quasistatic operation, the excess entropy is given by

Oex = AS + O(26), (1.24)

where ¢ is a measure of degree of nonequilibrium and ¢ describes the amplitude of
the change of the control parameters. Sagawa and Hayakawa [19] studied the full
counting statistics (FCS) of the entropy production for classical systems described
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by the Markov jump process and showed that the excess entropy is characterized by
the Berry-Sinitsyn-Nemenman (BSN) phase [22].

The method of Ref.[19] was generalized to quantum systems and applied to stud-
ies of the quantum pump [23, 24, 25]. We explain the studies of the quantum pump.
Att = 0 and t = 7, we perform projection measurements of a time-independent
observable O of the baths and obtain the outcomes 0(0) and o(7). The generating
function of Ao = o(7) — 0(0) is Z;(x) = [dAo P,(Ao)eXA° where P, (Ao) is the
probability density distribution of Ao and x is called the counting field. To calcu-
late the generating function, the method using the quantum master equation (QME)
with the counting field (FCS-QME) [26] had been proposed. The solution of the FCS-
QME pX(t) provides the generating function as Z,(x) = Trs[pX(7)]. Trs denotes the
trace of the system. The Berry phase [27] of the FCS-QME is the BSN phase. The
average of the difference of the outcomes is given by (Ao) = [ dt i9(t) where i9(t)
is the current of an operator O. If the state of the system at ¢t = 0 is the instantaneous
steady state and the modulation of the control parameters is slow, the relation

(Ao) = /O "t i) + /C da™ A9(a), (125)

holds. Here, the summation symbol for n is omitted. iQ(a;) is the instantaneous
steady current of O and A9 («) is the BSN vector derived from the BSN phase. a”
is n-th component of the control parameters, and C'is the trajectory from oy to .
The derived formula of the BSN vector depends on the approximations used for the
QME.

Because of (1.18), the entropy production rate of the bath bis &, (t) = S,(¢)[i7 (t)—
up()iNe (t)] where iy, is the chemical potential of the bath b, and i¢(t) and iV (¢) are
energy and particle currents from the system to the bath b, respectively. H, and N,
are the Hamiltonian and the total particle number of the bath b, respectively. Then,

it is natural to identify &(t) % — 37, 64(t) = 32, By(£) =i () — pp(t) {—i™ (£)}] with
the average entropy production rate of the system. o of fOT dt o(t) is the average
entropy production. Because of (1.25), 0 = [ dt JZ () + [, da™ Af(«) holds with

Jg () S, Byl (o) — pup{ il ()}] and

A%(0) © 57 gl A (@) - {—AN ()}). (1.26)
b

Here, it (o) and i{¢(a) are the instantaneous steady currents of the energy and

particle from the system to the bath b. A*(a) and A)? () are the BSN vectors of Hj,
and N,. The excess entropy production is given by

Oex :/ da™ A7 (). (1.27)
C

Yuge et al. [20] applied the FCS-QME approach to the excess entropy production

of the quantum system. They identified o’ o (a(1) —a(0)) with the average entropy

production. Here, a(0) and a(7) are the outcomes of A(t) = — >, Bp(t)[Hp — p(t) Np)
att = 0 and t = 7. However, ¢’ is not the average entropy production . ¢’ ~
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Triot [A(T) prot (T)] — Treot[A(0) prot (0)] can be rewritten as

[ (1) d[By(t)ps(1)
o~ - /O dtg[ 25 (Hy)e — S EEE ()|

dt

+ Lt S [AO- G - somO{- 5 00d]. a2

b

Here, (o), def Treot [@ptot ()], prot(t) is the total system state and Tri,, denotes the
trace of the total system. The integrand of the second term of the RHS of (1.28)
roughly equals to ¢ [36]. However, the physical meaning of the first term is not
clear. Then, because of the presence of the first term, o’ # o is concluded. Moreover,
they improperly used the FCS-QME applicable only for time-independent observable
to calculate o’ although A(¢) is time-dependent. These two issues are the problems
of Ref.[20].

1.7 Aim of this thesis

There are several theoretical approaches to analyze the quantum pump. However,
the relations among these are not clear. Then, the first aim of this thesis is to clarify
these relations (in particular, the relation between the FCS-QME approach and the
GME approach). Moreover, in the previous works, the charge pump had been stud-
ied mainly. However, for applications to the spintronics and quantum information
processing, the spin degree of freedom is important. Then, we consider the spin
degree of freedom and study the spin pump.

Recently, the excess entropy of the classical system is established. However, one
for the quantum system is not sufficient as we explained in § 1.6. The second aim
of this thesis is to develop the excess entropy of the quantum system. Moreover,
we compare between our results and previous results of both classical and quantum
systems.

1.8 Outline of the thesis

The outline of the thesis is as follows. First, we review the FCS and the FCS-QME
(Chap.2). In § 2.1, we derive the modified von Neumann equation including the
counting fields. In § 2.2, we derive and the FCS-QME with the CGA. In § 2.3, we
explain the RWA. In § 2.4, we derive the detailed balance condition.

Next, we move to the original results (§ 3.2,§ 3.3 and before (3.21) are review
parts). Chap.3 and Chap.4 are based on Ref.[25]. Chap.6, Chap.7 and Chap.8 are
based on Ref.[98]. We apply the FCS-QME to the quantum pump (Chap.3). In § 3.1,
we derive the expression for current without any approximation and introduce the
BSN vector. The BSN vector is also derived from the BSN phase (§ 3.2). In § 3.3, we
introduce the BSN curvature used to cyclic adiabatic pump. In § 3.4, we expand the
general solution of the QME p(t) by the modulation frequency w as

p(t) = polon) + > p™M(t) + > 5™ (). (1.29)
n=1 n=0

Here, po(y) is the instantaneous steady state of the QME, p(™(t) and 5™ (t) are
calculable and order (w/T")". T is the coupling strength between the system and the
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baths. 5™ (t) exponentially damps as a function of time. In the expansion (1.29), a
pseudo-inverse of the Liouvillian is used. In § 3.5, we proof the expansion (1.29) is
independent of the choice of the pseudo-inverse. In § 3.6, we show that the GME
provides an expansion corresponding to po(ca;) + >0 | p™(t).

In Chap.4, we apply the FCS-QME with the RWA to the quantum adiabatic pump
of the quantum dots (QDs) coupled to two leads (L and R). In § 4.1, we explain the
model. We show that the pumped charge and spin coming from the instantaneous
steady current are not negligible when the thermodynamic parameters are not fixed
to zero bias in noninteracting QDs § 4.2.2) and an interacting QD § 4.3.2). To observe
the spin effects, we consider collinear magnetic fields, which relate to spins through
the Zeeman effect, with different amplitudes applying to the QDs (Bgs) and the leads
(Br, and Bg). We focus on the dynamic parameters (Bs, By/r and the coupling
strength between QDs and leads, Ay, /) as control parameters. In one level QD with
the Coulomb interaction U, we analytically calculate the BSN curvatures of spin and
charge of (By, Bg) pump and (A, Bg) pump for the noninteracting limit (U = 0, §
4.2.3) and the strong interaction limit (U = oo, § 4.3.3) at zero-bias. Moreover, we
study the (A, Bg) pump for finite U at zero-bias (§ 4.3.5).

We study the quantum diabatic pump for spinless one level QD coupled to two
leads (Chap.5). We calculate {p(™ (t)}3_,, {p™(¢)}>_, and particle current up to 6th
order and pumped particle numbers.

Next, we introduce the generalized QME (Chap.6) used to analyze the BSN vec-
tor of the entropy production. In Chap.7 and Chap.8, we focus on the RWA.In § 7.1,
the BSN vector A? in the equilibrium is discussed. In § 7.2, one of the main result of
this thesis

dpo(a)

Af(a) = —Trg[In p((fl)(oz) Son

| +0(e), (1.30)

is derived without any assumption on the time-reversal symmetry [98]. pé_l) () is
the instantaneous steady state obtained from the QME with reversing the sign of the
Lamb shift term. In § 7.3, we consider the time-reversal operation. We show that if
the time-reversal symmetry is broken and the system Hamiltonian is degenerated,
S(a) such that A2 (a) = 8S(a)/da"+O(e?) dose not exist. This is the most important
result of this thesis. Next we mention the results in the Born-Markov approximation
(§ 7.4). In Chap.8, we compare preceding study on of the entropy production in the
classical Markov jump process [21, 37] with ours.

Atlast (Chap.9), we summarize this thesis. In Appendix A, the Liouvillian for the
Born-Markov approximation is discussed. In Appendix B, the Liouville space[80, 26]
and the matrix representation of the Liouvillian are explained. In Appendix C, we
derive (3.23). In Appendix D, we discuss the validity of the adiabatic expansion
in Chap.3. In Appendix E, we discuss the derivation of (3.52). In the Appendix F,
we discuss the solutions of the GME expanded by the modulation frequency and
the coupling strength between the system and the baths. In the Appendix G, we
calculate the energy current operator. In the Appendix H, we derive the formula of
the derivative of the von Neumann entropy. In the Appendix I, we proof (7.66). In
the Appendix ], we explain the definition of entropy production of the Markov jump
process and a result of Ref.[21].



Chapter 2

Full counting statistics and
quantum master equation

2.1 Full counting statistics
We consider the system .S coupled with the bath system B:

Htot(t) == Hs(t) + HB(t) + Hint(t).

21

(2.1)

The bath system may contain several baths. The simultaneous eigenstate of a set of

the bath’s observables {O,,} is given by

Oul{ov}t,r) = oul{ov}, 1),
<{OV}7T|{O/V}78> = 57‘735{011}7{0;/}'

(2.2)
(2.3)

Here, r and s denote the label of degeneracy, and ¢, (01} = [, —; 90,0, is the

kronecker delta. The projection operator to {0} is given by
Pio,y = D Hout.r){ou} 7.

This has the following properties :

Pro,yPloyy = 040,3,10,1 Plos}s

Z Py = 1.

fov}

The total system state pio(t) is governed by the von Neumann equation:

%Ptot(t) = —i[Htot(t)vptot(t)]'

In this thesis, we set & = 1. The formal solution is given by
pror(t) = V(pia(OVI(®),

where V (t) is the solution of

Ly@y = —ifo 0V (1),

(2.4)

(2.5)
(2.6)

(2.7)

(2.8)

(2.9)
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with V(0) = 1. Att = 0, we perform projection measurements of {O,}. The proba-
bility getting {ofto)} is given by

P[{o}(?)}] = TrtOt[P{OLO)}ptOt(O)P{oELO)}]' (2.10)

Triot denotes the trace over the total system. The state just after measuring {o&o)} is

P (0)P, «©
(0) (0)4 Ptot (0)
o () = Lot fou ) (2.11)

P{o)}]

After the time evolution by (2.7), the state at time ¢ is

Ao 1) = v opvie)

) V(t)P,, (O)}Ptot(O)P{ }VT(). (2.12)
[{O# 1]

Under this condition, we perform projection measurements of {O,} att = 7. The

probability getting {0/} is given by

(0)
PI{of}{o{"}] = Trect[P, ol }(T)P, ()]
{0y} {op '}

1
_ il
= e © Triot| {(T)}V(T)P{OLO)}ptot(O)P{OLO)}V (T)P{OE:)}QZ.13)
[{on"}]

The probability getting {o,(?)} att =0and {off)} att =r1is

P[{o{D}. {0} = P[{o}] - P[{o{”}|{o}}]
= Trio [P0, V(1) {OLO)}ptot(o)P{ol(P)}vT(T)P{OS)}}. (2.14)

The probability density distribution of {oLT) — 0,(?)} is given by

P [{A0,}] & Prob.[{o7) — o® = Ao,}] (2.15)

= Y PHo} {0} Hé () — 0l — Aoy,).  (2.16)
{01, {0y

The generating function is defined by
) & / H dAo,) Pr({Ao,})el 2=t Xulon, (2.17)

Here, x,, is a real number called the counting field for O,,. x denotes the set of the
counting fields. The cumulant generating function is defined by

S-(x) € 1 Z: (). (2.18)
The n-th order cumulant (Ao, Aoy, ... Aoy, ). is given by

9" S-(x)

Aoy, Aoy, ... N0y Ve = = : ' '
(A0, Aoy, pn O(iXpu ) (Xpiz) -+ (X ) Ix=0

(2.19)
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In particular,

9S-(x)
A(ixv)

(Aoy)e =

o= (Ba), (2.20)

is the average of Ao,.
Substituting (2.16) to (2.17), we obtain

0
—o?]

200 = Y PUoD} o e Bt
{003,407}

(2.21)

Substituting (2.14) to the above equation, we obtain

Z7(x)

i o™ _,(0)
- Z Trio[ P {07} V(r )P{OLO)}Ptot(O)P{OiLO)}VT(T)P{OLT)}]G 2 Xulop”—ou”]
{0} 4ol }

(2.22)
Now, we introduce
_ ef
Ptot = Z (0)}ptot { (0)} (2.23)
(0)
Properties
e—lXuOV/2P{ (0)} = e_lx"o" / P{ (o)}, P{OLO)}e_iX"O”/Q e_ZXVOV /2P (0)}>(2 24)
lead
e_iz“X”O”/zﬁtot(O)e_iz“X“O”/Q — Z *ZX;LOH P{ 0)}pt0t( )P{O(O)}. (225)
{0} ’
Then, (2.22) becomes
Z:(x)
= D Tl Py, V(r)e 20 g (0)e ™ 2 O 2V (D) P () e 2o Xl
ou OM
{0}

(2.26)

Moreover, from

lXuOu/2 — _iXVOE/T>/2 ZXV u/2 vOu /
=€ P{Off)}’ P = €ZX O P (7—)}, (227)

P, (3¢ {07} {o
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we obtain
Zr(X) = Y Trion[Py o, €X0 02V (r)em u0n/2 gy (0)e™ XnOn 2V T (7)enOn 2P ) |
= {0y} {on "}
o’}
Z Troot [P (T)}p{ (T)}eixMOuﬂV( T)e ZXHO#/2pt t(o)e*imouﬂvT(T)eixHOu/Q]
Ou
{ (7')
= Triot| Z o) eXuOn/2y (1) XuOul2 b, (0)e~XnOu/2y/T (1) iXuOn/?)
{of}

— Trtot[eiXuOu/QV(T)e_iXuOu/Qﬁtot<O)€_iXuOu/2VT(T)eiXuOu/2]
= Trio [V (7)piot (0) V. (7))
= Triot[pro (7)]- (2.28)

Here, we used (2.5) and (2.6). Here and in the following of this section, x,0, =
300 XuOp- Vi (t) and pii,i(t) are defined by

Vi (t) & exuOul2y (4)e=xuOn/?, (2.29)
ef _
P () V()pion (0) VI (). (2.30)

V,(0) and py, (0) are given by

prot(0) = Z (003 P(O) P 0y (2.31)

Vi (t) is governed by

Vi (t) = e XuOu/2 [%V(t)]e_iXMOH/2

= eXnOu2[ i Hioy (t)V (1) ] e XnOn/2
— _ieixMOu/2Htot(t)efixMOu/%ix;LOu/?V(t)efiXuOu/2

— —iHiox (Vi (2), (2.32)

dt

with
Huon (£) & eXnOu/2 Foq (t)exn0n/2, (2.33)
Hiot,, (t) is @ Hermitian operator :
i (8) = Hiotx(1): (2.34)
From the Hermitian conjugate of (2.32), we obtain

GV = IV (O o (0 23%)
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From (2.30), (2.32) and the above equation, p{,(t) is governed by

Co%0) = LR OV (1)
= o RO OV (1) + IVa(0)pen OV (1) o, (1)
= —ilHron (07 (1) — e (1) Hron, (1)) (2:36)

2.2 Quantum master equation with counting fields

2.2.1 Derivation of FCS-QME

We consider system S weakly coupled to several baths. The total Hamiltonian is
given by

Hiot (o (1)) = Hs(aus(t)) + D [Hy(ap(t)) + Hsp(ass(t))]. (2.37)
b

Hg(ag) is the system Hamiltonian and ag denotes a set of control parameters of the
system. Hj(ay) is the Hamiltonian of the bath b and oy is a set of control parameters.
Hgy(agp) is the coupling Hamiltonian between S and the bath b, and ag, is a set
of control parameters. We suppose that the states of the baths for b = 1,2,--- ,nc
are the canonical distributions and these for b = nc + 1, - - - ,nc + ngc are the grand
canonical distributions. We denote {1, -+ ,nc} and {nc+1, - ,nc+ngc} by C and
G. We denote the inverse temperature of the bath b by 3, and the chemical potential
of the bath b € G by 1. o denotes (3, for b € C and the set of 5, and Sy, for b € G.
We symbolize the set of all control parameters (s, {asy o, {0} }o, {0 }5) by @, (as,
{asp}e, {og}) by o, {a}/}y by &, (a3, o)) by ap, and {ap}, by ap. While o are
dynamical parameters, o’ are thermodynamical parameters. We denote the set of
all the linear operators of S by B.
The modified von Neumann equation (2.36) [26] is

805 0) = —ilHion (1), 5 (D) 2.38)

Here, [A, B, def AyB—BA_, and A, e i3 x0uOn/2 Aot 50 X0u Oul?, X0, is x, of

§ 2.1. We suppose
prot(0) = p(0) ® pp(ap(0)), (2.39)

where pp(ap(0) < @, py(as(0)) and py(ap(0)) X e H OG0 /7, (0 (0)) with
Zy(c) & Ty e P Ho(@0)] for b € € and py(ay(0)) E e P OH GO ONo] /=, (0(0))

with Zy(ap) & Try[eBelHo(a4)=mNol] for b € G. Try, denotes the trace of the bath b and
Ny, (b € G) is the total number operator of the bath b. Then,

P (0) = p(0) @ > Ppo,p8(as(0)) P,y (2.40)
{ov}

obeys. We suppose [H}, Np] = 0. We suppose that O,, commute with H;, and Ny:

[Ouv Hb] =0, [Ouv Nb] =0. (241)
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Then, Py, commutes with pp(ap(0)) and

Piot(0) = p(0) ® pr(ag(0)), (2.42)

holds because (2.5) and (2.6).
We defined

PX(8) © Trp[pX, (1)), (2.43)

which provides the generating function
Z,(x) = Tes[pX(t = 7)]. (2.44)

Trp denotes the trace over all baths’ degrees of freedom. We assume pio((t) =~ p(t) ®
pe(ap(t)) (0 <t <T), where

pa(an(t) = Q) pwlan(t)), (2.45)
b
o —Bo () Hy (o, (1)) / 7 t becC
plen(t)) = { Z—Bb(w[Hb<ag<t>)/—uliggfv(b1)/)Eb<ab(t)) beg - (246
and
p(t) & Trp[orer (1)). (2.47)

First, we introduce the CGA. An operator in the interaction picture correspond-
ing to A(t) is defined by

Al(t) = UL () A(t) Uy (1), (2.48)

with

dUy (t
dt

~—

= —i[Hs(as(t)) + Y Hy(ah(t)]Uo(t), (2.49)
b

and Up(0) = 1. The system reduced density operator in the interaction picture is
given by

pPX(t) = Teglplet (1), (2.50)
where
proX () = US (09 () Vo (). (2.51)
piX(t) is governed by
dpix(t :
w0 _ it 1) o O @52)

with

Hipe & Z Hgp. (2.53)
b
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Up to the second order perturbation in Hj,, we obtain
pIX(t + Teq) = pIX ()
t+7ca I I
[ du [ s Tea{ o B 5), o palen ()]}

pIX(E) + Tea LY, (1) p"X (1), (2.54)

using the large-reservoir approximation

pix(t) = p"X(t) @ pp(an(t)), (2.55)

and supposing
Trp[Hy(u)pp(as(t)] = 0. (2.56)
The arbitrary parameter 7cg (> 0) is called the coarse-graining time. The CGA

[29, 30] is defined by

d
P = LY ()" (1). (2.57)
In the Schrodinger picture, (2.57) is described as
dpX(t) _
dt

