Brønsted Acid-Catalyzed Cationic Cyclizations in Fluoroalcohols

toward Facile Syntheses of Polycyclic Aromatic Hydrocarbons

Ikko Takahashi

Feburary 2017

Brønsted Acid-Catalyzed Cationic Cyclizations in Fluoroalcohols

toward Facile Syntheses of Polycyclic Aromatic Hydrocarbons

Ikko Takahashi
Doctoral Program in Chemistry

> Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science
> at the University of Tsukuba

Table of Contents

CHAPTER 1
General Introduction 1
1.1. Polycyclic Aromatic Hydrocarbons 1
1.2. Brønsted Acid-Catalyzed Reaction 3
1.3. Fluorinated Alcohol 7
1.4. Survey of This Thesis 9
1.5. References 12
CHAPTER 2
Brønsted Acid-Catalyzed Cycloaromatization of Carbonyl Compounds 15
2.1. Introduction 16
2.2. Preparation of Precursors 17
2.3. Synthesis of Phenacenes, Acenes, and Triphenylenes via Brønsted
Acid-Catalyzed Dehydrative Cycloaromatization 18
2.4. Conclusion 24
2.5. References and Notes 25
2.6. Experimental Section 29

CHAPTER 3

Brønsted Acid-Catalyzed Tandem Cycloaromatization of Naphthalene Based

Bisacetals 60
3.1. Introduction 61
3.2. Preparation of Precursors for Tandem Cycloaromatization 62
3.3. Synthesis of ortho-Fused Benzenoids via Brønsted Acid-Catalyzed Tandem
Cycloaromatization 63
3.4. Conclusion 65
3.5. References and Notes 67
3.6. Experimental Section 70
CHAPTER 4
Brønsted Acid-Catalyzed Intramolecular Hydroarylation of Unactivated
Alkynes 83
4.1. Introduction 84
4.2. Synthesis of Substituted Phenacenes via Brønsted Acid-Catalyzed Intramolecular Hydroarylation 85
4.3. Mechanistic Studies on Hydroarylation in Two-Phase Systems 88
4.4. Conclusion 90
4.5. References 91
4.6. Experimental Section 94
CHAPTER 5
Conclusion 105
List of Publications 106
Acknowledgement 107

CHAPTER 1

General Introduction

1.1. Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are comprised of poly-fused aromatic rings and have subclasses such as linear-shaped acenes, zigzag-shaped phenacenes, and helical-shaped helicenes (Figure 1). ${ }^{[1]}$ Generally, PAHs often exhibit semi-conducting properties owing to narrow HOMO-LUMO gaps derived from their extended π-conjugated systems. Therefore, PAHs have been widely studied, directed toward applications to electronic devices, such as organic field-effect transistors (OFETs), ${ }^{[2]}$ organic light-emitting diodes (OLEDs), ${ }^{[3]}$ and organic photovoltaic cells $(\mathrm{OPV}) .{ }^{[4]}$

Acenes (Pentacene)

Phenacenes (Picene)

Helicenes (5]Helicene)

Figure 1. Subclasses of polycyclic aromatic hydrocarbons

In the past century, PAHs were synthesized by several methods. For example, PAHs are generally synthesized by Diels-Alder reaction (eqs 1, 2), ${ }^{[5]}$ aldol condensation (eq 3), ${ }^{[6]}$ photochemical oxidative cyclization (Mallory reaction, eq 4), ${ }^{[7]}$ and intramolecular McMurry coupling (eq 5). ${ }^{[8]}$ Then, rare metal-catalyzed reactions for PAH synthesis have been recently reported (eqs 6, 7). ${ }^{[9]}$ However, these synthetic methods for PAHs still have several drawbacks: (i) high dilution conditions, (ii) excessive reagents, and/or (iii) expensive metal catalysts are required. In addition, controlling regioselectivities in cyclization for PAH synthesis has been troublesome.

Therefore, the development of more facile and selective methods for the synthesis of PAHs by using more inexpensive reagents is highly desired for large-scale synthesis directed toward applied research of PAHs.

54\%
(4 steps)

1.2. Brønsted Acid-Catalyzed Reaction

Brønsted acids serve as strong proton donors. Compared to Lewis acids such as AlCl_{3}, $\mathrm{SnCl}_{4}, \mathrm{TiCl}_{4}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathrm{Me}_{3} \mathrm{SiOTf}$, $\mathrm{Br} \varnothing$ nsted acids are more usable because of their stability toward dioxygen and water. In terms of reactivity, for example, Brønsted acids enable protonation of carbonyl compounds, imines, alkenes, and alkynes, leading to the generation of the corresponding cations, such as oxonium ions, iminium ions, alkyl cations, and vinyl cations, respectively (Scheme 1). ${ }^{[10]}$ These cationic intermediates generated by Brønsted acids in situ are available for reactions with nucleophilic partners.

Scheme 1. Protonation of various organic molecules.

Table 1. pK_{a} values of Br n nsted acids.

	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CF}_{3} \mathrm{COOH}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HCl	TfOH	$\mathrm{Tf}_{2} \mathrm{NH}$
pK_{a} value in $\mathrm{H}_{2} \mathrm{O}(\mathrm{AcOH})$	4.76	-0.25	-3.0	-8.0	$-14(7.8)$	(4.2)

Remarkable progress has been achieved in chemistry of Brønsted acid-catalyzed reactions via cationic intermediates since stronger Brønsted acids, such as trifluoromethansulfonic acid (TfOH) and bis(trifluoromethanesulfonyl)imide ($\mathrm{Tf}_{2} \mathrm{NH}$), were developed (Table 1). ${ }^{[10]}$ Strong Brønsted acid-catalyzed addition of heteroatom nucleophiles to cationic intermediates has been widely developed since 2000. Kawakami et al. developed TfOH-catalyzed hydration of alkynes via protonation of alkynes (eq 8). ${ }^{[11 a]}$ In addition, intermolecular nucleophilic addition of alcohols to carbocations generated in situ by Brønsted acid catalyst was smoothly proceeded (eq 9). ${ }^{[11 b]}$ As for C-S bond formation, Spencer et al. reported $\mathrm{Tf}_{2} \mathrm{NH}$-catalyzed Michael addition of thiols (eq 10). ${ }^{[11 \mathrm{c}]}$ It is noted that this reaction was completed within 10 min , which proved that Brønsted acids serve as powerful mediators. Hartwig et al. achieved TfOH-catalyzed intramolecular hydroamination of sulfonylamides toward the synthesis of pyrrolidines and piperidines (eq 11). ${ }^{[11 d]}$ As shown above, strong Brønsted acids effectively catalyzed $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{S}$, and $\mathrm{C}-\mathrm{N}$ bond formations.

93\%

Furthermore, Brønsted acid-catalyzed cationic reactions involving $\mathrm{C}-\mathrm{C}$ bond formation have been developed recently. The key to success in such reactions was the choice of nucleophilic partners that have substantial nucleophilicity. For example, Sanz et al. reported Brønsted acid-catalyzed benzylation of 1,3-dicarbonyl derivatives (eq 12). ${ }^{[12 a]}$ In this reaction, using 1,3-dicarbonyl compounds as nucleophilic partners successfully allowed $\mathrm{C}-\mathrm{C}$ bond formation. Yamamoto et al. developed $\mathrm{Tf}_{2} \mathrm{NH}$-catalyzed Mukaiyama cross-aldol reaction of aldehydes with tris(trimethylsilyl)silyl enol ethers (eq 13). ${ }^{[12 b]}$ Furthermore, Yamamoto et al. achieved Brønsted acid-catalyzed Sakurai-Hosomi allylation of carbonyl compounds with simple allylsilane in high yields (eq 14). ${ }^{[12 c]}$ As illustrated in eqs 13 and 14, silylated nucleophiles possessing substantial nucleophilicity enable Brønsted acid-catalyzed $\mathrm{C}-\mathrm{C}$ bond formations. In contrast, Brønsted acid-catalyzed carbocylizations with weak nucleophilic moieties such as a benzene ring were rarely achieved to date. Kozmin et al. reported the first Brønsted acid-catalyzed carbocyclization of silyl ynol ethers with arene and alkene moieties to afford tetralone and cyclohexenone derivatives (eq 15). ${ }^{[12 d]}$ In a similar manner, Hsung et al. reported Brønsted acid-catalyzed ynamide-arene carbocyclization via keteniminium intermedates (eq 16). ${ }^{[12 e]}$

86\%

As described in this section, Brønsted acid-catalyzed reactions require careful choice of nucleophilicities of nucleophiles. Especially, carbocyclization involving addition of aromatic rings is still a challenging topic. Since the carbocyclization has potential to provide PAHs, development of Brønsted acid-catalyzed carbocyclization is seriously desired.

1.3. Fluorinated Alcohol

Fluorinated alcohols such as 1,1,1,3,3,3-hexafluoropeopan-2-ol (HFIP) and 2,2,2-trifluoroethanol (TFE) possess strong ionizing power derived from their high polarity. ${ }^{[13]}$ Moreover, the electron-withdrawing inductive effect and the steric hindrance derived from fluorine substituents significantly weaken nucleophilicity in comparison with fluorine-free alcohols (Figure 2). Thus, the combination with high ionizing power and low nucleophilicity results in a powerful cation-stabilizing effect. This effect strongly promotes protonation, leading to generation of cationic intermediates, and stabilizes the formed cationic intermediates without nucleophilic attack by fluorinated alcohols themselves.
a)

b)

Figure 2. Properties of HFIP, (a) high ionizing power, (b) low nucleophilicity.

Fujio et al. reported the experimental estimation of ionizing powers and nucleophilicities of several solvents using solvolysis of 2-adamantyl tosylate and benzyl tosylate, respectively. (Table 2). ${ }^{[14]}$ As described in Table 2, fluorinated alcohols exhibited higher ionizing powers compared to fluorine-free alcohols such as i - PrOH and EtOH . Although water shows high ionizing power ($Y_{\mathrm{OTs}_{\mathrm{s}}}=$ 4.1), its nucleophilicity cannot be ignored $\left(N_{\text {OTs }}=-0.44\right)$. Therefore, water would attack the cationic intermediates to inhibit their reactions with other nucleophilies. In contrast, fluorinated alcohols such as TFE and HFIP possess high ionizing power $\left(Y_{\mathrm{OTs}}=1.80,3.61\right)$ and low nucleophilicity $\left(N_{\text {OTs }}=-3.0,-4.27\right)$. Particularly reflecting this trend, HFIP would acts as an effective solvent in organic reactions via cationic intermediates.

Table 2. lonizing power and nucleophilicity of alcoholic solvents.

	i-PrOH	EtOH	$80 \% \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	TFE	$97 \mathrm{w} \% \mathrm{HFIP} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$
lonizing Power ($\mathrm{Y}_{\text {OTs }}$)	-2.23	-1.75	0.0	1.80	3.61	4.1
Nucleophilicty ($N_{\text {OTs }}$)	0.12	0.0	0.0	-3.0	-4.27	-0.44

Our laboratory has been developing acid-catalyzed or -mediated cationic cyclizations by combining the α-carbocation stabilizing effect of fluorine substituents and the cation-stabilizing effect of HFIP solvent. We have first reported application of HFIP as solvent to synthetic reactions involving $\mathrm{C}-\mathrm{C}$ bond formation via carbocations in 1995. ${ }^{[15 a]}$ In the Nazarov cyclization, HFIP solvent drastically accelerated the cyclization and enabled the fluorine-directed reaction (eq 17). In the presence of magic acid $\left(\mathrm{FSO}_{3} \mathrm{H} \cdot \mathrm{SbF}_{5}\right)$, protonation of 1,1-difluoro-1-alkenes bearing phenethyl group readily proceeded in HFIP to generate the carbocation intermediates, which stabilized by HFIP and the fluorine substituents. The cationic species thus formed induced tandem Friedel-Crafts cyclization and subsequent HF elimination to afford helical carbocyclic compounds (eq 18). ${ }^{[16 \mathrm{bb}]}$ In other methods for activating 1,1-difluoro-1-alkenes, cationic palladium(II)- or silver(I)-catalyzed intramolecular cationic cyclizations have been also achieved in HFIP solvent, leading to the synthesis of pinpoint-fluorinated phenacenes or indoles, respectively (eq 19, 20). ${ }^{[17 b, 18]}$ Since HFIP solvent was essential to these reactions, HFIP serves as a powerful solvent in organic reactions via cationic intermediates generated by protonation or metalation.

75\%

1.4. Survey of This Thesis

As mentioned above, HFIP exhibits promising potential in acid-catalyzed reactions via cationic intermediates. Considering such properties of HFIP throughout this thesis, I challenged to develop Brønsted acid-catalyzed intramolecular cationic cyclizations for facile synthesis of PAHs in order to provide practical mass-synthesis in the field of organic electronic devices.

Chapter 2 described Brønsted acid-catalyzed dehydrative cycloaromatization (Bradsher reaction). In this chapter, I archived facile synthesis of phenacenes, acenes, and triphenylenes from carbonyl compounds and their analogues in high yields (Scheme 2). Since the preparation of precursors for Bradsher reaction such as (biaryl-2-yl)acetaldehydes has been troublesome in literatures, I also achieved an efficient and rapid synthesis of (biaryl-2-yl)acetaldehydes via Suzuki-Miyaura coupling with 2-(2-bromophenyl)acetaldehyde, prepared by hydrolysis from vinyl ether in two steps.

Scheme 2. TfOH-catalyzed synthesis of phenacenes, acenes, and triphenylenes.

In Chapter 3, I accomplished Brønsted acid-catalyzed cycloaromatization via tandem fashion, which leads to the synthesis of higher order PAHs. Naphthalenes bearing two acetal moieties connected by a methylene-2,1-phenylene group underwent regioselective tandem cycloraromatization in the presence of a catalytic amount of TfOH in HFIP. Five substrates, easily prepared from commercially available naphthalenediols in 2 steps, were successfully employed in this protocol to afford ortho-fused six-hexagon benzenoids in excellent yields and with high selectivities (Scheme 3).

Scheme 3. Preparation of bisacetals and their tandem cycloaromatization leading to ortho-fused six-hexagon benzenoids.

In Chapter 4, I succeeded in Brønsted acid-catalyzed intramolecular hydroarylation via vinyl cations generated by protonation of unactivated alkynes. As reported previously, Brønsted acid-mediated or -catalyzed carbocyclizations of alkynes required so far activating groups, such as alkoxy or siloxy groups, on the alkyne carbons to stabilize the generated vinyl cations. ${ }^{[12 \mathrm{~d}, \mathrm{e}, 19]} \mathrm{By}$ using HFIP as solvent, however, Brønsted acid-catalyzed protonation of non-activated alkynes
proceeded smoothly, followed by high-yielding carbocyclization (Scheme 4a). In this protocol, I adopted a two-phase HFIP/cyclohexane solvent system to avoid undesirable side reactions by separating the in-situ generated vinyl cations and the other organic compounds into two phases (Scheme 4b).
(a)

(b)

Scheme 4. TsOH-catalyzed synthesis of phenanthrenes in two-phase HFIP/cyclohexane system.

1.5. References

[1] Harvey, R. G. Polycyclic Aromatic Hydrocarbons, Wiley-VCH, New York, 1997.
[2] For reviews, see: (a) Anthony, J. E. Chem. Rev. 2008, 106, 5028-5048. (b) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452-483. (c) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313. (d) Kubozono, Y.; He, X.; Hamao, S.; Teranishi, K.; Goto, H.; Eguchi, R.; Kambe, T.; Gohda, S.; Nishihara, Y. Eur. J. Inorg. Chem. 2014, 3806-3819. (e) Rickhaus, M.; Mayor, M.; Juríček, M. Chem. Soc. Rev. 2016, 45, 1542-1556.
[3] (a) Sakamoto, G.; Adachi, C.; Koyama, T.; Taniguchi, Y.; Merritt, C. D.; Murata, H.; Kafafi, Z. H. Appl. Phys. Lett. 1999, 75, 766-768. (b) Picciolo, L. C.; Murata, H.; Kafafi, Z. H. Appl. Phys. Chem. 2001, 78, 2378-2380. (c) Jang, B.-B.; Lee, S. H.; Kafai, Z. H. Chem. Mater. 2006, 18, 449-457. (d) Ionkin, A. S.; Marshall, W. J.; Fish, B. M.; Bryman, L. M.; Wang, Y. Chem. Commun. 2008, 2319-2321. (e) Wu, T.-L.; Chou, H.-H.; Huang, P.-Y.; Cheng, C.-H.; Liu, R.-S. J. Org. Chem. 2014, 79, 267-274.
[4] For review, see: Hains, A. W.; Liang, Z.; Woodhouse, M. A.; Gregg, B. A. Chem. Rev. 2010, 110, 6689-6735.
[5] (a) Bailey, W. J.; Liao, C.-W. J. Am. Chem. Soc. 1954, 77, 992-993. (b) Willmore, N. D.; Hoic, D. A.; Katz, T. J. J. Org. Chem. 1994, 59, 1889-1891.
[6] Vets, N.; Smet, M.; Dehaen, W. Tetrahedron Lett. 2004, 45, 7287-7289.
[7] (a) Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C. W.; Yang, C.; Ellenstein, A. J. Am. Chem. Soc. 1997, 119, 2119-2124. and reviews, see: (b) Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1-456, and references cited therein.
[8] Some, S.; Dutta, B.; Ray, J. K. Tetrahedron Lett. 2006, 47, 1221-1224.
[9] (a) Mamane, V.; Hannen, P.; Fürstner, A. Chem.-Eur. J. 2004, 10, 4556-4575. (b) Kuninobu, Y.; Tatsuzaki, T.; Matsuki, T.; Takai, K. J. Org. Chem. 2011, 76, 7005-7009.
[10]For reviews, see: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744-5758. (b) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277-9306.
[11](a) Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 1777-1778. (b) Rosenfeld, D. C.; Shekhar, S.; Takemiya, T.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179-4182. (c) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, 2141-2144. (d) Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471-1474.
[12](a) Sanz, R.; Miguel, D.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Org. Lett. 2007, 9, 2027-2030. (b) Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2005, 128, 48-49. (c) Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Synlett 2001, 1851-1854. (d) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 10204-10205. (e) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047-1050.
[13]A For reviews on fluorinated alcohols, see: (a) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18-29. (b) Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2925-2943. (c) Dohi, T.; Yamaoka, N.; Kita, Y. Tetrahedron 2010, 66, 5775-5785. (d) Khaksar, S. J. Fluorine Chem. 2015, 172, 51-61.
[14]Fujio, M.; Susuki, T.; Goto, M.; Tsuji, Y.; Yatsugi, K.; Saeki, Y.; Kim, S. H.; Tsuno, Y. Bull. Chem. Soc., Jpn. 1994, 67, 2233-2243.
[15](a) Ichikawa, J.; Miyazaki, S.; Fujiwara, M.; Minami, T. J. Org. Chem. 1995, 60, 2320-2321. (b) Ichikawa J. Pure Appl. Chem. 2000, 72, 16851689. (c) Ichikawa, J.; Kaneko, M.; Yokota, M.; Itonaga, M.; Yokoyama, T. Org. Lett. 2006, 8, 3167-3170. (d) Fuchibe, K.; Takayama, R.; Yokoyama, T.; Ichikawa, J. Chem. -Eur. J. doi: 10.1002/chem. 201604578
[16](a) Ichikawa, J.; Jyono, H.; Kudo, T.; Fujiwara, M.; Yokota, M. Synthesis 2005, 39-46. (b) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem., Int. Ed. 2008, 47, 4870-4873. (c) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem.-Eur. J. 2011, 17, 12175-12185. (d) Fuchibe, K.; Morikawa, T.; Ueda, R.; Okauchi, T.; Ichikawa, J. J. Fluorine Chem. 2015, 179, 106115. (e) Suzuki, N.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 4984-4987.
[17](a) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639-4642. (b) Fuchibe, K.;

Morikawa, T.; Shigeno, K.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 1126-1129. (c) Fuchibe, K.; Morikawa, T.; Ueda, R.; Okauch, T.; Ichikawa, J. J. Fluorine Chem. 2015, 179, 106-115.
[18]Fujita, T.; Watabe, Y.; Yamashita, S.; Tanabe, H.; Nojima, T.; Ichikawa, J. Chem. Lett. 2016, 45, 964-966.
[19](a) Goldfinger, M. B.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, 7895-7896. (b) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 4578-4593. (c) Zhang, L.; Sun, J.; Kozmin, S. A. Tetrahedron 2006, 62, 11371-11380.

CHAPTER 2

Brønsted Acid-Catalyzed Dehydrative Cycloaromatization of Carbonyl Compounds

Abstract

Cycloaromatization of aromatic aldehydes and ketones was readily achieved by using a Brønsted acid catalyst in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP). In the presence of a catalytic amount of trifluoromethanesulfonic acid, biaryl-2-ylacetaldehydes and 2-benzylbenzaldehydes underwent sequential intramolecular cationic cyclization and dehydration to afford phenacenes and acenes, respectively. Furthermore, biaryl-2-ylacetaldehydes bearing a cyclopentene moiety at the α-position underwent unprecedented cycloaromatization including ring expansion to afford triphenylenes. HFIP effectively promoted the cyclizations by suppressing side reactions presumably as a result of stabilization of the cationic intermediates.

2.1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) and their electronic properties, which are based on extended π-systems, have been intensively studied. ${ }^{[1]}$ Among PAHs, linear-shaped acenes and zigzag-shaped phenacenes have especially been found to have practical applications in electronic devices, such as organic field-effect transistors (OFETs). ${ }^{[2]}$ Among conventional methods for the preparations of acenes and phenacenes, ${ }^{[3-8]}$ Brønsted acid-mediated dehydrative cycloaromatization of carbonyl compounds is one of the most versatile approaches common to both acenes and phenacenes (eq 1). ${ }^{[7,8]}$ In this type of reaction, however, there is a drawback: an excess amount of acid is generally essential, even though the entire reaction could, in theory, be mediated by a catalytic amount of acid. An excess amount of acid is used, presumably because the desired reaction is otherwise sluggish. Particularly for phenacene synthesis, a catalytic amount of acid promotes both protonation and deprotonation to increase the population of the enol form, which might induce unwanted side reactions, such as aldol-type polymerizations (Scheme 1). ${ }^{[9]}$

78\%

Scheme 1. Bradsher reaction and side reation via oxocarbenium ion.

