
Some Results on Wavelet Expansions

Toshio Suzuki

February 2017



Some Results on Wavelet Expansions

Toshio Suzuki

Doctral Program in Mathematics

Submitted to the Graduate School of

Pure and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Science

at the

University of Tsukuba



Acknowledgements

I express my sincere thanks to my adviser, Professor Tamotu Kinoshita for his valuable advice
and encouragement over the years. I would like to thank Professor Keiichi Zempo for giving me
the opportunities to study the application of mathematics and a lot of advice on the application
of mathematics. I would also like to thank Professor Naohiro Fukuda for collaboration. Finally, I
wish to thank the University of Tsukuba for various supports.



Contents

1 Wavelet Analysis 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Unconditional Convergence of Wavelet Expansion 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Proof of the Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Takagi Function and its Wavelet Expansion 12
3.1 Takagi Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Proof of Theorem 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Feature Extraction of Distortion Sounds 22
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Experiments on the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Subjective Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



1 Wavelet Analysis

1.1 Introduction

Wavelet Analysis is one of the time-frequency analysis and it is applied to the various fields like
physics, chemistry, industry and so on. It is said that the first wavelet is Haar basis by Alfréd Haar
in 1909. Wavelets are introduced in the beginning of the 1980s. In 1975, Jean Morlet, who is an
oil explorer, found the idea of wavelet analysis. After that, many researchers contributed to the
development of continuous wavelet transform, discrete wavelet transform. They first used the word
ondelette meaning of small wave in French and after translation to English, the word wavelet had
born.

Wavelet analysis is the method like Fourier analysis. We use trigonometric functions (sine and
cosine function) to analyze signal (function) in Fourier analysis. This method can analyze various
signals in each frequency since we can represent the signal by the superposition of trigonometric
functions. Wavelet analysis also represent signals with the superposition of wavelets. Trigonometric
functions have Infinity length supports. On the other hand, a wavelet has compact support or decay
at infinity. Recently, wavelet analysis is one of the useful methods of analyze time and frequency
space at the same time.

In this thesis, we are going to consider three topics of the wavelet analysis. Especially, three
topics and results are closely related to Sobolev space W 1,1(R). The functions of this space is
similar to the absolute continuous functions space.

1.2 Preliminary

Let Ω be an open set of R. In this thesis, Cα(Ω) (0 < α < 1) denotes the space of the Hölder
continuous functions. When α = 1, Cα(Ω) is the space Lip(Ω) of Lipschitz continuous functions. A
function of bounded variation on Ω is a real valued function whose total variation is finite. The space
of bounded variations functions on Ω is denoted by BV (Ω) with the norm ∥f∥BV := ∥f∥L1+V (f,Ω),
where V is the total variation.

For 1 ≤ p <∞, Lp(Ω) denotes

Lp(Ω) =

{
f : f is a Lebesgue measurable function and

∫
Ω
|f(x)|pdx <∞

}
and

L∞(Ω) = {f : f is a Lebesgue measurable function and ess. supx∈Ω|f(x)| <∞} .

The norm of the Lp spaces are defined by ∥f∥Lp = (
∫
Ω |f(x)|pdx)1/p and ∥f∥L∞ = ess. supx∈Ω|f(x)|.

In particular, L2(Ω) is a Hilbert space and its inner product is defined by (f, g)L2 =
∫
Ω f(x)g(x)dx.

For f ∈ L2(R), the Fourier transform and the inverse Fourier transform are given by

Ff(ξ)
(
= f̂(ξ)

)
=

∫
R
f(x)e−ixξdx,

F−1f(ξ)
(
= f̌(ξ)

)
=

1

2π

∫
R
f(x)eixξdx.

For 1 ≤ p <∞, m ∈ N, we also introduce the Sobolev space Wm,p(Ω) as

Wm,p(R) =

{
f ∈ Lp(Ω)

∣∣∣∣ the weak derivative Dαf (|α| ≤ m) exists and Dαf ∈ Lp(R)

}
.