—i[Hg(ag(t) )] + Zz:b ros ()X (1), (2.58)

At x = 0, this is the Lindblad type. If 7o < 7, the super-operator £} is described
as a function of the set of control parameters at time ¢. a; = «(t) is the value of « at
time ¢. In this thesis, we suppose

Tce K T. (2.59)
Moreover, Tcg should be much shorter than the relaxation time of the system, 7s:
TeG K TS. (2.60)

For the adiabatic modulation, 7¢ < 7 should hold, then 7c¢q¢ <« 79 < 7 holds.
In general, the FCS-QME is given by

dpX(t) _
dt

—i[Hg(ous(t) )] + Z LX(t (2.61)

with the initial condition

p*(0) = p(0). (2.62)

L (t) describes the coupling effects between S and the bath b and depends on used
approximations. In this thesis, we suppose

LX) = LX) (2.63)
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The Born-Markov approximation without or within the RWA and the CGA satisfy
this equation. Then, the FCS-QME is given by

W _ fox(ano (). (2.64)

Here,
KX(a)e = —i[Hs(as), o] + Y Ly(a)e, (2.65)
is the Liouvillian. Here and in the following, e denotes an arbitrary liner operator of

the system.
The Born-Markov approximation is given by

I,x 00
dp (1) _ —/ ds Tep{ (1],
0

dt 1nt( ) [Hllnt( )7pI7X(t)pB(O‘B(t))]X]X}' (266)

2.2.2 Coarse-graining approximation
In general, the interaction Hamiltonian is given by
Hgp(agy) = ZsbuRbu asp) ZRW aSb)SZM (2.67)
“w

Here, s;,, is an operator of the system and R;, ,(c.sy) is an operator of the bath b. We
suppose

Trp[po(c(t)) R, (vsn(s))] = 0, (2.68)

corresponding to (2.56). Then,

T { [Hy (), [ (), "X (Dp (a0, |
= 35" (s shu ()™ O Tl R, (W) RL, . (8)pn 0 (1))]

b v

b, (8)p"X (D)1 ()T [RE, () py (D) Ry, . ()]

—sh, (WP X (1)sy () Teo[RE,, () py (0 (D) Ry, (5)]

X (sl (5)sh, (W) Trulp(en () Ry, () RE, . (@)]),  (269)

holds. In the calculation of Tr, [Rlﬁ/’x(u)Rg’ ux(8)pn(an(t))], the values of the control

parameters can be approximated by o;. Then, we obtain

| & Trylpu R}, (u—$)Ry ) = Chpu(u—s),  (2.70)
| & TrylpR), o, (u— 8)Ryu) = CF,, (u—s), (2.71)
| & Try[oR), 5 (s — w)Rpy] = CX,, (s —u), (2.72)
| ~ Try[poR) (s — u)Ry,) = Coyu(s —u),  (2.73)
with

RIT) J(v) = eiHb(ab(t))UR;V(aSb(t))e_iHb(ab(t))v. (2.74)



29

Here, p, = pp(cw(t)) and Ry, = Ry, (ap(t)). Then, (2.69) becomes

Trs { [Hky (), [He (), IX<t>pB<aB<t>>1xe}
= 33 (s ()P X (O Chaal — 5) = s ()" X (D)5} () O, (1~ 5)

by
=58, (W) X (Osh (51O (5 — ) + X (D)5 (5)sh, () o (s — w), - 275)

and

‘CZCTCG (at) ®
1 t+71ca

— . t du /tu ds ; <3£I(u,t)s£#(s,t) o Cppp(u—s)
—sp,(5,1) @ 5y (1, 1) O, (u — 5)
—shy (1) @ 51 (5, 1)CY,, (5 = ) + w51 (5,051, () Chpu (s = ), (276)
holds. Here,
st(s,t) = Us(t)UL(s)s,Us(s)UL(2). (2.77)

and Ug(t) is the solution of dU;t(t) = —iHg(as(t))Us(t) for Us(0) = 1. In the calcu-
lation of séu(s, t), the values of the control parameters can be approximated by o.
Then, we obtain

Shu(s,t) = Z —wls gy (W), (2.78)

sby Zewu t st (w)]T. (2.79)

Here, the eigenoperator s;,(w) is defined by

(@) = D G By ) (B, 7|84 B, 8) (B, 81, (2.80)

n,m,r,s
with wy,, = E,, — B, and
Hg|E,,ry = Ey|Ey, 7). (2.81)

r denotes the label of the degeneracy. w is one of the elements of
{wmn| (En,7|spu|Em,s) # 0 s spu(w) and w depend on ag. The eigenoperators
satisfy

Z spu(W) = Spps (2.82)

and

[Hs, spu(w)] = —wsp(w). (2.83)
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Then, we obtain

1 t+71ca

LY (a)e = ——— du/H_TCGds ZZH u—8)
b,Tca ;

TCG o o

% ({ s () spu(e) @ Copa(u = 5)

st () @ [ (] O (1 — 5) 00t 0
+{ = s1u(w) @ [ (W)Y, (5 — 0)

+ o [55 (w")] 8,0 (@) Clu (s — U)}ew(s_t)e_w(u_t)) (2.84)

In last two terms, we swapped p and v. 6(u — s) is the step function.
Now, we introduce

def iOu
o), (Q) = /_ du Gy, (w)e K (2.85)
Then,
00 ) '
/ du Y, ()f(u)e™™ = — ” du / dQ ®f, (Q)e~ et
1 P
_ X
= o dQ [73( - w) - i 2%,
= f<1>§fw< ) = S () = B ), (2.86)
holds. Here, P denotes the Cauchy principal value and
def 5
e
Uy, (w) = / dQ =, (2.87)
+ def i
oy () © 2<I>bw(w):|: 2\11;;%(@. (2.88)
(2.86) leads
(+)x
00 O, NQ)
X _ _ _ by —iQ(u—s)
Chppu—s)0(u—s) = /_ _ dQ ——e : (2.89)
Similarly,
(—)x
00 o Q) .
CZ(VM(S—U)G(U—S) = / a2 b’V;( )em(ufs), (2.90)
) — 00 7-[-
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holds. Then, we obtain

1 t+1ca t+TCG
Ereae = ——— [ T [ s [T

-
G e

X [Sbu(“/)]TSbu( )e byu(gl)
({

_Sbu(w) ° [sz/ T(I)b"'l‘/LX )}e—zQ u—3s) —zw(s t) iw’ (u—t)

+{ = @) o s ()]T0f,)X(@)

+ o [sp ()] sw<w><1>£;L(m}ei”“H)eiw’“—”e—iw(“—”), (2.91)

with @F) — ¢F)x

b = Py |x o- The integrals for u and s are performed as

t+1ca . ., . . ’
/ du e7" e () = e T U006 25ine ([0 — WTea /2),  (2.92)
t
tHrca . 4 .
/ ds ¥ W) = goqMHI—wlTea 2gine ([ — wltea/2), (2.93)
t

then
—i(w—w')/Tcq

Lo = =Y g [ (I ) 0 241, ()

Y w,w!

st (w) @ [s (@ >]*<I>£ (@)
(@) @ [ (&)]T0F1X(2) + s ()] s () @5 ), ()

. [Q—=wree . [Q—w]Tea
X Togsine 5 sinc 5 ,
(2.94)
holds. Here, sinc(z) = sinz/z. The above equation can be rewritten as
EbXﬂ'CG (a)e = _i[hb TCG( ), o] + Hb oG (a)e, (2.95)
HiTCG(a). - ZZ [ b,uv (Tea,w,w )Sbv( /) o [Sbu(w)]T
ww!' WY
1 / t /
_§¢b:NV(TCG’ w,w') @ [sp,(w)]"sp (w')
1
e o) | 296)
with
hprea(@) = =5 qujb,w/ TCG, W, W )[Sbu( )]Tslw( ). (2.97)
w w' Y
Here,

XX(roq, w,w')
etw—w)Tea/2

= T /Z dQ XX(Q)TCGsinC(TCG(S;_w))San(TCG(QQ_w))?(z'gS)
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with X = q)b,p,z/; \Ilb,,u,l/' HbyTCG HX

bTCG‘X

is the Lindblad type. By the way, from

[Cb,;w(t)]* = Cb,l/,u(_t)a (299)
relations
[(I)b,uV(Q)]* = (I)b,l/,u(Q); (2100)

and [V, (Q)]* = ¥,,(Q2) hold. Then,
[(I)b,,uu(TCG; w, w/)]* = (I)b,u,u (TCG7 w/, w), (2101)

holds.
For super-operator 7, J1 is defined by

Trs(YITX) = Trs([7TY]X), (2.102)
where X, Y € B. If Je =) A, e B, holds,

Jle=Y"Al B, (2.103)

is obtained. Here, A,, B, € B. (2.101) leads

I (@)e = D7D (@ (06,0, 5o ()] o s10()

WUJ 12214

1
_*Cbb,uu (TCG, w, w,) i [Sbu (w)]stu(w,)

2
1
_i(bb,uV(TCGawyw/)[sbu(w)]TSbu(w/) e (2104)
This leads
I ()1 =0, (2.105)

which means the conservation of the probability.

2.2.3 Concrete model

In this subsection, we consider b = n¢ + 1, - ,n¢ + ngc. Now we suppose

Hgp(cusp) Z @}, Byo +h.c.; By =D Vikoalass)coho (b € G), (2.106)
k,o

where a,, and ¢y, are single-particle annihilation operators of the system and of the
bath b. Using

Try s By (') Bl (t")] = 0 = Ty [y By (t') By (7)), (2.107)
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we obtain

£I>3<TCG(O[). = _i[hbTCG( @), ]+HbTCG(a)°7
I oo (@)e = D237 @ (e wase) ¢ [ea()]

w,w' a,B

1

—5‘1)1)_&5(70(;,%00') o [a0(w)]Tas(w’)

T

5Py ap(706, 0, [aa(w)]Tas(e) o

+<I>;2I%(Tcg,w W[ag(w)] @ aq(w)

1

_§¢b,a6(TCG,WaW ) @ do(w)lag(w)]!

1

—EQIQB(TC@w,w/)aa(w)[ag(w’)]T o], (2.108)

and

P ZZ[ Wy (0w, )aa(@)]as(w)

ww' a,B

%\p;aﬁ(f@g,w,w')aa(w)[aﬁ(w')r . (2.109)

The eigenoperators a,(w) are given by

= > Supnwl By ) {En,7laa| Em, $){(Em, 5. (2.110)

n,m,r,s

w is one of the elements of {wyn| (En, 7|aa|Em, s) # 0 “a}. aq(w) satisfy

Z ao (W) = aq, (2.111)

and
[Hs, a0(w)] = —waa(w), [Ns, aa(w)] = —aa(w). (2.112)
Ny is total number operator of the system. Here and in the following, we suppose
[Ns,Hg] = 0. (2.113)

If ngc = 0, existence of Ng and the above equation are not required. In (2.108) and
(2.109),

Xi’X(Tc(;, w, w’)

:I:i(w—w/)TCG/Q oo _ _
e 5 / dQ) Xi’X(Q)TCGSinC(TCG'(SQ2 w))sinc(TCG(QQ d )),
m —00

(2.114)
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and X*(rcq,w,w’) = XX (1cq, w, W) ‘Xzo' Here, X *X((2) denotes one of @i&’fﬂ(ﬁ),
\I/l:,tgfe(Q), where

D, 5(Q2) = / du Try o, Bl oy (1) B 5™, (2.115)
O0(Q) = / du Try[p B!, (u)Bygle ™™, (2.116)
i:X !/
p o[ BEX(Q
Tpoh(@) €~ / dsY sbz/ﬁ_(n) (2.117)
—0o0

We set {O,} = {Ni}reg + {Hp }», where

No =Y o Coro (2.118)
k,o

Whenever H, is an element of {O,}, we suppose «; are fixed. We introduce the
eigenoperator

Bpa(%) = > 00y, Eons 7Y (B 7| Boal By ) By s, (2.119)
n,m,r,s
with Qp n = Eb oy — Epp, and Hy|Ey p,, 1) = Ep p|Epp, 7). v denotes the label of the

degeneracy. 2 is one of the elements of {Qp yun| (Epn,7|BbalEpm,s) # 0 “a}. The
relations

> Bba() = By, (2.120)
Qp
and
[Hy, Bpa ()] = =% Bpa (%), [Nb, Boa ()] = —Bpa () (2.121)
hold. Then, we obtain
Bjo oy (u) = ) Bua(Qp)e Wrtixm iy, (2.122)
Qp
Bly 5 () =) [Bua ()] e i, B, (2.123)
Qp
and
@, Q) = 21> 5(Q — )X XN Try (9, B () B )
Qp
— X, FiXN, 9 Z 5(Q — Qb)Trb(pbBba(Qb)[Bbﬁ(Qb)]T)7 (2.124)
Qp
@Z&Xﬁ(m =27 Z 5(Q — Qp)e™ X =IXN Try oy [ Bpo ()] Byg)
Qp

= e 2 50— ) Tey (0 B ()] Bys()). (2.125)
Qp
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Here, we used (2.120) and Try,(pp Bba () [Brs (€2})]7) = 0 and
Tro (06 Bra ()] Bos (€2)) = 0 for O, # Q. Then, we obtain
pEX (Q) = e:F("XHbQ"'iXNb)(I)biaB(Q), (2.126)

b,af

with @ (Q) = €,7(Q)|,_ and

Uy ap(€)) = 22Ple_QTrb(pbBba(Qb)[Bbg(Qb)]T), (2.127)
Uy 5(9) = QZP q e (5[ Bra ()] Brg (). (2.128)
‘Difa 5(Q2) satisfy
[ @) 0s (D] = &5 5, (), (2.129)
B ,5(Q) = e OTIDL, (0). (2.130)

The latter is the Kubo-Martin-Schwinger (KMS) condition. (2.130) is derived from
PbBpa () = P =1 By () py, (derived from (2.121)) and (2.124) and (2.125).
Here, we suppose the free Hamiltonian of the bath b:

Hy(0h) =Y ebko(@h)Chyy b (2.131)
k,o

and {O,} = {Nio }po with

Now = D ChioCoio- (2.132)
k

In this case, a;) can depend on time and

0,250 = 27 ) VikoaViko s Fy (Ebko) €™ 6(cbke — ), (2.133)
k,o

OLX(Q) = 21D Voo Viko,sFy (bko)e X7 6 (k0 — Q), (2.134)
k,o

Uy 0p(2) = 2 kZ Viko.aVoko,6Fy (5bk0)eiXb”P€bkal_Q, (2.135)

\PZ&%Q) = QkZ%Zg,a%ka,ﬁsz(é?bka)e_iXb”P%l_Q7 (2.136)

hold. x4, denotes the counting fields for N,. If the baths are fermions, F;, (¢) =
fv(e) def lexp(By(e — wp)) + 1]7 1 and F, () = 1 — fy(e). If the baths are bosons,
E(e) = ny(e) def lexp(Bp(e — mp)) — 1] and F}, (e) = 1 + ny(e).

(2.106) can be generalized as

Hagp(asp) Zs e +he (beg), (2.137)
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with
[S(H)E(W), NS] = —nS(n)g(W), [Bb,(n)f(Qb)’ Nb] = —an’(n)g(Qb) (2138)

Here,n =1,2,---,and s(,)¢(w) and By, ()¢ (§2) are the eigenoperators.

2.3 Rotating wave approximation

In the CGA or Born-Markov approximation, the FCS-QME is described by a, (w) and
[aa (W] (w,w’ € W). If Hg is time dependent, the generalization of usual RWA [28]
with static Hg is unclear. In this thesis, the RWA is defined as the limit rcq — o
(Tog - ming,y |w — w'| > 1) of the CGA. In this limit,

@Ziw(rcg,w,w) CIDZCW( W) 0 e s \I/buy(rcg,w,w) \IIZCW( W)y  (2.139)

hold because of the fact that

i . 1oa(Q—w) . 71ca(Q - W)
m 7cgSsinc sinc
TCG— 00 2

= 276, 0(Q — w). (2.140)

If Hg is time independent, this RWA is equivalent to usual RWA. £ («) is given by

L (o)e =11} (o) @ —i[hy(cx), ], (2.141)

where hy,(«) is a Hermitian operator describing the Lamb shift. Hy,(«) = « >y ho(@)
is called the Lamb shift Hamiltonian. IT)* () and hy(«v) are given by

Hl)f(oz)o = ZZ[ buu Sbu ) [Sb,u(w)rr

Wy

_E(I)b ;w(w) b [Sb,u(w)]TSbl/(w) - %q)b,,ul/(w)[sb,u(w)ﬁsbu(w) i 7(2142)

hy(a) = —= Z D Wy () [0 ()] 50 (). (2.143)
w oy

Because of (2.83), hy(a) commutes with Hg(ag):
[hp(a), Hg(ag)] = 0. (2.144)

We introduce projection super-operators P(ag) and Q(ag) by

P(OZS)|En,T> <Em7 S‘ = 6En,Em|En7T> <E’m) S|7 (2145)
and Q(ag) = 1 — P(ag). We define Bp def {X € B|PX = X} and Bq & def (X ¢
B|QX = X}. KXPe € Bp holds. Then, KXQe € Bq and

QKYP =0 =PKXQ, (2.146)

hold. This implies that the right eigenvalue equations (3.3) are decomposed into two
closed systems of equations for Ppy and for Qpy. Thus, p¥ is an element of Bp or
Bq. In particular, pj € Bp. Then, the matrix representation of py(«) by |E,, ) is
block diagonalized. This implies

[Hs(as), po(a)] = 0. (2.147)
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For (2.106), IT) () in (2.141) is given by

o = 33 [#5@)as(e) o laa(@) — 58y 5e) o laa (@) as(w)
w o,
%‘I);aﬁ(W)[aa(w)]Taﬁ(w) o +<I>b+72% (w)[ag(w)]" ® an(w)
1 1

The Lamb shift is given by
= S (Vs aae) as() + ST s (@)aa(@)las()] 2149
w a,p

The second equation of (2.112) leads

[hp(a), Ns] = 0. (2.150)

2.4 Detailed balance condition
In this section, we consider the RWA. If we suppose (2.106),
IT, (e Pe(Hs—1mNs)y — (HZ,)efBb(HSfusz) (beg), (2.151)

holds using (2.130). This is the detailed balance condition. If we suppose (2.137), the
above relation also holds. From Cll = HZl = 0 (see (2.105)) and (2.151) for e = 1
lead

ye PoHs—mNs) — p, o=Bo(Hs—mNs) — (2.152)

using (2.144) and (2.150). If the bath b is fermion, (2.106) or (2.137) are general.
In the following of this section, we consider canonical baths (b € C). (2.143) leads

Jo = ZZ [q)bﬁw )[sou(w )]T ® s (w)

w Y

1 1

=3 @) @ [ ()] 500 0) = 5 @b () 503 ()] 50 () @ ] (2.153)

Then, we obtain

(I (@)o)e 5 = 3737 (@10 () sy, ()] 0 P55, ()

w Y

— =0y (W) [ ()] P (w) @ 7T (2.154)
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using (2.83). Then,

Hb(.efﬁbHs) (HT o) BvHs
= 3N [ B @)sn(w) o 5[y, (@)

w Y

@ () s )] 0 P, ()|
= Z Z :¢b,uy(w)[sby(w)]T o Pllsgy (W)

w Y
() s ()] 0 €55y, ().

holds. Here, we used

Z Z Dy, ;W Sbu [sbu Z Z ¢b,;w st )} ® Sbu (w)’

w Y w v
with
d)b,w/ / du Dy ,uu —zwu
Dy (u) = Trb[prb,m)RZ,y], pp = e~ [Ty (e M),
Using

Tro[pp R (u) RY) = Try (R, (u+iBy)pp R3] ]