The solvent 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) exhibits a strong cation-stabilizing effect owing to its high ionizing power with low nucleophilicity. Thus, we ${ }^{[10]}$ and other groups ${ }^{[11,12]}$ have utilized HFIP as a solvent in reactions involving cationic intermediates. I envisaged that HFIP would serve as an effective medium in the Brønsted acid-mediated cycloaromatization of carbonyl compounds to overcome the above-mentioned drawback. Stabilizing the intermediary oxonium ions (protonated carbonyl compounds) should allow the use of a catalytic amount of acid. I demonstrate that the Brønsted acid-catalyzed cycloaromatization of (biaryl-2-yl)acetaldehydes $\mathbf{1}$ and 2-benzylbenzaldehydes $\mathbf{3}$ readily proceeds in HFIP to provide phenacenes 2 and acenes 4, respectively (Scheme 2).
(a)

(b)

Scheme 2. Brønsted acid-catalyzed syntheses of (a) phenacenec 2 from (biaryl-2-yl)acetaldehydes 1 and (b) acenes 4 from 2-benzylbenzaldehydes 3.

2.2. Preparation of Precursors

The cyclization precursors, (biaryl-2-yl)acetaldehydes $\mathbf{1}$ and 2-benzylbenzaldehydes 3, were both readily available, as shown in Scheme 2. Aldehydes 1, the precursors of phenacenes 2, were prepared by the Suzuki-Miyaura cross-coupling of 2-(2-bromophenyl)acetaldehyde with arylboronic acids (Scheme 2a). Alternatively, aldehydes 1 were also prepared by Wittig reaction/hydrolysis of 2-arylbenzaldehydes (Scheme 2a). Both aldehyde intermediates were obtained from the same substrate, 2-bromobenzaldehyde, through a Wittig reaction/hydrolysis sequence and Suzuki-Miyaura coupling, respectively (Scheme 2a). On the other hand, aldehydes 3,
the precursors of acenes 4, were prepared by the Suzuki-Miyaura cross-coupling of 2-(bromomethyl)benzaldehyde, formed through a bromination/reduction sequence starting from 2-methylbenzonitrile, with arylboronic acids (Scheme 2b). ${ }^{[13]}$

Scheme 2. Preparation of (a) (biaryl-2-yl)acetaldehydes 1 and (b) 2-benzylbenzaldehydes 3.

2.3. Synthesis of Phenacenes, Acenes, and Triphenylenes via Brønsted Acid-Catalyzed Dehydrative Cycloaromatization

To establish a versatile catalytic system, I sought suitable conditions for the dehydrative cycloaromatization of (biphenyl-2-yl)acetaldehyde (1a) as a model substrate (Table 1). First, the solvent effects in the reaction of 1a were examined in the presence of a stoichiometric amount of trifluoroacetic acid (Table 1, Entries 1-5). Whereas almost no cyclized product was obtained in toluene, dichloromethane, or acetonitrile (Table 1, Entries 1-3), nitromethane afforded the cyclized product, phenanthrene (2a), albeit in low yield (Table 1, Entry 4). Among the solvents examined, HFIP was by far found to be the most effective and afforded 2a in 92% yield (Table 1, Entry 5). Upon using $10 \mathrm{~mol} \%$ of trifluoroacetic acid, the reaction proceeded catalytically (Table 1, Entry 6). The choice of acid was also critical. The use of $10 \mathrm{~mol} \%$ trifluoromethanesulfonic acid (TfOH),
which is a stronger acid than trifluoroacetic acid, quantitatively afforded 2a (Table 1, Entry 7). Finally, only $4 \mathrm{~mol} \%$ of TfOH in HFIP was found to be sufficient to complete the reaction at $0{ }^{\circ} \mathrm{C}$ in 20 min , leading to a 93% yield of $\mathbf{2 a}$ (Table 1, Entry 8).

Table 1. Effects of solvents and acids on the dehydrative cycloaromatization of aldehyde 1a.

Entry	Acid	$\mathrm{X}(\mathrm{mol} \%)$	Solvent	Conditions	Yield (\%) ${ }^{[\mathrm{a}]}$
1	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	100	Toluene	$\mathrm{RT}, 16 \mathrm{~h}$	1
2	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	100	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{RT}, 16 \mathrm{~h}$	1
3	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	100	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{RT}, 16 \mathrm{~h}$	$\mathrm{~N} . \mathrm{D} .{ }^{[\mathrm{b}]}$
4	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	100	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	$\mathrm{RT}, 16 \mathrm{~h}$	13
5	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	100	HFIP	$\mathrm{RT}, 16 \mathrm{~h}$	92
6	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	10	HFIP	$\mathrm{RT}, 16 \mathrm{~h}$	41
7	TfOH	10	HFIP	$0{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$	$98^{[\mathrm{cc}]}$
8	TfOH	4	HFIP	$0{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$	$93^{[\mathrm{cc}]}$

[a] Yield was determined by ${ }^{1} \mathrm{H}$ NMR measurement using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. [b] N.D. = Not detected. [c] Isolated yield.

The optimal conditions obtained above for 1a were then successfully applied to the cycloaromatization of other (biaryl-2-yl)acetaldehydes $\mathbf{1}$ with a variety of substituents on the nucleophilic aryl groups (Table 2). The reaction of p-tolyl- and o-tolylsubstituted phenylacetaldehydes 1b and 1c readily proceeded to afford 2-methylphenanthrene (2b) and 4-methylphenanthrene (2c), respectively, in excellent yields. Although the reactions of aldehydes 1d-g bearing electron-deficient nucleophilic moieties were sluggish under the same conditions, higher catalyst loadings and/or longer reaction times dramatically improved the yields of the corresponding phenanthrenes $\mathbf{2 d} \mathbf{- g}$. In particular, it is noted that aldehyde $\mathbf{1 g}$ successfully underwent intramolecular cationic cyclization despite its reduced reactivity owing to the strong
electron-withdrawing CF_{3} substituent on the nucleophilic benzene ring. ${ }^{[14]}$ In addition, α-substituted aldehyde $\mathbf{1 h}$ also participated in the cycloaromatization to afford 9-methylphenanthrene (2h) in high yield. Aldehyde $1 \mathbf{i}$ underwent regioselective cyclization at the α-position of the 2-naphthyl group, which led to chrysene ([4]phenacene, 2i) exclusively in 96% yield. ${ }^{[15]}$ Cyclization at the β-position of the 1-naphthyl group also proceeded effectively with substrate $\mathbf{1} \mathbf{j}$ to produce [4]helicene ($\mathbf{2} \mathbf{j}$) in 92% yield.

Table 2. TfOH-catalyzed synthesis of substituted phenacenes $\mathbf{2}$ in HFIP.[a]

2a 93%

2b 98\%

2c $95 \%{ }^{[b]}$

2d $99 \%{ }^{[c]}$

2e $99 \%{ }^{[c]}$

$2 f$ quant. ${ }^{[c]}$

2g 96\% ${ }^{[\mathrm{e}]}$

2h 92\%

2i $96 \%{ }^{[b]}$

2j $92 \%{ }^{[b]}$
[a] Isolated yield. [b] TfOH (10 mol\%). [c] TfOH (14 mol\%). [d] 2 g scale.
[e] TfOH (35 mol\%), 80 min .

Furthermore, ketone substrates were employed in the TfOH-catalyzed dehydrative cyclization, despite steric hindrance around the carbonyl carbon atom (eq 2). Heating of
biphenyl-2-ylmethyl phenyl ketone ($\mathbf{1 k}$) at $45{ }^{\circ} \mathrm{C}$ in the presence of $\mathrm{TfOH}(15 \mathrm{~mol} \%$) afforded 9-phenylphenanthrene ($\mathbf{2 k}$) in 82% yield. Under the same conditions, α-substituted ketone $\mathbf{1 l}$ gave 9,10-disubstituted phenanthrene $\mathbf{2 l}$ in 58% yield.

2k 82\%
1I: $R=M e$
2l 58\%

Intriguingly, the construction of two benzene rings was accomplished by conducting the above-mentioned cyclization in combination with ring expansion during the dehydration step. Thus, α, α-disubstituted biphenyl-2-ylacetaldehydes underwent the acid-catalyzed cyclization followed by 1,2-migration of the α-substituent. ${ }^{[16]}$ In particular, aldehydes bearing a carbocyclic structure at the α-position caused ring expansion as a result of 1,2 -migration. Aldehyde $\mathbf{1 m}$ bearing a cyclopentene moiety underwent the cyclization/ring expansion sequence followed by dehydrogenation with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) to afford triphenylene (6) in 97% yield (eq 3). In this reaction, cationic intermediate \mathbf{A} generated by dehydrative cyclization of 1m underwent ring expansion to form a six-membered ring. This protocol can be a facile method for the synthesis of triphenylenes. ${ }^{[17]}$

In addition, biphenyl-2-ylvinyl ether 5a, the hydrolysis of which leads to $\mathbf{1 a}$ (Scheme 2a), directly underwent a similar cyclization in the presence of the acid catalyst (eq 4). ${ }^{[18,19]}$ On treatment with $\mathrm{TfOH}(15 \mathrm{~mol} \%)$, cyclization of $\mathbf{5 a}(E / Z=72: 28)$ proceeded by elimination of methanol to afford phenanthrene (2a) in 92% yield. Despite a higher catalyst loading ($15 \mathrm{~mol} \%$) and a longer reaction time (2 h), cyclization of $\mathbf{5 a}$ provided an effective approach to $\mathbf{2 a}$ because of saving the hydrolysis step.

Next, the efficient synthesis of acenes $\mathbf{4}$ starting from 2-benzylbenzaldehydes $\mathbf{3}$ was examined by a similar dehydrative cycloaromatization (Table 3). On treatment of 2-benzylbenzaldehyde (3a) with TfOH ($15 \mathrm{~mol} \%$), the expected anthracene (4a) was obtained in 91% yield. Cyclization of both electron-rich substrates $\mathbf{3 b} \mathbf{d}$ and electron-deficient substrates $\mathbf{3 e}$ and $\mathbf{3 f}$ readily proceeded under similar conditions to afford the corresponding anthracenes $\mathbf{4 b} \mathbf{-} \mathbf{f}$ in good to high yields, although cyclization of halogen-bearing substrates $\mathbf{4 e}$ and $\mathbf{4 f}$ required heating. As with the cyclization of acetaldehyde $\mathbf{1 i}$ (Table 2), the cyclization of aldehyde $\mathbf{3 g}$ proceeded
exclusively at the α-position of the 2-naphthyl group to afford tetraphene ($\mathbf{4 g}$) ${ }^{[15]}$ In contrast, substrate 3h bearing an 1-methyl-substituted naphth-2-yl group underwent cyclization at its β-position, which led to the formation of 5-methyl-substituted tetracene $\mathbf{4 h}$.

Table 3. TfOH-catalyzed synthesis of substituted acenes 4 in HFIP. ${ }^{[a]}$

[a] Isolated yield. [b] Reflux. [c] Reaction was conducted in the dark.

2-Benzylbenzaldehyde analogues also participated in the cyclization. The synthesis of a 9 -substituted anthracene was successfully achieved through the cyclization of a ketone substrate (eq 5). The TfOH-catalyzed cyclization of phenyl ketone $\mathbf{3 i}$ proceeded to afford 9-phenylanthracene ($\mathbf{4} \mathbf{i}$) in 76% yield. Furthermore, an acetal derived from 2-benzylbenzaldehyde underwent a TfOH-catalyzed deacetalization/cycloaromatization sequence (eq 6). ${ }^{[20]}$ Treatment of 2-(2-benzylphenyl)-1,3-dioxolane (7a) with a catalytic amount of TfOH afforded anthracene (4a) in 97\% yield.

2.4. Conclusion

In summary, I developed an efficient, atom-economical approach common to phenacenes, acenes, and triphenylenes through the dehydrative cycloaromatization of aldehydes and ketones. In this process, only a catalytic amount of a Brønsted acid (TfOH) was required for the formation of additional aromatic rings. The catalytic dehydrative cycloaromatization involving cationic cyclization was obviously promoted in HFIP. This methodology can be applied to the synthesis of a wide variety of PAHs, which may serve as next-generation electronic materials.

2.5. References and Notes

[1] Harvey, R. G. in Polycyclic Aromatic Hydrocarbons, Wiley-VHC, New York, 1997.
[2] For reviews, see: (a) Anthony, J. E. Chem. Rev. 2006, 106, 5028-5048. (b) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452-483. (c) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313. (d) Kubozono, Y.; He, X.; Hamao, S.; Teranishi, K.; Goto, H.; Egushi, R.; Kambe, T.; Gohda, S.; Nishihara, Y. Eur. J. Inorg. Chem. 2014, 3806-3819. (e) Rickhaus, M.; Mayor, M.; Juríček, M. Chem. Soc. Rev. 2016, 45, 1542-1556.
[3] For synthesis of phenacenes via photochemical oxidative cyclization (Mallory reaction), see: (a) Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1-456, and references cited therein; (b) Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C. W.; Yang, C.; Ellenstein, A. J. Am. Chem. Soc. 1997, 119, 2119-2124. (c) Mallory, F. B.; Butler, K. E.; Bérubé, A.; Lizik, Jr. E. D.; Mallory, C. W.; Brondyke, E. J.; Hiremath, R.; Ngo, P.; Carroll, P. J. Tetrahedron 2001, 57, 3715-3724. (d) Okamoto, H.; Yamaji, M.; Gohda, S.; Kubozono, Y.; Komura, N.; Sato, K.; Sugino, H.; Satake, K. Org. Lett. 2011, 13, 2758-2761. (e) Chen, M.; Yang, C.; Wang, Y.; Li, D.; Xia, W. Org. Lett. 2016, 18, 2280-2283.
[4] For syntheis of phenacenes via the McMurry coupling, see: (a) Gies, A.-E.; Pfeffer, M. J. Org. Chem. 1999, 64, 3650-3654. (b) Some, S.; Dutta, B.; Ray, J. K.; Tetrahedron Lett. 2006, 47, 1221-1224.
[5] For synthesis of phenacenes via Brønsted acid-mediated cyclization of alkynyl biaryls, see: Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 4578-4593.
[6] For selected reports on synthesis of PAHs via transition metal-catalyzed cyclization of alkynylarenes, see: (a) Mamane, V.; Hannen, P.; Fürstner, A. Chem.-Eur. J. 2004, 10, 4556-4575. (b) Shen, H.-C.; Tang, J.-M.; Chang, H.-K.; Yang, C.-W.; Liu, R.-S. J. Org. Chem. 2005, 70, 10113-10116. (c) Chen, T.-A.; Lee, T.-J.; Lin, M.-Y.; Sohel, S. M. A.; Diau, E. W.-G.; Lush, S.-F.; Liu, R.-S. Chem.-Eur. J. 2010, 16, 1826-1833. (d) Matsuda, T.; Moriya, T.; Goya, T.; Murakami, M. Chem. Lett. 2011, 40, 40-41. (e) Kitazawa, K.; Kochi, T.; Nitani,
M.; Ie, Y.; Aso, Y.; Kakiuchi, F. Chem. Lett. 2011, 40, 300-302. (f) Shu, C.; Chen, C.-B.; Chen, W.-X.; Ye, L.-W.; Org. Lett. 2013, 15, 5542-5545. (g) Carreras, J.; Gopakumar G.; Gu, L.; Gimeno, A.; Linowski, P.; Petuškova, J.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. 2013, 135, 18815-18823.
[7] (a) Bradsher, C. K. J. Am. Chem. Soc. 1940, 62, 486-488. (b) Bradsher, C. K.; Jackson Jr., W. J. J. Am. Chem. Soc. 1954, 76, 734-738. (c) Bradsher, C. K. Chem. Rev. 1987, 87, 1277-1297, and references cited therein; (d) Diel, B. N.; Han, M.; Kole, P. L.; Boaz, D. B.; J. Label. Compd. Radiopharm. 2007, 50, 551-553.
[8] For metal-catalyzed Bradsher reaction, see: Kuninobu, Y.; Tatsuzaki, T.; Matsuki, K.; Takai, K. J. Org. Chem. 2011, 76, 7005-7009.
[9] For self-aldol oligomerization of arylacetaldehydes, see: Tena-Solsona, M.; Nanda, J.; Díaz-Oltra, S.; Chotera, A.; Ashkenasy, G.; Escuder, B. Chem.-Eur. J. 2016, 22, 6687-6694.
[10](a) Ichikawa, J.; Miyazaki, S.; Fujiwara, M.; Minami, T. J. Org. Chem. 1995, 60, 2320-2321. (b) Ichikawa, J. Pure Appl. Chem. 2000, 72, 1685-1689. (c) Ichikawa, J.; Jyono, H.; Kudo, T.; Fujiwara, M.; Yokota, M. Synthesis 2005, 39-46. (d) Ichikawa, J.; Kaneko, M.; Yokota, M.; Itonaga, M.; Yokoyama, T. Org. Lett. 2006, 8, 3167-3170. (e) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639-4642. (f) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem., Int. Ed. 2008, 47, 4870-4873. (g) Isobe, H.; Hitosugi, S.; Matsuno, T.; Iwamoto, T.; Ichikawa, J. Org. Lett. 2009, 11, 4026-4028. (h) Tanabe, H.; Ichikawa, J. Chem. Lett. 2010, 39, 248-249. (i) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem.-Eur. J. 2011, 17, 12175-12185. (j) Fuchibe, K.; Morikawa, T.; Shigeno, K.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 1126-1129. (k) Fuchibe, K.; Morikawa, T.; Ueda, R.; Okauchi, T.; Ichikawa, J. J. Fluorine Chem. 2015, 179, 106-115. (1) Suzuki, N.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 4984-4987. (m) Fujita, T.; Watabe, Y.; Yamashita, S.; Tanabe, H.; Nojima, T.; Ichikawa, J. Chem. Lett. 2016, 45, 964-966.
[11]For reviews, see: (a) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18-29. (b)

Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2925-2943. (c) Dohi, T.; Yamaoka, N.; Kita, Y. Tetrahedron 2010, 66, 5775-5785. (d) Khaksar, S. J. Fluorine Chem. 2015, 172, 51-61.
[12]For selected papers on carbocationic processes in HFIP reported by other groups, see: (a) Nishiwaki, N.; Kamimura, R.; Takahashi, K.; Nakamura, A.; Hosokawa, T. Tetrahedron Lett. 2010, 51, 3590-3592. (b) Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem., Int. Ed. 2014, 53, 13835-13839. (c) Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198-4202. (d) Ricardo, C. L.; Mo, X.; McCubbin, J.; Hall, D. G. Chem.-Eur. J. 2015, 21, 4218-4223. (e) Motiwala, H. F.; Vekariya, R. H.; Aubé, J. Org. Lett. 2015, 17, 5484-5487.
[13]Zhang, X.-X. Lippard, S. J. J. Org. Chem. 2000, 65, 5298-5305.
[14]Cycloaromatization of a CF_{3}-bearing arene substrate proceeded unprecedentedly. See also Table 2, Entry 4 in ref. 19b.
[15]Cycloaromatization of the naphthyl-bearing substrates proceeded in accordance with the regioselectivity observed in normal electrophilic aromatic substitution reactions.
[16]For construction of benzene rings via ring expansion of cyclopenten moieties, see: Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825-7828.
[17]For reviews on triphenylene syntheses, see: (a) Pérez, D.; Guitián, E. Chem. Soc. Rev. 2004, 33, 274-283. (b) Pérez, D.; Peña, D.; Guitián, E. Eur. J. Org. Chem. 2013, 5981-6013.
[18]For Brønsted acid catalyzed cyclization of vinyl ethers, see: (a) Harvey, R. G.; Lim, K.; Dai, Q. J. Org. Chem. 2004, 69, 1372-1373. (b) Harvey, R. G.; Dai, Q.; Ran, C.; Penning, T. M. J. Org. Chem. 2004, 69, 2024-2032.
[19]For metal-catalyzed cyclization of vinyl ethers, see: (a) Namba, K.; Yamamoto, H.; Sasaki, I.; Mori, K.; Imagawa, H.; Nishizawa, M. Org. Lett. 2008, 10, 1767-1770. (b) Murai, M.; Hosokawa, N.; Roy, D.; Takai, K. Org. Lett. 2014, 16, 4134-4137.
[20]For cycloaromatization of dioxolanes mediated by excess acid, see: (a) Bałczewski, P.; Koprowski, M.; Bodzioch, A.; Marciniak, B.; Różycka-Sokołowska, E. J. Org. Chem. 2006, 71, 2899-2902. (b) Bodzioch, A.; Marciniak, B.; Różycka-Sokołowska, E.; Jeszka, J. K.; Uznański, P.; Kania, S.; Kuliński, J.; Bałczewski, P. Chem.-Eur. J. 2012, 18, 4866-4876.

2.6. Experimental Section

General Statements

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance 500 spectrometer at $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR $), 126 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR), and $470 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right.$ NMR). Chemical shift values are given in ppm relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H} \mathrm{NMR:} \delta=0.00 \mathrm{ppm}$), CDCl_{3} (for ${ }^{13} \mathrm{C}$ NMR: $\delta=77.0 \mathrm{ppm}$), and $\mathrm{C}_{6} \mathrm{~F}_{6}$ (for ${ }^{19} \mathrm{~F}$ NMR: $\delta=0.00 \mathrm{ppm}$). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV spectrometer.