By the Sobolev embedding theorem, the following set inclusions hold:

Lip(R) ⊂W 1,1
loc (R), W 1,1(R) ⊂ C0(R) ∩ L∞(R). (1)
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1.3 Discrete Wavelet Transform

Definition 1.1. The collection {Vj}j∈Z of closed subspaces of L2(R) is called Multiresolution anal-
ysis (MRA) if the following conditions are satisfied :

(i) Vj ⊂ Vj+1 for all j ∈ Z.

(ii)
∪

j∈Z Vj = L2(R).

(iii)
∩

j∈Z Vj = {0}.

(iv) f ∈ Vj ⇔ f(2t) ∈ Vj+1.

(v) There exists φ ∈ V0 s.t. {φ(t − k) | k ∈ Z} consists orthonormal basis for V0. This function
φ is called the scaling function.

Let {Vj}j∈Z be an MRA. Since each Vj is a Hilbert space and by the MRA condition (i), there
exists Wj such that

Vj+1 = Vj ⊕Wj for all j ∈ Z.

By condition (ii), we get the orthogonal decomposition

L2(R) =
⊕
j∈Z

Wj .

So, there exists a function ψ ∈W0 such that {ψ(t− k) | k ∈ Z} forms an orthonormal basis for W0

and the scalings and translations of ψ ∈W0 form an orthonormal basis for L2(R).

Definition 1.2. A function ψ ∈ L2(R) is called an orthonormal wavelet if the set {2j/2ψ(2j · −k) |
j, k ∈ Z} is an orthonormal basis for L2(R).

Since φ(·/2) ∈ V−1 ⊂ V0, there exists a sequence {αk}k∈Z satisfying the two-scale equation

φ

(
x

2

)
=
∑
k∈Z

αkφ(x− k).

By the Fourier transform, we have
φ̂(2ξ) = m0(ξ)φ(ξ)

where m0(ξ) =
∑

k∈Z αke
−ikξ ∈ L2(−π, π) is called the low-pass filter associated with the scaling

function φ ∈ V0. The low-pass filter has important relations with wavelets. Indeed, the MRA and
the low-pass filter are enable us to give us the wavelet.

Theorem 1.3. Let φ be a scaling function for an MRA {Vj}j∈Z and m0 be a low-pass filter asso-
ciated with the MRA. Suppose that ν is a measurable function satisfying |ν(ξ)| = 1 and we define

ψ̂(ξ) = eiξ/2ν(ξ)m0

(
ξ

2
+ π

)
φ̂

(
ξ

2

)
a.e. R.

Then, the function ψ is an orthonormal wavelet for the MRA.
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2 Unconditional Convergence of Wavelet Expansion

2.1 Introduction

In this section, we discuss the unconditional convergence of wavelet expansions. As for the Fourier
expansion f(t) =

∑
j∈Z cjej(t) on Ω, the following results on the convergences of Fourier series are

well-known (see [26] etc.):

(i)F If f ∈ Cα(Ω) for α > 1/2, the Fourier series converges uniformly and absolutely, i.e.,
∑

j∈Z |cj | <
∞.

(ii)F If f ∈W 1,1(Ω) ∩ Cα(Ω) for α > 0, the Fourier series converges uniformly and absolutely, i.e.,∑
j∈Z |cj | <∞. In fact, W 1,1(Ω) can be relaxed to BV (Ω).

(iii)F For the function f(t) =
∑∞

n=1
sinnt

n log(1+n) ∈ W 1,1(Ω) with Ω = (−π, π), its Fourier series does
not converge absolutely.