= Trb[préL(—u —iBp) Ry ] = Cpop(—u —ify),

®b,(w) is given by

gbb?;w (w) = / du Cb,uu(_u - iﬁb)e_iwu
= / du/ dQ) @b,w(Q)eiQ“*’Ber*iw“
= @b’yu(u))e*&’w.
Substituting this into (2.155), we obtain
1T, (eePils) = (HZo)efﬁbHS (bel).
Substituting e = 1 to this equation, we get
I,e s = .
If ngc > 0, we suppose
[Sbu(w)aNS] =0 (b S C)
Then,

Hb(.e—ﬁb(Hs—uiNs)) _ (HZ.)e—ﬁb(Hs—uﬁ,Ns) (be ),

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)

(2.162)

(2.163)

(2.164)
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and

e PeHs—mNs) — p o=Fo(Hs—mNs) — (2.165)

hold. (2.164) is the detailed balance condition. Here, j is an arbitrary real number,
and we used

[hs(a), Ns] = 0, (2.166)
derived from (2.163). (2.163) and (2.104) lead

IIINg =0 (beC). (2.167)
b
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Chapter 3

FCS-OME and quantum pump

3.1 Currents

Generally, £ () has the form:

L (a)e = Z ey, (a)Ag @ By, (3.1)

a

where A, and B, belong to B and depend on ag, and cl’fa(a) is a complex number
which depends on ag, ag, and . If and only if Ay, B, # 1, ¢, («) depends on x.
In this chapter, we assume only Markov property (i.e., KX just depends on ;). At
x = 0, the FCS-QME becomes the quantum master equation (QME)

dp(t .
AY — Rouolo) 62)
K(oy) equals KX(ay) at x = 0. In the following, a symbol X without x denotes
X*[y=0.
In the Liouville space [25, 26], the left and right eigenvalue equations of the Li-
ouvillian are

KX(a)|px(e))
{l3 ()| KX (a)

(@)]pr(@)), (3.3)
(@) (G ()] (3.4)
In the Liouville space, A € B is described by |A)). The inner produce is defined
by (A|B)) = Trs(A'B) (A, B € B). In particular, ((1|A)) = TrsA holds. A super-

operator which operates to a liner operator of the system becomes an operator of the
Liouville space. The left eigenvectors I\ (a) and the right eigenvectors p¥, () satisfy

(By ()] (@))) = dpm- (3.5)

= A\X
= A\X

The mode which has the eigenvalue with the maximum real part is assigned by the
label n = 0. Because the conservation of the probability % (1 p(t)) = (1| K (aq)|p(t))) =
0 leads

(1] K (a) = 0, (3.6)

in the limit x — 0, A} («) becomes 0 and ((I§ («)| becomes ((1] (i.e., lo(c) is identity
operator). In addition, |pg(«))) determined by

K(a)lpo(a))) =0, (3.7)

represents the instantaneous steady state.
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The formal solution of the FCS-QME (2.64) is

t
(o) =Tesp [ [ ds ()] ). 9
where T denotes the time-ordering operation. Using this, we obtain the averages
(Bour = o1l (o)
" a(iXON) x=0
t t
= /0 du (11K (o) |p(u))) = /0 du io, (u), (3.9)

def 9XX(a
where X% (a) = 8(ixo(u))}X:0

used ((1|K («) = 0. Moreover, using ((lo(a)| = (1], o(a) = 0 and (3.4), we obtain

when X is an (super)operator or c-number. Here, we

(UK () = 5" (@) (1] = (Ig" (a)| K (a). (3.10)
Here, ((IJ* (a)| is defined by g((%éa))\ ’x:O’ then
0, _  Olg(@)
oo d(ixo,) ‘X:O7 (3-11)
holds. The current ip, (t) is given by [24]
i0, (1) = (K% (ar)|p(t))
= 2g" (a) — ({15 (on) | K () | p(1))
_ \Ou Oy d
= Ao (ar) = (" (ar) | [p(2)))- (3.12)
The current can also be written as
i0,(t) = (LW (@) |p(1)). (3.13)
where W9 (a) is the current operator defined by
(LW (o) = (1K (a), (3.14)

ie., Trg[WOr (a)e] = Trg[K Ok (a)e] for any e € B. Therefore, using (3.1), the current
operator is given by

WO (a) =" cp¥ (@) BoAa. (3.15)
b,a

Using (3.10), the instantaneous steady current is given by

(WO (@) po())) = AG¥ (a) = 78, (). (3.16)

In the following, we suppose p(0) = po(ayp). In this case, as we will show, p(t) =
po(at) + O(w/T') holds where w = 27 /7 and

r= min {~Re[A()]}. (3.17)
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In w <« T limit, we obtain
. o8 0 d w?
i0,(t) = 15, () — (o™ () [ po(ee))) + O(?)a (3.18)

which leads to
(Aon)y = / dt 3% (o0) + / do™ A" (@) + O (%), (3.19)
0 C

Here, o™ is the n-th component of the control parameters, C is the trajectory from oy
to o,

0

o
oam

lpo(@))), (3.20)

is the BSN vector, and the summation symbol ) is omitted. As we will show, the
BSN vector is also given by [25]

A2 (@) = (AW (0)R(0) 5 Ipo(a)) (3:21)

where R(«) is the pseudo-inverse of the Liouvillian defined by
R()K (@) = 1 = |po(e)) (L. (3.22)

In the research of adiabatic pumping, the expression of (3.19) is essential. In
Refs.[23, 24, 25], (3.19) with (3.20) was used to study the quantum pump. On the
other hand, in Ref.[34], (3.19) was derived using the generalized master equation
[33] and without using the FCS. In Ref.[34], Ag“(a) was described by the quan-
tity corresponding to the current operator and the pseudo-inverse of the Liouvil-
lian, as shown in (3.21). In this chapter, we show the equivalence between the
FCS-QME approach and the generalized master equation approach (with the Born-
approximation) for all orders of the pumping frequency [25] (see also Ref.[35]).

3.2 Berry-Sinitsyn-Nemenman phase

The expression of (3.19) was originally derived like the following. The formal solu-
tion of the FCS-QME is expanded as

X)) = S ex(t)elo 4 A8 px(ay). (3.23)

Because efo 45 i(as) (n # 0) exponentially damps as a function of time, only n = 0
term remains if 't >> 1. Solving the time evolution equation of ¢} (¢) in w < I limit,
we obtain

) =)o [~ [ dt @3tanl G lab )], (324)

using (C.8) and the fact that the second term of RHS of (C.8) for m = 0 exponen-
tially damps as a function of time. Here, the argument of the exponential function is
called the BSN phase. Substituting this expression and ¢} (0) = (I3 («)|po())) into
(3.23), we obtain the expression of pX(7) which provides (3.19). However, when we
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consider only the average of Ao,, the BSN phase is not essential. All informations
of the counting fields up to the first order are included in W .
Substituting (3.24) and ¢ (0) = ((I{ («0)|p(0))) into (3.23), we obtain

X)) ~ (X ()| p(0) )™ Jo @t W (@G le5 (el oJ dt A5 (@) | )X (0 )Yy (3.25)

and the cumulant generating function S;(x) = In Z-(x) = In{(1|pX(7))) :

o o ureeon DK (@)
500 = [t xyten) = [ dor (a0 B
(T (o)l p(O)) + (1163 (ar) (3.26)

(3.26) is the same with Yuge et al.[23] except for that x denotes a multi-counting field.
_ 95 (%)

The averages (Aoy,), = Aixp) ‘X:o

are

(Do), = /0 "t 29 () + /C da™ AQ" (o) + ({16 (o) |p(0)) + (1] ph (c0)))X3.27)

Here, we used — [, da™ ({lo(c)| 2582 = —((1|f () + (L]0} (o)) because

{lo()] w = 3% ((1p5 ()))- The integrand of the first time integral, )\8) "(cy), are

the instantaneous steady currents of O, at time ¢; if the control parameters are fixed

to a and the state is py(«), the current of O, is )\(? *(a). The third and fourth terms of
the right side of (3.27) cancel if the initial condition is the instantaneous steady state

po(o).

3.3 Cyclic pump

For a; = ay, the second term of the right side of (3.27) can be described as a surface
integral over the surface S enclosed by C' using the Stokes theorem :

<AOM>T = <A0u>j—s + <A0u>gerrya (3.28)
o, = [ atrd(a) (3.29)
0
1
(Ao )Bery — / do™ A da” Fi5 (o). (3.30)
S

Here, A is the wedge product and the summation symbol > . is omitted. BSN

curvature Fk (o) is given by

_ A () OA%‘(a)‘

Op
Fmfi(e) Oa™ oa™

(3.31)

Yuge et al.[23] focus on only the second term of (3.28) subtracting the first term, and
they did not evaluate (Ao,)%. In § 4.2.2, we show that this contribution is usually
dominant if the thermodynamic parameters are modulated although the steady cur-

rents )\(?“ (o) are zero if the thermodynamic parameters are fixed to zero bias.
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3.4 Expansion by frequency

Applying the pseudo-inverse R(«) to the QME (3.2), we obtain

(1= Ria) £]160(0)) = Riae) & lpo(a), (3.32)

with dp(t) def p(t) — po(at). One of the solution of (3.32) is
3 d o) ¢
‘5p(ss = Z [ Qi dt:| |p0 at Z ‘,0 (333)
n=1

{(1]p™(t))) = 0 holds (we show this at § 3.5). The general solution of (3.32) is

10p(1))) = 10p(ss) (1)) + [£(2))) (3.34)

where §(t) is the solution of

[1- R0 5150 =0, 339

with 5(0) = 6p(0) — dp(ss)(0). By the way, applying K(a) to (3.22) from the left, we
obtain

K(a)R(o)K(a) = K(a). (3.36)
This leads

K(a)R(a) =1~ |o(a)) (1], (Llo(a)) = 1. (3.37)

Applying K (a) to (3.32) from the left and using the above relation and ((1]5(t))) = 0,
we obtain

SIp0) = K(@)la(0), (3.39)

which is the same form with the original QME. The solution is |5(t))) = U(t)|5(0)))
with

U(t) % Texp [ /0 s f((as)] (3.39)

Because ((11(0)}) = 0, |5(1)}) is described as [5(£))) = 32, 4o (t)els © M), ().
This damps exponentially as a function of time. Then, the state reaches to a “steady

state"

def
P(ss) — PO(at) + 6p(ss) (t) (3.40)
p(0) = dp(0) — dp(s5)(0) is the difference of the initial state from the “steady state".
We introduce

= 0(t)p™(0)), (3.41)

= U(t)[8p(0))). (3.42)

™ ™
=) S
NN
—~~
~ ~
NN
=
= =
o o
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The general solution of the QME is given by

oot = D [I™ @) + 15 )] + 157 (1)) (3.43)

n=1

(1A @) = —(1p"(0)) = 0 and (15O (1)) = (115p(0))) = 0 holds. The current
io, (t) is given by

i0,(t) = i3, (on) + 0157 (1) + 10, (1), (3.44)

85 () (WO ()| Fp(es) (D), (3.45)
i0,(t) € (AW (ar)|5(2))- (3.46)

5i (1) Zz(”) ) 2 (1O () o™ (1)), (3.47)
Z*’“ C (LW ()5 (8))- (3.48)

Let’s consider the relation between (3.12) and (3.44). In 8§ 3.2, we used y-adiabatic
approximation (3.25), which becomes |p(t))) =~ |po(a+))) at x = 0. Substituting it to

(3.13), we obtain ig, (t) ~ i5 (t). So, we cannot obtain (52’85;) (t) + %Ou (t). However,
from the xo, derivative of (3.25), we obtain

i0,(t) ~ A" () = (15" (o) ilpo(at)» (3.49)

This is equivalent to (3.27) for p(0) = po(ap). (3.49) suggests
. d
i) (1) = ~(15" (an) | leo(an). (350)

In fact, this is equivalent to 28/2 (t) = (1|WO (ay)|pV(t))), namely

i5)(6) = (1O (@) R () S oofew)) @51)
because of
(WO (a)R(a) = —((Ig" ()| + O (a) (1]- (3.52)

Here, % (a) are constants shown in (E.10). We prove (3.52) in Appendix E. (3.52)
leads (3.21) and

5 0) = (WO ()R (a) ™ (1))
= — (I () 5P ). 55)

By the way, (3.12) is

i0,(t) = i3, () = (15" () b \p( ) (3.54)



47

Substituting

p(t) = polar) + Y p™ () + > s (1) = prssy (t) + Z Pt (3.55)
n=1 n=0
to the RHS of (3.54), pp provides z(oli and p(™ provides zg b, P(ss) Provides (51

~(n) ; x(n) .
p™ provides ip

(s )

{1 (o >rj|ﬁ< (o)
=~ @I R (@lp™ (1)

= (AW (@) R(a0) K ()5 (1)) ~ e (o) (1K ()| 1))
= (AW (@) (1~ ool (1DIF (1)

=iy (3.56)

The third and fourth terms of (3.27), (Ao, )3+ = (1 () |p(0))) + ((1]p* (ao))),
result from this relaxation. The contribution of (Ao,,), from dp(0) is

(Aot = — / ar (15 “(at)lilﬁ(o’ ()
0
= (5" ao)!p ()>> <<lo ()P0 (7))
/ dt —0 171 | 50 (1))). (3.57)

The first term of the right side of (3.57) is (Ao, )3, Because we can obtain

WO (@)l po()}) + {(1150* (0))) = 0 from the normalization (1(0) (@) = 1,
(Ao,)3T is given by

(D03 = (15" (c0) [|p(0))) — lpo(@0))] = (6" (a0) |5 (0)). (3.58)

The second term of the right side of (3.57) is exponentially small since 50 (1) ~e 1T,

o
The order of the third term is O(§) with w = 27 /7 because W = O(w) and the
integral range is restricted up to 1/T since (¥ (t) ~ e~T*. Hence

(B0,)F" = (A0,) 3 +O(2). (3.59)
Since %at = O(w) and R(oy) = O(3),
pM(t) = 0(=)". (3.60)

In Appendix D, we discuss the reasonable range of n of p(™ (¢) and show that with
the larger non-adiabaticity (t), the reasonable range becomes wider. We have

—(n w™ _ _
P =0(5e ), 7 = 0. (3.61)

The above equations and W9 = O(T') lead

n wn

), ig) = Ol—ge ™), i) = O(Te™), (3.62)

(n) _ w
O( FTL—l " I‘n—l

ZOH
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This leads
T n—1
n) def .(n w
(Ao 1 /0 i) (1) = (5 1), (3.63)
/—\/(n) e T ~(n n
(Aoy). / dt il () = O(*), (3.64)
T 0 " Fn
(Ao — /O at 79 (1) = 0(1). (3.65)
In particular, the contribution from the BSN vector is
(A0, BN € (A, )1 = — /C da™ (19" (aMW =0(1). (3.66)

Moreover, although the BSN phase is derived under the y-adiabatic condition
which makes (3.24) and ¢X(7)e? (") ~ 0 (n # 0) appropriate, its origin is probably a
non-adiabatic effect that comes from §, because (3.50) shows that the BSN phase has
the information of the non-adiabatic part of the QME (5p(t) = p(t) — po(ar)).

For the RWA, at equilibrium (zero-bias) case, po(«) is the grand canonical distri-
bution

dof € BHs(as)=uNs)

pec(aus; B, Bu) = Z(as; B, Bu)

(3.67)

Cf.(A.11). Here, E(as; 5, 5u) def Trg [e‘B(HS(O‘S)_“NS)], B is the inverse temperature
of all baths and p is the chemical potential for b € G. (3.67) is derived from (2.152)
and (2.165). At zero-bias, for pumping by only o’ (¢ are fixed), (3.20), (3.33) and
(3.41) lead that the pumping dose not occur in all orders of w when « are fixed.

3.5 Arbitrariness of pseudo-inverse
General solution of RK (ay) = 1 — |po(w))) (1] is given by
R(t) = ()N {1 + Ro(v), (3.68)
where Ro(a) is one of the solution of
Ro(@)K () = 1~ |po(c)){(1]- (3.69)

pi(t) can depend on the initial values of the QME. In the following of this section,
we show that [p(™ (t))) = {R(t)%] |po(w))) is independent of p;(t). Then, p(™ and

p™ are independent of the choice of the pseudo-inverse.
pM(t) is given by

D@ = I oo()}) + Rolae) o oo(a))

= Rofau) 5 po(a)) (3.70)
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Then, pM (t) is independent of the choice of the pseudo-inverse. Next, p(?)(t) is given
by

D) = 10 [(11Ro(or) L |polan))] + Ro(ae) & [Rofa) & |pofae))137)

By the way, applying (1] to (3.69), we obtain
(LIRo(e)K (a) = (1] = (1]po(a))((1] = O. (3.72)
This leads
{(1Ro(e) = Ca)((L]. (3.73)

Then, |p®(t))) and |p™(#))) do not depend on the choice of the pseudo-inverse. In
fact,

PO @) = \pi(t)»jt«llp @) +Ro(at)*\p (), (3.74)

leads
(1m0 = <<1‘Pi(t)>>%<<1|/)( () +Claw) o d <<1|p (1)) (3.75)

Then, (1|p™(t))) = 01leads ((1|p»* 1D ())) = 0. Because of this and ((1|p™)(¢))) = 0
derived from (3.70) and (3.73), we obtain

(1p™M @) =0 (n=1,2,3,---). (3.76)

This and (3.74) lead
P (E) = Rolow) 5 10™(0)): 677)

3.6 Generalized mater equation approach

It is important to recognize the relations between the FCS-QME approach and the
GME approach [66, 33, 67, 68, 69, 70, 71]. In the GME approach, p;(t) = (i|p(t)|i) are
governed by the generalized master equation (GME)

t
t) :E / dt' Wi (t,t")p; (t), (3.78)
g —00

where |i) are the energy eigenstates of the system Hamiltonian. The kernel W;;(¢,t’)
can include the higher order contribution of the tunneling interaction between baths

and the system. In the GME, p;(t’) is given by p;(t) + > 7o, a k,t )t d 5gk(t) [66, 33].

Moreover, W;;(t,t') and p;(t) are expanded as W;;(t,t') => 07 (> > W () )(t; t—

t)and p;(t) = >0 o> p(T(L) (t), where W(r(”) ,(t:t —t') and py(br)n)( ) are of the

order of w"I'™. In particular, Wi(jo() )(t t—t) = Wl(jo(%) (a;t — t') is the kernel where
the control parameters are fixed to a;. Up to the second order of the tunneling in-
teraction (in the following we consider this level of approximation), we obtain (see
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Appendix F) [33, 70]

0= ZKf]‘))(at)pﬁ-”)(at), (3.79)
(n)
dpz n TL
( Z K(O (ae)p +i 1)@) (3.80)
forn=0,1,---, with
t
K () = / dt Wi (an,t = 1), (3.81)

which is the instantaneous Liouvillian corresponding to our K (y). (3.79) is just

the definition of the instantaneous steady state pgo) () = pg.%) (t), which satisfies

> pgo)(at) = 1. Additionally, pg?gl)(t) for n > 1 satisfies ), pg?%)(t) = 0. The
conservation of the probability leads to ), K Z(JO ) (ow) = 0, which corresponds to our

(1| K (a;) = 0. The charge or spin current io . (t) is given by [69, 70]

Zw (oy)p;(t (3.82)

corresponding to our (3.13). wg-“ (ay) is the instantaneous current matrix of O,, in the

present approximation, which corresponds to our W (a;) and is linear in I' (see
(8.15)). ip,, (t) can be rewritten as

Z w " (ou)p;(t w?“ (@) e Z wg“ (). (3.83)

w;)“ () corresponds to (j|W 9 (ay)|7). Substituting p; (t) ~ >0, p;?)_n) (t) into (3.82),
we obtain

i0,(t) = > i)t )Y w (n)p (). (3.84)
n=0 2,]
(3.80) for n = 0 leads to [69]
(0)
d o
o ZRJZ (o) ( ) (3.85)

Here, Rj;() is the pseudo-inverse of K l-(]Q) (o) corresponding to our R(«¢) and it is
given by [69]

Rji(at) = (K_l)ji, f(ji = K](?) — K;g) (386)
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Substituting (3.85) into (3.84), we obtain [69]

©)
e Z% dpz ( dpi (o) (3.87)

= Zwkj a)Rji(or) = > ws* () Ryilaw). (3.88)
k,j J

A similar method has been used in Ref.[66]. @?“ (o) and (3.87) respectively corre-
spond to our (1| (a)R(a) and (3.51). Moreover, (3.80) for arbitrary n leads to

o dapj; <t>
Pj(—n-1) ZRﬂ ) ———— (3.89)

which corresponds to our (3.33). Because of these relations, the GME approach is
equivalent to the FCS-QME approach in the calculation up to the second order of the
tunneling interaction. Additionally, we discuss corrections due to the non-adiabatic
effect of the FCS-QME in Appendix D. The first equation of (D.7) is consistent with
pg.}g) (t) = O(wtp) derived in Appendix F. Here, 73 is the relaxation time of the baths.