Column chromatography was conducted on silica gel (Silica Gel 60 N, Kanto Chemical Co., Inc. for column chromatography). All the reactions were conducted under argon. Tetrahydrofuran (THF), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), N, N-dimethylformamide (DMF), and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. 1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP) and chlorobenzene were distilled from CaH_{2} and stored over activated molecular sieves 4A. Trifluoromethanesulfonic acid was distilled from MgSO_{4}. 1-Bromo-2-(2-methoxyvinyl)benzene $\quad(E / Z=50: 50),{ }^{1}$ 2-bromobenzyl cyanide, ${ }^{2}$ 2-(bromomethyl)benzaldehyde, ${ }^{3} \quad$ 2-(biphenyl-2-yl)-1-phenylethan-1-one (1k), ${ }^{4}$ (2-benzylphenyl)(phenyl)methanone (3i), ${ }^{5}$ and 2-(2-methoxyvinyl)biphenyl (5a, E/Z $\left.=72: 28\right)^{6}$ were prepared according to the literature procedures. Unless otherwise noted, materials were obtained from commercial sources and used directly without further purifications.

2.6.2. Preparation of Substrates

2.6.2.1. Preparation of (Biaryl-2-yl)acetaldehydes and acetophenones 1

2-(2-Bromophenyl)acetaldehyde ${ }^{1}$

$E / Z=50: 50$
To an acetone (11 mL) solution of 2-(2-methoxyvinyl)bromobenzene ($E / Z=50: 50,962 \mathrm{mg}$, $4.51 \mathrm{mmol})$ was slowly added aqueous $\mathrm{HCl}(6 \mathrm{M}, 3.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 21 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, and organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure gave a crude mixture (908 mg) including 2-(2-bromophenyl)acetaldehyde as a pale yellow liquid.

[General Procedure A]

The obtained crude mixture (300 mg) of 2-(2-bromophenyl)acetaldehyde was dissolved in 1,4-dioxane (23 mL) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. To the solution were added $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(10 \mathrm{~mol} \%)$, an arylboronic acid (1.5 equiv), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv). After stirring at $120{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography to give the corresponding (biaryl-2-yl)acetaldehyde $\mathbf{1}$. The yields of $\mathbf{1}$ was determined based on 2-(2-methoxyvinyl)bromobenzene.

(Biphenyl-2-yl)acetaldehyde (1a)

Compound 1a was prepared according to General Procedure A using the crude mixture (300 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}, 78 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(54$ $\mathrm{mg}, 0.15 \mathrm{mmol}$), phenylboronic acid ($281 \mathrm{mg}, 2.31 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(488 \mathrm{mg}, 2.30 \mathrm{mmol})$. Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 a}(153 \mathrm{mg}, 52 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.40-$ $7.43(\mathrm{~m}, 2 \mathrm{H}), 9.63(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 48.3,127.4,127.5,127.8$, 128.4, 129.1, 129.8, 130.4, 130.6, 140.8, 142.9, 199.6. IR (neat): v 3059, 2922, 1724, 1481, 771, 704 cm^{-1}. HRMS (EI) m / z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+}: 196.0883$; Found: 196.0884.

(4'-Methylbiphenyl-2-yl)acetaldehyde (1b)

Compound 1b was prepared according to General Procedure A using the crude mixture (301 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}, 76 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(54$ $\mathrm{mg}, 0.15 \mathrm{mmol}$), 4-methylphenylboronic acid ($317 \mathrm{mg}, 2.33 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (488 mg , 2.30 mmol). Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 b}(184 \mathrm{mg}$, 58%) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ $(\mathrm{dd}, J=7.3,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 2 \mathrm{H})$, 9.62-9.63 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1,48.3,127.5,127.7,129.0,129.1,129.9$, 130.5, 130.6, 137.1, 137.9, 142.9, 199.8. IR (neat): v 3022, 2920, 2817, 2723, 1720, 1483, 1444, 1109, 1034, 1007, 820, $758 \mathrm{~cm}^{-1}$. HRMS (EI): m/z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}: 210.1039$; Found:

(2'-Methylbiphenyl-2-yl)acetaldehyde (1c)

Compound 1c was prepared according to General Procedure A using the crude mixture (306 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(18 \mathrm{mg}, 82 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(55$ $\mathrm{mg}, 0.16 \mathrm{mmol}$), 2-methylphenylboronic acid ($313 \mathrm{mg}, 2.30 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(485 \mathrm{mg}, 2.28$ mmol). Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 c}(146 \mathrm{mg}$, 45%) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.04(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, J=16.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=16.7,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 2 \mathrm{H}), 9.54$ $(\mathrm{dd}, J=2.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.9,48.1,125.7$, 127.4, 127.77, 127.77, $129.5,130.08,130.13,130.3,130.4,135.8,140.2,142.2,199.3$. IR (neat): v $3059,3018,2920,2821$, 2723, 1720, 1477, 1444, 1034, 1009, 752, $729 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}$: 210.1039; Found: 210.1038.

(4'-Fluorobiphenyl-2-yl)acetaldehyde (1d)

Compound 1d was prepared according to General Procedure A using the crude mixture (302 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(18 \mathrm{mg}, 82 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(53$ $\mathrm{mg}, 0.15 \mathrm{mmol}$), 4-fluorophenylboronic acid ($320 \mathrm{mg}, 2.29 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($484 \mathrm{mg}, 2.28 \mathrm{mmol}$). Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 d}(165 \mathrm{mg}, 51 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.67(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H})$,
7.27-7.30(m, 2H), 7.34-7.40(m, 2H), $9.63(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $48.3,115.3\left(\mathrm{~d}, J_{\mathrm{CF}}=21 \mathrm{~Hz}\right), 127.5,128.0,130.0,130.5,130.7\left(\mathrm{~d}, J_{\mathrm{CF}}=4 \mathrm{~Hz}\right), 130.8,136.8\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=3 \mathrm{~Hz}), 141.8,162.2\left(\mathrm{~d}, J_{\mathrm{CF}}=247 \mathrm{~Hz}\right), 199.3 .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 47.8-47.9(\mathrm{~m}) . \mathrm{IR}$ (neat): v 3066, 2924, 2854, 1722, 1512, 1483, 1219, 1157, 837, $760 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}[\mathrm{M}]^{+}: 214.0788$; Found: 214.0785.

(4'-Bromobiphenyl-2-yl)acetaldehyde (1e)

Compound 1e was prepared according to General Procedure A using the crude mixture (322 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(18 \mathrm{mg}, 78 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(53$ $\mathrm{mg}, 0.15 \mathrm{mmol}$), 4-bromophenylboronic acid ($456 \mathrm{mg}, 2.27 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(479 \mathrm{mg}, 2.26 \mathrm{mmol})$. Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 e}(88 \mathrm{mg}, 20 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.67(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H})$, 7.34-7.40(m, 2H), 7.53-7.55 (m, 2H), $9.64(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 48.2, 121.7, 127.6, 128.2, 129.7, 130.3, 130.7, 130.8, 131.5, 139.7, 141.6, 199.2. IR (neat): v 3065, 2923, 2821, 1720, 1475, 1390, 1070, 1003, 827, 756, cm^{-1}. HRMS (EI): m / z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}$ $[\mathrm{M}]^{+}: 273.9988$; Found: 273.9992.
(4'-Methoxybiphenyl-2-yl)acetaldehyde (1f)

Compound $\mathbf{1 f}$ was prepared according to General Procedure A using the crude mixture (303 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(19 \mathrm{mg}, 84 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(55$ $\mathrm{mg}, 0.16 \mathrm{mmol}$), 4-methoxyphenylboronic acid ($349 \mathrm{mg}, 2.30 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(483 \mathrm{mg}, 2.28$
$\mathrm{mmol})$. Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 f}(186 \mathrm{mg}$, 54%) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.93-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 3 \mathrm{H}), 9.63(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 48.4,55.3,113.8,127.5,127.6,130.1,130.2,130.57,130.62,133.1,142.5,158.9,199.8$. IR (neat): v 3018, 2935, 2835, 2723, 1718, 1610, 1514, 1483, 1242, 1174, 1034, 833, $762 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 226.0988; Found: 226.0981.

[4'-(Trifluoromethyl)biphenyl-2-yl]acetaldehyde (1g)

Compound $\mathbf{1 g}$ was prepared according to General Procedure A using the crude mixture (298 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(19 \mathrm{mg}, 82 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(56$ $\mathrm{mg}, 0.16 \mathrm{mmol}$), 4-(trifluoromethyl)phenylboronic acid ($431 \mathrm{mg}, 2.27 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(484 \mathrm{mg}$, 2.28 mmol). Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 g}(127$ $\mathrm{mg}, 32 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.44(\mathrm{~m}, 4 \mathrm{H})$, $7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.66(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 48.2,124.1(\mathrm{q}$, $\left.J_{\mathrm{CF}}=273 \mathrm{~Hz}\right), 125.4\left(\mathrm{q}, J_{\mathrm{CF}}=4 \mathrm{~Hz}\right), 127.7,128.5,129.51,129.53\left(\mathrm{q}, J_{\mathrm{CF}}=65 \mathrm{~Hz}\right), 129.7,130.2$, 130.8, 141.4, 144.5, 199.0. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 99.3$ (s). IR (neat): v 3020, 2827, 2733, 1724, 1323, 1120, 1068, 847, $769 \mathrm{~cm}^{-1}$. HRMS (EI): m/z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}]^{+}: 264.0757$; Found: 264.0756.

2-(Biphenyl-2-yl)propanal (1h)

A mixture of $\mathrm{Ph}_{3} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{OMe}\right) \cdot \mathrm{Cl}(10.8 \mathrm{~g}, 31.5 \mathrm{mmol})$ and t - $\mathrm{BuONa}(3.18 \mathrm{~g}, 33.1 \mathrm{mmol})$ was dissolved in THF $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , a THF $(10 \mathrm{~mL})$ solution of 2-acetylbiphenyl ($1.93 \mathrm{~g}, 9.84 \mathrm{mmol}$) was added. After stirring at room temperature for 3 h , the reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ two times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=100: 1$) to give 2-(1-methoxyprop-1-en-2-yl)biphenyl as a pale yellow oil.

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) solution of the obtained 2-(1-methoxyprop-1-en-2-yl)biphenyl was added formic acid (10 mL). After stirring at room temperature for 3 days in the dark, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=100: 1$) to give $\mathbf{1 h}$ ($1.58 \mathrm{~g}, 76 \%$ from 2-acetylbiphenyl) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.89(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6$, $1 \mathrm{H}), 7.29-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.6$, 49.1, 127.2, 127.4, 128.0, 128.1, 128.4, 129.2, 130.6, 135.8, 140.9, 142.9, 201.1. IR (neat): v 3060, 2976, 2933, 2814, 2717, 1716, 1479, 1450, 1018, 866, 756, 746, $700 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}: 210.1039$; Found: 210.1040

2-(Naphthalen-2-yl)phenylacetaldehyde (1i)

Compound 1i was prepared according to General Procedure A using the crude mixture (301 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(19 \mathrm{mg}, 83 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(54$ $\mathrm{mg}, 0.15 \mathrm{mmol}$), (naphthalen-2-yl)boronic acid ($390 \mathrm{mg}, 2.27 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(486 \mathrm{mg}, 2.29$ $\mathrm{mmol})$. Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 i}(238 \mathrm{mg}$, 64%) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.50-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.89(\mathrm{~m}, 2 \mathrm{H}), 9.65(\mathrm{t}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 48.3,126.2,126.5,127.3,127.5,127.7,127.9,127.95$, $128.00,128.01,130.1,130.63,130.63,132.4,133.2,138.3,142.8,199.5$. IR (neat): v 3053, 2821, 2723, 1722, 1491, 823, $758 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}: 246.1039$; Found: 246.1044.

2-(Naphthalen-1-yl)phenylacetaldehyde (1j)

Compound $\mathbf{1} \mathbf{j}$ was prepared according to General Procedure A using the crude mixture (304 mg) including 2-(2-bromophenyl)acetaldehyde, $\mathrm{Pd}(\mathrm{OAc})_{2}(19 \mathrm{mg}, 83 \mu \mathrm{~mol}), \mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(54$ $\mathrm{mg}, 0.15 \mathrm{mmol}$), (naphthalen-1-yl)boronic acid ($389 \mathrm{mg}, 2.26 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(482 \mathrm{mg}, 2.27$ $\mathrm{mmol})$. Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave $\mathbf{1 j}(224 \mathrm{mg}$, 60%) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.36(\mathrm{dd}, J=16.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=16.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.50 (m, 9H), 7.85-7.89 (m, 2H), $9.43(\mathrm{dd}, J=2.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 48.3,125.3,125.7,126.0,126.4,127.1,127.4,128.1,128.2,128.3,130.4,131.1,131.4$, $132.0,133.5,138.2,140.9,199.3$. IR (neat): v 3059, 3016, 2823, 2727, 1720, 1215, $746 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}: 246.1039$; Found: 246.1029.

2-(Biphenyl-2-yl)-1-phenylpropan-1-one (11)

To a THF (30 mL) solution of 2-(biphenyl-2-yl)propanal ($\mathbf{1 h}, 1.00 \mathrm{~g}, 4.76 \mathrm{mmol}$) was slowly added $\mathrm{PhLi}\left(1.8 \mathrm{M}\right.$ in cyclohexane and $\left.\mathrm{Et}_{2} \mathrm{O}, 2.8 \mathrm{~mL}, 5.0 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $100{ }^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and organic materials were extracted with EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=30: 1$) to give 2 -(biphenyl-2-yl)-1-phenylpropan-1-ol.

To a suspension of pyridinium chlorochromate (PCC, $898 \mathrm{mg}, 4.17 \mathrm{mmol}$) and molecular sieves 4A (772 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ solution of 2-(biphenyl-2-yl)-1-phenylpropan-1-ol at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , the reaction mixture was filtered through a pad of Celite $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=$ 30:1) to give 11 ($566 \mathrm{mg}, 42 \%$ from 1h) as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.72(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.31(\mathrm{~m}$, $6 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{dd}, J=8.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 19.6,43.7,126.8,127.4,127.5,128.0,128.2,128.4,128.5,129.3,130.5$, 132.5, 136.3, 138.6, 141.2, 141.3, 200.9. IR (neat): v 3059, 2976, 2931, 1682, 1477, 1446, 1217, 949, 750, $688 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}: 286.1352$; Found: 286.1350.

1-(2-Bromophenyl)cyclopent-3-ene-1-carbonitrile

2-Bromobenzyl cyanide ($4.90 \mathrm{~g}, 25.0 \mathrm{mmol}$) and t-BuONa ($6.28 \mathrm{~g}, 65.4 \mathrm{mmol}$) were dissolved in THF (25 mL) and N-methyl-2-pyrrolidone (NMP, 25 mL). To the solution was slowly added cis-1,4-dichloro-2-butene ($3.15 \mathrm{~mL}, 29.9 \mathrm{mmol}$) under $-10{ }^{\circ} \mathrm{C}$. After stirring at room temperature overnight, the reaction was quenched with aqueous $\mathrm{HCl}(2 \mathrm{M})$, and organic materials were extracted with EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=10: 1$) to give 1-(2-bromophenyl)cyclopent-3-ene-1-carbonitrile ($5.66 \mathrm{~g}, 91 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.25-3.33(\mathrm{~m}, 4 \mathrm{H}), 5.82(\mathrm{~s}, 2 \mathrm{H}), 7.19$ (ddd, $\left.J=7.8,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.34(\mathrm{ddd}, J=7.8,7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 45.3,46.8,122.5,124.1,127.6,128.2,128.9,129.6,135.5,136.6$. IR (neat): v 3066, 2929, 2862, 2233, 1469, 1427, 1022, $742 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10}{ }^{79} \mathrm{BrN}[\mathrm{M}]^{+}: 246.9991$; Found: 246.9988 .

1-(2-Bromophenyl)cyclopent-3-ene-1-carbaldehyde

To a toluene (14 mL) solution of 1-(2-bromophenyl)cyclopent-3-ene-1-carbonitrile (3.33 g , 13.4 mmol) was slowly added diisobutylaluminium hydride (DIBAL, 1.0 M in toluene, $16 \mathrm{~mL}, 16$ $\mathrm{mmol})$ at $-50{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 2 h , aqueous $\mathrm{HCl}(6 \mathrm{M}, 11.2 \mathrm{~mL})$ was added at $-50^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, and stirred for
another 30 min . To the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$, and organic materials were extracted with EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=10: 1$) to give 1 -(2-bromophenyl)cyclopent-3-ene-1-carbaldehyde $(2.92 \mathrm{~g}, 86 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.85(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H})$, 7.14-7.18(m, 1H), 7.31-7.35(m, 2H), $7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 40.5,62.9,123.8,127.5,128.2,128.9,129.3,134.5,140.8,200.6$. IR (neat): v 3059, 2906, 2848, 2710, 1718, 1468, $1011 \mathrm{~cm}^{-1}$. HRMS (EI): m/z Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}[\mathrm{M}]^{+}: 249.9988$; Found: 249.9985.

1-(Biphenyl-2-yl)cyclopent-3-ene-1-carbaldehyde (1m)

1-(2-Bromophenyl)cyclopent-3-ene-1-carbaldehyde ($136 \mathrm{mg}, 0.54 \mathrm{mmol}$) was dissolved in toluene $(0.3 \mathrm{~mL})$, $\mathrm{EtOH}(0.3 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$. To the solution were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(33 \mathrm{mg}$, $29 \mu \mathrm{~mol})$, phenylboronic acid ($146 \mathrm{mg}, 1.2 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(182 \mathrm{mg}, 1.7 \mathrm{mmol})$. After stirring at $95^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and organic materials were extracted with EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=60: 1)$ to give $\mathbf{1 m}(101 \mathrm{mg}, 75 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.62(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H})$, 7.16-7.20 (m, 3H), 7.29-7.33 (m, 1H), 7.34-7.38 (m, 3H), 7.39-7.42 (m, 2H), $9.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 41.5,62.1,126.7,127.6,127.8,127.9,128.5,128.8,129.7,131.7$, 139.2, 142.4, 142.5, 199.0. IR (neat): v 3057, 2952, 2912, 2798, 2708, 1722, 1475, 1340, 754, 688
cm^{-1}. HRMS (EI): m / z Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}: 248.1196$; Found: 248.1192.

2.6.2.2. Preparation of 2-Benzylbenzaldehydes 3

[General Procedure B]

To a toluene (6 mL) solution of 2-(bromomethyl)benzaldehyde (3.0 mmol) were added $\left.\mathrm{Pd}(\mathrm{OAc})_{2} 5 \mathrm{~mol} \%\right), \mathrm{PPh}_{3}(15 \mathrm{~mol} \%)$, an arylboronic acid (1.5 equiv), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv). After stirring at $80^{\circ} \mathrm{C}$ for $12-15 \mathrm{~h}$, the reaction mixture was filtered through a pad of silica gel (EtOAc). After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography to give the corresponding 2-benzylbenzaldehyde 3 .

2-Benzylbenzaldehyde (3a)

Compound 3a was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($604 \mathrm{mg}, 3.03 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(36 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{PPh}_{3}(122 \mathrm{mg}$, $0.47 \mathrm{mmol})$, phenylboronic acid ($553 \mathrm{mg}, 4.54 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.34 \mathrm{~g}, 6.31 \mathrm{mmol})$ at $80{ }^{\circ} \mathrm{C}$ for 15 h . Purification by silica gel column chromatography (hexane/EtOAc $=50: 1$) gave 3a (593 mg , quant.) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.45(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{tt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{ddd}, J=7.6,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{ddd}, J=7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ $(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 38.0, 126.3, 127.0, 128.6, $128.8,131.6,132.0,133.91,133.91,140.3,143.0,192.4$. IR (neat): v 3026, 2738, 1695, 1597, 1495, 1452, 1209, 727, $694 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+}: 196.0883$; Found: 196.0882.

2-(3-Methylbenzyl)benzaldehyde (3b)

Compound 3b was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($603 \mathrm{mg}, 3.03 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(35 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{PPh}_{3}(124 \mathrm{mg}$, 0.47 mmol), 3-methylphenylboronic acid ($623 \mathrm{mg}, 4.58 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.28 \mathrm{~g}, 6.03 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 12 h . Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) gave 3b ($534 \mathrm{mg}, 84 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.29(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 6.92-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.53 (ddd, $J=7.6,7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 21.4,37.9,125.8,126.9,127.0,128.5,129.5,131.6,131.7,133.91,133.91,138.2$, 140.2, 143.1, 192.4. IR (neat): v 3020, 2920, 2860, 2731, 1691, 1597, 1194, 742, $694 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}: 210.1039$; Found: 210.1040.

2-(2,5-Dimethylbenzyl)benzaldehyde (3c)

Compound 3c was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($802 \mathrm{mg}, 4.03 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(45 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PPh}_{3}(152 \mathrm{mg}$, 0.58 mmol), 2,5-dimethylphenylboronic acid ($902 \mathrm{mg}, 6.01 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(1.74 \mathrm{~g}, 8.20 \mathrm{mmol}$), and toluene (8 mL) at $80^{\circ} \mathrm{C}$ for 12 h . Purification by silica gel column chromatography (hexane/EtOAc $=30: 1)$ gave $\mathbf{3 c}(669 \mathrm{mg}, 74 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(7.6$, $7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.1,
21.0, 35.6, 126.7, 127.2, 130.1, 130.3, 130.7, 132.1, 133.3, 133.9, 134.0, 135.6, 137.9, 142.8, 192.6. IR (neat): v 2922, 2862, 2735, 1691, 1599, 1196, 810, $750 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}: 224.1196$; Found: 224.1190.