For a Scauder basis {ej(t)}, the order of the basis is important in the sense of stable convergence.
Let X be a Banach space. The series

∑
j∈Z cjej(t) converges unconditionally to f(t) in X if and

only if
∑

j∈Z cjeσ(j)(t) converges to f(t) in X for any permutation σ : Z → Z. This is equivalent to
the condition that for any εj = ±1,

∑
j∈Z εjcjej(t) converges to f(t) in X. In the Hilbert space, the

unconditional convergence holds with an orthonormal basis {ej(t)} thanks to the Parseval’s identity
∥
∑

j∈Z cjej(t)∥2X =
∑

j∈Z |cj |2. We can see that for a Banach space X, the absolute convergence is
stronger than the unconditional convergence since∥∥∥∥∥∥

∑
j∈Z

εjcjej(t)

∥∥∥∥∥∥
X

≤
∑
j∈Z

∥cjej(t)∥X =
∑
j∈Z

|cj |. (2)

For a Banach space X = L∞(R), since ess.sup|ej(t)| = 1, we find that the Fourier series converges
to f(t) unconditionally in L∞(R) in the case of (i)F or (ii)F . Here we remark that the Banach
space X = L∞(Ω) for the convergence and the Banach space X̃ = Cα(Ω) or W 1,1(Ω) for the limit
f are different (X̃ ⊂ X) in the Fourier series.

Now we consider the wavelet expansion f(t) =
∑

j∈Z
∑

k∈Z cj,kψj,k(t), where ψj,k(t) = 2j/2ψ(2jt−
k). The Fourier basis consists of only the analytic function space A. Conversely, there are various
wavelet bases ψ. To classify wavelets ψ, we denote Y the space (set) which restricts the regularity
or the decay at infinity. The following results about wavelet expansions are known:

(iv)w If ψ ∈ Y = {y ∈ C1(R); |y(t)| + |y′(t)| ≤ g(|t|)} with a decreasing g ∈ L1[0,∞) such that
|g(0)| < ∞ and ∥tg(·)∥L1[0,∞) < ∞, {ψj,k(t)} is an unconditional basis in X = X̃ = Lp(R) with
1 < p <∞ (see [13]).

(v)w If ψ ∈ Y = {y ∈ A(R);F [y] is characteristic functions of a finite sum of bounded closed
intervals (unimodular wavelets)}, {ψj,k(t)} is an unconditional basis in X = X̃ = Lp(R) with
1 < p <∞ (see [3], [12]).

Let us choose the Banach space X = X̃ = W 1,1(R), and also ψ ∈ Y = W 1,1(R). By the Sobolev
embedding theorem W 1,1(R) ⊂ L2(R), the coefficients cj,k := (f, ψj,k)L2 are well-defined. Thus, we
see the following basic observation:

Proposition 2.1. Assume that ψ ∈ W 1,1(R). Then, the wavelet expansion
∑

j∈Z
∑

k∈Z cj,kψj,k(t)

converges to f(t) unconditionally in W 1,1(R) if the coefficients satisfy {2|j|/2cj,k}(j,k)∈Z2 ∈ ℓ1.
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Proof. Some calculations give us∑
j∈Z

∑
k∈Z

∥cj,kψj,k∥W 1,1 ≤
∑
j∈Z

∑
k∈Z

2j/2|cj,k|∥ψ(2j · −k)∥W 1,1

=
∑
j∈Z

∑
k∈Z

2j/2|cj,k|
∫
R

{
|ψ(2jt− k)|+ 2j |ψ′(2jt− k)|

}
dt

≤
(∑
j∈Z

∑
k∈Z

2−j/2|cj,k|
)
∥ψ∥L1 +

(∑
j∈Z

∑
k∈Z

2j/2|cj,k|
)
∥ψ′∥L1

≤
(∑
j∈Z

∑
k∈Z

2|j|/2|cj,k|
)
∥ψ∥W 1,1 .

Thus, if the scalar series
∑

j∈Z
∑

k∈Z 2|j|/2|cj,k| converges, the wavelet expansion
∑

j∈Z
∑

k∈Z cj,kψj,k

for ψ ∈W 1,1(R) converges absolutely and also unconditionally in W 1,1(R). However, it is not clear
whether the condition {2|j|/2cj,k}(j,k)∈Z2 ∈ ℓ1 really restricts the limit f ∈W 1,1(R).