In this chapter, we proved the equivalence between (3.12) and (3.44) using a key
relation (3.52) and showed the origin of the BSN phase is a non-adiabatic effect, and
connected the FCS-QME approach and the GME approach [69]. These are among
the most important results of the first half of this thesis.
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Chapter 4

Quantum adiabatic pump

41 Model

In this chapter, we consider quantum dots (QDs) (denoted by a symbol S) weakly
coupled to several leads. The total Hamiltonian is Hyot (0/(t)) = Hg(as(t))+>_,[Hp(og(t))+
Hgyp(asy(t))]. Here, Hs(as(t)) is the system (QDs) Hamiltonian, Hy(ay(t)) is the
Hamiltonian of the lead b, and Hgy(asp(%)) is the tunneling interaction Hamiltonian
between S and the lead b. To observe the spin effects, we suppose that the leads and

the system are applied to collinear magnetic fields with different amplitudes, which

relate to spins through the Zeeman effect. The leads are noninteracting;:

Hy(op(t)) =Y (enk + 095 By(£)) Chyy ko (4.1)
k,o

Here, o =1, |= %1 is spin label,

1 *

9o = 5HBIb (4.2)
where g; is the g-factor of the lead b, up is the Bohr magneton and By(t) is the
strength of the magnetic field of the lead b. czkg(cbk(,) is the creation (annihilation)
operator of an electron with spin ¢ and momentum £ in the lead b. The system
Hamiltonian is

HS(aS(t)) = Z Ens,ms’ (BS (t))aizsams/ + HCoulomba (43)
n,m,s,s’
where a}, is the creation operator of an electron with orbital n and spin s. £,,5 s (Bs(t))
means the energy of the electron for n = m, s = s’ and the tunneling amplitude be-
tween orbitals for (n, s) # (m, s’) which depends on the magnetic field of the system.
Hcoulomb denotes Coulomb interaction. The tunneling interaction Hamiltonian is

Hgb(aSb(t)) = Z \/ Ab(t)vbkmnsaibscbkg + h.c., (44)

k,o.n,s

where A (t) is a dimensionless parameter, and vy 55 is the tunneling amplitude.
We assume Bg, { By}, and {A}; are control parameters (denoted

o = (Bg,{Bv}p, {Ap}s) and are called the dynamic parameters). The thermody-
namic parameters (the chemical potentials and inverse temperatures of the leads,
{up}s and { Sy }s) are also considered as control parameters in § 4.2.2 and § 4.3.2. We
denote o’ = {Bp, i }p» and o = o’ + . Yuge et al.[23] chose the set of control pa-
rameters as only o”. However we are interested in ¢’ for the reason explained in §
4.2.2.
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We choose the measured observables {O,} = { Ny }p,0=1,) With Npe = >, czkacbkg.
The pumped charge (spin) of the lead b is given by (ANy) == (ANy; ). (ANy,) are cal-
culated by (3.28). In fact, what we call the pumped charge, (ANy;) + (ANy)), is the
pumped electron number (actual pumped charge is given by —e[(ANy) + (ANyy)],
where e (> 0) is the elementary charge).

In § 4.2.3 and § 4.3 we consider a one level system

Hg(ag(t)) = Z ws(Bs(t))alas + Ua$a¢a1a¢, (4.5)
s=1,)

as a special model of (4.3). Here, s =7, |= %1,
ws(Bs) = wo + sgsBs, (4.6)

with wy the electron energy at Bg = 0, and

1 *
gs = 5/“3957 (47)

where g5 is the g factor of the QD.
In the following of this chapter, we apply the FCS-QME with RWA.

4.2 Non-interacting system

In this section, we consider a noninteracting system (Hcoulomb = 0). The system
Hamiltonian (4.3) can be diagonalized

2N
Hg =" wblb;, (4.8)
=1

by a unitary transform a,s = Zfivl Uns,ibi. The tunneling interaction Hamiltonian
(4.4) is

Hgy = Z Wikoib) coro + hoc., (4.9)
k.o,
with
Wike,i = Z V ApVikonsUps ;- (4.10)

In § 4.2.1, the Liouvillian and its instantaneous steady state are explained. In §
4.2.2, we consider the contribution of (3.29) and show that this cannot be neglected
in general if the chemical potentials and the temperatures are not fixed. In§ 4.2.3, we
calculate the BSN curvatures for two combinations of modulated control parameters
(BL, Bs) and (AL, Bs).
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4.2.1 Liouvillian

The Liouvillian in the RWA is given by

2N

KX(a) = > KX(a), (4.11)
i=1

K’ix(a)o = —i[dibzbi, o] + ﬂi‘(a) o —i[Hy, e, (4.12)

if {&;} are not degenerated. Here, super-operator IIX(«) operates to an arbitrary
operator e as

. 1 1
X (a)e = {@;;Xb} o bi— @7 bkl — J@fbib] e

1

_ 1 1
0, b e b — S07 @ blb;— SOl e |, (4.13)
with
BN = 21y Whkoal > fi (@) €T 5 (epk + 0.5 By — @1). (4.14)
bk,o

Here, ;" (w) = [e#@~#) 1+ 1]71 is the Fermi distribution function, f, (w) = 1— f;} (w),
Xbo 15 the counting field for Np,. The Lamb shift Hamiltonian is given by

Hy,; = Qi(a))blb;, (4.15)
with
1
(o)) = —5<\1/; n x11+) (4.16)
1
Ut =2 Wokoi |2 S (@:)P —. 4.17
; b; ol @GP (417)

Here, P denotes the Cauchy principal value. CDfE’X satisfies

OF = &N =) D (4.18)
b,o
and
with
O =21 Y | Wokodl £ (@0)d (eur + 096 By — @), (4.20)
k
We set

I = Z Fpoi = Z Iy, (4.21)
b,o b
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with
Dyoi =200 [Wikei|*0(cor + oguBy — @7). (4.22)
k
Then,
Li=@f + 27, (4.23)
and
O = Dooi fif (@1), (4.24)

hold. The matrix representation of KX(a) (see Appendix B) by the number states of
bzbi (10); and |1);) is a 4 x 4 matrix which is block diagonalized to {|0);; (0], |1):: (1]}
space and {|0);;(1],[1);; (0]} space. The {|0);;(0],|1);i(1]} part is given by

_ (-2 @7 |00));
KX(a) = (@ghx —@;>|11>>i' (4.25)

{]0Y44(1],]1):4(0|} part does not relate to the instantaneous steady state of K X(a). The
eigenvalue of the instantaneous steady state of K X(a) is given by

() = 9/ () ; () /DY, 426
with
DX(a) = [®] + @7 ]*/4 — [0 ] — @, ¥X® ], (4.27)

The corresponding left and right eigenvectors are | ;(«))) = C}(a)|00))i+E} (a)|11));

. o XP X
and (I3 5(0)] = £{(00] + v¥(@): (1] with CX(0) = (o Fimc,

& O+ ET)

BH0) = Ry sarpraars 0
o — & +2/Df(a)
v () = BT : (4.28)
At xpo = 0, EX(r) becomes
ot
E; _ i 4.29
(©) = g7y 429)
and C}*(«) becomes Cj(a) = 1 — E;(«). We have
(@) =D A (a), (4.30)
po(a) = (X) po.i(e), (4.31)

i§(@) = Q15 (@). (4.32)
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4.2.2 Instantaneous steady currents

oY)
A(iXbo)

Zbcr Z ZbU' i (433)

The instantaneous steady current is given by ;> (o) =

| —o- (4:30) leads to

Iy (@)
Here, iy (@) = 5555 }X:O are calculated from (4.26) as

(I)ba z(I):_ (1) (I)Ij_a )
= . (4.34)

(@) =
From (4.18), we obtain

Zzbm (4.35)

From (4.24), we obtain

Fba,z‘ Zb/(?sb) Fb’,i[fb/ (‘Dz) - fb(a’z)]

= (4.36)

i) =
zif”(oa) vanishes at zero bias (8, = 3, uy = p). Let us consider the modulation of
only the thermodynamic parameters (o) similar to Refs.[23, 79, 24, 83]. The fac-
tor depending on o of zbm(at) is fa,, (1), (t ) (@i) = f8,(6), (1) (@i) With f (W) =
[eA@=r) 1 1], Hence

<ANb0>iS = Zrbaz Z Fb, / dt fﬁb/ 1),y (t ( ) fﬁb (~i)]a (437)

i T b (£b)
is generally nonzero and is much lager than (ANbU)gerry because the period 7 is large
for adiabatic pumps. Similarly, we can show that (AN, )3 is generally nonzero for
interacting system (§ 4.3.2). Reference[24] considered special modulations of only
thermodynamic parameters which satisfy (AN,)5® = 0. In fact, the instantaneous
steady currents are always zero for arbitrary modulations of only the dynamics pa-
rameters at zero bias.

The pumped charge and spin due to the instantaneous steady currents (back-
grounds) are generally nonzero even if the time averages of the bias are zero.
References[68, 69] (two leads case) chose V' = puj, — pg as one of the modulating
parameters and considered a pumping such that 1 Jo dt V(t) = 0and (ANy,)% # 0.
In such pumping, the (thermal or voltage) bias is effectively nonzero.

Even if the backgrounds do not vanish, one can detect the BSN curvatures by
subtracting the backgrounds by using zero-frequency measurements or by lock-in
measurements. However, if one wants to apply the adiabatic pump to the current
standard[50, 51], the instantaneous steady currents should be zero at all times be-
cause the backgrounds are sensitive to the velocity of the modulation of the control
parameters and its trajectory. In contrast, the pumped charge and spin due to the
BSN curvatures are robust against the modulation of the velocity and the trajectory.
Hence, if one wants to directly apply the BSN curvatures to, for instance, the current
standard, one should fix the thermodynamic parameters at zero bias.
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4.2.3 BSN curvatures

In the following of this subsection, we consider one level system of which the Hamil-
tonian is (4.5) at U = 0. The instantaneous steady state is given by |po())) =
®s=1.,|p0.s(a))) because the Liouvillian is described by a summation (KX = Doemtil KY).
Similarly, the corresponding left eigenvalue is given by (5 ()| = ®s=1 {5 ,(@)]-
The BSN vectors are given by

Aba — bo( ./ )
w(e) == 7o) =0 (4.38)
s=1,
where
¥ () I
bo 1 S T,
vl (o) = — = , 4.39
( ) 8(2Xbcr) x=0 I's ( )
with
Dhos(@) = 2mA Z [Vbkos|*0 (e + ogp By — wo — 595 Bs). (4.40)
k
v%7 (o) dose not depend on o”. dbo 027 (') = 1 leads
OFEq ()
bo _ s
DAY (a) = oo (4.41)
b,o s=T,4
This equation and (4.35) lead
Z<ANbo> = - Z [Es(a‘r) - ES(O‘O)}' (4.42)

b70 SZT»L

The RHS is (—1) times the change of the total electron average number of the QD.
The above equation describes the conservation of the total electron number. (4.38)
leads to an expression of the BSN curvatures

bo (. /
Fio) = - [avgasfj ) 8];;(f) — (m ). (4.43)
s=1,4

We emphasize that (4.43) is consistent with the results of Refs.[68, 69, 23], which
showed that the pumped charge (and also spin in Ref.[69]) vanishes at the noninter-
acting limit in these settings. The set of control parameters o was " (for Ref.[23])
and {wo,V = pur — pugr} (for Refs.[68, 69]). If ™ or o™ is an element of o, F27 () is

consistently zero. In Refs.[68, 69], the line-width functions were energy-independent,

ano’,s(al) _ _ arba,s(a/) b _
oy~ = 0= gy — and F7 (o) =

namely I'y, s(/) = 5 sI'y=constant. Hence
0 hold consistently.

To calculate %9, (a), we need to assume the energy dependences of I'y, . For the
simplicity, we assume that

Thos = 00,50 + Ty - (sgsBs — 0gyBy)]
= 00,5 D[V + 7, - (sgsBs — 0gsBy)], (4.44)

where T} are energy differential coefficients of the line-width functions at B, =
Bs = 0. Namely, we disregard spin flips induced by tunneling between the QD
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and the leads. (4.44) is always appropriate when |I', (95 Bs — gy Bp)| < T is satisfied.
Additionally, we fix o to zero bias (8, = 8, uy = p), in which Es(«) is given by
Ey(a) = f(wo+sgsBs) with f(w) = [¢*“~#) +1]71. In the following this subsection,
we suppose two leads (b = L, R) case. (a",a") = (B, Bs), (AL, Bs) components
of the charge and spin BSN curvatures of the lead L are

Lt Ll
FBL7BS = BL,Bs
! / / FR
= 9sgrTL[f (wo + 95 Bs) £ f(wo — 95 Bs)] o
tot

=959 [f (wo + gsBs) F f'(wo — gsBg)]

Mg [p—T
(FL(QSBS —9LBL) =5~ Bt I'r(9sBs — QRBR)%)a (4.45)
tot tot
ot Ll
FALvBS = FALvBS
A
_ ’ B won — aeB YLYRAR
gs[f'(wo + gsBs) F f'(wo — gsBs)] (1AL + i)
/ / / YRAR —YLAL
—gs[f'(wo + gsBs) £ f'(wo — 9sBs)]v1.(9sBs — gBL) N TNk
(4.46)

Here f/(w) = % (w) and I'yoy = I't, + I'g. The pumped charge (spin) induced by a
slow cycle modulatlon of (o™, Bg) (a" = By, Ar) are given by

a™,Bg a™,Bg/»

(ANp4) + (ANp)) = / _dadBs (F, FIv o+ FH ), (4.47)

where S™ are areas enclosed by the trajectories of (", Bg). FcfnT B + Fofni B (@" =
By, Ap) are invariant under the transformation v, — ¢y, 7, — ¢y, (for any ¢ > 0).
Hence relevant quantities are 7,’] /T'tot. The coupling strength I’y itself is not impor-
tant. Féz Bs iFBi p, are proportional to gsgr, and Fﬁz Bs T Fﬁi’ B are proportional
to gs. The first terms of the right side of (4.45) and (4.46) are dominant terms. In the
limit v; — 0, FBZ By T Fp Li . Bs and the second term of (4.46) vanish; however, the
dominant term of (4.46) remams Atwy = p, f'(wo + gsBs) — f/'(wo — gsBs) vanish.
Hence, at wy = p1, the dominant terms of the spin BSN curvature of (B, Bg) pump
and the charge BSN of (Ar, Bg) pump vanish. The contour plots of these BSN cur-
vatures are shown in Figs. 4.1(a) and 1(b) and Figs. 4.2(a) and 2(b). The details are
explained in § 4.3.3.

It is important to remark that (o™, a™) = (Br, Br), (AL, Ar) components of the
charge and spin BSN curvatures are zero at zero bias because, in (4.43), Es(o) =
f(wo + sgsBs) are independent of By /p and Aj . As we showed in § 3.4, for
general model, the pumping dose not occur for all orders of the pumping frequency
when ag are fixed.

4.3 Interacting system

In this section, we study the interacting system (4.5). First, we explain the Liouvillian
for 0 < U < oo (8 4.3.1). Next, the instantaneous steady charge and spin currents
are calculated at U = oo (§ 4.3.2). In § 4.3.3, we confirm the consistency between
our results and Ref.[69] for 0 < U < oo. The BSN curvatures corresponding to (4.45)
and (4.46) are calculated at U = oo and differences of the results between U = 0
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and U = oo are discussed (8 4.3.3). Finally, in § 4.3.5, we study the pumping for
0 < U < oo in the wide-band limit (i.e., (4.44) with I'; = 0).

4.3.1 Liouvillian

We explain the Liouvillian for kg7" > T, in which the Born-Markov approximation is
appropriate. The matrix representation of the Liouvillian of the RWA by the number
states {|nyn)} (ns = 0,1 are the numbers of an electron with spin s =7,]) is a
16 x 16 matrix which is block diagonalized to the “diagonal" space (spanned by
{Intny)(niny|tn, n,=0,1) and the “off-diagonal” space (spanned by

{Intny) (mamy |}y ny)#(ms.m,))- The “diagonal” block is given by

—[@? + @r] o, X o X 0 10000

1 ! )
X —[®5 + ¢/ 0 IR 11010))
_ ) ) { 1
K@) = | gha 0 e rel] e [foion @4
0 o of ~lop +op]) 1H1)
with

GEX =2 Ay |bkos* S (w0 + sgsBs + U)
b k,o

xeTXt7 §(epy, + o gy By — wo — sgsBs — U), (4.49)

and ®FX = ¢FX| . ¢TX satisfies

+ +, _ +
¢s = ¢s X’XZO - Z¢bo‘,s’ (450)
b,o
and
+,x N
. = Fop ., 4.51
Bixon) lx—o — T Vb @51)
with

Brs = 2705 Y [Obkos|* S5 (wo + s95Bs + U)
k

xeTX0 §(eyy, + o gy By — wo — sgsBs — U). (4.52)

The off-diagonal block is a (12 x 12)-diagonal matrix, which dose not relate to the
instantaneous steady state. At U = 0, KX(«) becomes K%‘(a) ®1,+ 1T®Kf(oz), where
K¥(a)(s =1,]) are given by (4.25) and 1, are identity matrices. In the opposite limit
U — 0o, KX(«) reduces to

—[@f + @] &% @ XY\ |0000Y)
KX () = X —o; 0 |[1010)), (4.53)
o 0 —a ) [0101)

because the density of states of the leads vanish at high energy (¢= — 0).
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FIGURE 4.1: (a) BSN curvature of charge of (By,, Bg) pump, [Fé; Bs T

L5 /(82)% at U = 0, (b) the BSN curvature of spin, [FL! , —
9 2
Féi,Bs]/(ﬂTB) atU =0, (c) [Fé/Z,BS + Flgi,Bs]/(uTB) atU = oo, and

@) [F5! 5. — Fpr g/ (42)® at U = oo. The values of the parameters
used for these plots areI'y, =T'p =TI, I, =T% = 0.1, 5 = 0.5/T,
wo = p— 3T, and Br = 0, and all g factors (g}, g5, g%) are —0.44 (bulk

GaAs).
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FIGURE 4.2: (a) BSN curvature of charge of (Ar,Bs) pump,

[Fﬁ;BS + ng,Bs]/ﬂTB at U = 0, (b) the BSN curvature of spin,

[FXT o — FXY g ]/22 atU =0, () [FAT 5.+ FAY p.]/B2 atU = oo,

and (d) [Fﬁ;BS - Fﬁi,Bs]/Pr_B at U = oo. The values of the parame-

ters used for these plotsare v, =I'r =I',7; =13, =0.1,and By =0
and other conditions are the same as Fig. 4.1.
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_ kBBs

= 1
-40 =20 0 20 40 F

(¢) [w(Bs)—ny(=Bs)]-T

FIGURE 4.3: @)ns(B), (b)[n's(B) +nls(~B)] T, (0)[n’s(B) — nis(~B)] -
I for U/T =0, 15, 3, 45, 6, 7.5, 9, co. Here, n},(+Bs) =

L 6nU(B)

95 0B |p=+B¢ and ny (Bg) is defined by (4.92). The conditions are

the same as Fig. 4.1.
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4.3.2 Instantaneous steady currents for U — oo

In this subsection, we set U = co. The characteristic polynomial of KX(°) is denoted
as

2
Cs(x, A) = det (KX — X) =3 " C ()" = M. (4.54)

n=0

Because of C(0) = 0, A = 0 is one of the solutions at y = 0. Now we set x;, as
infinitesimal and other counting fields are zero. Then, the eigenvalue corresponding
to the instantaneous steady state is given by A = \Y = ixpo - 55 + O(x2,). It leads to

0= Cs(x, AX) = C1(0)ixpois, + ixpe CL7 with €l = 2500

Bixty) ‘x:O’ and we obtain

| cle
Ty = — , 4.55
bo Cl (0) ( )
with cl(o+) = —[ofo] j O 0f 4+ &0 From Co(x) = —[®F + @]o7 @] +
—XPH— )X —PH X X
(I>¢ (I)T(I)i +q)¢(I)T <I>T , we have
—(p- BT —p+ —(p- BT —p+
s — D (P, B = Py, )+ P (D, 12 — 21D ) (4.56)
o TP —p+ —— : :
PP+ P+ PP
The total instantaneous steady current vanishes:
> i =0. (4.57)
b,o
i3> can be rewritten as
s— (I):Srba,s / Fb’,s fb’ Ws) — fb Ws
D S S Do sl (@) = fon)] s

bo — JEp— = R —
@T®¢ +®T(I)¢ —i—‘IJTQD¢

Here, ®—, (s =T, ) describes @ for s =1 and o for s =]. At zero bias, the instan-

taneous steady currents vanish. Similar to § 4.2.2, (AN,,)% are generally nonzero
when o” is not fixed at zero bias.