2-(4-Methoxy-2-methylbenzyl)benzaldehyde (3d)

Compound 3d was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($601 \mathrm{mg}, 3.02 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(36 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{PPh}_{3}(119 \mathrm{mg}$, 0.46 mmol), 4-methoxy-2-methylphenylboronic acid ($754 \mathrm{mg}, 4.54 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.32 \mathrm{~g}, 6.22$ mmol) at $80^{\circ} \mathrm{C}$ for 15 h . Purification by silica gel column chromatography (hexane/EtOAc $=50: 1$) gave $\mathbf{3 d}$ ($372 \mathrm{mg}, 51 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.6$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.9, 34.9, 55.2, 111.1, 116.1, 126.7, 130.3, 130.4, 130.6, 132.2, 133.9, 134.0, 137.8, 143.2, 158.2, 192.6. IR (neat): v 2949, 2835, 2733, 1691, 1599, 1500, 1288, 1252, 1198, 1045, 750 cm^{-1}. HRMS (EI): m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}: 240.1145$; Found: 240.1140 .

2-(4-Fluorobenzyl)benzaldehyde (3e)

Compound $\mathbf{3 e}$ was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($598 \mathrm{mg}, 3.01 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(35 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{PPh}_{3}(123 \mathrm{mg}$, 0.47 mmol), 4-fluorophenylboronic acid ($711 \mathrm{mg}, 5.08 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.35 \mathrm{~g}, 6.36 \mathrm{mmol})$ at $80{ }^{\circ} \mathrm{C}$ for 15 h . Purification by silica gel column chromatography (hexane/EtOAc $=50: 1$) gave 3 e
(315 mg, 49\%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.42(\mathrm{~s}, 2 \mathrm{H}), 6.96\left(\mathrm{dd}, J_{\mathrm{HF}}=8.7 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.10(\mathrm{dd}, J=$ $\left.8.6 \mathrm{~Hz}, J_{\mathrm{HF}}=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{ddd}, J=7.6,7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J$ $=7.5,7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $37.3,115.3\left(\mathrm{~d}, J_{\mathrm{CF}}=21 \mathrm{~Hz}\right), 127.1,130.2\left(\mathrm{~d}, J_{\mathrm{CF}}=8 \mathrm{~Hz}\right), 131.6,132.8,133.8,133.9,135.9\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=3 \mathrm{~Hz}), 142.7,161.4\left(\mathrm{~d}, J_{\mathrm{CF}}=245 \mathrm{~Hz}\right), 192.5 .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 44.7-44.8(\mathrm{~m}) . \mathrm{IR}$ (neat): v 3020, 2742, 1693, 1599, 1508, 1217, 1157, $746 \mathrm{~cm}^{-1}$. HRMS (EI): m/z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}[\mathrm{M}]^{+}: 214.0788$; Found: 214.0784.

2-(4-Bromobenzyl)benzaldehyde (3f)

Compound $3 \boldsymbol{f}$ was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($600 \mathrm{mg}, 3.02 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(35 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{PPh}_{3}(121 \mathrm{mg}$, $0.46 \mathrm{mmol})$, 4-bromophenylboronic acid ($921 \mathrm{mg}, 4.59 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.27 \mathrm{~g}, 5.98 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 15 h . Purification by silica gel column chromatography (hexane/EtOAc $=100: 1$) gave $\mathbf{3 f}$ ($221 \mathrm{mg}, 27 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.40(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=7.6,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=$ 7.6, 1.2 Hz, 1H), $10.18(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 37.6, 120.1, 127.2, 130.5, 131.55, 131.61, 133.2, 133.8, 133.9, 139.3, 142.1, 192.5. IR (neat): v 3022, 2858, 2742, 1695, 1599, 1485, 1194, 1070, 1011, $748 \mathrm{~cm}^{-1}$. HRMS (EI): m/z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}]^{+}: 273.9988$; Found: 273.9976.

2-[(Naphthalen-2-yl)methyl]benzaldehyde (3g)

Compound $\mathbf{3 g}$ was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($600 \mathrm{mg}, 3.02 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(35 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{PPh}_{3}(121 \mathrm{mg}$, 0.46 mmol), (naphthalen-2-yl)boronic acid ($781 \mathrm{mg}, 4.54 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.30 \mathrm{~g}, 6.12 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 12 h . Purification by silica gel column chromatography (hexane/EtOAc $=100: 1$) gave $\mathbf{3 g}$ ($363 \mathrm{mg}, 49 \%$) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.61(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.28(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 38.2, 125.5, 126.1, $127.06,127.13,127.3,127.58,127.60,128.2,131.7,132.1,132.3,133.6,133.9,134.0,137.8,142.8$, 192.4. IR (neat): v 3053, 2854, 2735, 1689, 1597, 1194, 814, $739 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}: 246.1039$; Found: 246.1048.

2-[(1-Methylnaphthalen-2-yl)methyl]benzaldehyde (3h)

Compound 3h was prepared according to General Procedure B using 2-(bromomethyl)benzaldehyde ($604 \mathrm{mg}, 3.04 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(36 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{PPh}_{3}(119 \mathrm{mg}$, 0.45 mmol), (1-methylnaphthalen-2-yl)boronic acid ($845 \mathrm{mg}, 4.54 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.29 \mathrm{~g}, 6.08$ mmol) at $80^{\circ} \mathrm{C}$ for 12 h . Purification by silica gel column chromatography (hexane $/ \mathrm{EtOAc}=100: 1$) gave $\mathbf{3 h}(380 \mathrm{mg}, 48 \%)$ as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.66(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.02(\mathrm{~m}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.90$ $(\mathrm{m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz,
$\left.\mathrm{CDCl}_{3}\right): 19.2,34.8,124.1,124.6,125.4,125.6,126.1,126.5,126.6,130.8,131.8,131.9,132.7$, 133.1, 133.6, 133.8, 134.0, 142.6, 192.3. IR (neat): v 3070, 2860, 2735, 1689, 1597, 1572, 1194, $744 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}: 260.1196$; Found: 260.1191 .

2.6.2.3. Preparation of Dioxolane 7

2-(2-Benzylphenyl)-1,3-dioxolane (7a)

To a toluene (20 mL) solution of 2-benzylbenzaldehyde ($\mathbf{3 a}, 381 \mathrm{mg}, 1.94 \mathrm{mmol}$) and ethylene glycol ($1.7 \mathrm{~mL}, 30 \mathrm{mmol}$) was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(32 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added. The mixture was heated at $145{ }^{\circ} \mathrm{C}$ overnight, cooled to room temperature, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated under reduced pressure and filtered with $\mathrm{Et}_{2} \mathrm{O}$. After removal of the solvent, the residue was purified by silica gel column chromatography (hexane/ $\mathrm{NEt}_{3} / \mathrm{EtOAc}=$ 100:3:2) gave 7 a ($284 \mathrm{mg}, 61 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 3.97-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H})$, $7.10(\mathrm{dd}, J=7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.61(\mathrm{dd}, J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}{ }^{3} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 37.8,65.2,101.7,126.0,126.1,126.4,128.4,128.9,129.2,130.6$, 135.5, 139.1, 140.5. IR (neat): v 3026, 2885, 1495, 1452, 1111, 1066, 943, 729, $696 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}: 240.1145$; Found: 240.1144 .

2.6.3. Synthesis of Polycyclic Aromatic Hydrocarbons

2.6.3.1. Synthesis of Phenacenes 2

Phenanthrene (2a)

To an HFIP (3 mL) solution of (biphenyl-2-yl)acetaldehyde ($\mathbf{1 a}, 63 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added trifluoromethanesulfonic acid $(1.1 \mu \mathrm{~L}, 12 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 20 min , the reaction was quenched with phosphate buffer (pH 7). Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and the combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was purified by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=30: 1$) to give phenanthrene ($2 \mathrm{a}, 54 \mathrm{mg}$, 93\%) as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.59(\mathrm{ddd}, J=7.8,7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.2,7.0,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.89$ (ddd, $J=7.8,1.5,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 122.6,126.54,126.54,126.9,128.6,130.3,132.0$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{7}$

2-Methylphenanthrene (2b)

Phenanthrene 2b was synthesized by the method described for 2a using (4'-methylbiphenyl-2-yl)acetaldehyde ($\mathbf{1 b}, 66 \mathrm{mg}, 0.31 \mathrm{mmol}$), trifluoromethanesulfonic acid (1.1 $\mu \mathrm{L}, 12 \mu \mathrm{~mol}$), and HFIP (3 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=5: 1$) gave phenanthrene $\mathbf{2 b}$ ($59 \mathrm{mg}, 98 \%$) as a white solid.
${ }^{1}{ }^{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.56(\mathrm{~s}, 3 \mathrm{H}), 7.48(\mathrm{~d}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, 7.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dd, 8.1, 7.4 Hz, 1H), 7.66-7.71 (m, 3H), 7.86 (d, J=7.8 Hz, 1H), $8.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}$,
$J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.4,122.4,122.5,126.1,126.5,126.7,126.9$, $128.11,128.14,128.3,128.5,130.3,131.7,132.2,136.3$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{6}$

4-Methylphenanthrene (2c)

Phenanthrene 2c was synthesized by the method described for 2a using (2'-methylbiphenyl-2-yl)acetaldehyde ($\mathbf{1 c}, 63 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid (2.6 $\mu \mathrm{L}, 30 \mu \mathrm{~mol}$), and HFIP (3 mL). Purification by silica gel column chromatography (hexane) gave phenanthrene 2c ($54 \mathrm{mg}, 95 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.09(\mathrm{~s}, 3 \mathrm{H}), 7.43-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.68(\mathrm{~m}$, $2 \mathrm{H}), 7.70-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.3,125.5,125.7,125.8,127.0,127.4,127.5,128.0,128.7,130.0,131.2,131.6$, 133.4, 133.7, 135.5. IR (neat): v 3049, 2962, 2875, 1439, 1215, 1165, 1132, 1103, 820, 735, 708 cm^{-1}. HRMS (EI): m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12}[\mathrm{M}]^{+}: 192.0934$; Found: 192.0938.

2-Fluorophenanthrene (2d)

Phenanthrene 2d was synthesized by the method described for 2a using (4'-fluorobiphenyl-2-yl)acetaldehyde (1d, $65 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid (3.7 $\mu \mathrm{L}, 42 \mu \mathrm{~mol}$), and HFIP (3 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=20: 1$) gave phenanthrene $\mathbf{2 d}(59 \mathrm{mg}, 99 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38\left(\mathrm{ddd}, J=8.9 \mathrm{~Hz}, J_{\mathrm{HF}}=8.7 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51\left(\mathrm{dd}, J_{\mathrm{HF}}=\right.$ $9.4 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.64\left(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J_{\mathrm{HF}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 112.5\left(\mathrm{~d}, J_{\mathrm{CF}}=20 \mathrm{~Hz}\right), 115.4\left(\mathrm{~d}, J_{\mathrm{CF}}=24 \mathrm{~Hz}\right), 122.4,125.0\left(\mathrm{~d}, J_{\mathrm{CF}}=9 \mathrm{~Hz}\right)$, $126.1\left(\mathrm{~d}, J_{\mathrm{CF}}=4 \mathrm{~Hz}\right), 126.4,126.9\left(\mathrm{~d}, J_{\mathrm{CF}}=2 \mathrm{~Hz}\right), 127.0,128.2,128.7,130.1,131.5,133.4\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=9 \mathrm{~Hz}), 161.3\left(\mathrm{~d}, J_{\mathrm{CF}}=247 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 46.49-46.54(\mathrm{~m})$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{8}$

2-Bromophenanthrene (2e)

Phenanthrene $\mathbf{2 e}$ was synthesized by the method described for $\mathbf{2 a}$ using (4'-bromobiphenyl-2-yl)acetaldehyde ($\mathbf{1 e}, 1.97 \mathrm{~g}, 7.16 \mathrm{mmol}$), trifluoromethanesulfonic acid ($90 \mu \mathrm{~L}$, 1.0 mmol), and HFIP (72 mL). Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=$ 5:1) gave phenanthrene $\mathbf{2 e}(1.83 \mathrm{~g}, 99 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 120.5,122.5,124.4,125.7,126.9,127.0,128.1,128.7$, 128.9, 129.6, 129.9, 130.6, 131.8, 133.4. IR (neat): v 3014, 1593, 1454, 1215, 1078, 883, 849, 808, $741,667 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{79} \mathrm{Br}[\mathrm{M}]^{+}: 255.9882$; Found: 255.9874.

2-Methoxyphenanthrene (2f)

Phenanthrene $\mathbf{2 f}$ was synthesized by the method described for 2a using (4'-methoxybiphenyl-2-yl)acetaldehyde (1f, $68 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid (3.7 $\mu \mathrm{L}, 42 \mu \mathrm{~mol}$), and HFIP (3 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=20: 1$) gave phenanthrene $\mathbf{2 f}$ (63 mg , quant.) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.96(\mathrm{~s}, 3 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{ddd}, J=7.5,7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.62 (ddd, $J=7.8,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=$ $7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.58-8.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.4,108.6,117.1,122.1$, $124.2,124.6,125.6,126.4,126.6,127.5,128.5,130.4,131.0,133.4,158.3$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{6}$

2-(Trifluoromethyl)phenanthrene (2g)

Phenanthrene $\mathbf{2 g}$ was synthesized by the method described for $\mathbf{2 a}$ using [4'-(trifluoromethyl)biphenyl-2-yl]acetaldehyde $(\mathbf{1 g}, 80 \mathrm{mg}, 0.30 \mathrm{mmol})$, trifluoromethanesulfonic acid $(9.3 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$, and $\mathrm{HFIP}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 80 min . Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave phenanthrene $\mathbf{2 g}(71 \mathrm{mg}, 96 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66$ (ddd, $J=7.5,7.4,1.35 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (ddd, $J=7.8,7.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=$ $7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 122.4\left(\mathrm{q}, J_{\mathrm{CF}}=3 \mathrm{~Hz}\right), 123.0,123.5,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=273 \mathrm{~Hz}\right), 125.8\left(\mathrm{q}, J_{\mathrm{CF}}=4 \mathrm{~Hz}\right)$, 126.6, 127.1, 127.7, $128.3\left(\mathrm{q}, J_{\mathrm{CF}}=33 \mathrm{~Hz}\right), 128.4,128.7,129.6,131.3,132.3,132.7 .{ }^{19}$ F NMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 99.7$ (s). IR (neat): v 3018, 1329, 1292, 1215, 1113, 1076, $903,818,750 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3}[\mathrm{M}]^{+}: 246.0651$; Found: 246.0641 .

9-Methylphenanthrene (2h)

Phenanthrene $\mathbf{2 h}$ was synthesized by the method described for 2a using 2-(biphenyl-2-yl)propanal ($\mathbf{1 h}, 67 \mathrm{mg}, 0.32 \mathrm{mmol}$), trifluoromethanesulfonic acid ($1.1 \mu \mathrm{~L}, 12 \mu \mathrm{~mol}$),
and HFIP (3 mL) . Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave phenanthrene $\mathbf{2 h}$ ($57 \mathrm{mg}, 92 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 2.67(\mathrm{~s}, 3 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 20.0,122.4,123.0,124.6,125.8,126.2,126.46,126.52,126.7,127.8,129.6,130.3$, 131.98, 132.04, 132.4.

Spectral data for this compound showed good agreement with the literature data. ${ }^{6}$

Chrysene (2i)

Chrysene (2i) was synthesized by the method described for 2a using 2-(naphthalen-2-yl)phenylacetaldehyde (1i, $74 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid (2.6 $\mu \mathrm{L}, 30 \mu \mathrm{~mol})$, and $\operatorname{HFIP}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 80 min . Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave chrysene ($2 \mathrm{i}, 66 \mathrm{mg}, 96 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.98-8.01(\mathrm{~m}, 4 \mathrm{H}), 8.72(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 121.2,123.1,126.4$, 126.7, 127.3, 128.2, 128.5, 130.6, 132.2.

Spectral data for this compound showed good agreement with the literature data. ${ }^{8}$

[4]Helicene (2j)

Helicene 2j was synthesized by the method described for 2a using 2-(naphthalen-1-yl)phenylacetaldehyde ($\mathbf{1 j}, 75 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid (2.6 $\mu \mathrm{L}, 30 \mu \mathrm{~mol})$, and HFIP (3 mL) at $0{ }^{\circ} \mathrm{C}$ for 80 min . Purification by silica gel column
chromatography (hexane/EtOAc = 100:1) gave helicene $\mathbf{2 j}(64 \mathrm{mg}, 92 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71$ (dd, $J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (dd, $J=8.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.89 $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 125.8,126.0,126.8,127.3,127.4,127.8,128.5,130.2,130.9,133.4$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{6}$

9-Phenylphenanthrene (2k)

Phenanthrene $\mathbf{2 k}$ was synthesized by the method described for $\mathbf{2 a}$ using 2-(biphenyl-2-yl)-1-phenylethan-1-one ($\mathbf{1 k}, 67 \mathrm{mg}, 0.25 \mathrm{mmol}$), trifluoromethanesulfonic acid (3.3 $\mu \mathrm{L}, 37 \mu \mathrm{~mol})$, and HFIP (3 mL) at $45{ }^{\circ} \mathrm{C}$ for 1.5 h . Purification by silica gel column chromatography (hexane) gave phenanthrene $\mathbf{2 k}$ ($52 \mathrm{mg}, 82 \%$) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.60-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~s}$, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) 8.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 122.5,122.9,126.4,126.5,126.6,126.8,126.9,127.3,127.5$, $128.3,128.6,129.9,130.0,130.6,131.1,131.5,138.8,140.8$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{9}$

9-Methyl-10-phenylphenanthrene (21)

Phenanthrene $2 \mathbf{l}$ was synthesized by the method described for 2a using 2-(biphenyl-2-yl)-1-phenylpropan-1-one (11, $86 \mathbf{m g}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid (3.9 $\mu \mathrm{L}, 45 \mu \mathrm{~mol})$, and HFIP (3 mL) at $45{ }^{\circ} \mathrm{C}$ for 1.5 h . Purification by silica gel column
chromatography (hexane/EtOAc $=100: 1)$ gave phenanthrene $\mathbf{2 l}(47 \mathrm{mg}, 58 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 7.27-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 2 \mathrm{H}), 8.11-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=8.2,0.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.73-8.76 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.3,122.3,122.8,125.1,125.6,126.2,126.3$, $126.8,127.0,127.4,128.4,129.3,129.8,129.9,130.3,131.9,132.3,137.0,140.7$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{10}$

2.6.3.2. Synthesis of Acenes 4

Anthracene (4a)

To an HFIP (3 mL) solution of 2-benzylbenzaldehyde ($\mathbf{3 a}, 59 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added trifluoromethanesulfonic acid $(4.0 \mu \mathrm{~L}, 45 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , the reaction was quenched with phosphate buffer (pH 7). Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and the combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was purified by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) to give anthracene $(\mathbf{4 a}, 49 \mathrm{mg}, 91 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.98-8.01(\mathrm{~m}, 4 \mathrm{H}), 8.41(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 125.3,126.2,128.1,131.7$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{11}$

2-Methylanthracene (4b) and 1-Methylanthracene (4b')

A mixture of anthracenes $\mathbf{4 b}$ and $\mathbf{4 b}$ ' was synthesized by the method described for $\mathbf{4 a}$ using

2-(3-methylbenzyl)benzaldehyde ($\mathbf{3 b}, 64 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid ($4.0 \mu \mathrm{~L}$, $45 \mu \mathrm{~mol}$), and HFIP (3 mL). Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=$ 20:1) gave a mixture of anthracenes $\mathbf{4 b}$ and $\mathbf{4} \mathbf{b}^{\prime}\left(52 \mathrm{mg}, 90 \%, \mathbf{4 b} / \mathbf{4} \mathbf{b}^{\prime}=96: 4\right)$ as a pale yellow solid. 4b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.52(\mathrm{~s}, 3 \mathrm{H}), 7.28(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.72(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.96(\mathrm{~m}, 2 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.0,124.9,125.1,125.2,125.9,126.3,127.9,128.0,128.16,128.23,130.3,131.2$, 131.8, 132.0, 134.9.

Spectral data for this compound showed good agreement with the literature data. ${ }^{11}$

1,4-Dimethylanthracene (4c)

Anthracene 4c was synthesized by the method described for $\mathbf{4 a}$ using 2-(2,5-dimethylbenzyl)benzaldehyde ($\mathbf{3 c}, 68 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid ($4.0 \mu \mathrm{~L}$, $45 \mu \mathrm{~mol}$), and HFIP (3 mL). Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=$ 20:1) gave anthracene $\mathbf{4 c}(59 \mathrm{mg}, 95 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.72(\mathrm{~s}, 6 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.99(\mathrm{~m}, 2 \mathrm{H})$, 8.47 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 19.7,123.2,125.25,125.34,128.2,131.1,131.5$, 132.3.

Spectral data for this compound showed good agreement with the literature data. ${ }^{12}$

3-Methoxy-1-methylanthracene (4d)

Anthracene 4d was synthesized by the method described for $\mathbf{4 a}$ using 2-(4-methoxy-2-methylbenzyl)benzaldehyde ($\mathbf{3 d}, 72 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid
($4.0 \mu \mathrm{~L}, 45 \mu \mathrm{~mol}$), and HFIP (3 mL) at room temperature for 48 h . Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave anthracene $\mathbf{4 d}(49 \mathrm{mg}, 73 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.71(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.5,55.0,101.9,120.6,122.8,124.3,124.7,125.5,127.3,128.1,128.5,130.1$, $131.9,133.1,136.2,156.7$. IR (neat): $v 2924,1628,1462,1410,1203,1163,877,742,735 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}:$222.1039; Found: 222.1037.