From Sobolev embedding theorem(1), we see that the Sobolev space W 1,1(R) can be regarded
as a function space between Lip(R) (with a sufficient decay at infinity) and C0(R) ∩ L∞(R). The
gap between the regularities ψ ∈ Y and f should make the convergence worse. Indeed, some results
on the convergences of the Fourier series come from the gap of functions f and the basis ej ∈ A.

Therefore, we choose the suitable function space as X =
{
C0(R)∩L∞(R)

}
\W 1,1(R) and topology

space as X̃ = L∞(R) to take a little bit weak topology than W 1,1(R). Thus, we prove the following
result of the wavelet expansion which corresponding to (iii)F in case of the Fourier expansion:

Theorem 2.2. There exists f0 ∈ {C0(R) ∩ L∞(R)}\W 1,1(R) satisfying the following:

• f0 has the wavelet expansion f0(t) =
∑

j∈Z
∑

k∈Z cj,kψj,k(t) in L2(R) for some ψ ∈ Lip(R)

and {cj,k}(j,k)∈Z2 ∈ ℓ2 such that {2|j|/2cj,k}(j,k)∈Z2 ̸∈ ℓ1.

•
∑

j∈Z
∑

k∈Z cj,kψj,k(t) converges to f0(t) uniformly and non-unconditionally in L∞(R).

To prove Theorem 2.2, we make a concrete f0 ∈ {C0(R)∩L∞(R)}\W 1,1(R). Since the Strönberg
wavelet has Lipschitz continuity and exponential decay at infinity, we are able to construct f0 simply.
The Strönberg wavelet is given by

ψSt(t) =
∑
k∈Z

bkN2(2t− k),

where the coefficients bk are defined by

bk =


−4(

√
3− 2)k if k ≥ 1,

−5

2
+

√
3

2
if k = 0,

−(2−
√
3)−

k
2

(
cos

kπ

2
+

√
2 sin

kπ

2

)
if k ≤ −1,

and N2 is the B-spline of order 2 given by

N2(t) =


t for 0 ≤ t ≤ 1,
2− t for 1 ≤ t ≤ 2,
0 otherwise.

4



(see [8]). For the Franklin wavelet ψFr ∈ Lip(R), the following fact is known:

(vi)w {ψFr
j,k (t)} is an unconditional basis in X = X̃ = Lp(R) with 1 < p <∞ (see Theorem 6.23 in

§5 of [13]).

This holds for the spline wavelets of the same order. Therefore, we have the following also for
ψSt ∈ Lip(R):

(vi)′w {ψSt
j,k(t)} is an unconditional basis in X = X̃ = Lp(R) with 1 < p <∞ (see Theorem 6.14 in

§5 of [13]).
These two facts (vi)w and (vi)′w are obtained by introducing a small modification on the C1

assumption of (iv)w. We remark that
∑

j∈Z
∑

k∈Z |cj,k|ψSt
j,k(t) ∈ X = Lp(R) with 1 < p < ∞ and

f0 is not a counter example for (vi)′w. The function space X = L∞(R) in Theorem 2.2 is locally
stronger than X = Lp(R) with 1 < p < ∞ in (vi)′w. This causes the non-unconditionality even for
the continuous function f0.

2.2 Proof of the Theorem 2.2

We consider the following function:

f0(t) =
∑
j∈Z

∑
k∈Z

cj,kψ
St
j,k(t) with cj,k =


(−1)j

(j + 1)2
j
2

for j ≥ 0 and k = 0,

0 otherwise.

Our purpose is to prove that f0 ̸∈ W 1,1(R) and that
∑

j∈Z
∑

k∈Z cj,kψ
St
j,k(t) converges to f0(t)

uniformly and non-unconditionally in L∞(R). Let us put tn = 2−n (n ≥ 1). We can write the
function f0 as

f0(t) =
∞∑
j=0

(−1)j

(j + 1)2
j
2

ψSt
j,0(t) =

∞∑
j=0

(−1)j

j + 1
ψSt(2jt) =

∞∑
j=0

∑
k∈Z

(−1)j

j + 1
bkN2(2

j+1t− k).