4.3.3 BSN curvatures for U — oo

The instantaneous steady state po(«) and corresponding left eigenvector [ («) are
written as

po = pol00)(00] + p1]10)(10] + py01) (01| + pol11) (1], (4.59)
and
l%‘ = \00><00\ + l¥]10><10] + lf\01><01\ + l§]11><11]. (4.60)

The BSN vectors are given by

Opc(a
A@) = - 3 () gofn), (4.61)
e=1,,2
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X

where %7 (o) = aégl(‘;ij)})* ‘X:O' It leads to the BSN curvatures

- 01 () Ope(a
Fr(@) = - Gagn) 805”)
c=",,2

— (m < n). (4.62)

We confirmed the consistency between our results and Ref.[69], which studied the
similar system for 0 < U < oo using the wide-band limit. As we explained in Chap.3,
gpg“ (cv) of (3.88) corresponds to —((loo “(a)|, namely —1% (). In the condition of the
wide-band limit, we calculated 127 (a) (¢ =7,{,2) for 0 < U < oo and confirmed
numerically the correspondence between pSH (@) (¢ =1,1,2) and —[iZ (a) + 15 ()]
for the charge and spin pump.

Particularly, in the limit U — oo, p2 vanishes and F’?, («) reduces to

bo(o0) [ 5 ()
Fie)(a) = — 3 alsaam(a) 5”Saarfo‘) —(m ), (4.63)
s=1,|

where pg"‘”) (o) and bo ) (@) are the limits U — oo of ps(a) and 1%°(«), respectively.

From (4.53) we obtain

G

(00) —
pNa) = (4.64)
(I)T(I)l —i—‘PT(I)¢ —|-<I)T‘I>¢
(0) s
() = =5 165
(190 = 2 (465
and
P, —i¥(a
o) (q) = —bos bor 7 _b"( ) (4.66)
O
(4.57) leads )7, , 12"(“)(04) = 1. Then, we obtain
9 (a)
bo (o) - _ gpc \)
> Ak ) (q) > T (4.67)
bo c=1,2
This equation and (4.57) lead
D (AN = = Y [P (ar) = > (o). (4.68)

b,o s=1{

The RHS is (—1) times the change of the total electron average number of the QD.
The above equation describes the conservation of the total electron number. In the
following of this subsection, we fix o to zero bias (8, = §, u = p) and suppose

(4.44). Then, 127 () equals v () given by (4.39) and p{°™°(a) are given by

6_18(“’.9 _U')

p(sBs) = 14 e Blw—n) 4 g=Blwr—p)’ (4.69)

We emphasize that Fho(e) (cv) can be obtained by just a replacement,

Ei(a) = f(ws) = p(sBs), (4.70)
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in (4.43). In the following this subsection, we suppose two leads (b = L, R) case.
The charge and spin BSN curvatures of (Br, Bs), (Ar, Bs) pump are given by a

replacement f'(wo+gsBs) — p'(£Bg) in (4.45) and (4.46), where p'(Bg) def gisag(TiS).
Similar to U = 0, the charge and spin BSN curvatures of (By,, Br), (Ar, Ar) pump
are zero.

In Figs. 4.1(a)-4.1(d), we plot the BSN curvatures of (By,, Bg) pump normalized
by (ug/T)? where ' = ', = T'g and up = 57.88 ueV/T is the Bohr magneton. For
U = 0, the charge and spin BSN curvatures are shown in Fig. 4.1(a) and Fig. 4.1(b),
and for U = oo these are shown in Figs. 4.1(c) and 4.1(d). The horizontal and vertical
axes of these plots are the strength of the magnetic fields Bg and B, normalized
by I'/pg. The values of the parameters used for these plots are I';, = I'p = T,
I'' =T, =01,8=05/T,wy = p—3T, Bg =0,and g] = g}, = g = —0.44
(bulk GaAs). The BSN curvatures of (A, Bs) pump normalized by pp/I" are shown
similarly in Figs. 4.2(a)-4.2(d). In all plots, v, =T'r =T, ~}, =T, = 0.1, B, =0,
and other conditions are the same as in Fig. 4.1. In Figs. 4.1 and 4.2, the maximum
values of |I',(gsBs — g»Bs)|/T'y are 0.44 and 0.22 (<1), respectively. The pumped
charges and spins are given by (4.47).

Figure 4.3(a) shows the instantaneous average numbers of the up spin electron
of the QD, ny(Bg) defined by (4.92) at U/I" =0, 1.5, 3,4.5,6,7.5,9, co for § = 0.5/T,
wp = p—3I', and gs = —0.44 x pp /2. In particular, ng = f(wo+gsBs) and n(Bs) =
p(Bg) hold. Because two electrons cannot occupy a QD at U = oo, the magnetic field
dependence of p(Bg) is more sensitive than f(wy + gsBg). Figures 4.3(b) and 4.3(c)

show ny;(Bs) £ ny;(—Bgs) normalized by 1/T", where ny;(+Bgs) = gisa"giém\gzigs.

In Figs. 4.2(a) and 4.2(c), the charge BSN curvatures of (Ar, Bg) pump vanish at
Bs = 0. This is because the first term of (4.46) vanishes since n’(Bg) — n'(—=Bg) = 0
(n denotes ng or n) for Bg = 0 and the second term vanishes since gsBg — g, By = 0
for Bs = 0 = Bp. Similarly, in Figs. 4.1(b) and 4.1(d), the spin BSN curvatures of
(BL, Bs) pump vanish at B¢ = 0 = By. The zero lines in these plots relate to the
cancellation between the first and second terms of (4.45). Figures. 4.1(a), 4.1(c) and
Figs. 4.1(b), 4.1(d) are respectively symmetric and antisymmetric under the transfor-
mation (Bg, Br,) — (—Bgs, —By,). Similarly, Figs. 4.2(b), 4.2(d) and Figs. 4.2(a), 4.2(c)
are respectively symmetric and antisymmetric under the transformation By — —Bs.
We emphasize that pure charge and pure spin pumps are respectively realized for
(BL,Bs) pump and (Ar, Bg) pump such that the areas S™ in (4.47) are symmetric
under the above transformations. An instance of symmetric area of (B, Bg) pump
is a disk of which the center is Bg = 0 = By..

In wg > p region, the larger wp — 1, the less difference between U = 0 and U = oo
becomes. The Coulomb interaction prevents two electrons from occupying the QD.
This effect is conspicuous in the wy < p region, although it is not important in the
wo > p region.

As shown in Figs. 4.1(a), 4.1(c) and Figs. 4.2(b), 4.2(d), the Bs dependence of the
charge BSN curvature of (B, Bg) pump and the spin BSN curvature of (A, Bg)
pump at U = 0 are more gentle than those at U = oc. It results from the behavior of
n'(Bg) + n'(—Bg) as shown in Fig. 4.3(b).

As shown in Figs. 4.1(b), 4.1(d) and in Figs. 4.2(a), 4.2(c), the Bs dependence of
the spin BSN curvature of (By,, Bg) pump and the charge BSN curvature of (A, Bg)
pump are opposite. This is because the leading term (in weak magnetic field region)
of these are proportional to n'(Bg) — n’(—Bg) and its Bg dependence is opposite in
U =0and U = oo for wg — p < 0 as indicated in Fig. 4.3(b). This inversion is realized
for only wy — p < 0 region. Atwy = p, f'(wo + gsBs) — f'(wo — gsBs) vanish. In
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wp > p region, the signs of f'(wo + gsBs) — f'(wo — gsBs) and p'(Bg) — p'(—Bg) are
the same.

In Figs. 4.1 and 4.2, absolute values of the normalized BSN curvatures are smaller
than unity. However, we can improve this problem by tuning g factors. The first and
second terms of the right side of (4.45) are the second and third order in the g factors,
and the first and second terms of the right side of (4.46) are the first and second order
in the g factors. If all g factors change to —20 (for example for the materials like InAs,
InSb), the first, second, and third order terms become about 45, 2 000, and 90 000
times. In fact, for these values of g factors, the assumption (4.44) is not appropriate
for magnetic fields that are not small; we need concrete energy dependence of the
line-width functions.

4.3.4 Instantaneous steady currents

The characteristic polynomial of (4.48) is
det(K Z cn (O™ 4+ AL (4.71)

Similar to (4.3.2), we obtain

T i (4.72)
Yo = 01(0)7 .
with 47 = g(czgc(sz)) ’X:O’ co(x) is given by
co(x) = KooK K| Ko — KOOKu%_’x(ﬁr’X - KOOKTWT_’X(??X
— K| Koo® XY — Kog Kipd| Y@
X +1X X +7X X +7X —X +1X
0 TR TY er T + LR gy
X +aX X +7X X +7X X +1X
TR TR TR R Rt AR (4.73)
Then, we obtain
7 = —KooKy\ [0y, 6] = 6] b\ ] — Koo Kir[dy, 107 — &7 8y 4]
— K| Ko[® & — 070 ] — KooKy [®, &) — &, @ ]
[(Dbch \L - o5 ¢;U¢}¢I¢T o ¢)+[¢bo’,¢¢'f ¢J, (bbo’T]
+[‘I)baT T - o CI);;TWT_% + o0 [¢bo,T¢T ¢T ¢baT]
+[(I)bch, - o ‘I)IJ)Z N ¢f + @ [¢ba,¢¢¢ d)bo' 1
[‘I’bM N ‘I)ZLHQS{% e ‘I’+[¢bg¢¢¢ or ¢ba¢] (4.74)
Here,
Biors = 270D Wbk s> fi (ws + U)d(epk + 0o By — ws — U), (4.75)

k
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and <I>bia s = ¢;575|U:0. c1(0) is given by

c1(0) = —KooKp K| — KooK Koo — KooKy Koo — Ky K| Ko
+K | (9] ¢ + 7 0F) + Koo(¢] 6] + ¢5 ¢7)
R (07 ¢ + @ BT ) + Koo (P57 + @ ). (4.76)

Yho b7 =0leads Y, , 5% = 0. At zero-bias, i vanishes.
4.3.5 BSN curvatures
(I¥)* are given by

[ Ky + Ag][— Koo + )\gkp + ¢+’X<I> yx(I)Jr X ¢+,x¢) XP Ir,x

) = , (4.77)
! (=K + Aé]q’}msﬁ + [ K+ AX]‘V’X% X
“ K+ )\X — Ko + )\X + +’X<I) ,Xq)-i- X +’X<I>_’X@+’X

[~ K + ,\g]qﬁ%{ X+ [—Ku + )\g]@?xqﬁm

L e [ Ky + A
(1) = —1 i . (4.79)
1

Similarly, we obtain p. = porc (¢ =T, ],2) with

_ - &+ dH— “PpTPT
= Ky Koop, + ¢ @LO 5 — ¢ /D, (4.80)
—K 1976 — K@ o

KnKoody + ¢ @07 — ¢ @07

m = — — s (4.81)
—Kn® oy — K @1 ¢,
—®F — Ky
ry = —1 = T (4.82)
0
! (4.83)
po = :
1+ ZCZT,¢,2 Te

In the following of this subsection, we suppose zero-bias. Then, py and p. become

e Blws—p) e Blwrtw +U—2u)
= . (4.84)

—
—
—

(1]

Here,

E =14 Pt 4 o= Bloy—n) 4 o=Blwptw +U—2u) (4.85)

In the following of this subsection, we suppose that the line-width functions do
not depend on the energy. Then, we obtain

Lo,

= 5 =, (4.86)
oot + Too

lgo _ bo, T + 1 4 _ l?o _+_l\l£¢7‘ (487)

r
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Substituting these two equations to (4.62), we obtain

o T Ong(a)
bo _ bo,s s .
Fb (a) = s:§¢:¢ ( TR ) = (m ). (4.88)

Here,

—Blws—p) 4 e=B(wo+U—2p)
ne = potpr = 2 : (4.89)

—
—

is the average number of the electrons in the QD with spin s. Because the line-width
functions are energy-independent, the BSN curvatures of (5, Bs)-pump vanish. In
the following this subsection, we suppose two leads (b = L, R) case. If we suppose

Thos(W) = 00,50 = 05,557, (4.90)

the BSN curvatures of (A, Bs)-pump are given by

It L / / YLYRAR
Fx, ps £FA Bs = —9slny(Bs) F ny(—Bs)] (iDL + RAR?’ (4.91)
where
—B(wr—p) —B(2wo+U—2p)
nu(Bs) & ny = ¢ +e (4.92)

1+ e Blwr—n) 4 e=Blwi=n) 4 e—BwotU—2p)’

/ def 1 9ny(B)
) ¥ S (4.93)

Because ng = f(wo + gsBs) and n(Bs) = p(Bs), (4.91) confirms with the results of
§ 4.2.3 and § 4.3.3. n};(sBg) and n};(Bs) F n};(—Bgs) are given by

ny(sBg)
e Pwo=i)[g=5P9sBs | 3895 Bs o=FR(wo—m)+U] 4 9e=Blwo—p)]
- _B {1 + 6_5("‘}0_14) [e/BQSBS + e—ﬁgsBs] + C_B[Q(WO_M)JFU}}Q ) (4.94)
/ /
ny(Bs) — ny(—Bs)

_ B[l — e—Fl2lwo—n)+U])

e—ﬂ(wo—ﬂ)(eﬁgsBs _ e—ﬁgsBs)
{1+ e—Blwo—p) [eB9sBs + e~BgsBs| + 67,8[2(w07u)+U]}2’
(4.95)

ny(Bs) 4 nyy(—Bs)

e Blwo—m)[] 4 e~ PR(wo—m)+U)(B9sBs 4 ¢=BasBs) 4 4e=2B(wo—p)

- {1 + eBlwo—w)[efysBs 4 ¢=PysBs] 4 e=Bl2(wo—n)+U]}2 : (4.96)

In particular, at

o=~ @97)
njy(Bs)—n(~Bs) = 0and FX! ; +Fx' = 0hold. (4.97) is called the half-filling

condition. Under this condition, pure spin pump is realized. nj,(Bgs) — ny,(—Bg) is

proportional to Fyr 4 | _ e=Al(wo—w+U]_ This factor becomes Fy = 1 — e~ A[2(wo—n)]

atU =0and Foo =1 atU — oo. If wg — p < 0, Fy < 0 holds and ny;(Bg) — ny;(—Bs)
is negative for 0 < U < —2(wp — p) and 0 for U = —2(wp — i) and positive for
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U > —2(wo — p). Ifwo — > 0, ny;(Bs) — ny;(—Bg) is always positive.
We focus on a cyclic pump of an area A; < A < A}, By < Bg < B{. The
pumped charge and spin are given by

(ANpp) £ (ANL)

AJLr B; Lt L]
= / dAL / B dBS (FAL,BS :|: FAL:BS)
A7 Bg

/At dA VLIROR /Bg dBs gsny (Bs) F ny(—Bs)]
= — n ny(—
AL " (AL +vRAR)? S gSHULES LTS

1 1
LA +YRAR N YLAT + 'YRAR}
x[nu(BY) — nu(Bg) £ {nv(=Bg) — nu(=Bg)}. (4.98)

= _'YRAR[

In particular, if v, A7 < YpAR, vLAL > YrAR,
(ANLp) £ (ANLy) = =[nw(Bg) = nu(Bg) F {nu(=Bg) = nu(=Bg)}], (4.99)
holds. For instance, if the g-factor of the system is negative and B3 = +oo,

(ANL4) + (ANLy) = 0, (4.100)
(ANpp) = (ANL)) = =2, (4.101)

hold.
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Chapter 5

Quantum diabatic pump

5.1 Spinless one level quantum dot

In this section, we consider spinless one level QD coupled to two leads (b = L, R).
|0) (/1)) denotes the state that the QD is empty (occupied). The diagonal components
pn = (n|pn) (n = 0, 1) of the system state p are governed by the master equation:

d (po(t) _ po(t)
dt <p1(t)> B K(at) <p1(t)> ' G
The Liouvillian is given by
_ —fo 1—fp
K = Zb:F”<fb —(1—fb)>' (5.2)

Here, Iy is the line-width function of the lead b, f;, = [eﬁb(s_“b) + 1]~ ! is the Fermi
distribution function, 3, and 4, are inverse temperature and chemical potential of
the lead b, ¢ is the energy level of the QD. The right eigenvectors of the Liouvillian
are the instantaneous steady state

SS — pgs(a)> — <1 _F(a))
7= () = (" r ) >3
and
-1
() o
with the eigenvalue (—I"). Here,
Fla) ¥ Zbrr ofo et Zb: Ts. (5.5)

As a specialty of this model, (5.4) is time-independent. We introduce p%m) = (n|p(™)|n)

(m=1,2,---)and ﬁ%m) = (n|p™|n) (m =0,1,---). ]5%0) are given by

0)
(at) — e fg ds I'(s) S (an)] = e fg dsT(s) [ —P1 (0) + F(a())
(fg’l) ((m) - (0) 7 (00)] (0 Feo)
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We suppose p(0) = *(po(0),p1(0)) = p*(ag). Then, 0 = 0 holds. We choose the
K~!(a) of (3.86) as the pseudo-inverse of K (). We have

-, 1/(0 1
K1:F<1 0). (5.7)

From p(")(t) = [R(ar) &]"po(a), we obtain p™ = t(p"”, pi")) as

P (a) = K (o) (o)
1 (o 1>d 1—F(at))
r'¢) \1 0/ dt F(ay)
__ 1 d(-Flw)
B r(t)dt(F(at)>’ )
and
PE) = K e) 0
__ L d (-
T Tt dt <p§"><t> | 9
5 =1(=p", ") (n =1,2,- ) is given by
() = —e Jods DM ), (5.10)

For by only modulating I', at zero-bias, the pump dose not occur for all orders
(p™ (t) = 0) because p**(a) dose not change.

We consider the particle current to the lead b. From discussion of § 4.2.3, we
obtain

I,

-2). (5.11)

(I = (0,
Then, we get

W) _ d s\ —

and

—p (1) (5.13)



i ]\T,Lb) is given by

o) _ _Do(t) d )
Nb - P(

g (Oét)
) ds I‘(s)pg )(0)
5.2 Numerical calculation
We set the time-dependence of the control parameters as
F(t) = PL(t) + FR, FL(t) = 7[1 + gsinw(t + 5))], I'r= v,

1
fu) = fr(t) = [f(t) = BEO 1 1

, €(t) — u = egsinwt.
1 (t) — p 0

For the numerical calculation, we set
T
g=0.5,w=0.3y, Beg=1, §d = 0,5.