2-Fluoroanthracene (4e)

Anthracene $\mathbf{4 e}$ was synthesized by the method described for $\mathbf{4 a}$ using 2-(4-fluorobenzyl)benzaldehyde ($\mathbf{3 e}, 64 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid ($4.0 \mu \mathrm{~L}, 45$ $\mu \mathrm{mol}$), and HFIP (3 mL) at reflux for 18 h . Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave anthracene $\mathbf{4 e}(26 \mathrm{mg}, 45 \%)$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26\left(\mathrm{ddd}, J_{\mathrm{HF}}=8.8 \mathrm{~Hz}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.56\left(\mathrm{dd}, J_{\mathrm{HF}}=10.1 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.94-7.99(\mathrm{~m}, 3 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 109.7\left(\mathrm{~d}, J_{\mathrm{CF}}=20 \mathrm{~Hz}\right), 117.2\left(\mathrm{~d}, J_{\mathrm{CF}}=28 \mathrm{~Hz}\right), 125.2,125.4\left(\mathrm{~d}, J_{\mathrm{CF}}=7 \mathrm{~Hz}\right)$, 126.0, $126.6\left(\mathrm{~d}, J_{\mathrm{CF}}=1 \mathrm{~Hz}\right), 127.7,128.2,129.0,130.9\left(\mathrm{~d}, J_{\mathrm{CF}}=9 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CF}}=3 \mathrm{~Hz}\right), 131.7$ $\left(\mathrm{d}, J_{\mathrm{CF}}=9 \mathrm{~Hz}\right), 132.2,160.1\left(\mathrm{~d}, J_{\mathrm{CF}}=248 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 47.4-47.5(\mathrm{~m}) . \mathrm{IR}$ (neat): v 3018, 1215, 750, $669 \mathrm{~cm}^{-1}$. HRMS (EI): m / z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}[M]^{+}: 196.0683$; Found: 196.0685.

2-Bromoanthracene (4f)

Anthracene $\mathbf{4 f}$ was synthesized by the method described for $\mathbf{4 a}$ using 2-(4-bromobenzyl)benzaldehyde ($\mathbf{3 f}, 82 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid ($4.0 \mu \mathrm{~L}, 45$
$\mu \mathrm{mol}$), and HFIP (3 mL) at reflux for 48 h . Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave anthracene $\mathbf{4 f}(46 \mathrm{mg}, 60 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-8.00(\mathrm{~m}, 2 \mathrm{H})$, $8.16(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 119.4,125.3,125.8,126.0$, $126.6,128.1,128.2,128.8,129.76,129.81,129.9,131.8,132.1,132.3$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{12}$

Tetraphene (4g)

Tetraphene (4g) was synthesized by the method described for $\mathbf{4 a}$ using 2-[(naphthalen-2-yl)methyl]benzaldehyde ($\mathbf{3 g}, 74 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid (4.0 $\mu \mathrm{L}, 45 \mu \mathrm{~mol}$), and HFIP (3 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave tetraphene $(\mathbf{4 g}, 66 \mathrm{mg}, 97 \%)$ as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{ddd}, J=7.6,7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.99(\mathrm{~m}, 1 \mathrm{H}), 8.05-8.07(\mathrm{~m}$, $1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 121.5$, 122.9, 125.6, 125.7, 126.7, 126.8, 127.02, 127.02, 127.3, 127.7, 128.4, 128.6, 128.8, 130.5, 130.6, 131.88, 131.92, 131.92.

Spectral data for this compound showed good agreement with the literature data. ${ }^{11}$

5-Methyltetracene (4h)

Tetracene $\mathbf{4 h}$ was synthesized by the method described for $\mathbf{4 a}$ using 2-[(1-methylnaphthalen-2-yl)methyl]benzaldehyde (3h, $78 \quad \mathrm{mg}, \quad 0.30 \quad \mathrm{mmol})$,
trifluoromethanesulfonic acid ($4.0 \mu \mathrm{~L}, 45 \mu \mathrm{~mol}$), and HFIP (3 mL) in the dark. Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave tetracene $\mathbf{4 h}(65 \mathrm{mg}, 89 \%)$ as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.62(\mathrm{~s}, 3 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.65(\mathrm{~m}, 2 \mathrm{H})$, 7.94-7.96(m, 2H), 8.02-8.05 (m, 1H), $8.16(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.1,121.3,123.1,124.7,125.2,125.62,125.63,126.5,126.7,127.0$, $127.6,128.4,128.5,130.6,130.7,131.5,132.1,132.3,132.4$. IR (neat): v 2922, 2856, 1030, 899, $883 \mathrm{~cm}^{-1}$. HRMS (EI): m/z Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14}[\mathrm{M}]^{+}: 242.1090$; Found: 242.1097.

9-Phenylanthracene (4i)

Anthracene 4i was synthesized by the method described for $\mathbf{4 a}$ using (2-benzylphenyl)(phenyl)methanone (3i, $83 \mathrm{mg}, 0.30 \mathrm{mmol}$), trifluoromethanesulfonic acid ($4.0 \mu \mathrm{~L}$, $45 \mu \mathrm{~mol}$), and HFIP (3 mL) at reflux for 36 h . Purification by silica gel column chromatography (hexane) gave anthracene $\mathbf{4 i}(58 \mathrm{mg}, 76 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{dd}, J=8.6,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 125.1,125.3,126.5,126.8,127.4,128.30,128.32,130.2,131.2,131.3,137.0$, 138.8.

Spectral data for this compound showed good agreement with the literature data. ${ }^{11}$

2.6.3.3. Synthesis of Triphenylene (6)

Triphenylene (6)

After 1-(biphenyl-2-yl)cyclopent-3-ene-1-carbaldehyde (1m, $75 \mathrm{mg}, 0.30 \mathrm{mmol}$) was dissolved in HFIP (2.0 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$, trifluoromethanesulfonic acid $(1.1 \mu \mathrm{~L}, 12 \mu \mathrm{~L})$ was added at $0^{\circ} \mathrm{C}$. After stirring at the same temperature for 3 h , the solvent was removed under reduced pressure. The residue was dissolved in toluene (3 mL), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, $70 \mathrm{mg}, 0.31 \mathrm{mmol}$) was added to the mixture. After being heated to reflux for 3 h , the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was purified by silica gel column

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{dd}, J=6.2,3.3 \mathrm{~Hz}, 6 \mathrm{H}), 8.63(\mathrm{dd}, J=6.2,3.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 123.3,127.2,129.8$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{13}$

2.6.3.4. Cyclization of Aldehyde Analogues 5 and 7

Cyclization of (Biphenyl-2-yl)vinyl Ether 5a

To an HFIP (3 mL) solution of 2-(2-methoxyvinyl)biphenyl (5a, $63 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added trifluoromethanesulfonic acid $(4.0 \mu \mathrm{~L}, 45 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at the room temperature for 2 h , the reaction was quenched with phosphate buffer (pH 7). Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and the combined extracts were washed with brine and
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was purified by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=50: 1$) to give phenanthrene ($\mathbf{2 a}, 49 \mathrm{mg}$, 92%) as a white solid.

Spectral data for this compound showed good agreement with the data of 2a synthesized from 1a.

Cyclization of (2-Benzylphenyl)dioxolane 7a

To an HFIP (3 mL) solution of 2-(2-benzylphenyl)-1,3-dioxolane ($7 \mathbf{a}, 72 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added trifluoromethanesulfonic acid $(4.0 \mu \mathrm{~L}, 45 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at the room temperature for 1 h , the reaction was quenched with phosphate buffer (pH 7). Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and the combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was purified by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 1$) gave anthracene ($\mathbf{4 a}, 52 \mathrm{mg}, 97 \%$) as a white solid.

Spectral data for this compound showed good agreement with the data of $\mathbf{4 a}$ synthesized from 3a.

2.6.4. References

[1] Tietze, L. F.; Hungerland, T.; Depken, C.; Maaß, C.; Stalke, D. Synlett 2012, 2516-2520.
[2] Karad, S. N.; Liu, R.-S. Angew. Chem., Int. Ed. 2014, 53, 5444-5448.
[3] Zhang, X.-X.; Lippard, S. J. J. Org. Chem. 2000, 65, 5298-5305.
[4] Satoh, T.; Jones, W. D. Organometallics 2001, 20, 2916-2919.
[5] Ackerman, L.; Kapdi, A. R.; Schulzke, C. Org. Lett. 2010, 12, 2298-2301.
[6] Murai, M.; Hosokawa, N.; Roy, D.; Takai, K. Org. Lett. 2014, 16, 4134-4137.
[7] Wakabayashi, R.; Kurahashi, T.; Matsubara, S. Synlett 2013, 24, 2297-2301.
[8] Paul, S.; Jana, R.; Ray, J. K. Synlett 2010, 1463-1468.
[9] Monot, J.; Brahmi, M. M.; Ueng, S.-H.; Robert, C.; Desage-El Murr, M.; Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacôte, E. Org. Lett. 2009, 11, 4914-4917.
[10] Kanno, K.; Liu, Y.; Iesato, A.; Nakajima, K.; Takahashi, T. Org. Lett. 2005, 7, 5453-5456.
[11] Kuninobu, Y.; Tatsuzaki, T.; Matsuki, T.; Takai, K. J. Org. Chem. 2011, 76, 7005-7009.
[12] Wang, C.; Wan, J.; Zheng, Z.; Pan, Y. Tetrahedron 2007, 63, 5071-5075.
[13] Daigle, M.; Picard-Lafond, A.; Soligo, E.; Morin, J.-F. Angew. Chem. Int. Ed. 2016, 55, 20422047.

Chapter 3

Brønsted Acid-catalyzed Tandem Cycloaromatization of

 Naphthalene-Based Bisacetals
Abstract

Naphthalenes bearing two acetal moieties connected by a methylene-2,1-phenylene group underwent regioselective tandem cycloaromatization using a catalytic amount of trifluoromethanesulfonic acid in 1,1,1,3,3,3-hexafluoropropan-2-ol. Five substrates were successfully employed in this protocol to afford ortho-fused six-hexagon benzenoids with high selectivities and in excellent yields.

3.1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) have polyform structures comprising benzene rings, and are considered to be promising candidates for functional materials such as electronic devices. ${ }^{[1]}$ As the number of benzene rings in PAHs increases, the number of structural isomers exponentially increases (Figure 1). Although PAHs of substantial sizes have numerous isomers, research has typically focused on isomers of specific families such as acenes, ${ }^{[1 b-d, 2]}$ phenacenes, ${ }^{[1 d, e, 3]}$ and helicenes, ${ }^{[1 f, 4]}$ and not on other ortho-fused isomers despite their great potential. ${ }^{[5]}$
ortho-fused [n]-hexagon benzenoids
$\mathrm{n}=2$

$\mathrm{n}=3$

$\mathrm{n}=4$

$\mathrm{n}=5$

$n=6 \ldots \quad$ six-hexagon benzenoids

Fugure 1. Number of structual isomers of ortho-fused benzenoids.

In Chapter 2, I developed a Brønsted acid-catalyzed cycloaromatization of carbonyl compounds, resulting in the synthesis of phenanthrene and anthracene derivatives. ${ }^{[6]}$ Since the method served as a powerful tool for benzene-ring construction, I embarked on the synthesis of PAHs in a variety of shapes via double cycloaromatization of substrates bearing two reactive sites. ${ }^{[7]}$ This protocol would enable rapid access to higher-order PAHs by simultaneous construction of multiple fused benzene rings.

I selected naphthalenes 1 and 2 bearing two phenylacetaldehyde-related moieties as cyclization precursors (Scheme 1). Their tandem cycloaromatization afforded ortho-fused benzenoids, with the structure depending on the substitution pattern on the naphthalene ring. As a result, five predicted isomers of the ortho-fused benzenoids bearing six benzene rings were selectively synthesized in excellent yields from readily available cyclization precursors.

Scheme 1. Synthesis of ortho-fused six-hexagon benzenoids via TfOH-catalyzed tandem cycloaromatization

3.2. Preparation of Precursors for Tandem Cycloaromatization

The cyclization precursors 1a and 2a bearing two phenylacetaldehyde-related moieties on the 2- and 7-positions of the naphthalene ring were readily available starting from naphthalene-2,7-diyl bis(trifluoromethanesulfonate) (4a), which was obtained via double O-sulfonylation of naphthalene-2,7-diol (5a). Bis(vinyl ether) 1a was prepared via the SuzukiMiyaura cross-coupling of $\mathbf{4 a}$ with (2-formylphenyl)boronic acid, followed by a Wittig reaction with (methoxymethyl)triphenylphosphonium chloride. Although hydrolysis of 1a afforded the corresponding dial, it was unstable for use in the subsequent cycloaromatization. In contrast, bisacetal 2a was directly prepared via the Suzuki-Miyaura cross-coupling of $\mathbf{4 a}$ with

2-[(1,3-dioxolan-2-yl)methyl]phenylboronic acid pinacolate. Other bisacetal precursors $\mathbf{2 b}-\mathbf{e}$ were also prepared similarly.

1) Suzuki-Miyaura

5a

Scheme 2. Preparation of bis(vinyl ether) 1a and bisacetal 2a.

3.3. Synthesis of ortho-Fused Benzenoids via Brønsted Acid-Catalyzed Tandem

Cycloaromatization

I sought suitable conditions for tandem cycloaromatization of bis(vinyl ether) $\mathbf{1 a}^{[7 \mathrm{k}, 8]}$ and bisacetal $2 \mathbf{a}^{[9]}$ as model substrates (Table 1). First, the reaction of 1a was investigated using a catalytic amount of trifluoromethansulfonic acid (TfOH) and 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) as a solvent. ${ }^{[10]}$ On treatment with $15 \mathrm{~mol} \%$ of TfOH at 0.05 M in HFIP, bis(vinyl ether) 1a underwent tandem cycloaromatization to afford dibenzo $[c, m]$ tetraphene $(\mathbf{3 a})^{[11]}$ and naphtho $[1,2-c]$ chrysene ($\mathbf{3 a}^{\prime}$) in 79% total yield and in a $75: 25$ ratio (Entry 1). ${ }^{[12]}$ Neither more concentrated nor more diluted conditions improved the total yield of 3a and 3a' (Entries 2 and 3). In contrast, when bisacetal 2a at 0.1 or 0.3 M in HFIP was treated with $15 \mathrm{~mol} \%$ of TfOH , the product yield and ratio significantly improved to afford 3a exclusively in almost quantitative yields (Entries 4 and 5). The efficiency and selectivity remained excellent even when the amount of TfOH was
reduced to $10 \mathrm{~mol} \%$ (Entry 7). The selective formation of $\mathbf{3 a}$ is attributed to the following factors: (i) the first cycloaromatization would proceed at the α-position of the naphthalene core in accordance with the regioselectivity observed in normal electrophilic aromatic substitution reactions and (ii) the second cycloaromatization might proceed avoiding steric hindrance, which explains the better selectivity of bisacetal 2a.

Table 1. Screening of conditions for tandem cycloaromatization of $\mathbf{1 a}$ and $\mathbf{2 a}$.

[a] Yield was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. Isolated yield was shown in parentheses. [b] Isomer ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] $E E / E Z / Z Z=37: 55: 8$.

Not only bisacetal 2a but also bisacetals $\mathbf{2 b}-\mathbf{e}$ participated in the tandem cycloaromatization under the above-mentioned optimal conditions (Table 2). Naphthalenes 1b and 1c, bearing two phenylacetaldehyde acetal moieties on the 1,4 - and 1,5 -positions, respectively, successfully underwent tandem cycloaromatization to afford benzo[s]picene ($\mathbf{3 b})^{[13]}$ and dibenzo $[c, l]$ chrysene $(\mathbf{3 c})^{[14]}$ as the only products in 84% and 99% yields, respectively (Entries 4
and 5). Although the reactions of $\mathbf{1 b}$ and $\mathbf{1 c}$ required cycloaromatization on the less reactive β-positions of the naphthalene core in the first cyclization, benzenoids $\mathbf{3 b}$ and $\mathbf{3 c}$ were obtained in high to excellent yields. Tandem cycloaromatization of 1,6- and 1,7-disubstituted naphthalenes 2d and 2e also proceeded to afford benzo[a]picene (3d) ${ }^{[11]}$ and naphtho $[2,1-c]$ chrysene $(\mathbf{3 e}){ }^{[15]}$ respectively, as major products (Entries 4 and 5). In each case, one of two possible products was selectively formed, presumably because regioselective cycloaromatization proceeded preferably on the α-position of the naphthalene core in the first cyclization.

3.4. Conclusion

In summary, I achieved a systematic synthesis of a series of rarely offered ortho-fused six-hexagon benzenoids via TfOH-catalyzed tandem cycloaromatization of naphthalene-based bisacetals. With a similar protocol, the use of benzenoids larger than naphthalene as platforms will enable the synthesis of more extensive ortho-fused benzenoids.

Table 2. Synthesis of ortho-fused six-hexagon benzenoids 3. ${ }^{\text {[a] }}$

[a] Isolated yield. [b] Product ratio was determined by ${ }^{1} \mathrm{H}$ NMR sectroscopy.

3.5. References and Notes

[1] (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons, Wiley-VCH, New York, 1997. (b) Anthony, J. E. Chem. Rev. 2008, 106, 5028-5048. (c) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452-483. (d) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313. (e) Kubozono, Y.; He, X.; Hamao, S.; Teranishi, K.; Goto, H.; Eguchi, R.; Kambe, T.; Gohda, S.; Nishihara, Y. Eur. J. Inorg. Chem. 2014, 3806-3819. (f) Rickhaus, M.; Mayor, M.; Juríček, M. Chem. Soc. Rev. 2016, 45, 1542-1556.
[2] For reviews on acene synthesis, see: (a) Pascal, Jr., R. A. Chem. Rev. 2006, 106, 4809. (b) Bettinger, H. F.; Tönshoff, C. Chem. Rec. 2015, 15, 364. (c) Dorel, R.; Echavarren, A. M. Eur. J. Org. Chem. 2017, 14-24.
[3] For selected reports on phenacene synthesis, see: (a) Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C. W.; Yang, C.; Ellenstein, A. J. Am. Chem. Soc. 1997, 119, 2119-2114. (b) Gies, A.-E.; Pfeffer, M. J. Org. Chem. 1999, 64, 3650-3654. (c) Mamane, V.; Hannen, P.; Fürstner, A. Chem.-Eur. J. 2004, 10, 4556-4575. (d) Some, S.; Dutta, B.; Ray, J. K. Tetrahedron Lett. 2006, 47, 1221-1224. (e) Okamoto, H.; Yamaji, M.; Gohda, S.; Kubozono, Y.; Komura, N.; Sato, K.; Sugino, H.; Satake, K. Org. Lett. 2011, 13, 2758-2761.
[4] For reviews on helicene synthesis, see: (a) Urbano, A. Angew. Chem., Int. Ed. 2003, 42, 3986-3989. (b) Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463-1535. (c) Gingras, M. Chem. Soc. Rev. 2013, 42, 968-1006.
[5] For a review on a comprehensive synthesis of PAHs via photochemical oxidative cyclization, see: Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1-456.
[6] Fujita, T.; Takahashi, I.; Hayashi, M.; Wang, J.; Fuchibe, K.; Ichikawa, J. Eur. J. Org. Chem. 2017, 262265.
[7] For selected reports on PAH synthesis via tandem cyclization, see: (a) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 4578-4593. (b) Bonifacio, M. C.; Robertson, C. R.; Jung, J.-Y.; King, B. T. J. Org. Chem. 2005, 70, 8522-8526. (c) Shen, H.-C.;

Tang, J.-M.; Chang, H.-K.; Yang, C.-W.; Liu, R.-S. J. Org. Chem. 2005, 70, 10113-10116. (d) Kamikawa, K.; Takemoto, I.; Takemoto, S.; Matsuzaka, H. J. Org. Chem. 2007, 72, 7406-7408. (e) Chen, T.-A.; Lee, T.-J.; Lin, M.-Y.; Sohel, S. M. A.; Diau, E. W.-G.; Lush, S.-F.; Liu, R.-S. Chem.-Eur. J. 2010, 16, 1826-1833. (f) Matsuda, T.; Moriya, T.; Goya, T.; Murakami, M. Chem. Lett. 2011, 40, 40-41. (g) Kitazawa, K.; Kochi, T.; Nitani, M.; Ie, Y.; Aso, Y.; Kakiuchi, F. Chem. Lett. 2011, 40, 300-302. (h) Nakae, T.; Ohnishi, R.; Kitahata, Y.; Soukawa, T.; Sato, H.; Mori, S.; Okujima, T.; Uno, H.; Sakaguchi, H. Tetrahedron Lett. 2012, 53, 1617-1619. (i) Umeda, R.; Miyake, S.; Nishiyama, Y. Chem. Lett. 2012, 41, 215-217. (j) Little, M.; Lan, H.; Raftery, J.; Morrison, J. J.; McDouall, J. J. W.; Yeates, S. G.; Quayle, P. Eur. J. Org. Chem. 2013, 6038-6041. (k) Murai, M.; Maekawa, H.; Hamao, S.; Kubozono, Y.; Roy, D.; Takai, K. Org. Lett. 2015, 17, 708-711. (1) Ozaki, K.; Kawasumi, K.; Shibata, M.; Ito, H.; Itami, K. Nat. Commun. 2015, 6, 6251-6258. (m) Mori, K.; Murase, T.; Fujita, M. Angew. Chem., Int. Ed. 2015, 54, 6847-6851.
[8] For cycloaromatization of vinyl ethers, see: (a) Harvey, R. G.; Lim, K.; Dai, Q. J. Org. Chem. 2004, 69, 1372-1373. (b) Harvey, R. G.; Dai, Q.; Ran, C.; Penning, T. M. J. Org. Chem. 2004, 69, 2024-2032. (c) Namba, K.; Yamamoto, H.; Sasaki, I.; Mori, K.; Imagawa, H.; Nishizawa, M. Org. Lett. 2008, 10, 1767-1770. (d) Murai, M.; Hosokawa, N.; Roy, D.; Takai, K. Org. Lett. 2014, 16, 4134-4137. (e) Roy, D.; Maekawa, H.; Murai, M.; Takai, K. Chem.-Asian J. 2015, 10, 2518-2524.
[9] Cycloaromatization of acetals was reported only for acene synthesis. see: (a) Bałczewski, P.; Koprowski, M.; Bodzioch, A.; Marciniak, B.; Różycka-Sokołowska, E.; J. Org. Chem. 2006, 71, 2899-2902. (b) Bodzioch, A.; Marciniak, B.; Różycka-Sokołowska, E.; Jeszka, J. K.; Uznański, P.; Kania, S.; Kuliński, J.; Bałczewski, P. Chem.-Eur. J. 2012, 18, 4866-4876.
[10]For reviews on fluorinated alcohols, see: (a) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18-29. (b) Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2925-2943. (c) Dohi, T.; Yamaoka, N.; Kita, Y. Tetrahedron 2010, 66, 5775-5785. (d) Khaksar,
S. J. Fluorine Chem. 2015, 172, 51-61. See also ref. 6 and references cited therein.
[11]No synthetic method is known in the literatures.
[12] Although dibenzo $[a, l]$ tetracene ($\mathbf{3 a}^{\prime}$ ') is considered to be another possible product, its formation is not detected at all under conditions I screened.