Furthermore, using the fact that suppN2 ⊂ [0, 2], we shall compute f0(t) for t ∈ [2−n, 2−n+1] =
[tn, tn−1] as follows:

• Case n = 1) For t ∈ [2−1, 20] = [t1, t0], we have

f0(t) =
(−1)0

0 + 1

{
b0N2(2

0+1t− 0) + b1N2(2
0+1t− 1)

}
+
(−1)1

1 + 1

{
b1N2(2

1+1t− 1) + b2N2(2
1+1t− 2) + b3N2(2

1+1t− 3)
}

+
(−1)2

2 + 1

{
b3N2(2

2+1t− 3) + b4N2(2
2+1t− 4) + b5N2(2

2+1t− 5)

+b6N2(2
2+1t− 6) + b7N2(2

2+1t− 7)
}

+ · · ·

=
∞∑
j=0

2j+1−1∑
k=2j−1

(−1)j

j + 1
bkN2(2

j+1t− k).

Here we used the fact that 20+1t ∈ [1, 2], 21+1t ∈ [2, 4], 22+1t ∈ [4, 8], and 2j+1t ∈ [2j , 2j+1].
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• Case n = 2) For t ∈ [2−2, 2−1] = [t2, t1], we have

f0(t) =
(−1)0

0 + 1

{
b−1N2(2

0+1t+ 1) + b0N2(2
0+1t− 0)

}
+
(−1)1

1 + 1

{
b0N2(2

1+1t− 0) + b1N2(2
1+1t− 1)

}
+
(−1)2

2 + 1

{
b1N2(2

2+1t− 1) + b2N2(2
2+1t− 2) + b3N2(2

2+1t− 3)
}

+ · · ·

=
(−1)0

0 + 1

{
b−1N2(2

0+1t+ 1) + b0N2(2
0+1t− 0)

}
+

∞∑
j=1

2j−1∑
k=2j−1−1

(−1)j

j + 1
bkN2(2

j+1t− k).

Here we used the fact that 20+1t ∈ [2−1, 1], 21+1t ∈ [1, 2], 22+1t ∈ [2, 4], and 2j+1t ∈ [2j−1, 2j ].

• Case n = 3) For t ∈ [2−3, 2−2] = [t3, t2], we have

f0(t) =
(−1)0

0 + 1

{
b−1N2(2

0+1t+ 1) + b0N2(2
0+1t− 0)

}
+
(−1)1

1 + 1

{
b−1N2(2

1+1t+ 1) + b0N2(2
1+1t− 0)

}
+
(−1)2

2 + 1

{
b0N2(2

2+1t− 0) + b1N2(2
2+1t− 1)

}
+ · · ·

=
1∑

j=0

(−1)j

j + 1

{
b−1N2(2

j+1t+ 1) + b0N2(2
j+1t− 0)

}

+
∞∑
j=2

2j−1−1∑
k=2j−2−1

(−1)j

j + 1
bkN2(2

j+1t− k).

Here we used the fact that 20+1t ∈ [2−2, 2−1], 21+1t ∈ [2−1, 1], 22+1t ∈ [1, 2], and 2j+1t ∈ [2j−2, 2j−1].

Thus, if n ≥ 2, for t ∈ [2−n, 2−n+1] = [tn, tn−1], we recursively have

f0(t) =
n−2∑
j=0

(−1)j

j + 1

{
b−1N2(2

j+1t+ 1) + b0N2(2
j+1t− 0)

}

+
∞∑

j=n−1

2j−n+2−1∑
k=2j−n+1−1

(−1)j

j + 1
bkN2(2

j+1t− k).