I' of (3.17) is given by (2 — g) = 1.5y. Then,

holds.
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(5.14)

(5.15)
(5.16)

(5.17)

(5.18)
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For § = /2, the pumped particle numbers of the first one cyclic are given by

(ANL) = 7.69464 x 1072,

5
(ANL)PSN £ S [(ANL) + (ANL)™D] = 7.69583 x 1072,

n=1

(AN, >BSN = 9.71762 x 1072,

<ANL) = —1.79649 x 1072,

<ANL) =0,

(ANL) =0,

<ANL> = —0.270724 x 1072,

<ANL> = 0.0336304 x 1072,

<ANL> - 07

<ANL) =0,

(ANL> = 0.0133644 x 1072,

<ANL) = —0.00156459 x 1072,
(ANL)©) = 0. (5.19)

Figure 5.1(b) shows that p;(¢) and f(¢), Fig.5.1(a) shows that dp; (¢) dof pi(t) — f(¢t),
pgl)(t) and pgl)(t) + p§2) (t), and Fig.5.1(c) shows that dp; — pgl) — p§2) and pg?’) (t).

For § = 0, the pumped particle numbers of the first one cyclic are given by

(ANL) = —0.466997 x 1072,
5
(ANLPN £ STANL) 4+ (AN D] = —0.464558 x 1072,

n=1

(AN, >BSN =0,
<ANL> = —1.9376 x 1072,
<ANL> = 1.52006 x 102,
<ANL> = —0.0726599 x 1072,
<ANL) =0,
<ANL) = 0.0572197 x 1072,
<ANL) = —0.0462914 x 1072,
<ANL) = 0.0148158 x 1072,
<ANL> =0,
(ANL> = —0.00221088 x 1072,
(AN)©) = 0.00210926 x 1072 (5.20)

Figure 5.2(b) shows that p;(t) and f(¢), Fig.5.2(a) shows that dp;(t) = p1(t) — f(t),
pgl)(t) and pgl)(t) + p§2) (t), and Fig.5.2(c) shows that dp; — pgl) - p(12) and p§3) (t).
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(a) .
0.02}:

-0.02¢

—0.04¢

() - p =070

0.003
0.002}
0.001¢

1 —0.001}

FIGURE 5.1: (a)op1(t) < pi(t) — f(t)(dashed line), p{" (¢)(red line)
and pV(t) + p'?(¢), (b)p:(t)(dashed line) and £(t), (€)dp1 — pi" —
p'? (dashed line) and p{*) (¢) for § = /2.
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0.04 op1 (t), 5 (), o (1) + p\7 (1)

(a)

o.oz-;"

-0.02¢

—-0.04+

® .1ty ©)
' 0.001}

i
307"

FIGURE 5.2: (a)dpi(t) = p1(t) — f(t)(dashed line), pgl)(t)(red line)
and pi" (t) + p{(t), (b)p1(t)(dashed line) and f(1), ()opy — p") —
p§2)(dashed line) and p§3) (t) for o = 0.
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Chapter 6

Generalized quantum master
equation for entropy production

6.1 Definition of entropy production

In this chapter and Chap.”7 and Chap.8, we suppose that { H, }, are time-independent.
It is natural to identify the average entropy production rate with

5(t) €S By, ()] + 3 Bolt)[ i, (1) — (D) {—in, (D)}]. 6.1)
beC beg
This is given by ¢ (t) = Trg[W7 (con)p(t)] with
W) €S Bl ()] + 3 Bl-WH(a) — i {~ W™ (a)}]. (6.2)
beC beg

The average entropy production is given by

o def Td i
/0 Lo(t)
_ /0 dt T () + /C do" 45(0) +O(%), (6.3)
where
TE(@) E N Bl (@)] + Y Bl-i5, (@) — i —i%, ()], (6.4)
beC beg
and
AZ(0) S Bl Al ()] + 3 Bl A (a) — p{— AN (). (6.5)
beC beg

Here, we used (3.18) for {O,} = {Hp}» + {Np}reg- The excess entropy production is
defined by

o 5 — / dt J3P (o) = / da™ A (o) + (’)(E). (6.6)
0 c I

While we can calculate the average of the entropy production, our formalism is not
compatible to discuss the higher moments of the entropy production. Although
(3.19) is the average of the difference between outcomes att = 7and ¢t = 00f O, o
is not that of some bath’s operator if o” are modulated.
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6.2 Introduction of generalized QME

We consider a kind of generalized quantum master equation (GQME)

d
2P (8) = KM an)p (1), 6.7)
with the initial condition p*(0) = p(0). Here, ) is a single real parameter. We suppose

that the Liouvillian is given by

K)o = —i[Hg(ag), Zﬁb (6.8)

with
b(@)e = e, (a)A, @ By, (6.9)

and
()] 3o = Cha- (6.10)

While ¢} () of (3.1) depend on  if and only if A,, B, # 1, ¢j\, () can depend on A
for all a. We suppose that the solution of (6.7) satisfies

Trs[p'()] = o, (6.11)
where X/ % g(jg) )\ This condition is equivalent to
(1K (@) = (17 (). (6.12)
Let’s consider
(15 (@)l () = A5 () (I (), (6.13)

corresponding to (3.4) for n = 0. Similar to (3.16) and (3.20),

Ao(@) = (LW (a)|po(e))) = T3 (), (6.14)
and

0

oan

Ap(a) = —<<16(0<)I%|po(a)>> = (LW (@)R(a) 5= |po(@))), (6.15)

hold. Although \}(«) and [} () depend on the choice of K*(a), \j(a) and A% (a) do
not depend, as can be seen in the RHS of the (6.14) and (6.15). The LHS of (6.12) is
given by

(1K (o) = (1] Zcba (6.16)

Using this and (3.15), (6.12) becomes

Z Cha(@) BaAq = Z[— > Boci(a) + > Bopncyy ()] BaAq. (6.17)
b

beg
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Infinite solutions of this equation exist. One choice of X*(a) satisfying this relation
is xg, — — B (for all b) and XN, —> 61,%)\ (for b € G) limit of KX(«).
“Higher moments” ( ) =Trg[p*(7)]| y—o (m = 2,3,---) depend on the choice of

K*(a) and seems have no physical meening. In contrast, the higher moments of the
entropy production could be considered for the classical Markov jump process. In
Appendix |, we review the entropy production of the Markov jump process [21, 37],
and in Chap.8, we compare that and (6.3).

6.3 Current operators

The particle and energy current operators from the system into bath b, w™*(«) and
w®(a), are usually defined by

w¥ (o) € —[Lf () Xs)T = —£](0) X (X = N, H). (6.18)

For a super-operator 7, J ' is defined by (JTX|Y)) = (X|JY)) (X,Y € B).

Li(@)e =", (a) A} o B, (6.19)

a

holds. w**(«) is a Hermitian operator and is given by

Z ha(@)BaXsAq (X = N, H). (6.20)
In general, for the RWA,
wie = W (o Z qu)b 1 (W) [85 (W)] T80, (W), (6.21)
w Y

holds (Appendix G). For the Born-Markov approximation and the CGA, wt(a) #
WHo (). From (2.163), (2.166) and (2.167),

w () =0 (b € C), (6.22)

holds for the RWA, the Born-Markov approximation, and the CGA. In the following,
we set

W () o (a) =0 (b € C), (6.23)

and

iSS def

i%, (@) = Trs[w™(a)po(e)] =0 (b € C). (6.24)
Here, we suppose (2.106) for b € G. The generalization to (2.137) case is straightfor-
ward. For {O,} = {Niy}reg + {Hp}s, (2.126) holds in (2. 148) For the Born-Markov
approximation and the CGA, w™ () = W, however, wt(a) # W (). For the



= >3O @laa@)tasw) - ¥ p@aa@)as@)'} (b€ ), (625)

= 33 {wds p@)aa@)asw) - wof @@ as@)t} (b € 6)(6.26)

hold. Therefore, (6.2) and (6.18) imply that W7 («) is given by

W (a) =Y L(a)(BHs — ByNs) = Y 10} (e)(ByHs — BmuNg).  (6.27)
b b

Here,

def [y, beC
Vb_{,U«b e g (6.28)

py, is an arbitrary real number.
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Chapter 7

Geometrical expression of excess
entropy production

In this chapter and Chap.8, we focus on the RWA. We use

W = e (b e 0), (7.1)
W = e W = ™ (b e G), (7.2)

and
IT, (e Pe(Hs—Ns)) — (Hz.)e_ﬁb(HS_VbNS)7 (7.3)

and
[hs(r), Ns] = 0. (7.4)

If we suppose (2.163) for b € C and (2.106) or (2.137) for b € G, these relations hold.
If ngc = 0, existence of Ng, (2.163), (7.2) and (7.4) are not required and the system S
does not have to be described by the annihilation and creation operators (S can be
spin chain or few level system, etc.). Using L’gl = HZl = 0 (see (2.105)) for (7.3) with
e = 1, we obtain

e PoHs=—nNs) — p, o=Bo(Hs—Ns) — . (7.5)

Here, we used (2.144) and (7.4).

7.1 Equilibrium state

In this section, we consider equilibrium state 5, =  (for all b) and p, = 1 (b € G),
and « denotes the set of (g, {asy}b, B, Sit). We show that AZ(«) is a total derivative
of the von Neumann entropy of the instantaneous steady state. Differentiating (6.13)
by )\, we obtain

(T (@)K () + (11K (@) = Ay() (1]. (7.6)

In the RHS, \|(a) = J(a) = 0 holds. The second term of the LHS is ((1|W(«).
(6.27) leads

W7(a) =8> L(a)[Hs — uNs] = BKT(a)[Hg — uNs], (7.7)
b
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ie.,
(B[Hs — uNs]|K(a) = (1]W? (a). (7.8)
Then, (7.6) leads
[({1(@)| + (B[Hs — uNs]|] K () = 0. (7.9)
This implies
{Io()| = —(B[Hs — uNs]| + () (1], (7.10)
ie., {Ii)(a)} = —B[Hs — uNg] + c(a) where ¢(a) is unimportant complex number.

By the way, po(«) is given by

dof € BHs(as)=pNs)

po() = pee(as; B, Bu) = S0 B (7.11)

with E(ag; 8, Su) def Trg[e #Hs(as)=1Ns)] - This is derived from (7.5) (Cf.(A.11)).
Then,

{16(a)}! = In pye(as; B, ) + ¢ ()1, ¢ (@) = c(a) + nE(as; B, Bp),  (7.12)
holds. Substituting this equation into (6.15), we obtain

0

AZ(O‘) = @SVN(pgc(O‘Sﬁ B, B,LL)), (713)

using (H.1).

7.2 Weakly nonequilibrium regime

We introduce

def - def [ O beC def le1p] [e2,8]
e1p = PBp— B, €2p = — , € = max { ——, —, 7.14
16 = Bb— B, €2 {Bbﬂb—ﬂu beg ; 5 ’ﬁﬂ’} (7.14)
where 3 and [u are the reference values, which satisfy
mbin By <pB< max Be, (7.15)
i < Bu< ) 7.16
min Bouy < B < max Botip (7.16)

¢ is a measure of degree of nonequilibrium. We consider ¢ < 1 regime. Now, we
introduce

Ki(a)e © —i[Hs(as) + kHi(a),o] + Y Il(a)e, (7.17)
b

and corresponding instantaneous steady state p(()”) (a):

A

Ki(o)py (a) = 0. (7.18)
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Here, & is a real parameter satisfying —1 < x« < 1. ((1/K.(a) = 0 holds. In the
following, we show

dpo(a)

A%(a) = —Trg lnp(()_l)(a) Dom

} +O(e2). (7.19)

We use the following notations:

ef ef -~ def
onp = By anp = B, X = X (7.20)
Here, a7 = 3 and a3 = B
We expand p{”) and 1, as
ph7 (@) = p§7 + 3 (1) + 220053) + O(2), (7.21)
b
o) = U(a) + Z(5l,bk1,b + ok p) + O(2), (7.22)
b
with
o8 = pe, Th(a) = —BHs + BuNg + 1 = In pge + 1. (7.23)
Here, pgc def pec(as; B, Bu), ¢ and ¢ are the same with ¢(a) and () in § 7.1.
First, we investigate k;; in (7.22). (7.6) can be rewritten as
KT (a)lj(a) + [K'()]1 = J3(a). (7.24)
Here,
I3 () = O(?), (7.25)
holds because i3, (@), i%;, (o) = O(¢) and
T (o) =) (i, (e + 1%, (@)eap), (7.26)
b
since
Yo%, (@) = ~Trs[Xs Y Ly(@)po(a)l =0 (X = N, H). (7.27)
b b
Then we obtain
Bk 1+ K ki + BT = 0, (7.28)
in O(g;p). Here, 0, , X f 5x /Oc;, and K df & . The first term of the LHS is
. !
0; b/C’Tl = OK]
’ aOéi,b o p=0
_ 8;6;2 [al,bHS - OZQ’bNS]
80[1‘,13 o p=04
_ S —+ 0l pHg — g N,
— Tl s — FaNs] + Ty Aetls —a2slis] = 59

(90(2-,1,
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The third term of the LHS becomes

@',bﬁbT% = 8i,bEbT(—BHS + @NS +cl)
= Ly (BHs — BuNs).
Here, we used @‘,bﬁle = 0 derived from KT1 = 0. Then, (7.28) becomes

y7dl Al _

K kip+1I, Hs = 0,

K'kyy — T, Ng = 0.

Next, we show the relation between k; ;, and pgzl). (7.18) leads
K/}EZ) + 95 pLopge = 0,
> def -

in O(e;p). Here, K., = K. By the way, (7.5) is

Ly pec(s; By, Bovp) = 0.

Differentiating this equation by «; ;, we obtain

— —Pgclas; By, Bovy)  -Olag pHs — agpNs]
—Ly L

ai,bﬁbpgc = ) pgc(aS; By @)

8041'71) 80%17

Substituting these equations into (7.33), we obtain

Now, we use (7.3), namely,

Ty (epec) = (TTy' @) pye-

Using this relation, we rewire (7.36) and (7.37) as

Kopl) + (' Hs)pge = 0,
angfb) - (ﬁbTNS)pgc = 0.

Multiplying p.! from the right, we obtain
plymg pg. g

(7.38) can be rewritten as
(LY )py! =10 (Y g,
for any Y = ep,. € B by multiplying pgcl from the right. (7.43) leads

(o)) et = ﬁT(p,(Z) Pae);

(7.30)

(7.31)
(7.32)

(7.33)

(7.34)

(7.35)

(7.36)
(7.37)

(7.38)

(7.39)
(7.40)

(7.41)
(7.42)

(7.43)

(7.44)
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where TT & 5>, I0,. By the way, [Hs(as), p{™” (@)] = 0 holds similarly to (2.147).
Differentiating this equation by «; ;, we obtain
[Hs(as), py)] = 0. (7.45)
This relation leads
(o o = X (05 ) = . (05 pich). (7.46)

where H/ o o —i[Hg(ag) +kHy(a), o). Weused (H)! = —H*. In the first equality,
we used that p,. commutes with Hg and Hy.. (7.44) and (7.46) lead

(Kep\i)ogt = K (013 p2h)- (7.47)

Substituting this into (7.41) and (7.42), we obtain

K (o) o) + 0, Hs = 0, (7.48)
K (o) pe) — T Ns = 0. (7.49)

Subtracting (7.48) ((7.49)) for k = —1 from (7.31) ((7.32)), we obtain
K (kiy — 0y pgd) = 0. (7.50)
This means
kip = pﬁ,_b l)pg_cl +Cipl, (7.51)

where ¢; ;, is unknown complex number. Using this relation, (7.22) becomes

lé)( ) lnpgc(aSa/B /BN +C 1+2261bplb pgc —|—(’)( )

b i=1
= Inp{ V() + C(a)1 + O(). (7.52)

Substituting this equation into (6.15), we obtain (7.19). Here, C(«) & DY bi CibEi,b-
We supposed [pg, pg’_bl)] = 0, which leads In p(()_l)(a) = Inpge + 354 €i,bp§7_b1)pgfcl +
O(z2). This supposition is satisfied if [N, p{ " ()] = O(c?) (which leads [N, pg,;l) | =
0) or Bu = 0 holds. If Hg is non-degenerate, [Ng, péﬁl) (a))] = 0holds, then [Ng, pgfbl)] =

0, [Pec; ,01(;1)] = 0 and (7.52) hold. If ngc = 0, pg is replaced by the canonical distri-
bution and (7.52) holds without any assumption.
If

[Hy (), pi” ()] = 0, (7.53)

holds, pgﬁ) («) is independent of x (p[()”) () = po(a)), then (7.19) becomes

inSvN(Po(a)) +0(e?), (7.54)

Ag(a) = o

using (H.1). (7.53) holds if Hg is non-degenerate. (7.54) can be shown from [Hy,, p;lb)} =
0, which is weaker assumption than (7.53) and is derived from (7.53) for x = 1. If we
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neglect the Lamb shift Hamiltonian, namely we consider the QME for Ko(«), (7.54)
holds (with a replacement py — ,o(()o)). From (7.54), we obtain

Oex = SVN(pO(aT)) - SVN(pO(QO)) + 0(525)7 (755)
with § = max,, aec |0‘7|16;f‘¥g| . @" is typical value of the n-th control parameter.

Yuge et al. [20] considered the outputs of A(t) = — >, Bs(t)[Hy — p(t)Np) (for
nc = 0)att = 0and ¢t = 7 as a(0) and a(7), and errorneously identified a(7) —

a(0) with the entropy production. To analyze o’ of (a(1) — a(0)), improperly, they
took xug, = —GpA and xn, — BprpA limit of the FCS-QME (2.64) only valid for
time independent observables. The obtained Liouvillian (of which the Lamb shift
Hamiltonian is neglected) incidentally satisfy (6.12). Using that Liouvillian, for the
time-reversal symmetric system, Yuge et al. studied the relation between AJ(«) and
the symmetrized von Neumann entropy. In contrast, up to here, we do not suppose
the time-reversal symmetry. In § 7.3, we consider the time-reversal operations and
show that the potential S(«) such that A9 (a) = 9S/da™ + O(e?) dose not exist if the
time-reversal symmetry is broken.

7.3 Time-reversal operations

We define the time-reversal operation. We denote the time-reversal operator of the
system by 6. We also define

v ¥ oyet, (7.56)

forallY € B and

JY Yoy, (7.57)

for a super-operator 7 of the system. The time-reversal of K (a)po(e) = 0 is given
by

il (), po()] + D Ty(a)po(e) = 0, (7.58)
b

using (2.147). If

Hi(a) = Hy,(a), () =11 (a), (7.59)
hold, the above equation coincides with the equation of péﬁl) () since [Hg, péﬂ)] =0,
then

po(a) = pb (@), (7.60)

holds. If the total Hamiltonian is time-reversal invariant, (7.59) holds [38]. If (7.59)

holds and we neglect the Lamb shift Hamiltonian, the instantaneous steady state is

time-reversal invariant: ﬁ((]o) = p[()o).