[13](a) Tang, X.-Q.; Harvey, R. G. J. Org. Chem. 1995, 60, 3568-3568. (b) Harvey, R. G.; Zhang, J.-T.; Luna, E.; Pataki, J. J. Org. Chem. 1998, 63, 6405-6408. (c) Vasu, D.; Yorimitsu, H.; Osuka, A. Angew. Chem., Int. Ed. 2015, 54, 7162-7166.
[14]Brison, J.; de Bakker, C.; Defay, N.; Geerts-Evrard, F.; Marchant, M.-J.; Martin, R. H. Bull. Soc. Chim. Belg. 1983, 92, 901-912.
[15]Compound $\mathbf{3 e}$ was synthesized as a minor product. See ref. 14.

3.6. Experimental Section

General Statement

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance 500 spectrometer at $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR $)$ and $126 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR). Chemical shift values are given in ppm relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H}$ NMR: $\delta=0.00 \mathrm{ppm}$) and CDCl_{3} (for ${ }^{13} \mathrm{C}$ NMR: $\delta=77.0$ ppm). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV or a JEOL JMS-T100CS spectrometer. X-ray diffraction study was performed on a Bruker APEXII ULTRA instrument equipped with a CCD diffractometer using $\mathrm{Mo} \mathrm{K} \alpha$ (graphite monochromated, $\lambda=$ $0.71069 \AA$) radiation. The structure was solved by direct methods (SIR97). The positional and thermal parameters of non-hydrogen atoms were refined anisotropically on F^{2} by the full-matrix least-squares method using SHELXS-97. Hydrogen atoms were placed at calculated positions and refined with the riding mode on their corresponding carbon atoms. The CCDC deposition number of compound $\mathbf{3 c}$ is 1523810 .

Column chromatography was conducted on silica gel (Silica Gel 60 N, Kanto Chemical Co., Inc. for column chromatography). All the reactions were conducted under argon. Tetrahydrofuran (THF) was purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. 1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP) and chlorobenzene were distilled from CaH_{2} and stored over activated molecular sieves 4A. Trifluoromethanesulfonic acid was distilled from MgSO_{4}. Naphthalene-2,7-diyl bis(trifluoromethanesulfonate) (4a), ${ }^{1}$ naphthalene-1,4-diyl $\operatorname{bis}\left(\right.$ trifluoromethanesulfonate) (4b), ${ }^{2}$ naphthalene-1,5-diyl bis(trifluoromethanesulfonate) (4c), ${ }^{3}$ naphthalene-1,6-diyl \quad bis(trifluoromethanesulfonate) $\quad(\mathbf{4 d}),{ }^{4} \quad$ naphthalene-1,7-diyl bis(trifluoromethanesulfonate) (4e), ${ }^{4}$ and 1-bromo-2-(2-methoxyethenyl)benzene $(E / Z=50: 50),{ }^{5}$ were prepared according to the literature procedures. Unless otherwise noted, materials were obtained from commercial sources and used directly without further purifications.

3.6.2. Preparation of Substrates

3.6.2.1. Preparation of Bis(vinyl ether) 1a

2,2'-(Naphthalene-2,7-diyl)dibenzaldehyde

A 1,4-dioxane (16.7 mL) and $\mathrm{H}_{2} \mathrm{O}(8.4 \mathrm{~mL})$ solution of naphthalene-2,7-diyl bis(trifluoromethanesulfonate) (4a, $2.13 \mathrm{~g}, 5.02 \mathrm{mmol})$, 2-formylphenylboronic acid $(1.91 \mathrm{~g}, 12.7$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{mg}, 46 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(56 \mathrm{mg}, 0.22 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(3.18 \mathrm{~g}, 30.0 \mathrm{mmol})$ was degassed by using the freeze-pump-thaw method three times. After stirring at $120^{\circ} \mathrm{C}$ for 1 h , organic materials were extracted with EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$) to give 2,2'-(naphthalene-2,7-diyl)dibenzaldehyde ($1.58 \mathrm{~g}, 94 \%$) as an orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70$ (ddd, $J=7.4$, $7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 10.05(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 127.8,127.98,128.04,128.6,129.4,131.0,132.0,132.6,133.6,133.8$, 136.3, 145.5, 192.1. IR (neat): v 3059, 2846, 2748, 1685, 1595, 1196, 850, $760,731 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 359.1043$; Found: 359.1052.

2,7-Bis[2-(2-methoxyethenyl)phenyl]naphthalene (1a)

To a THF (12.4 mL) solution of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{OMCCl}^{-}(6.46 \mathrm{~g}, 18.8 \mathrm{mmol})$ was added t-BuONa ($2.27 \mathrm{~g}, 23.6 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , a THF $(17.6 \mathrm{~mL})$ solution of 2,2'-(naphthalene-2,7-diyl)dibenzaldehyde ($1.58 \mathrm{~g}, 4.70 \mathrm{mmol}$) was added. After stirring at $0^{\circ} \mathrm{C}$ for another 10 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and organic materials were extracted with

EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$) to give 2,7-bis[2-(2-methoxyethenyl)phenyl]naphthalene $(1 \mathbf{1 a}, 1.25 \mathrm{~g}, 68 \%, E E / E Z / Z Z=37: 55: 8)$ as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.50(\mathrm{~s}, 1.65 \mathrm{H}), 3.51(\mathrm{~s}, 2.22 \mathrm{H}), 3.75(\mathrm{~s}, 1.65 \mathrm{H}), 3.75(\mathrm{~s}, 0.48 \mathrm{H})$, $5.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.16 \mathrm{H}), 5.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.82(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.83(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 0.74 \mathrm{H}), 6.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.16 \mathrm{H}), 6.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.55 \mathrm{H}), 6.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $0.55 \mathrm{H}), 6.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.74 \mathrm{H}), 7.24-7.56(\mathrm{~m}, 8 \mathrm{H}), 7.82-7.90(\mathrm{~m}, 5.29 \mathrm{H}), 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $0.16 \mathrm{H}), 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.55 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 56.38,56.44,60.6,103.8$, $104.29,104.34,125.0,125.1,125.8,125.9,126.01,126.03,127.08,127.11,127.14,127.29,127.31$, 127.6, 127.7, 128.2, 128.3, 128.4, 128.5, 129.27, 129.30, 130.0, 130.4, 131.1, 131.2, 133.1, 133.2, 133.4, 134.3, 139.3, 139.4, 139.66, 139.68, 139.72, 140.09, 140.14, 148.0, 149.06, 149.10. IR (neat): v 3055, 3018, 2954, 2931, 2831, 1637, 1230, 1157, 1107, 1090, 945, 937, 849, $754 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 415.1669$; Found: 415.1672.

3.6.2.2. Preparation of Bisacetals 2

2-(2-Bromophenylmethyl)-1,3-dioxolane

To an acetone (123 mL) solution of 1-bromo-2-(2-methoxyethenyl)benzene ($E / Z=50: 50$, $4.91 \mathrm{~g}, 23.0 \mathrm{mmol})$ was slowly added aqueous $\mathrm{HCl}(11 \mathrm{M}, 20.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 12 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, and organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure gave a crude mixture (4.65 g) including 2-(2-bromophenyl)acetaldehyde as a pale yellow liquid.

To a toluene $(46 \mathrm{~mL})$ solution of the obtained crude mixture and ethylene glycol $(3.76 \mathrm{~mL}$,
$67.4 \mathrm{mmol})$ was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(445 \mathrm{mg}, 2.34 \mathrm{mmol})$. After stirring at $140^{\circ} \mathrm{C}$ for 1 day and then $150{ }^{\circ} \mathrm{C}$ for 11 h in a reaction vessel equipped with a Dean-Stark apparatus, aqueous NaHCO_{3} was added to the reaction mixture. The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc $=10: 1$) to give 2 -(2-bromophenylmethyl)-1,3-dioxolane (4.35 g , 78%) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.12(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.98(\mathrm{~m}, 2 \mathrm{H})$, $5.14(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=7.6,7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=7.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 40.5$, 64.8, 103.1, 124.8, 127.2, 128.2, 131.7, 132.5, 135.7. IR (neat): v 2968, 2883, 1473, 1117, 1026, 985, 748, $660 \mathrm{~cm}^{-1}$. HRMS (EI+) m / z Calcd. for $\mathrm{C}_{10} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}]^{+}: 241.9937$; Found: 241.9942.

2-\{2-[(1,3-Dioxolan-2-yl)methyl]phenyl\}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

A 1,4-dioxane (75.8 mL) solution of 2-(2-bromophenylmethyl)-1,3-dioxolane ($6.00 \mathrm{~g}, 24.7$ $\mathrm{mmol}), \mathrm{B}_{2}(\mathrm{pin})_{2}(6.97 \mathrm{~g}, 27.5 \mathrm{mmol})$, potassium acetate $(14.0 \mathrm{~g}, 150 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(212 \mathrm{mg}, 0.260 \mathrm{mmol})$ was degassed by using the freeze-pump-thaw method three times. After stirring at $100^{\circ} \mathrm{C}$ for 5 h , the reaction mixture was filtered through a pad of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (toluene/EtOAc $=10: 1$) to give 2-\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5.76 g, 80\%) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{~s}, 12 \mathrm{H}), 3.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.90(\mathrm{~m}, 4 \mathrm{H}), 5.08(\mathrm{t}, J$ $=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=7.5,7.5,1.2$
$\mathrm{Hz}, 1 \mathrm{H}$), 7.78 (dd. $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.8,40.1,64.8,83.5,105.3$, $125.8,130.6,130.7,135.7,142.4$ (the signal for the carbon which is attached to the boron atom was omitted). IR (neat): v 2978, 2931, 2885, 1383, 1348, 1313, 1146, 1119, 1072, $661 \mathrm{~cm}^{-1}$. HRMS (EI+) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BO}_{4}[\mathrm{M}]^{+}: 290.1684$; Found: 290.1694 .

2,7-Bis\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}naphthalene (2a)

A 1,4-dioxane $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ solution of naphthalene-2,7-diyl $\begin{array}{llllll}\text { bis(trifluoromethanesulfonate) } & (\mathbf{4 a}, & 1.28 & \mathrm{~g}, & 3.02 & \mathrm{mmol}),\end{array}$ 2-\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.61 g, 5.55 $\mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(3.82 \mathrm{~g}, 18.0 \mathrm{mmol})$ was degassed by using the freeze-pump-thaw method three times. After stirring at $120^{\circ} \mathrm{C}$ for 2 h , organic materials were extracted with EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $\mathbf{2 a}(881 \mathrm{mg}, 65 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.03(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 8 \mathrm{H}), 5.01(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 37.5,64.7,104.4,126.5,127.3,127.4,127.9,128.2,130.3,130.4,131.1,133.0,133.8$, 139.5, 142.5. IR (neat): v 2960, 2883, 1485, 1396, 1130, 1038, 985, 945, 908, 849, 756, $729 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 475.1880$; Found: 475.1885.

1,4-Bis\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}naphthalene (2b)

Compound $\mathbf{2 b}$ was prepared by the method described for 2a using naphthalene-1,4-diyl $\begin{array}{llllll}\text { bis(trifluoromethanesulfonate) } & (\mathbf{4 b}, & 426 & \mathrm{mg}, & 1.00 & \mathrm{mmol}),\end{array}$ 2-\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (544 mg, 1.87 $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(62 \mathrm{mg}, 53 \mu \mathrm{~mol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.25 \mathrm{~g}, 5.89 \mathrm{mmol})$ at $120{ }^{\circ} \mathrm{C}$ for 1 h . Purification by silica gel column chromatography (hexane/EtOAc $=30: 1$) and washing with EtOAc gave $\mathbf{2 b}$ (62 $\mathrm{mg}, 14 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.72-2.83(\mathrm{~m}, 4 \mathrm{H}), 3.71-3.85(\mathrm{~m}, 8 \mathrm{H}), 4.89(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 37.9,64.6,64.7,104.2,125.7,126.35,126.43,126.5,127.6,130.2,130.9,132.4$, 135.1, 138.6, 140.6. IR (neat): v 2956, 2883, 1387, 1132, 1036, 976, 943, $760 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 475.1880; Found: 475.1867.

1,5-Bis\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}naphthalene (2c)

Compound 2c was prepared by the method described for 2a using naphthalene-1,5-diyl $\begin{array}{llllll}\operatorname{bis}(t r i f l u o r o m e t h a n e s u l f o n a t e) & (4 c, & 416 & m g & 0.980 & m m o l),\end{array}$ 2-\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($545 \mathrm{mg}, 1.88$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(54 \mathrm{mg}, 47 \mu \mathrm{~mol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.28 \mathrm{~g}, 6.03 \mathrm{mmol})$ at $120^{\circ} \mathrm{C}$ for 1 h . Purification
by washing with EtOAc gave $\mathbf{2 c}(207 \mathrm{mg}, 47 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.68-2.80(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.82(\mathrm{~m}, 8 \mathrm{H}), 4.86(\mathrm{dd}, J=5.2,5.1 \mathrm{~Hz}$, 2H), 7.32-7.39 (m, 8H), 7.41-7.44 (m, 4H), $7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.9,64.6,64.7,104.2,125.2,125.8,126.4,127.1,127.6,130.2,130.8,132.3,135.0,139.1,140.8$. IR (neat): $v 2964,2887,1489,1406,1130,1049,976,796,762 \mathrm{~cm}^{-1}$. HRMS (ESI +) m / z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 475.1880$; Found: 475.1864 .

1,6-Bis\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}naphthalene (2d)

Compound 2d was prepared by the method described for 2a using naphthalene-1,6-diyl $\begin{array}{llllll}\text { bis(trifluoromethanesulfonate) } & (4 d, & 432 & m g & 1.02 & m m o l),\end{array}$ 2-\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($638 \mathrm{mg}, 2.20$ $\mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{mg}, 49 \mu \mathrm{~mol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.28 \mathrm{~g}, 6.03 \mathrm{mmol})$ at $120^{\circ} \mathrm{C}$ for 2 h . Purification by silica gel column chromatography (hexane/EtOAc $=2: 1$) gave 2d ($446 \mathrm{mg}, 97 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.72(\mathrm{~d}, J=14.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=14.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.87(\mathrm{~m}, 8 \mathrm{H}), 4.87(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=5.0,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.42$ (ddd, $J=7.4,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.84-7.86 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 37.4,37.9,64.58,64.62,64.7,104.2,104.5$, $125.5,125.8,126.4,126.5,127.1,127.4,127.6,127.7,128.0,128.4,130.26,130.34,130.4,130.7$, 131.1, 133.3, 133.8, 135.0, 138.9, 139.0, 140.5, 142.4. IR (neat): v 2966, 2883, 1489, 1396, 1124, 1036, 985, 760, $729 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 475.1880$; Found: 475.1885.

1,7-Bis\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}naphthalene (2e)

Compound $\mathbf{2 e}$ was prepared by the method described for 2a using naphthalene-1,7-diyl $\begin{array}{llllll}\text { bis(trifluoromethanesulfonate) } & (\mathbf{4 e}, & 427 & \mathrm{mg}, & 1.01 & \mathrm{mmol}) \text {, }\end{array}$ 2-\{2-[(1,3-dioxolan-2-yl)methyl]phenyl\}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($639 \mathrm{mg}, 2.20$ $\mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{mg}, 49 \mu \mathrm{~mol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.29 \mathrm{~g}, 6.08 \mathrm{mmol})$ at $120^{\circ} \mathrm{C}$ for 2 h . Purification by silica gel column chromatography (hexane/EtOAc $=2: 1$) gave $\mathbf{2 e}(433 \mathrm{mg}, 95 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.69(\mathrm{~d}, J=14.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=14.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.79(\mathrm{~m}, 8 \mathrm{H}), 4.81(\mathrm{dd}, J=4.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.30 (m, 5H), 7.35 (ddd, $J=7.6,7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.52(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 37.4,37.8,64.5,64.61,64.64,104.22,104.24,125.2,126.2,126.41,126.42,127.2$, 127.4, 127.6, 127.7, 127.8, 127.9, 130.28, 130.31, 130.5, 130.6, 132.0, 132.3, 133.7, 135.0, 139.2, 139.3, 140.5, 142.6. IR (neat): v 2970, 2881, 1485, 1396, 1124, 1036, 984, 837, $752 \mathrm{~cm}^{-1}$. HRMS (ESI+) m / z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 475.1880$; Found: 475.1869.

3.6.3. Synthesis of ortho-Fused Six-Hexagon Benzenoids 3

Dibenzo[$c, m]$ tetraphene (3a)

To an HFIP (1.44 mL) solution of bisacetal 2a ($195 \mathrm{mg}, 0.43 \mathrm{mmol}$) was added trifluoromethanesulfonic acid $(6.5 \mathrm{mg}, 43 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After stirring at the same temperature for

15 min , the reaction was quenched with phosphate buffer (pH 7). Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and the combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was purified by silica gel column chromatography (EtOAc) to give dibenzo $[c, m]$ tetraphene (3a, $137 \mathrm{mg}, 97 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.45(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.03-9.05(\mathrm{~m}, 2 \mathrm{H}), 10.1(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 116.9,121.3,121.5,122.9,123.2,126.4,126.8,126.89,126.91,127.0$, $127.3,127.36,127.45,127.5,128.1,128.5,128.6,128.8,129.0,129.1,130.68,130.72,130.73$, 130.8, 132.1, 132.4. IR (neat): v 3055, 1647, 1558, 895, 829, 806, $748 \mathrm{~cm}^{-1}$. HRMS (APCI+): m / z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{17}[\mathrm{M}+\mathrm{H}]^{+}$: 329.1330; Found: 329.1316.

Benzo[s]picene (3b)

Benzo s s]picene (3b) was synthesized by the method described for 3a using bisacetal $\mathbf{2 b}$ (62 $\mathrm{mg}, 0.14 \mathrm{mmol}$), trifluoromethanesulfonic acid ($2.2 \mathrm{mg}, 15 \mu \mathrm{~mol}$), and HFIP (0.46 mL). Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$) gave 3b ($38 \mathrm{mg}, 84 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{ddd}, J=6.9,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.94-8.98(\mathrm{~m}, 2 \mathrm{H}), 9.02(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 120.6,125.9,126.09,126.15,127.4,127.66,127.72$, 128.1, 128.3, 129.1, 129.7, 130.2, 133.4.

Spectral data for this compound showed good agreement with the literature data. ${ }^{6}$

Dibenzo[c,l]chrysene (3c)

Dibenzo $[c, l]$ chrysene (3c) was synthesized by the method described for 3a using bisacetal 2c $(92 \mathrm{mg}, 0.20 \mathrm{mmol})$, trifluoromethanesulfonic acid $(3.1 \mathrm{mg}, 21 \mu \mathrm{~mol})$, and $\operatorname{HFIP}(0.67 \mathrm{~mL})$. Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$) gave $\mathbf{3 c}(66 \mathrm{mg}, 99 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63$ (ddd, $J=6.9,6.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (ddd, $J=8.1,8.1,1.3 \mathrm{~Hz}$, 2H), 7.85-7.92 (m, 6H), $8.03(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 126.05,126.05,126.2,126.3,127.4,127.61,127.61,128.4$, 128.6, 130.1, 130.2, 130.7, 133.4. IR (neat): v 3045, 2920, 1475, 1425, 1230, 874, 843, 812, 746, $606 \mathrm{~cm}^{-1}$. HRMS (APCI+): m/z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{17}[\mathrm{M}+\mathrm{H}]^{+}: 329.1330$; Found: 329.1337. The structure of $\mathbf{3 c}$ was also confirmed by X-ray diffraction analysis (Figure S1 and Table S1).

Figure S1. ORTEP drawing of $\mathbf{3 c}$ with 50% ellipsoid probability.

Table S1. Crystal Data Collection Parameters for 3c

compound	3c
formula	$\mathrm{C}_{26} \mathrm{H}_{16}$
crystal system	monoclinic
space group	$P 2{ }_{1} / c$
$R, R_{w}(I>2 \sigma(I))$	0.0441, 0.0615
$R 1, w R 2$ (all data)	0.0977, 0.1065
GOF on F^{2}	1.059
$a(\AA)$	7.957(2)
b (\AA)	12.949(4)
$c(\AA)$	15.791(4)
α (deg)	90
β (deg)	92.586(4)
$\gamma(\mathrm{deg})$	90
$V\left(\AA^{3}\right)$	1529.0(7)
Z	4
T (K)	120(2)
crystal size (mm)	0.30, 0.13, 0.06
$D_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.342
$2 \theta_{\min }, 2 \theta_{\text {max }}(\mathrm{deg})$	4.06, 55.00

Benzo[a]picene (3d)

3d

3d'

Benzo[a]picene (3d) was synthesized by the method described for 3a using bisacetal 2d ($91 \mathrm{mg}, 0.20 \mathrm{mmol}$), trifluoromethanesulfonic acid ($2.8 \mathrm{mg}, 19 \mu \mathrm{~mol}$), and $\operatorname{HFIP}(0.67 \mathrm{~mL})$. Purification by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$ and then hexane/toluene $=$ 2:1) gave 3d including a small amount of $\mathbf{3 d}^{\prime}\left(\mathbf{3 d} / \mathbf{3 d}{ }^{\prime}=98: 2,63 \mathrm{mg}, 95 \%\right)$ as a white solid.