Since 2j+1t ∈ [2j−n+1, 2j−n+2] ⊂ [0, 1] for 0 ≤ j ≤ n− 2, we see that

N2(2
j+1t+ 1) = 2− (2j+1t+ 1) = 1− 2j+1t, N2(2

j+1t− 0) = 2j+1t

and get

f0(t) =
n−2∑
j=0

(−1)j

j + 1

{
(1− 2j+1t)b−1 + 2j+1tb0

}

+
∞∑

j=n−1

2j−n+2−1∑
k=2j−n+1−1

(−1)j

j + 1
bkN2(2

j+1t− k). (3)
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Remark 2.3. In the same way, we also get for t ∈ [−2−n+1,−2−n] = [−tn−1,−tn] that

f0(t) =
n−2∑
j=0

(−1)j

j + 1

{
(1− 2j+1t)b−1 − 2j+1tb−2

}

+
∞∑

j=n−1

−2j−n+1−1∑
k=−2j−n+2−1

(−1)j

j + 1
bkN2(2

j+1t− k). (4)

• Step 1(Unbounded Variation)
It is sufficient to show that f0 ̸∈ BV (R) instead of f0 ̸∈ W 1,1(R) since W 1,1(R) ⊂ BV (R).

Especially when t = tn, noting that N2(2
j+1tn − k) = δ1,2j+1tn−k, that is, the summation with

respect to k runs over only k = 2j+1tn − 1 = 2j−n+1 − 1, (3) can be changed into

f0(tn) =
n−2∑
j=0

(−1)j

j + 1

{
(1− 2j−n+1)b−1 + 2j−n+1b0

}
+

∞∑
j=n−1

(−1)j

j + 1
b2j−n+1−1.

Hence it follows that for n ≥ 3

f0(tn−1)− f0(tn) =
n−3∑
j=0

(−1)j

j + 1

{(
1− 2j−n+2

)
b−1 + 2j−n+2b0

}
+

∞∑
j=n−2

(−1)j

j + 1
b2j−n+2−1

−
n−2∑
j=0

(−1)j

j + 1

{(
1− 2j−n+1

)
b−1 + 2j−n+1b0

}
−

∞∑
j=n−1

(−1)j

j + 1
b2j−n+1−1

=
n−2∑
j=0

(−1)j

j + 1

{(
1− 2j−n+2

)
b−1 + 2j−n+2b0

}
− (−1)n−2

n− 1
b0

+
∞∑

j=n−1

(−1)j

j + 1
b2j−n+2−1 +

(−1)n−2

n− 1
b0

−
n−2∑
j=0

(−1)j

j + 1

{(
1− 2j−n+1

)
b−1 + 2j−n+1b0

}
−

∞∑
j=n−1

(−1)j

j + 1
b2j−n+1−1

=
n−2∑
j=0

(−1)j

j + 1
2j−n+1(b0 − b−1) +

∞∑
j=n−1

(−1)j

j + 1
(b2j−n+2−1 − b2j−n+1−1).

Our next task is to find a suitable wavelet whose coefficients bk satisfy
∑∞

n=1 |f0(tn−1)−f0(tn)| = ∞.
In particular, for convenience, we shall choose the Strömberg wavelet ψSt ∈ Lip(R) given by

ψSt(t) =
∑
k∈Z

bkN2(2t− k),

where

bk =


−4(

√
3− 2)k if k ≥ 1,

−5

2
+

√
3

2
if k = 0,

−(2−
√
3)−

k
2

(
cos

kπ

2
+

√
2 sin

kπ

2

)
if k ≤ −1,

(see [8]). Noting that

n−2∑
j=0

(−2)j

j + 1
= 2−1

∫ 2

0

1− (−y)n−1

1 + y
dy = 2−1 log 3− 2n−1

∫ 1

0

(−z)n−1

1 + 2z
dz,

7



we can rewrite

f0(tn−1)− f0(tn) = (b0 − b−1)2
1−n

n−2∑
j=0

(−2)j

j + 1
+

(−1)n−1

n
(b1 − b0)

+
∞∑
j=n

(−1)j

j + 1
(b2j−n+2−1 − b2j−n+1−1)

= (b−1 − b0)
( ∫ 1

0

(−z)n−1

1 + 2z
dz − 2−n log 3

)
+

(−1)n−1

n
(b1 − b0)

+
∞∑
j=n

(−1)j

j + 1
(b2j−n+2−1 − b2j−n+1−1).