As we will show, for time-reversal symmetric system,

9 dpo(c)

Wssym(p()(a)) = —Trg h’lﬁo(a) da

] +O), (7.61)
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holds. Here,

def

Seym(p) = ~Trg[p3(Inp -+ In )] 7.62)

is the symmetrized von Neumann entropy. Combining (7.19) with (7.60), we obtain

0

A7 (a) = Dan

Ssym(po(@)) + O(e?), (7.63)
then, the equation (7.55) with Syx — Ssym holds. As analogy, we consider
e 1 _
§'(a) = ~Trs [po(e) 5 (n po(a) + I p ()], (7.64)

for generally non-time-reversal symmetric system. The difference between 0.5’ («) /0a™
and the first term of the RHS of (7.19) is

!
1. .9po 1 0
= ;T S[a 0 (lnpp — Inp§ )] — 3 Trs[pog mp§ V). (7.65)

To calculate the RHS of this equation, we use formulas

> 1 1
o 1 1 1 5
A+s A+s A+5+O(5 )>’ (7.66)
1 0A(«) 1
In A(a 7.67
804" " / ds )+s dam Ala)+s’ (7.67)

where A, B, A(a) € B and 4 is small real number. We proof (7.66) in Appendix

L. (7.67) is derived from (7.66). po — ,o(()_l) = e + O(£?) holds because p(()'i) =
pec(aus; B, Bu). Then, the first term of the RHS of (7.65) is given by

1. . 9po
—fTs[a n(lnpo—lnpé )]
o 1 1
- _8/ ds Trs[apﬁ Tt + O(e2). (7.68)
2 0 80& 100 + s pO + s

The second term of the RHS of (7.65) is given by

1 0 _
_7Tr5[poa nlnpé 1)]

_ 1 ( 1
= / ds Tl‘s 604” ((]71)+S(P0 + ) ((),1)

00 (=1)
€ Ipy 1 1 9
= - ds T @)
/0 5 1‘5{ oa™ po—i—swpo—i-s} +0(e7)

N ANopy Vo) 1 -1 )
_ 2/0 ds T[22 ﬁOHQpﬁOHMO(e). (7.69)
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Here, we used s(péfl) +5)7 L =e(po + 5)"! + O(e?) and Trge = Trge if Trge is real.

In general, the RHS of (7.65) is not O(e?). However, if gy = p[(fl) holds, the RHS of

(7.65) becomes O(£2) since 1) = —1p, then (7.61) holds. In the proof of (7.61), Yuge et

al. [20] used incorrect equations 6%” In po = p, ! gg % and In po—1In pg = e¥p, Lro(e?).
We introduce the BSN curvature

047 94T,

Fo (o) = :

(7.70)

Fo. (o) = O(e?) and the existence of S(«) such that A9(a) = dS(a)/da™ + O(£?) are
equivalent. If 7, (o) = O(e) holds, S(«) does not exist. F}J,,(«) is given by

F° () = fon(a) = fam(a) + O(?), (7.71)
where

g (PR o oy,

mn = T 7.72
frun () da™  Ja™ (7.72)
fmn(a) is given by
& 1 ap(il) 1 8/)0
Frn(a :—/ ds Trg 0
(@) =~ | <p(<)—1>+s darm p(()—l)_|_380z">
= [ s Fs) + FRs) + O, 073
0
with
Opge  Opge
©) (o) — _ g g
Frn(s) = —Trg (as S5m0 &w)’ (7.74)
and
P — (7.75)
Pgc + 8
Fr(r}%(s) is given by
Fian(s) = Fdl(s) + FiD(s), (7.76)
0 0 0 0
(L0) (o) — (-1)  9Pgc _ OPgc Pge _ (—1)  YPgc
‘an (S) Trg <Us77 Os dam Os Jan + 05 dam OsT] Os dan >7 (7.77)
i) (s) = Trs( — S 7.7
Fin () Tr5< 75 9am 7 9an 7 9am 7* dan >’ (7.78)
where
(k) def () 7.79
R CYRE= I = (7.79)

b =12
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Po = Pgc + nM 4+ O(e?) and p[(fl) = Poc + b 4 O(e?) hold. Because of fé%(s) —
]-}S%( ) = 0and Fib 0)( ) — fﬁ;bo)(s) = 0, we obtain

Fo() = [ ds [FED() - FED () + O)

0

= Gmn — Gnm + 0(52)7 (7.80)
with
_ [T O™ —n=V]  Opge
an‘— jﬁ dST¥S<Us Dam Usaan>
0 — D] 91n pye
N Trs( Oa™ oam )
1) _ ,(=D1 98
_ _Trs<3[77 n'" V] 9[fHg(ars) — ﬂMNs]> (7.81)
da™ Oa™

Here, we used Trg (6[’7(1)*”(_1)] ‘91115) = 0 because Trgn) = 0 = Trgn=Y. B and Bpu

da™m da™

are functions of . Using Trge = Trge if Trge is real, we obtain

(7.82)

W1 _ (=D~ 5B H BN
o = _Trs(a[ﬁnl 6=t — on=Yo-1 9[BHs(as) B,UNS]).

oo™ oamn

For time-reversal symmetric system, Hg = Hg, Ng = Ng and OnMe—1 = n(=1 hold.
Then, the above equation becomes (y, = —(mpn, Namely, Gy = 0 and F7 () =
O(¢?) hold. However, if the time-reversal symmetry is broken, 7M1 # (=1
holds in general. Then, (;n # —Cmn Namely (py, # 0 hold. ¢y, is not symmetric for
m and n. Then, if the time-reversal symmetry is broken and Hy is degenerated, S(«)
dose not exist in general. This is the most important result of this thesis.

7.4 Born-Markov approximation

We denote the BSN vector for the entropy production and instantaneous steady state
of the Born-Markov approximation by 45" (a) and pB™(a). Then,

ATBM () = A%(a) + O(v?), (7.83)
S (o™ (@) = Sen(po(a)) + O(v?), (7.84)
Seym(p0 " (@) = Ssym(po(a)) + O(v?), (7.85)

hold [20]. Here, v = u? and u(< 1) describes the order of Hg;,. Then, if (7.54) holds,
we obtain

AZPM(a) = ain (oM (@) + O(%) + O(v?). (7.86)

For time-reversal symmetric system,

0

14@BN[ _ 7
M) = o

Seym(pEM (@) + O(%) + O(v?), (7.87)

holds.
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Chapter 8

Comparison of two definitions of
entropy production

In this chapter, we compare preceding study on of the entropy production in the clas-
sical Markov jump process [21, 37] with ours. We consider the Markov jump process
on the statesn = 1,2, --- , N/, where the definitions are explained in Appendix J. The
probability to find the system in a state n is p,(¢) and it obeys the master equation:

dpn,
p Z Knm at pm (81)

The Liouvillian is given by

Z K® (a (8.2)

where K?), originates the couping between the system and thebathb. ) K T(Ll;,)@(a) =

0 holds. We suppose that K,(nn( ) # 0(= 0) holds if Knm( ) # 0(=0) for all n # m.
The definition of the entropy production for each Markov jump process (J.1) is (J.4).
The average entropy production ¢ is given by (see (].10))

o= ["dt Y oS (apmd) 3)
0 n,m
where
Knm(a)
C _ nm
Opm (@) = =Kpm(a) In Ko@) (8.4)
We denote the solution of the QME with RWA by p(t). We suppose py,(t) =y
(n|p(t)|n) is governed by (8.1) with
KS;)L(O‘) = (Hb(a))nn,mm- (8.5)
Here, |n) is the energy eigenstate of Hg(ag),
(o)) = D~ (@) ()i ()it (k] o ). (8.:6)

k.l

This supposition implies (7.53). A sufficient condition by which p,(t) obeys (8.1)
is below: (1) Hg(as) is non-degenerate and (2) {a" € ag| 52:|n) # 0} are fixed.
The eigenenergy can depend on {a” € ag| 32|n) = 0}. We show that our average
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entropy production (6.3) is given by a similar expression of (8.3):

o= / 0t S 0 (0e)pm(h). 87)
0 n,m
Here,
def N 1) ()9 ) () 1 K@)
Onm(a) = Z Ko ()0 (a) = — Z Ky (a)In )\ (8.8)
b b Kmn(a)
with

N (8.9)

(®)
e _1 Knm(a) K’I(Ll;zl 0

00) (a) L T KD () ( () #£0
0 Kpm(a) =0

Because of (6.18), (6.25) and (6.26), the particle and energy currents are given by
ix, = Trs[WXep(t)] with WX» = —(II] X5)T (X = H, N). (6.20) leads

(W) = — Z(Hb)lk,mn(XS)kl- (8.10)
Tl

We suppose (Xg)nm = (Xs)nnOnm for X = N, H. Since (Xg )y, is a diagonal matrix,
(WXt),,, is also a diagonal matrix. Then,

ix, = (W) pmpm (1), (8.11)

m

holds. Substituting (W) i = — >on KT(LIQL(X S)nn into (8.11), we obtain

iXb = ZK(b XS nnpm(t)

= ZKr(L%[(XS)mm — (X$)nnlpm(t). (8.12)
This equation leads
ZZK(b Hg)mm — (Hs)nn] = vo(O)[(N)mm — (Ns)nn]}pm (t)8.13)

n,m b

Using the local detailed balance condition derived from (7.3)

In

= Bo{[(Hs)mm — (Hs)nn] = Vo[ (N$)mm — (Ns)nn]}, (8.14)
we obtain (8.7). For b € C, (Ns)mm — (Ns)nn = 0 holds for n and m such that

K (a) # 0.

(8.12) can be rewritten as

anm a)pm(t), wi (o) € KO [(Xe)mm — (Xs)un).  (8.15)

This w:%t (o) corresponds to wor ay) of (3.82).
nm P iJ
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Now we introduce A,,,,, = {b|K,(f;21 # 0}. From the assumption, A,,, = A,
holds. If we suppose (2.163) for b € C and (2.137) for b € G, A,,;, = C for (Ng)mm =
(Ns)nn and A, = G for (Ng)mm # (Ng)nn. Then, (8.14) means

K (@)

In
Kf(,le(a)

with (Ng)mm = (Ng)nn and
K (@)
K% (a)

with (Ng)mm # (Ng)nn-
Now we introduce a matrix K* () by

In

= ﬁb{[(HS)mm - (HS)Tm] - ,UJb[(NS)mm - (NS)nn]} (b S g) (817)

b
Then, we obtain
0 T \ T -
AN )A:O ; Tew| /0 tk (O‘t)ﬂnmpm(o) = /0 dt ; G (01)pm(t) = (8.19)

K* was originally introduced by Sagawa and Hayakawa [19]. About averages, our
entropy production is the same with Sagawa and Hayakawa.
We show that the difference between o5, (a) and o, () is O(e?):
g

C (@) = opm(@) + O(2). (8.20)

In fact, K canbe expanded as

=EKO, + > eipKib + 0(e%), (8.21)
i=1,2

then we obtain
T (@) = o) + P () + O, (8.22)
Onm(a) = 07(1%) + ng%(a) + 0(53), (8.23)

with
oSO — _K,,.In [ PoIn =M 4 KED — Kf;fjlg"m}, (8.24)
7® , et
01 _ ib nm ib _ g-ih Bnm
O’ = be;ﬂ ( —I-Zslb[ anT(,IZBL + K., KmnKT(,ZZBLD

(8.25)

0'7?7(712 )( ) and 07(1277)1(04) are quadratic orders of €; ;. While the former includes ¢; e/ i
(b # V') terms, the latter dose not. A,,,,, = A,,,,, leads

= S RO K= Y RO, (326)

beApm beApm
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(8.14) leads kY / KEY is independent of b € A,,,,. Then, we obtain

— (b) —
}f”m — Bum be Aun). (8.27

The above relation and (8.26) lead

oSO = 501, (8.28)
and (8.20). (8.20) leads
oS = ooy + O(£%6). (8.29)

Here, ag( is given by (J.13). Then, (J.12), the result of Ref.[21], coincides with (7.55)
when p,,(t) = (n|p(t)|n) is governed by the master equation (8.1).
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Chapter 9

Conclusion

9.1 General conclusion

In this thesis, for open systems described by the quantum master equation (QME),
we investigated the quantum pump and the excess entropy production.

First, we investigated quantum pump using the FCS-QME (full counting statis-
tics with quantum master equation) approach. We studied the non-adiabatic ef-
fect and the showed that the general solution of the QME p(t) is decomposed as
p(t) = polag) + 300 pM(t) + 39, 5™ (t) (Chap.3). Here, oy is the value of the
set of the control parameters at time ¢ and po(c) is the instantaneous steady state
of the QME, p(™(t) and (™ (t) are calculable and order (w/T')™ where w is the mod-
ulation frequency of the control parameters and I' is the coupling strength between
the system and the baths. (™ (t) exponentially damps (like e~!%) as a function of
time. We showed that the generalized mater equation (GME) approach provides
p(t) = P(ss)(t) + op(t) in the Born approximation (Appendix § F). Here, p corre-
sponds to the set of the diagonal components of p in the matrix representation by
the energy eigenstates, p ) (t) corresponds to po(ay) +> )2, p™(t) and the the term
dp(t) originates from non-Markovian effects. The FCS-QME picks out one higher or-
der non-adiabatic piece of information from the solution of the QME, namely, if we
have p(™(t), the FCS-QME method provides (n + 1)-th order pump currents. More-
over, we showed that the Berry-Sinitsyn-Nemenman (BSN) phase derived under the
“adiabatic" condition which makes the Berry phase like treatment appropriate has
the non-adiabatic (first order of w) information. We showed that the quantum pump
dose not occur in all orders of the pumping frequency when the system control pa-
rameters and the thermodynamic parameters (the temperatures and the chemical
potentials of the baths) are fixed under the zero-bias condition.

Next, we studied the quantum adiabatic pump of the quantum dot (QD) system
weakly coupled to two leads (L and R) in§ 4.2 and § 4.3 using the FCS-QME with the
rotating wave approximation (RWA) defined as the long coarse-graining time limit
of the coarse-graining approximation (CGA). We confirmed the consistency between
the FCS-QME approach and the GME approach for a QD of one quantum level with
finite Coulomb interaction (§ 4.2.3 and § 4.3.3). We showed that the pumped charge
and spin coming from the instantaneous steady current are not negligible when the
thermodynamic parameters are not fixed to zero bias (§ 4.2.2 and § 4.3.2). To observe
the spin effects, we consider collinear magnetic fields, which affect the spins through
the Zeeman effect, with different amplitudes applying to the QDs (Bg) and the leads
(Br and Bg). We focused on the dynamic parameters (Bs, By, g and the coupling
strength between QDs and leads, A /) as control parameters. In one level QD with
the Coulomb interaction U, we analytically calculated the BSN curvatures of spin
and charge of (By,, Bg) pump and (Ay, Bgs) pump for the noninteracting limit (U =
0) and the strong interaction limit (U = oo) at zero-bias. The difference depending on
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U appeared through n;(sBgs) which is the average number of the electrons with spin
s in the QD. For (By,, Bs) pump, the energy dependences of the line-width functions
are essential. Moreover, we studied the (A, Bg) pump for finite U at zero-bias (8§
4.3.5). The effect of U appeared through ny(sBg). When half-filling condition is
satisfied, the charge pump does not occur.

We studied the quantum diabatic pump for spinless one level QD coupled to
two leads (Chap.5). We calculated {p™ (¢)}>_,, {5 (¢)}>_, and particle current up
to 6th order and pumped particle numbers.

In § 1.6, we newly defined average entropy production rate ¢(t) using the av-
erage energy and particle currents, which are calculated by using the FCS-QME.
Next, we introduced the generalized QMEs (GQMEs) providing ¢ (¢) (Chap.6). The
GQMEs do not relate the higher moments (thus and the FCS) of the entropy produc-
tion. We can calculate only the average of the entropy production. In § 7.2, using
the GQME, in weakly nonequilibrium regime, we analyzed the BSN vector for the
entropy production, A?(«), which provides the excess entropy production oy under
quasistatic operations between nonequilibrium steady states as oex = [, da™ A7 (),
and showed AJ(a) = —Trg[ln pé_l)(a)%@] + O(g?). Here, « is the set of the
control parameters and o” is n-th component of the control parameters, C' is the
trajectory in the control parameter space, Trs denotes the trace of the system, and
¢ is a measure of degree of nonequilibrium. p(()_l)(oz) is the instantaneous steady
state obtained from the QME with reversing the sign of the Lamb shift term. In

general, the potential S(a) such that AJ(«) = 85 O(ﬁ) + O(?) dose not exist (§ 7.3).
This is the most important result of this thesis. The origins of the non-existence of
the potential S(«) are a quantum effect (the Lamb shift term) and the breaking of
the time-reversal symmetry. The non-existence of the potential means that the ex-
cess entropy essentially depends on the path of the modulation. In this case, it is
important to consider the generalization of the entropy concept. In contrast, if the
system Hamiltonian is non-degenerate or the Lamb shift term is negligible, we ob-
tain oex = Syn(po(at;)) — Sun(po(a,)) + O(e26). Here, Syn(p) = —Trg[pln p] is the
von Neumann entropy, ¢; and ¢ are the initial and final times of the operation, and
9 describes the amplitude of the change of the control parameters. For time-reversal
symmetric system, we showed that S(«) is the symmetrized von Neumann entropy.
Additionally, we pointed out that preceding expression of the entropy production in
the classical Markov jump process is different from ours and showed that these are
approximately equivalent in the weakly nonequilibrium regime. We also checked
that the definition of the average entropy production in the classical Markov jump
process by Ref.[19] is equivalent to ours.

9.2 Future perspective
p(()_l) and A?(«) should be calculated for concrete model in which the system Hamil-
tonian is degenerated or/and the time-reversal symmetry is broken. For instance,
multi-level QD system applying the magnetic field is a candidate.