3d: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64$ (ddd, $J=7.7,7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-8.03(\mathrm{~m}, 4 \mathrm{H}), 8.76$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~m}, 3 \mathrm{H}), 9.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.23(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 120.7,121.8,122.2,123.2,126.06,126.07,126.5,126.6,126.8,126.9,127.2$, $127.4,127.6,127.8,128.0,128.39,128.43,128.49,128.54,128.8,130.2,130.32,130.32,130.8$, 132.0, 133.6. IR (neat): v 3049, 1604, 1475, 1433, 1257, 867, 827, 796, 754, $737 \mathrm{~cm}^{-1}$. HRMS (APCI+): m / z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{17}[\mathrm{M}+\mathrm{H}]^{+}: 329.1330$; Found: 329.1334.

Naphtho[2,1-c]chrysene (3e)

Naphtho[2,1-c]chrysene (3e) was synthesized by the method described for 3a using bisacetal $2 \mathbf{e}(94 \mathrm{mg}, 0.21 \mathrm{mmol})$, trifluoromethanesulfonic acid ($3.1 \mathrm{mg}, 21 \mu \mathrm{~mol}$), and HFIP (0.70 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$) gave 3e including a small amount of $\mathbf{3 e} \mathbf{e}^{\prime}\left(\mathbf{3 e} / \mathbf{3 e} \mathbf{e}^{\mathbf{\prime}}=\mathbf{9 3 : 7 , 6 0} \mathbf{m g}, 87 \%\right)$ as a white solid.

3e: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26$ (dd, $\left.J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=$ $7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.97(\mathrm{~m}, 6 \mathrm{H}), 8.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 122.0,123.4,124.4,124.7,126.1,126.3,126.51,126.54,126.6,126.8$, 127.0, 127.21, 127.24, 127.67, 127.69, 127.74, 128.0, 128.2, 129.1, 129.2, 130.4, 130.9, 132.06, 132.06, 132.3, 132.5. IR (neat): v 3047, 1601, 1485, 1423, 1255, 1226, 906, 839, 804, 746, 690, 627 cm^{-1}. HRMS (APCI+): m/z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{17}[\mathrm{M}+\mathrm{H}]^{+}:$329.1330; Found: 329.1343 .

3.6.4. References

[1] Lombardo, C. M.; Welsh, S. J.; Strauss, S. J.; Dale, A. G.; Todd, A. K.; Nanjunda, R.; Wilson, W. D.; Neidle, S. Bioorg. Med. Chem. Lett. 2012, 22, 5984-5988.
[2] Fukuda, Y.; Seto, S.; Furuta, H.; Ebisu, H.; Oomori, Y.; Terashima, S. J. Med. Chem. 2001, 44, 1396-1406.
[3] Berton, N.; Lemasson, F.; Tittmann, J.; Stürzl, N.; Hennrich, F.; Kappes, M. K.; Mayor, M. Chem. Mater. 2011, 23, 2237-2249.
[4] Takeuchi, M.; Tuihiji, T.; Nishimura, J. J. Org. Chem. 1993, 58, 7388-7392.
[5] Tietze, L. F.; Hungerland, T.; Depken, C.; Maaß, C.; Stalke, D. Synlett 2012, 23, 2516-2520.
[6] Harvey, R. G.; Zhang, J.-T.; Luna, E.; Pataki, J. J. Org. Chem. 1998, 63, 6405-6408.

Chapter 4

Brønsted Acid-Catalyzed Intramolecular Hydroarylation of

 Unactivated Alkynes
Abstract

Brønsted acid-catalyzed intramolecular hydroarylation of unactivated alkynes proceeded via the vinylic carbocations to provide substituted phenacenes. The reaction was promoted by TsOH in 1,1,1,3,3,3-hexafluoropropan-2-ol/cyclohexane two-phase system. This protocol is applicable to a wide variety of arylethynyl-bearing biaryls with electron-donating or electron-withdrawing groups.

4.1. Introduction

Phenacenes have ortho-fused aromatic rings in zigzag configuration and constitute a subclass of polycyclic aromatic carbons (PAHs). ${ }^{[1]}$ They attract much attention because of unique electronic and optical properties derived from their extended π-conjugated systems and high stability toward oxidation. Thus, they have been widely studied on organic semiconducting devices such as organic field-effect transistors (OFETs) ${ }^{[2]}$ and light-emitting diodes (OLEDs). ${ }^{[3]}$ Phenacenes have been generally synthesiszed via photochemical oxidative cyclization of stilbene derivatives (Mallory reaction), ${ }^{[4]}$ McMurry coupling, ${ }^{[5]}$ dehydrative cycloaromatization of carbonyl compounds (Bradsher reation), ${ }^{[6]}$ and metal-catalyzed annulation. ${ }^{[7]}$

Among synthetic method for phenacenes, the hydroarylation of 2-alkynyl biaryls is a particularly straightforward and atom-economical synthetic method. Since Fürstner et al. have reported the synthesis of phenacenes via $\mathrm{Pt}(\mathrm{II})$ - or $\operatorname{In}($ III $)$-catalyzed hydroarylaiton of alkynes, ${ }^{[8]}$ various similar studies have emerged. ${ }^{[9]}$ Swager et al. have achieved a pioneering work on Brønsted acid-mediated hydroarylation of alkynes utilizing an excess amount of a Brønsted acid (Scheme 1a). ${ }^{[10,11]}$ Subsequently Kozmin et al. achieved Brønsted acid-catalyzed carbocyclization of alkynes (Scheme 1a). ${ }^{[12]}$ However, both protocols required alkyne-activating groups such as p-alkoxy phenyl group or a siloxy group, respectively. This limitation was due to extremely unstable vinylic carbocation intermediates, which need electron donation from the activating groups.

To overcome the limitation, I envisaged that the vinyl cation intermediates might be stabilized by the effect of 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) to broaden the scope of alkyne substrates. ${ }^{[13,14]}$ Eventually, I achieved the TsOH-catalyzed hydroarylation of phenylethynyl biaryls by conducting in HFIP, which led to the synthesis of functionalized phenacenes (Scheme 1b).
(a) Activated Alkynes: Previous reports

(b) Unactivated Alkyens: This work

No directing-group
Catalytic amout of Brønsted acid Wide substrate scope

Scheme 1. Brønsted acid-mediated hydroarylation of (a) activated and (b) unactivated alkynes

4.2. Synthesis of Substituted Phenacenes via Brønsted Acid-Catalyzed Intramolecular Hydroarylation

First, I applied the combination of trifluoromethanesulfonic acid (TfOH) as a catalyst and HFIP as a solvent, which was the most effective for dehydrative cycloaromatization of carbonyl compounds, ${ }^{[15]}$ to intramolecular hydroarylation of 2-(phenylethynyl)biphenyl (1a). The desired reaction proceeded, leading to the formation of the corresponding 6-endo cyclized product $\mathbf{2 a}$ and 5-exo cyclized product 3a in 53% and 7% yields, respectively (Table 1, Entry 1). In order to improve the yield of $\mathbf{2 a}$, various weaker Brønsted acids, such as p-toluenesulfonic acid
monohydrate $\left(\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}\right)$, methansulfonic acid (MsOH), tetrafluoroboric acid $\left(\mathrm{HBF}_{4}\right)$, and 10-camphorsulfonic acid (CSA), were examined as catalysts to afford 2a in 44-54\% yields (Entries 2-5). Since cheap and easy-handling $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ gave the best result, various solvents were screened in the presence of a catalytic amount of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (Entries 6-9). As expected, HFIP was found to be the most effective among solvents examined. To improve the yield of $\mathbf{2 a}$ by suppressing side reactions, I employed a two-phase co-solvent of HFIP and aliphatic solvents, such as hexane, cyclohexane, and decaline (decahydronaphthalene), in this hydroarylation (Entries 10-12, vide infra). In the case where cyclohexane was used as a co-solvent, the desired product $\mathbf{2 a}$ was obtained in 85% yield with good selectivity (Entry 11). Consequently, this reaction proceeded even under air without any problem (Entry 13).

Table 1. Screening of conditions. ${ }^{\text {[a] }}$

Solvent, RT, 9-60 h

1a

Entry	Brønsted Acid	Solvent	2a $(\%)^{[b]}$	3a $(\%)^{[b]}$
1	TfOH	HFIP	53	7
2	TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$	HFIP	54	5
3	MsOH	HFIP	47	7
4	HBF_{4}	HFIP	48	9
5	CSA	HFIP	44	5

6	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	Hexane	N.D. ${ }^{[c]}$	N.D. ${ }^{[c]}$
7	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	trace	N.D. ${ }^{[c]}$
8	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	MeNO_{2}	1	N.D. ${ }^{[c]}$
9	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	i-PrOH	N.D. ${ }^{[c]}$	N.D. ${ }^{[c]}$
10	TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$	HFIP/Hexane (1:2)	78	9
11	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	HFIP/Cyclohexane (1:2)	85	13
12	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	HFIP/Decaline (1:2)	67	11
$13^{[d]}$	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	HFIP/Cyclohexane (1:2)	85	11

[a] 0.3 mmol scale. [b] Yield was determined by ${ }^{1} \mathrm{H}$ NMR measurement using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. [c] N.D. = Not detected. [d] Reaction under air atmosphere.

The optimal conditions obtained above for the synthesis of $\mathbf{2 a}$ from 1a were then successfully applied to the hydroarylation of phenylethynyl biaryls $\mathbf{1}$ with a variety of substituents on the nucleophilic aryl groups (Table 2). Hydroarylation of phenylethynyl biaryls 1b-d bearing electron-donating methyl groups smoothly proceeded to afford the corresponding substituted phenanthrenes 2b-d in high yields. Phenylethynyl biaryls $\mathbf{1 e}$ and \mathbf{f} bearing electron-withdrawing chlorine and fluorine groups also underwent hydroarylation successfully.

Table 2. TsOH-catalyzed synthesis of substituted phenacenes $\mathbf{2}$ in $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12} / \mathrm{HFIP}$ co-solvent. ${ }^{[a]}$

88\%
$(2 d / 3 d=97: 3)$

89\%
(2e/3e = 94:6)

91\%
($\mathbf{2 f / 3 f = 9 0 : 1 0) ~}$
[a] Total isolated yield of 2 and 3 . Product ratio (2/3) was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

4.3. Mechanistic Studies on Hydroarylation in Two-Phase Systems

In order to elucidate the effect of the two-phase solvent system, the following experiments were conducted. First, distribution ratios of 2-(phenylethynyl)biphenyl (1a), 9-phenylphenanthrene (2a), and TsOH in cyclohexane and HFIP were determined (Table 4). As listed in Table 4, the 88\% of the starting alkyne 1a was dissolved in cyclohexane, while 12% of $\mathbf{1 a}$ was dissolved in HFIP (in $c-\mathrm{C}_{6} \mathrm{H}_{12} / \mathrm{HFIP}=88: 12$). The product phenanthrene (2a) and TsOH were completely separated to be located in the cyclohexane layer and in the HFIP layer, respectively.

Table 4. Distribusion ratios of 1a, 2a, and TsOH .

[a] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. [b] Calculated value. [c] N.D. = Not detected.

Plausible behaviors of alkynes 1, phenacenes 2, and TsOH in the cyclohexane/HFIP two-phase system of the hydroarylation are shown in Scheme 2. Alkynes $\mathbf{1}$ and phenacenes 2 were mainly dissolved in the cyclohexane layer, while TsOH was dissolved in the HFIP layer. A part of alkynes $\mathbf{1}$ was protonated by TsOH in the HFIP layer to generate the intermediary vinyl cations. Subsequent intramolecular Friedel-Crafts-type cyclization proceeded in the HFIP layer to afford phenacenes 2, which moved from the HFIP layer into the cyclohexane layer. Thus, the two-phase system separates the vinyl cations from alkynes $\mathbf{1}$ and phenacenes 2, which can suppress undesirable reactions of the reactive vinyl cations with $\mathbf{2}$ and $\mathbf{1}$.

1
${ }^{c-} \mathrm{C}_{6} \mathrm{H}_{12}$ Phase
HFIP Phase

Scheme 2. Proposed behavior of organic compounds in cyclohexane/HFIP two-phase system.

In addition, I succeeded in recycling the HFIP solution of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. After the reaction, the cyclohexane layer including $\mathbf{2}$ and $\mathbf{3}$ was separated from the HFIP layer including TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$, which was reused repeatedly by adding a new cyclohexane solution of 1a. After the reaction with stirring under the same conditions, the corresponding phenanthrene 2a and fulvens 3a were obtained in $95 \%(\mathbf{2 a} / \mathbf{3 a}=88: 12 ; 1$ st cycle $), 97 \%(\mathbf{2 a} / \mathbf{3} \mathbf{a}=89: 11 ; 2 \mathrm{nd}$ cycle), $93 \%(\mathbf{2 a} / \mathbf{3 a}=88: 12 ;$ 3rd cycle $)$, and $94 \%(\mathbf{2 a} / \mathbf{3} \mathbf{a}=88: 12$; 4th cycle $)$ of total yields. Thus, the reactivity of HFIP solution of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was found to be maintained over four cycles, which showed the practicality of this procedure. ${ }^{[16]}$

4.4. Conclusion

In summary, I have developed an efficient and atom-economical method for the synthesis of phenacenes via TsOH-catalyzed intramolecular hydroarylation of unactivated alkynes with a wide variety of substituents. The two-phase HFIP/cyclohexane solvent system promoted the catalytic reaction and suppressed side reactions. Therefore, I demonstrated great potential of the two-phase solvent system including HFIP.

4.5. References

[1] Harvey, R. G. in Polycyclic Aromatic Hydrocarbons, Wiley-VHC, New York, 1997.
[2] (a) Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Fujiwara, A.; Yamaji, M. J. Am. Chem. Soc. 2008, 130, 10470-10471. (b) Eguchi, R.; He, X.; Hamao, S.; Goto, H.; Okamoto, H.; Gohda, S.; Sato, K.; Kubozono, Y. Phys. Chem. Chem. Phys. 2013, 15, 20611-20617. (c) Okamoto, H.; Hamao, S.; Goto, H.; Sakai, Y.; Izumi, M.; Gohda, S.; Kubozono, Y.; Eguchi, R. Sci. Rep. 2014, 4, 5048. (d) Kubozono, Y.; He, X.; Hamao, S.; Teranishi, K.; Goto, H.; Eguchi, R.; Kambe, T.; Gohda, S.; Nishihara, Y. Eur. J. Inorg. Chem. 2014, 3806-3819. (e) Okamoto, H.; Eguchi, R.; Hamao, S.; Goto, H.; Gotoh, K.; Sakai, Y.; Izumi, M.; Takaguchi, Y.; Gohda, S.; Kubozono, Y.; Sci. Rep. 2014, 4, 5330.
[3] (a) Ionkin, A. S.; Marshall, W. J.; Fish, B. M.; Bryman, L. M.; Wang, Y. Chem. Commun. 2008, 2319-2321. (b) Wu, T.-L.; Chou, H.-H.; Huang, P.-Y.; Cheng, C.-H.; Liu, R.-S. J. Org. Chem. 2014, 79, 267-274.
[4] For synthesis of phenacenes via photochemical oxidative cyclization (Mallory reaction), see: (a) Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1-456, and references cited therein; (b) Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C. W.; Yang, C.; Ellenstein, A. J. Am. Chem. Soc. 1997, 119, 2119-2124. (c) Mallory, F. B.; Butler, K. E.; Bérubé, A.; Lizik, Jr. E. D.; Mallory, C. W.; Brondyke, E. J.; Hiremath, R.; Ngo, P.; Carroll, P. J. Tetrahedron 2001, 57, 3715-3724. (d) Okamoto, H.; Yamaji, M.; Gohda, S.; Kubozono, Y.; Komura, N.; Sato, K.; Sugino, H.; Satake, K. Org. Lett. 2011, 13, 2758-2761. (e) Chen, M.; Yang, C.; Wang, Y.; Li, D.; Xia, W. Org. Lett. 2016, 18, 2280-2283.
[5] (a) Gies, A.-E.; Pfeffer, M. J. Org. Chem. 1999, 64, 3650-3654. (b) Some, S.; Dutta, B.; Ray, J. K.; Tetrahedron Lett. 2006, 47, 1221-1224.
[6] (a) Bradsher, C. K. J. Am. Chem. Soc. 1940, 62, 486-488. (b) Bradsher, C. K.; Jackson Jr., W. J. J. Am. Chem. Soc. 1954, 76, 734-738. (c) Bradsher, C. K. Chem. Rev. 1987, 87, 1277-1297, and references cited therein; (d) Diel, B. N.; Han, M.; Kole, P. L.; Boaz, D. B.; J. Label. Compd.

Radiopharm. 2007, 50, 551-553. (c) Kuninobu, Y.; Tatsuzaki, T.; Matsuki, K.; Takai, K. J. Org. Chem. 2011, 76, 7005-7009.
[7] (a) Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 5714-5717. (b) Shimizu, M.; Hiyama, T. Eur. J. Org. Chem. 2013, 8069-8081. (c) Chang, N.-H.; Chen, X.-C.; Nonobe, H.; Okuda, Y.; Mori, H.; Nakajima, K.; Nishihara, Y. Org. Lett. 2013, 15, 3558-3561. (d) Chang, N.-H.; Mori, H.; Chen, X.-C.; Okuda, Y.; Okamoto, T.; Nishihara, Y. Chem. Lett. 2013, 42, 1257-1259.
[8] (a) Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264-6267. (b) Fürstner, A.; Mamane, V. Chem. Commun. 2003, 2112-2213. (c) Mamane, V.; Hannen, P.; Fürstner, A. Chem.-Eur. J. 2004, 10, 4556-4575.
[9] (a) Shen, H.-C.; Tang, J.-M.; Chang, H.-K.; Yang, C.-W.; Liu, R.-S. J. Org. Chem. 2005, 70, 10113-10116. (b) Chen, T.-A.; Lee, T.-J.; Lin, M.-Y.; Sohel, S. M. A.; Diau, E. W.-G.; Lush, S.-F.; Liu, R.-S. Chem.-Eur. J. 2010, 16, 1826-1833. (c) Matsuda, T.; Moriya, T.; Goya, T.; Murakami, M. Chem. Lett. 2011, 40, 40-41. (d) Kitazawa, K.; Kochi, T.; Nitani, M.; Ie, Y.; Aso, Y.; Kakiuchi, F. Chem. Lett. 2011, 40, 300-302. (e) Shu, C.; Chen, C.-B.; Chen, W.-X.; Ye, L.-W.; Org. Lett. 2013, 15, 5542-5545. (f) Carreras, J.; Gopakumar G.; Gu, L.; Gimeno, A.; Linowski, P.; Petuškova, J.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. 2013, 135, 18815-18823.
[10]For Brønsted acid-mediated hydroarylation of activated alkynes, see: (a) Goldfinger, M. B.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, 7895-7896. (b) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 4578-4593. (c) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Org. Chem. 1998, 63, 1676-1686. (d) Tovar, J. D.; Swager, T. M. J. Organomet. Chem. 2002, 653, 215-222. (e) Yang, W.; Lucotti, A.; Tommasini, M.; Chalifoux. W. A. J. Am. Chem. Soc. 2016, 138, 9137-9144. (f) Yang, W.; Monteiro, J. H. S. K.; de Bettencourt-Dias, A.; Catalano, V. J.; Chalifoux, W. A. Angew. Chem., Int. Ed. 2016, 55, 10427-10430.
[11]For Brønsted acid-mediated hydroarylation of unactivated alkynes, see: (a) Mukherjee, A.; Pati, K.; Liu, R.-S. J. Org. Chem. 2009, 74, 6311-6314. (b) Wang, H.; Zhao, J.; Zhang, J.; Zhu, Q. Adv. Synth. Catal. 2011, 353, 2653-2658. (c) Yang, L.; Hua, R. Chem. Lett. 2013, 42, 769-771.
[12]For Brønsted acid-catalyzed hydroarylation of activated alkynes, see: (a) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 10204-10205. (b) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047-1050.
[13]For reviews, see: (a) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18-29. (b) Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2925-2943. (c) Dohi, T.; Yamaoka, N.; Kita, Y. Tetrahedron 2010, 66, 5775-5785. (d) Khaksar, S. J. Fluorine Chem. 2015, 172, 51-61. See also ref. 15 and references cited therein.
[14]For Brønsted acid-promoted reaction of alkynes in fluoroalcohol solvent, see: (a) Liu, W.; Wang, H.; Li, C.-J. Org. Lett. 2016, 18, 2184-2187. (b) Zeng, X.; Liu, S.; Shi, Z.; Xu, B. Org. Lett. 2016, 18, 4770-4773.
[15]Fujita, T.; Takahashi, I.; Hayashi, M.; Wang, J.; Fuchibe, K.; Ichikawa, J. Eur. J. Org. Chem. 2017, 262-265.
[16]Selected papers on reusing HFIP solvent, see: (a) Khaksar, S.; Rostamnezhad, F. Bull. Korean Chem. Soc. 2012, 33, 2581-2584. (b) Vekariya, R. H.; Aubé, J. Org. Lett. 2016, 18, 3534-3537.

4.6. Experimental Section

4.6.1. General Statement

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance 500 spectrometer at $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR $)$, at $126 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR $)$, and $470 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right.$ NMR). Chemical shift values are given in ppm relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H} \mathrm{NMR:} \delta=0.00 \mathrm{ppm}$), CDCl_{3} (for ${ }^{13} \mathrm{C}$ NMR: $\delta=77.0 \mathrm{ppm}$), and $\mathrm{C}_{6} \mathrm{~F}_{6}$ (for ${ }^{19} \mathrm{~F}$ NMR: $\delta=0.00 \mathrm{ppm}$). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV spectrometer.