Especially, for n = 2m+ 1 (m ≥ 1), we obtain

t2m − t2m+1 = 2−2m−1,

f0(t2m)− f0(t2m+1) = (b−1 − b0)

∫ 1

0

z2m

1 + 2z
dz +

b1 − b0
2m+ 1

−(b−1 − b0)2
−2m−1 log 3 +

∞∑
j=2m+1

(−1)j

j + 1
{b2j−2m+1−1 − b2j−2m−1}

=: I + II − III + IV.

Using b−1 − b0 =
1
2(3 +

√
3) and b1 − b0 =

3
2(7− 3

√
3), we get

I + II ≥ (b−1 − b0)

∫ 1

0

z2m

1 + 2
dz +

b1 − b0
2m+ 1

>
13(2−

√
3)

6(m+ 1)
,

|IV | ≤ 1

2m+ 2

∞∑
j=2m+1

|b2j−2m+1−1 − b2j−2m−1|

=
2

(m+ 1)(2−
√
3)

∞∑
j=2m+1

{
(2−

√
3)2

j−2m − (2−
√
3)2

j−2m+1
}

≤ 2

(m+ 1)(2−
√
3)
(2−

√
3)2

(2m+1)−2m
=

2(2−
√
3)

m+ 1
.

Since |III| < 2−
√
3

7(m+1) for m ≥ 2, there exists c > 0 such that for m ≥ 2

|f0(t2m)− f0(t2m+1)| ≥
∣∣∣I + II + IV

∣∣∣− |III| ≥
∣∣∣I + II − |IV |

∣∣∣− |III|

≥ c

m+ 1
. (5)

Since ∞∑
n=1

|f0(tn−1)− f0(tn)| ≥
∞∑

m=1

|f0(t2m)− f0(t2m+1)| = ∞,

we find that f0 ̸∈ BV (R). Therefore we can conclude that f0 ̸∈W 1,1(R).

Remark 2.4. Thanks to the Strömberg wavelet ψSt ∈ Lip(R), we can know that |I + II + IV | ̸= 0.
The information on the exact values of bk is required to find (5). Therefore, it would be difficult
to get (5) for general piecewise linear spline wavelets ψ ∈ Lip(R) or even for the Franklin wavelet
ψFr ∈ Lip(R) whose values of bk are very complicated (see [8]).
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• Step 2 (Continuity and Uniform Convergence)
As for the continuity (at t = 0), with

f0(0) =
∞∑
j=0

∑
k∈Z

(−1)j

j + 1
bkN2(2

j+10− k) =
∞∑
j=0

(−1)j

j + 1
b−1,

by (3) we get

|f0(t)− f0(0)| ≤
∣∣∣ ∞∑
j=n−1

(−1)j

j + 1

∣∣∣|b−1|+
∣∣∣ n−2∑
j=0

(−1)j

j + 1
2j+1

∣∣∣|b0 − b−1|t

+
∣∣∣ ∞∑
j=n−1

2j−n+2−1∑
k=2j−n+1−1

(−1)j

j + 1
bkN2(2

j+1t− k)
∣∣∣

=: I ′ + II ′ + III ′.

We can estimate I ′, II ′ and III ′ as follows:

I ′ =
∣∣∣ ∞∑
j=n−1

(−1)j

j + 1

∣∣∣(√3− 1) =
∣∣∣ ∫ 1

0

(−z)n−1

1 + z
dz
∣∣∣(√3− 1)

≤
∫ 1

0

zn−1

1 + 0
dz(

√
3− 1) ≤ C

n
,

II ′ ≤
∣∣∣ n−2∑
j=0

(−2)j

j + 1

∣∣∣ · 2|b0 − b−1|tn−1

=
∣∣∣2−1 log 3− 2n−1

∫ 1

0

(−z)n−1

1 + 2z
dz
∣∣∣ · 2∣∣∣− 1

2
(3 +

√
3)
∣∣∣2−n+1

≤
(
2−1 log 3 + 2n−1

∫ 1

0

zn−1

1 + 2 · 0
dz
)
· (3 +

√
3)2−n+1 ≤ C

n
,

III ′ ≤
∞∑

j=n−1

2j−n+2−1∑
k=2j−n+1−1

|bk|
j + 1

≤ 1

n

∞∑
j=n−1

(
sup

2j−n+1−1≤k≤2j−n+2−1

|bk|
) 2j−n+2−1∑
k=2j−n+1−1

1

≤ 1

n

∞∑
j=n−1

4(2−
√
3)2

j−n+1−1(2j−n+1 + 1) ≤ C

n
.