If S(«) does not exist, the path dependence of the excess entropy is essential. The
path dependence and the path of which the excess entropy is minimized should be
studied.
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Appendix A

Born-Markov approximation

We denote £ in the Born-Markov approximation by ﬁ?)‘(BM). From (2.66) and (2.75),
we obtain

¥ e = /0 ds 3 (s5, 5t = 5,6) @ () — shy (0 — s.1) @ 51,C,,(5)

v
st @ sph (L= 5,0)CY,, (~5) T osil(t = 5,05, Cou(=5)). (AD)

Ch,u(s) damps exponentially as e~1*//™ where 7, is the relaxation time of the bath
b. Then, in the calculations of sl{#(t — s,t) and sl{l(t — s,t), the values of the control
parameters can be approximated by ag(t). Then, we obtain

sbﬂ Ze“"ssbu , pr (t —s,t) Ze ws | [spp(w f (A.2)
and
Ei‘(BM)o = —/ ds Z Z ({sbysbﬂ e Chyu(s) — spu(w) e SZVCZ‘W(s)}eW
wy w
+{ — 5w ® [Sbu(W)}TcifW(—S) + o[sbu(w)]st,,wa,(—s)} _WS) (A.3)
Here,
T s, (5)e / ds / dQ -y, (e’ D?
/0 b I/;/, b z/u( )
1
_ = _ X
= /_Oo dQ 5 [W{S(Q w) ’LPQ oy @, (2)
= o} (W), (A4)
and
/0 ds O, (—s)e™* = D X(w), (A5)
hold. Then, we get
E?f(BM)o = — Z Z (szusb,,(w) ° CI)I(’L)V(W) — Spy(w) @ sZﬂ(I)éJ;)f(w)

wy  w

—Spp ® [Sb,u( )]T(IDI(; #)y ( ) + .[Sbu(w”TSbV@é ,u)y(w)>

=% (A.6)

b(BM) ° +£b(BM)



Here,
Lydn® = —Zyg(%w )b 5t () © ~ B, (@)1 (w) @ 5],
—@Em >szw-[sbu<w>w+<1>w<w>-[sbuwsby), (A7)
e = 2 33 (Vo @)s s (w) o T, (@)suw) o 5],
+H\Pb,w< st ® ()] = 00,0 (0) sty ()] 51 ). (A8)

For (2.106), we obtain

] (w)ah ¢ aa(w) + <I>b,a5<w> © aq(w)a}). (A9)

and

—yX (w)a; o a,(w)+ \P;aﬁ( w)e aa(w)ag) (A.10)

By the way,

ﬁI?(BM)e—ﬂb(Hs—#Ns) =0, (A.11)
holds. Here, Eb(BM) = Eb(BM) _o- Because of (2.130), 1st and 7th terms of (A.9)
cancel in the LHS of (A.11). Similarly, 2nd and 8th, 3rd and 5th, 4th and 6th terms of
(A.9) cancel. If ’CZ\)II(BM) is negligible, py becomes (3.67) at zero-bias.
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Appendix B

Liouville space

By following correspondence, an arbitrary linear operator (which operates to the
Hilbert space) e = > (n| e |m)[n)(m| is mapped to a vector of the Liouville
space[26, 80], |e)) = anm\ o |m)|nm)):

In){m| «— |nm)), (B.1)
Te(jm)(n|n')(m']) «— {(nm|n'm’)), (B.2)
Tr(A'B) «+— (A|B)), (B.3)

Tr(e) <— ((1[e). (B.4)

Here, {|n)} is an arbitrarily complete orthonormal basis. The inner product of the
Liouville space is defined by the Hilbert-Schmidt product [(B.3)]. The Hermitian
conjugate of |e)) is defined as ((e| = (|8)))T = > n.mn|elm)*{(nm|. Anarbitrary linear

super-operator J which operates to any operator (e) is mapped to a corresponding
operator of the Liouville space (.J) as

| Je)) = J|e)). (B.5)
The matrix representation of .J (or .J) is defined by
Jnmpt = ((nm|J|kL)). (B.6)

In the main text of this thesis, 130th J and J are denoted by J.
Generally, the Liouvillian KX operates to an operator e as
KXo = —i[Hg, o] + ﬂxo, (B.7)
Xe = "cXA, o By, (B.8)

a

where Hg is the system Hamiltonian, I1X is the dissipator, A,, B, are operators, and
ca (@) is a complex number. The matrix representation of (B.7) is given by

Z K?L(m,kl.kl = Z [ — i{(H$)nkOtm — Sk (Hs)im } okt
kol Kl

+{Z C?z((Aa)nk(Ba)lm} ® ]7 (B9)
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where e;,; = (k| @ |I). Hence the matrix representation of KX is given by

Kffm,kz = —iHpmm + Hzm,kp (B.10)
Hnm,kl == (HS)nk(slm - 5nk(HS)lm7 (B]-l)
i = 3 X (Aa)nk(Ba)im. (B.12)
Finally, we consider the current operators defined by (3.14). K = gg;éa)) ‘xfo
D Ix=
is given by
KO e =3 cl"Aq 0 Ba. (B.13)

Hence the current operators defined by (3.14) are given by

WO = 3" ¥ By A, (B.14)
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Appendix C

The time evolutions of ¢\ (¢)

In this chapter, we derive the time evolution equations of e (t) of (3.23). The LHS of
the FCS-QME, 4|pX(1))) = KX(ay)|pX (1)), is

C% X X
P O) = X { TGO + 0N el

d
+e§ (MO T px(an) |- (1)
And the RHS of the FCS-QME is

EX(ar) (1)) = Zcx(t) A0 KX ()| oS (n))

= Z cn(t An(ae)| o3 (a)))- (C.2)
Hence we obtain
) {dcjt(t) DX (an)) + ex(t)er ) d‘p%éft)» b =0 (C.3)

Applying (i3, (a;)] to (C.3), and using ({IX(c)|p%(@))) = dnm, we obtain

%an Zcx AX (t)—AN(t )<<Z7Xn(at)|d|p%6§ft)>>- (C.4)

By the way, the time derivative of (3.3), KX(az)|pX(c)) = AX ()| pi (o)), is

AKX (ay)
dt

(e + KX WE = PR e + Nste0 EECS)

Applying ((I%. ()] to this equation, we obtain

AKX (ay)

(05,00 0 o )+ A o) (03 D)

dt

_ dAS(ay) . v dlps(an)

= = O+ NS () (1 () |7 (C.6)
and it leads to

oondioban) e e X )

<<lm(at)| dt - )\( ) )\X(at) ) (C7)



102

for A%, (ct) # A% (). Substituting this to (C.4), we obtain

dey, (t d
"0 s o) T % (e 1)
X dKX(as) | x

X\ AXE) AR (£) {(Im () [ =7 pn ()

+ > eX(te o ) (C.8)
The above equation can also be written as

A (1) (1) N A8 05 0 G ) 5 o ()

dt - Z Cn(t)e )\ ( ) )\X(Oét) ) (C'9)

n(#m)

where &%, (t) = ¢, (t)e"™® with

s (t) = / ds (1%, <as>\irpm< D)
> | da @il o (C10)

Here, C is the trajectory from ag to ay, aF are the k-th component of the control
parameters, and 7%(t) = O(1) since (1% (as)| & |p% () = O(w) with w = 27 /7. In
the RHS of (C.9), the dominant term is n = 0 if m # 0 because Re)\} (a) > ReA¥(«).
Using 200 — O(Tw), A (ay) = OT), en® = O(1) and ¢f(t)e™ = O(1), we
obtain

— = O(eMty), (C.11)
and
cX (e = O(w /0 s ARO=AR()) = 0(%). (C.12)
For x = 0, (C.12) is also derived from
3p(t) = p(t) — polaw) = > em()e D pra (), (C.13)
m#0

and (3.33) and (3.60).
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Appendix D

The validity of the adiabatic
expansion

In the derivation of the QME with CGA, when going from (2.57) to (2.58), we used
the following type of approximation:

t+T u t+T u
/ du/ ds G([a]y;s,ust) = / du/ ds G([aul; s, ust). (D.1)
t t t t

Here, G([a]¥, 5,u,t) ~ e~(“=9)/78 and [a]" = (ay)¥_, is the control parameter trajec-
tory and [« is the trajectory which ay = oy (s <’ < u). 7 is the relaxation time of
the baths. Similarly, in the Born-Markov approximation (BM), when going from

d I,x t
v = - [t {0 . sl ©2)
to (2.64), we used
t t
/du G(la];u, t;t) %/ du G([oy]; u, t;t). (D.3)
0 —00

Considering the corrections of the above approximations, the QME is given by

W — k(olote), (D4

Kt) = K(ap) + KD (1), KV (1) = OTwry), (D.5)

with w = 27 /7 and 7x = 7cg for CGA; 7x = 75 for BM. K(l)(t) corresponds to
K [(11]) (t) of Appendix F. The discussions of § 3.4 are correct after replacing K (o) —
K(t), R(ew) — R(t) and po(ar) — po(t). Here, po(t) and R(t) are defined by
K(t)|po(t))) =0and R(t)K(t) = 1 — |po(t))) (1], respectively. (3.33) is corrected to

o) = 3 [ROS] 170 = S 170, D.6)
n=1 n=1
with dp(t) &f p(t) — po(t). The corrections are given by
po = po[l + O(wrx)], R = R[1 + O(wrx)], (D.7)
and
P = o (1) = O((2)"wrx ). (D.8)
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Next, we consider the reasonable range of n of p(™(t). Because p(™ (t) = O(f)" and
po(t)—po(ar) = O(wTx ), the reasonable range is n < nyax, Where ny,x is determined

by

(w)nmax+1

- <wrx < (S)"me, (D.9)

r

Let us consider that reasonable concrete values of the parameters in the model of §
41: w=10P MHz, I = 10 4eV=0.116 K, 1/T' = 65.8 ps, 7cg = 1 ps, and 75 = 0.1 ps.
These values lead to

w

wreg = 1074 wrp = 107717, T 10741847, (D.10)
and Npax = [imax] With
- —6+p —7+0p
x = o , ———=— (BM). D.11
fima —4.18+p ( ) —4.18+p (BM) ( )

Here, [n| means the biggest integer below n. At p = 0, fiymax = 1.44 (CGA), 1.67 (BM)
and at p = 3, Npax = 2.54 (CGA), 3.39 (BM). The larger the non-adiabaticity (%), the
larger n,,x becomes.
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Appendix E

Proof of (3.52)

First, using (3.22) and (3.16), we obtain

(WO ()R(@)K (@) = (1] (a) = AT*(a) (1. (E.1)

Next, ((Ip(a)| = (1], Ao() = 0, and (3.4) and (3.14) lead to
(15" (@) K () = Ag* () (1] = (1| WO (o). (E2)
Hence, we obtain
[(1]W O ()R (@) + {(I5* ()] K () =0, (E.3)

and it leads to (3.52). To prove (3.52) only (3.22) is required and K ()R(a) =1 —
|po(a)))((1] is not necessary. Additionally, the pseudo-inverse of the GME approach
(3.86) satisfies

> Rz'jKJ(g) = 8, —p”) # > K(]O 'Ry, (E.4)
i J

which corresponds to our

R(a)K(a) =1 —|po(@)){(1] # K (a)R(a). (E.5)

~ (3.52) is shown also as follows. (3.22) and (1)K (o) = 0lead to K (a)R(a)K () =
K (o), which implies

K(a)R(a) = 1~ |o(@)) (1], (1lo(a)) = 1. (E.6)
Applying (1] to (3.22), we obtain ((1|/R(a)K («) = 0, which is equivalent to
{(1R(e) = C(a)((1]. (E7)
By the way, differentiating (3.4) for n = 0 by ixo,, we obtain
(15" (@)K (@) + (1K (@) = (17" (@). (E-8)
Applying R(«) to this equation and using (E.6) and (E.7), we obtain[19, 84]

<<€ (a)| = <<11K0< JR(a) + O (a){(1], (E.9)
O (@) = Cla)rg" (@) + (15" (@)|o(a)). (E.10)



106

(E.9) becomes (3.52) because of (3.14). Particularly, Yuge[84] used

R(@) = — lim [ dt @1~ |op(@) (1)), (E11)

5§—00 0

which satisfies (E.6) and (E.7) with o(«) = po(), C(«) = 0 and (3.22) (in Ref.[84],
C(a) was incorrectly set to —1).
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Appendix F

Generalized mater equation and
frequency-expansion

The first half of this chapter is based on [33]. The GME is

t
et = [t W) (F1)

where p = *(p1,p2,- -+ ,pn). W(t,t') functionally depends on a;. We expand p and
W by the modulation frequency w of the control parameters:

= ip(k)(t ZW (t;t—t) (F2)
k=0

p*) and W) are proportional to w*. In general, p(t) should contain a term which
exponentially damps as e~1"(*=%)_ Here, I is the coupling strength between the sys-
tem and the baths. However, this method suppose ty — —oo. The RHS of (F.1)
becomes

t
/ dt’ W(t,t\p Z/ dt' WO (¢ — t")plD(t)

—0o0

_ Z/ at W (g ¢y D) O (D)

— k! dtk
1 o* L d*p@ (1)
— g ®) (4 —2(t—t")
zg: k! 0zF 1 2=0 /Oo WP tt = t)e dtk
d*pl9(t)
_ k
=Y Ea K(p)(t)T. (E3)
D,k
Then, (F.1) becomes
d_ ) 1 ok K@) d*pl9(t) F4
7P (t) = Z P (t)T- (F4)

ngi i is the summation over terms which have the same order with the LHS. How
to count the time derivatives of p in this expansion depends on the considered fre-
quency regime. In this chapter, we consider the regime w < I, for which the system
quickly relaxes to an oscillatory steady state with the frequency of ay; i.e., each time
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derivative introduces one power in w. Then,

n+1l=p+q+k, (E5)
holds.
Now, we expand p(? and K®)(¢) by I :
(e o] oo k
K@) = 3 K20, oM (1) = 37 pl, (1), (E6)
Jx=1 ik P

;7] indicates terms of order IV. This matching requires the expansion for p*) (1) to
start from I'~%. The matching condition for I' is
jl(ln) = jx + j}(ﬂ)‘ (E7)

In the following, we consider the Born approximation: K®)(t) = K [(f]) (t). Then,

(F.7) becomes jl(jn) =1+ j,()q). This can be rewritten as
n+1=q+jn—Jg (F.8)
where j;()") = —n+ j, and j,()q) = —q + jq- The above equation and (F.5) lead
p+E+ jg = jn. (E9)

First, we consider j, = 0. Then, solution of (E.9) is only (p, k,j,) = (0,0,0). Then,
we obtain

_ K(O)(at)p(fﬂ) )](t) (k=0,1,---). (E.10)

Where, K [(ﬁ) (t) is function of only «;. Because the LHS of (F.1) does not have terms

of O(w?), we get

0 0
0= K[(H)(Ozt)p[(o]). (F11)
This is the definition of the instantaneous steady state.

Reference[33] considered only the solutions of j, = 0. However, the solutions of
jn > 0 should also be considered. We consider j, = 1. Then, the solutions of (F.9)
are <p7 k>jq) = (17 Oa 0)/ (07 17 0)1 (07 07 1)

(k)

dp; 4 1y(t) dp (1)
— R~ kW p®, () + KD () — 1 KO (a)pt Y (1), (F12)
dt Py i at o (AP
Here,
(k)
Wk dp () whtl
P () = O(55), — 21— = O, (F13)

and

K (t) = O(Twrp), 0K} (a)) = O(I'rp), (F.14)
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hold. 7g is the relaxation time of the baths. Then, we obtain

(k)

k+1 dp; (1) k+1
k w —k w
K (0p(" () = O(s78), 0K (Y () — 21— = O(S5—75).  (E15)
(F.12) leads
(k) (k)
dp iy (1) dp (1)
E ) = Rla) ——5— — R [ K (0p(" () + 0K () — 2 —
(E.16)
Here, R(«) is the pseudo-inverse of K [(S) (o) :
R(a)K[(ﬁ)(a) =1- pfg])(oa)e, e=(1,---,1). (F17)
(F.16) for k = 0 leads
ply (1) = O(wrp). (F.18)

Here, we used pg)]) (t) = 0. Then, considering pfﬁ)k] smaller than O(w7g) is meaning-

less. This result (F.18) is the same order with that discussed in Appendix D.
Under the Born approximation, the difference between the QME and the GME is

Z Z p(k<)k>](t) = p&) () +---. (F.19)

l
k=030 = k41

The origin of this is the non-Markovian property of the GME.
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Appendix G

Energy current operator

Similar to (2.119), we introduce

IR J0) = D 60y 2 Bons W Eon TR By s)( By sl,  (G1)

n,m,r,s

with Qp pn = Epm — Epp and Hy|Epy 1) = Epp|Epy, ). 7 denotes the label of the

3
degeneracy. (2 is one of the elements of {2, .| (Ep ., r\th#]Ebm, s)#0 u}. We
set {OM} = {Hb}b- Then,

Ry o () = IR J()em Putixm e G2)
Qp
holds. Using this, we obtain
O 5(Q) = 21y (2 — )X BTy (py [R] ) (2) Ros)- (G.3)
Qp
This means
o)X, () = ™m0y (). (G.4)
Using this, we obtain
WH” Z Z WP, (W) [spp(w )]stl, (w), (G.5)
w

for the RWA.
Using (2.153), we obtain

wa(Oé) = —ZZ |:(I>b ,uz/ Sb,LL )]THSSbV<w)

w Y
5 ) His s ()] 5 ) = 5@, s ()] s ()
= _ZZ(I)I) A Sbu )] [Hs,Sb,/(OJ)]
w Y
= Z Z WP (W) 58 (W )]stl,(w). (G.6)
w Y

Then,

W (a) = w(a), (G.7)
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holds.
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Appendix H

Derivative of the von Neumann
entropy

We show that

95w (po(@))

SR = T [m po(a)M]. (H.1)

oan

From the definition of the von Neumann entropy, the LHS of the above equation is
given by

SN (po())
dam

8/)0(04)} ~Trg [Mpo(a)} , (H.2)

= ~1Irs [hl po(a) oan Oam

Using (7.67), the second term of the RHS of the above equation becomes
d1In po(a) '/OO 1 Opo(a) 1
CTre | 2O - _
rs[ Oam po(a)} 1rs L Jo ds po(a) +s 0am po(a)+ SPO((X)}

e ([T Op(e)
- TS-/O d (po(c) + 5)? 804”]

= e[ (H.3)

Then, we obtain (H.1).
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Appendix I

Proof of (7.66)

For an arbitrary operator X,

1

1+6X:(1+5X)*1:1—5X+52X2—53X3+~~, (L1)

holds if the absolute value of a real number ¢ is sufficiently small. Using this equa-
tion,

= [A(l + 514_13)}_1 — (1 + 5A—IB)—1A_1

Ll slpl el 1l gl
= 0B+ P BB~ BIBoBo 4, (1))

A+0B

holds for an arbitrary operator A which has A~!. Here, we used (1) for X = A~'B.
For an arbitrary operator Y which has Y1,

a 1
/0 ds 3 = (Y +a) ~nY, (1.3)

holds for a real number a. Using this equation for Y = Aand Y = A+ ¢B, we obtain

In(A+0B) =InA+In(A+dB+a)—In(A+a)

a 1 1
Jr/0 d5<A+s_A+5B+s)' (4

Using this equation and (I.2), we get

In(A+0B) =InA+In(A+dB+a)—In(A+a)

@ 1 1 1 1 1
ds (6 e )
+/0 S<A+SBA+5 5A+SBA+SBA+S+ >(IS)

Because the second and third terms of the RHS are

In(A+ B +a) — In(A +a) = 1n<1+AZB) —ln<1+§> :0(%), (L6)

we obtain

ln(A+5B):1nA+/ s (5 ! L g 1 pl : ),
0

B — B
A+s A+s A+s A+s A—I—S+
(1.7)

for a — oo. The above equation is (7.66).



116

We show (I.6). Substituting A = 1 to (1.5), we get
In(1+6B) = In(1+6B+a) —In(1+a)

¢ 1 o 1 2
+/0 ds (5(1+5)23 Pt )
=In(l+6B+a)—In(1l+a)

a 1 1
ds (6———B — §2 B2+...
+/0 s ( TEE atsp° © )

0 \n—1
— I (1+a5+31) +Z(12L5"B”(1—(1+1a)n).

Using this equation for a — oo, we have

[e.9]

(-t
In(1+6B) = ) _ B,
n=1

which leads to (1.6).

(L8)

(1.9)
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Appendix ]

Definition of entropy production of
the Markov jump process

Except (J.9), this chapter is based on Ref.[21]. We consider the Markov jump process
on the statesn =1,2,--- |\

n(t) = N (tk §t<tk+1), to=0<t; <to--- <ty <IN$1=T. (]1)
where N =0,1,2,--- is the total number of jumps. We denote the above path by
ﬁ:(N,(no,nl,--~ ,nN),(tl,tQ,--- ,tN)). (]2)

The probability to find the system in a state n is p,,(t) and it obeys the master equa-
tion (8.1). We suppose the trajectory of the control & = (a(t));o is smooth. Now we
introduce

Kpm(a)
Qnm(a) d:ef —In Ko (@) Knm(a) 7é 0 ) (]3)
0 Kym(a) =0

If n # m, this is entropy production of process m — n. The entropy production of
process (J.2) is defined by

N
Zenk”k 1 atk (]4)

k=1
Then the weight (the transition probability density) associated with a path 7 is

N

ﬁ Kpn,_ (ag, ) exp {z:/tk+1 dt Knknk(at)}. (J.5)

k=0 "tk
The integral over all the paths is defined by

NE_17Nk

/DnY ] def Z Z /dtl/ dtg/ dts - / dty Y7, (J.6)

N=0no,n1,

and the expectation value of X [n] is defined by

(x)2 f / Di XAl (a0) T[], 0.7)
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Here, p;’(«) is the instantaneous stationary probability distribution characterized by
dom Knm( )P (o) = 0. We introduce a matrix K*(a) by

(KN @) < K ()eA0mm (@), (7.8)

Then, the k-th order moment of the entropy production is given by

(O = 5ol S [reo [ [ @k @] e 09
In particular, the average is given by
Ol = [t S o epnte) 0.10)
where
6C1(0) % Ky (0)0pm () = — Ky () In gﬁg . (J.11)

According to Ref.[21], for a quasistatic operation,
0 = Ssulp™(ar)] = Ssulp™ ()] + O(e%), (J.12)

holds where

ol def 50 —/ dt Zanm a)pi (o), (J.13)

and SSh [p] Z DPn In Pn-
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