Column chromatography was conducted on silica gel (Silica Gel 60 N, Kanto Chemical Co., Inc. for column chromatography). All the reactions for substrate preparation were conducted under argon. All the reactions for phenacene synthesis were conducted under air. Toluene and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. 1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP) was distilled from CaH_{2} and stored over activated molecular sieves 4A. Cyclohexane was distilled from MgSO_{4} and stored over activated molecular sieves 4A. 1-Bromo-2-(2-phenylethynyl)benzene was prepared according to the literature procedures. ${ }^{1)}$ Unless otherwise noted, materials were obtained from commercial sources and used directly without further purifications.

4.6.2. Preparation of Substrates

4.6.2.1. Preparation of 2-(Phenylethnyl)biaryls ${ }^{2)}$

[Precedure A]

After 1-bromo-2-(phenylethynyl)benzene (1.2 mmol) was dissolved in toluene (3.0 mL), EtOH (1.5 mL), and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$, the solution was degassed by using the freeze-pump-thaw method three times. To a solution were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.2 equiv), and arylboronic acid (1.2 equiv). After stirring at $70{ }^{\circ} \mathrm{C}$ for $2-6 \mathrm{~h}$, the reaction was quenched with aquenous $\mathrm{NH}_{4} \mathrm{Cl}$, and organic materials were extracted with EtOAc three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography to give the corresponding 2-(phenylethynyl)biaryls 1.

2-(Phenylethynyl)biphenyl (1a)

Compound 1a was prepared according to Procedure A using 1-bromo-2-(phenylethynyl)benzene ($316 \mathrm{mg}, 1.23 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(43 \mathrm{mg}, 61 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($162 \mathrm{mg}, 1.5 \mathrm{mmol}$), and phenylboronic acid ($176 \mathrm{mg}, 1.44 \mathrm{mmol}$) at $70^{\circ} \mathrm{C}$ for 2 h . Purification by silica gel column chromatography (hexane) gave 1a ($235 \mathrm{mg}, 75 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.27-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 5 \mathrm{H})$, 7.64-7.68 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 89.7,92.6,121.9,123.8,127.4,127.8,128.2$,
$128.4,128.6,128.9,129.7,129.8,131.7,133.2,140.9,144.3$.
Spectral data for this compound showed good agreement with literature data. ${ }^{2)}$

4'-Methyl-2-(phenylethynyl)biphenyl (1b)

Compound 1b was prepared according to Procedure A using 1-bromo-2-(phenylethynyl)benzene ($312 \mathrm{mg}, 1.21 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(43 \mathrm{mg}, 61 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(163 \mathrm{mg}, 1.54 \mathrm{mmol})$, and 4-methylphenylboronic acid ($210 \mathrm{mg}, 1.54 \mathrm{mmol}$) at $70{ }^{\circ} \mathrm{C}$ for 6 h . Purification by silica gel column chromatography (hexane) gave $\mathbf{1 b}(232 \mathrm{mg}, 71 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63-7.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.2,89.5,92.1,121.4,123.5,126.8$, $128.0,128.2,128.5,128.6,129.2,129.4,131.3,133.0,137.2,137.6,143.7$.

Spectral data for this compound showed good agreement with the literature data. ${ }^{3)}$

3'-Methyl-2-(phenylethynyl)biphenyl (1c)

Compound 1c was prepared according to Procedure A using 1-bromo-2-(phenylethynyl)benzene ($314 \mathrm{mg}, 1.21 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(50 \mathrm{mg}, 71 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($188 \mathrm{mg}, 1.8 \mathrm{mmol}$), and 3-methylphenylboronic acid ($202 \mathrm{mg}, 1.49 \mathrm{mmol}$) at $70{ }^{\circ} \mathrm{C}$ for 6 h . Purification by silica gel column chromatography (hexane) gave $\mathbf{1 c}(232 \mathrm{mg}, 71 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.33$ $(\mathrm{m}, 4 \mathrm{H}), 7.38(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.7 .47(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.5,89.5,92.2,121.5,123.5,126.5,126.9,127.7,128.0,128.1,128.2$, $128.4,129.4,130.1,131.3,132.8,137.3,140.4,143.9$. IR (neat): v 3057, 3030, 3020, 1599, 1489 , 1441, 750, 702, $687 \mathrm{~cm}^{-1}$. HRMS (EI+): m / z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16}[\mathrm{M}]^{+}: 268.1247$; Found: 268.1244 .

3',5'-Dimethtyl-2-(phenylethynyl)biphenyl (1d)

Compound 1d was prepared according to Procedure A using 1-bromo-2-(phenylethynyl)benzene ($312 \mathrm{mg}, 1.21 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(47 \mathrm{mg}, 66 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(177 \mathrm{mg}, 1.7 \mathrm{mmol})$, and 3,5-dimethylphenylboronic acid ($228 \mathrm{mg}, 1.52 \mathrm{mmol}$) at $70{ }^{\circ} \mathrm{C}$ for 6 h . Purification by silica gel column chromatography (hexane) gave $\mathbf{1 d}(219 \mathrm{mg}, 64 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39(\mathrm{~s}, 6 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{ddd}, J=7.5,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=$ $7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.4,89.6,92.2,121.4,123.6,126.8,127.2,128.0$, 128.2, 128.4, 129.1, 129.4, 131.3, 132.8, 137.3, 140.4, 144.0. IR (neat): v 3059, 3032, 3022, 2916, 1603, 1493, 850, 750, $687 \mathrm{~cm}^{-1}$. HRMS (EI+): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18}[\mathrm{M}]^{+}: 282.1403$; Found: 282.1411.

4'-Chloro-2-(phenylethynyl)biphenyl (1e)

Compound 1e was prepared according to Procedure A using 1-bromo-2-(phenylethynyl)benzene ($313 \mathrm{mg}, 1.22 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(44 \mathrm{mg}, 63 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($164 \mathrm{mg}, 1.5 \mathrm{mmol}$), and 4 -chlorophenylboronic acid ($231 \mathrm{mg}, 1.48 \mathrm{mmol}$) at $70{ }^{\circ} \mathrm{C}$ for 6 h . Purification by silica gel column chromatography (hexane) gave $\mathbf{1 e}(256 \mathrm{mg}, 73 \%)$ as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 89.0,92.5,121.4$, 123.1, 127.3, 128.0, 128.2, 128.3, 128.5, 129.2, 130.6, 131.3, 133.0, 133.5, 138.9, 142.4. IR (neat): v 3059, 1489, 1471, 1088, 827, 750, $687 \mathrm{~cm}^{-1}$. HRMS (EI+): m/z Calcd. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}[\mathrm{M}]^{+}$: 288.0700; Found: 288.0695.

4'-Fluoro-2-(phenylethynyl)biphenyl (1f)

Compound 1f was prepared according to Procedure A using 1-bromo-2-(phenylethynyl)benzene ($315 \mathrm{mg}, 1.22 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(57 \mathrm{mg}, 80 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($178 \mathrm{mg}, 1.7 \mathrm{mmol}$), and 4-fluorophenylboronic acid ($213 \mathrm{mg}, 1.52 \mathrm{mmol}$) at $70{ }^{\circ} \mathrm{C}$ for 6 h . Purification by silica gel column chromatography (hexane) gave $\mathbf{1 f}(244 \mathrm{mg}, 73 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 3 \mathrm{H})$, 7.38-7.40(m, 2H), 7.61-7.65 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 89.1,92.4,114.8\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$
$21 \mathrm{~Hz}), 121.6,123.3,127.2,128.2,128.3,128.6,129.4,131.0\left(\mathrm{~d}, J_{\mathrm{CF}}=8 \mathrm{~Hz}\right), 131.3,132.9,136.6$
$\left(\mathrm{d}, J_{\mathrm{CF}}=3 \mathrm{~Hz}\right), 142.8,162.4\left(\mathrm{~d}, J_{\mathrm{CF}}=247 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 46.5-46.6(\mathrm{~m})$.
Spectral data for this compound showed good agreement with literature data. ${ }^{3)}$

4.6.3. Synthesis of Polycyclic Aromatic Hydrocarbons

4.6.3.1. Synthesis of Phenacenes

[Procedure B]

After 2-(phenylethynyl)biaryl ($\mathbf{1}, 0.3 \mathrm{mmol}$) was dissolved in cyclohexane (3 mL). HFIP (0.8 mL) was added to mixture. To the reaction mixture was added a HFIP (0.7 mL) solution of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.7 \mathrm{mg}, 30 \mu \mathrm{~mol})$. After stirring vigorously for 9 h under air, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the reaction mixture was filtered through a pad of $\mathrm{NaHCO}_{3}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography to give the corresponding phenathrenes $\mathbf{2}$ including a small of dibenzofulvenes $\mathbf{3}$.

9-Phenylphenanthrene (2a)

Phenacene 2a was synthesized according to Procedure B using 2-(phenylethynyl)biphenyl (1a, $76 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(6.1 \mathrm{mg}, 32 \mu \mathrm{~mol})$, cyclohexane (3.0 mL), and HFIP (1.5 mL). Purification by silica gel column chromatography (hexane/ $\mathrm{CHCl}_{3}=20: 1$) gave phenanthrene 2a
including a small amount of dibenzofluvene $\mathbf{3 a}(73 \mathrm{mg}, 96 \%, \mathbf{2 a} / \mathbf{3} \mathbf{a}=90: 10)$ as a white solid.
2a: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.60-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.67$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 122.5,122.9,126.4$, $126.46,126.54,126.8,126.9,127.3,127.5,128.3,128.6,129.9,130.0,130.6,131.1,131.5,138.7$, 140.8.

Spectral data for this compound showed good agreement with literature data. ${ }^{4}$

2-Methyl-10-phenylphenanthrene (2b)

2b
$+$

Phenacene 2b was synthesized 4'-methyl-2-(phenylethynyl)biphenyl ($\mathbf{1 b}, 82 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(6.1 \mathrm{mg}, 32 \mu \mathrm{~mol})$, cyclohexane (3.0 mL), and HFIP (1.5 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CHCl}_{3}=20: 1$) gave phenanthrene $\mathbf{2 b}$ including a small amout of dibenzofluvene $\mathbf{3 b}$ (76 $\mathbf{m g}, 93 \%, \mathbf{2 b} / \mathbf{3 b}=93: 7$) as a pale yellow oil.

2b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 7.43-7.55(\mathrm{~m}, 7 \mathrm{H}), 7.58-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~s}$, $1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.7,122.3,122.8,126.36,126.36,126.5,127.3,127.6,128.2$, 128.3, 128.4, 128.6, 129.98, 130.02, 131.16, 131.19, 136.2, 138.5, 141.0.

Spectral data for this compound showed good agreement with literature data. ${ }^{3)}$

3-Methyl-10-phenylphenanthrene (2c)

2c

2c'

3c

$3 c^{\prime}$

Phenacene 2c was synthesized according to Procedure B using 3'-methyl-2-(phenylethynyl)biphenyl ($\mathbf{1 c}, 81 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.8 \mathrm{mg}, 30 \mu \mathrm{~mol})$, cyclohexane (3.0 mL), and HFIP (1.5 mL). Purification by silica gel column chromatography (hexane/ $\mathrm{CHCl}_{3}=20: 1$) gave phenanthrene 2c including a small amout of dibenzofulvene $\mathbf{3 c}$ (66 mg , $81 \%, \mathbf{2 c} / \mathbf{2} \mathbf{c}^{\mathbf{\prime}} \mathbf{3 c} / \mathbf{3} \mathbf{c}^{\prime}=50: 45: 3: 2$) as a pale yellow oil.
$\left(\mathbf{2 c} / \mathbf{2} \mathbf{c}^{\prime}=53: 47\right):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.02(\mathrm{~s}, 3 \mathrm{H} \times 0.47=1.41 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H} \times 0.53=$ $1.59 \mathrm{H}), 7.30(\mathrm{~m}, 8 \mathrm{H} \times 0.53+11 \mathrm{H} \times 0.47=9.94 \mathrm{H}), 7.76-7.80(\mathrm{~m}, 2 \mathrm{H} \times 0.53=1.06 \mathrm{H} 2 \mathrm{c}), 7.82(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.53 \mathrm{H}), 8.52(\mathrm{~s}, 1 \times 0.53=0.53 \mathrm{H}), 8.64-8.67(\mathrm{~m}, 1 \mathrm{H} \times 0.53+2 \mathrm{H} \times 0.47=1.47 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.9,25.4,121.3,122.5,122.7,122.9,126.1,126.3,126.5,126.6$, $126.66,126.70,126.72,126.8,127.2,127.8,128.16,128.18,128.22,128.6,129.0,129.3,129.7$, $130.00,130.02,130.1,130.4,130.68,130.71,130.73,131.72,131.75,136.10,136.15,138.6,138.7$, 140.9, 145.3. IR (neat): v 3076, 3057, 3020, 1595, 1491, 1452, 1442, 1215, 891, 822, 760, 744, 731, $700 \mathrm{~cm}^{-1}$. HRMS (EI+): m / z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16}[\mathrm{M}]^{+}: 268.1247$; Found: 268.1247 .

1,3-Dimethtyl-10-phenylphenanthrene (2d)

Phenacene 2d was synthesized according to Procedure B using 3',5'-dimethyl-2-(phenylethynyl)biphenyl (1d, $86 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(6.1 \mathrm{mg}, 32 \mu \mathrm{~mol})$,
cyclohexane (3.0 mL), and HFIP (1.5 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CHCl}_{3}=20: 1$) gave phenanthrene 2d including a small amount of dibenzofluvene $\mathbf{3 d}$ (69 $\mathrm{mg}, 80 \%, \mathbf{2 d} / \mathbf{3 d}=97: 3$) as a white solid.

2d: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.43$ $(\mathrm{s}, 1 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.6,25.2,121.1,122.9,126.3,126.6,126.7$, 127.7, 128.0, 128.1, 129.1, 129.3, 130.1, 130.9, 131.9, 132.5, 135.6, 135.9, 138.6, 145.4.

Spectral data for this compound showed good agreement with literature data. ${ }^{5)}$

2-Chloro-10-phenylphenanthrene (2e)

2e
$+$

$3 e$
Phenacene 2e was synthesized according to Procedure B using 4'-chloro-2-(phenylethynyl)biphenyl ($\mathbf{1 e}, 87 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{mg}, 32 \mu \mathrm{~mol}$), cyclohexane (3.0 mL), and HFIP (1.5 mL). Purification by silica gel column chromatography (hexane $/ \mathrm{CHCl}_{3}=20: 1$) gave phenanthrene $\mathbf{2 g}$ including a small amouto of dibenzofluvene $\mathbf{3 e}$ (77 $\mathrm{mg}, 96 \%, \mathbf{2 e} / \mathbf{3}=94: 6)$ as a pale yellow solid.

2e: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{dd}, J=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 122.4,124.5,125.9,126.8,126.9,127.1$, $127.6,128.5,128.6,128.7,128.9,129.4,129.9,131.3,132.2,132.5,137.8,140.0$.

Spectral data for this compound showed good agreement with literature data. ${ }^{6}$

2-Fluoro-10-phenylphenanthrene (2f)

2f

$3 f$

Phenacene $2 f$ was synthesized according to Procedure B using 4'-fluoro-2-(phenylethynyl)biphenyl ($\mathbf{1 f}, 82 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.7 \mathrm{mg}, 30 \mu \mathrm{~mol}$), cyclohexane (3.0 mL), and HFIP ($0.8,0.7 \mathrm{~mL}$). Purification by silica gel column chromatography (hexane $/ \mathrm{CHCl}_{3}=20: 1$) gave phenanthrene $\mathbf{2 f}$ including a small sount of dibenzofluvene $\mathbf{3 f}(74 \mathrm{mg}$, $91 \%, \mathbf{2 f} / \mathbf{3 f}=90: 10$) as a white solid.

2f: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.49(\mathrm{~m}, 4 \mathrm{H})$, $7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.66-8.69(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 111.3\left(\mathrm{~d}, J_{\mathrm{CF}}=22 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $24 \mathrm{~Hz}), 122.3,125.2\left(\mathrm{~d}, J_{\mathrm{CF}}=9 \mathrm{~Hz}\right), 126.6,126.9,127.21,127.22,128.5,128.6,128.8,129.6,129.9$, 131.0, $132.7\left(\mathrm{~d}, J_{\mathrm{CF}}=8 \mathrm{~Hz}\right), 138.1\left(\mathrm{~d}, J_{\mathrm{CF}}=4 \mathrm{~Hz}\right), 140.2,161.4\left(\mathrm{~d}, J_{\mathrm{CF}}=246 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $(470$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 47.57-47.62(\mathrm{~m})$.

Spectral data for this compound showed good agreement with literature data. ${ }^{3)}$

4. Reference

(1) Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.; Kitagawa, O. Chem.-Eur. J. 2010, 16, 6752-6755.
(2) Kamikawa, T.; Hayashi, T. J. Org. Chem. 1998, 63, 8922-8925.
(2) Huang, Q.; Campo, M. A.; Yao, T.; Tian, Q.; Larock, R. C. J. Org. Chem. 2004, 69, 8251-8257.
(3) Pati, K.; Michas, C.; Allenger, D.; Piskun, I.; Coutros, P. S.; Gomes, G. dos P.; Alabugin, I. V. J. Org. Chem. 2015, 80, 11706-11717.
(4) Fujita, T.; Takahashi, I.; Hayashi, M.; Wang, J.; Fuchibe, K.; Ichikawa, J. Eur. J. Org. Chem. 2017, 262-265.
(4) Matsuda, T.; Moriya, T.; Goya, T.; Murakami, M. Chem. Lett. 2011, 40, 40-41.
(5) Mamane, V.; Hannen, P.; Fürstner, A. Chem. - Eur. J. 2004, 10, 4556-4575.
(6) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066-1067.

Chapter 5

Conclusion

I demonstrated facile syntheses of polycyclic aromatic hydrocabons (PAHs) via Brønsted-catalyzed cationic cyclization of (i) carbonyl compounds including their analogues and (ii) unactivated alkynes bearing biaryls, both reactions of which are rigorously promoted in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP).

In Chapter 2, I achieved Brønsted acid-catalyzed dehydrative cycloaromatization (Bradsher reaction) via intermediary oxocarbenium ions, leading to the synthesis of various PAHs such as phenacenes, acenes, and triphenylenes. These reactions were effectively promoted by the cation-stabilizing effect of HFIP solvent and applied to carbonyl compounds, vinyl ethers, and acetals.

In Chapter 3, I synthesized rarely reported ortho-fused six-hexagon benzenoids via Brønsted acid-catalyzed tandem cycloaromatization of easily accessible naphthalene-based bisacetals. This methodology will enable the regioselective synthesis of more extensive ortho-fused benzenoids.

In Chapter 4, I developed unprecedented Brønsted acid-catalyzed intramolecular hydroarylation of unactivated alkynes to afford substituted phenacenes. The key to success in this reaction was a two-phase HFIP/cyclohexane solvent system, which promoted the protonation of alkynes to generate the vinyl cation intermediates, and suppressed side reactions.

Through these studies, I accomplished Brønsted acid-catalyzed cationic cyclizations involving formation of additional benzene rings. These protocols require only a catalytic amount of Brønsted acid, and thus will enable a large-scale synthesis of PAHs and accelerate research on their applications as electronic materials.

List of Publications

1. "Facile Synthesis of Polycyclic Aromatic Hydrocarbons: Brønsted Acid Catalyzed Dehydrative Cycloaromatization of Carbonyl Compounds in 1,1,1,3,3,3-Hexafluoropropan-2-ol"

Takeshi Fujita, Ikko Takahashi, Masaki Hayashi, Jingchen Wang, Kohei Fuchibe, Junji Ichikawa

European Journal of Organic Chemistry 2017, 262-265.
2. "Brønsted Acid-catalyzed Tandem Cycloaromatization of Naphthalene-besed Bisacetals:

Selective Synthesis of ortho-Fused Six-hexagon Benzenoids"
Ikko Takahashi, Masaki Hayashi, Takeshi Fujita, Junji Ichikawa
Chemistry Letters 2017, 46, 392-394.

Acknowledgement

The studies described in this thesis have been carried out under the supervision of Professor Dr. Junji Ichikawa at the Division of Chemistry, Graduate School of Pure and Applied Science, University of Tsukuba. I would like to express my sincere gratitude to Professor Dr. Junji Ichikawa for his continuing guidance, valuable suggestions and discussions, hearty encouragement, and enthusiasm throughout this study.

Research Associate Dr. Takeshi Fujita always encouraged and advised me with a warm and generous heart. I also appreciate to Associate Psofessor Dr. Kohei Fuchibe for his helpful guidance, discussions, suggestions and encouragement.

The author also wishes to express his appreciation to Professor Hideo Kigoshi, Akira Sekiguchi and Li-Biao Han for their nice guidance and helpful discussions during the course of study.

The author wished to thank the member of Ichikawa laboratory for their kind assistance throughout this work. Especially, I wish to thank Dr. Tomohiro Ichitsuka, Dr. Masaki Takahashi, Mr. Jingchen Wang, Mr. Masaki Hayashi, Dr. Tatsuya Aono, Dr. Naoto Suzuki, Mr. Ryu Ueda, Mr. Tsuyoshi Takanohashi, Mr. Hiroto Matsuno, Mr. Keisuke Miura, Mr. Kazuki Sugiyama, Mr. Tomoya Nojima, Mr. Yota Watabe, Mr. Ryo Takayama, Mr. Kento Shigeno, Mr. Hibiki Hatta, Mr. Shunpei Watanabe, Mr. Ryo Kinoshita, Mr. Ji Hu.

Finally, I wish to express my deepest gratitude for my family for financial support and their kindly continuous encouragement through the research.