Thus we find that |f0(t) − f0(0)| → 0 as n → ∞ for t ∈ [2−n, 2−n+1] = [tn, tn−1]. This implies the
right continuity of f0. Similarly, the left continuity of f0 follows from (4) instead of (3), and we get
f0 ∈ C0(R).

Remark 2.5. We remark that f0 is not only continuous but also uniformly continuous. More
precisely, f0 satisfies |f0(t)−f0(s)| ≤ C/ log |t−s|−1 for 0 < |t−s| < 1/2, that is, f0 has log-Hölder
continuous.

In general, f0 is continuous if fJ → f0 uniformly, but the converse does not hold. It is known
that fJ → f0 uniformly if {fJ(t)}J is uniformly equicontinuous and fJ(t) → f0(t) pointwise. Let us
take the sequence of partial sums

fJ(t) =
J∑

j=0

(−1)j

(j + 1)2
j
2

ψSt
j,0(t).
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Similarly, we also find that |fJ(t) − fJ(0)| → 0 as n → ∞ for t ∈ [tn, tn−1]. We remark that the
corresponding I ′J , II

′
J and III ′J tend to 0 independently of J . This means that {fJ(t)}J is uniformly

equicontinuous. We see that fJ(t0) → f0(t0) for a fixed t0 ̸= 0, since |bk| is rapidly decreasing at
±∞ and

fJ(t0) =
J∑

j=0

(−1)j

(j + 1)2
j
2

ψSt
j,0(t0) =

J∑
j=0

∑
k∈Z

(−1)j

j + 1
bkN2(2

j+1t0 − k) ∼
J∑

j=0

(−1)j

j + 1
b[2j+1t0],

where [α] is the largest integer not greater than α. Meanwhile, we immediately see that fJ(0) → f0(0)
as an alternating series. Thus, fJ(t) → f0(t) pointwise and we can conclude that fJ → f0 uniformly.

• Step 3(Non-unconditional Convergence)
The non-unconditional convergence implies that there exists a sequence βj ∈ {1,−1} such that

the series
∑

j∈Z βjcjej(t) does not converge. In order to know the non-unconditional convergence

of f0(t) =
∑∞

j=0
(−1)j

(j+1)2
j
2

ψSt
j,0(t), with βj = cj/|cj | especially for

∑
j∈Z βjcjej(t) we shall consider the

divergence of

f̃0(t) :=
∞∑
j=0

∣∣∣ (−1)j

(j + 1)2
j
2

∣∣∣ψSt
j,0(t).

We remark that we can not deal with
∑∞

j=0

∣∣∣ (−1)j

(j+1)2
j
2

∣∣∣|ψSt
j,0(t)| instead of f̃0(t). Let us define the

interval IJ = (2−J−3, 2−J−3 + 2−J−4) for J ≥ 1. Taking L∞(R)-norm, we have

∥f̃0∥L∞(R) ≥ ∥f̃0∥L∞(IJ ) =
∥∥∥ ∞∑
j=0

ψSt
j,0(t)

(j + 1)2
j
2

∥∥∥
L∞(IJ )

≥
∥∥∥ J−1∑

j=0

ψSt
j,0(t)

(j + 1)2
j
2

∥∥∥
L∞(IJ )

−
∥∥∥ ∞∑
j=J

ψSt
j,0(t)

(j + 1)2
j
2

∥∥∥
L∞(IJ )

=: LJ −MJ .

We note that 0 < 2j+1t− k < 2 if N2(2
j+1t− k) ̸= 0, i.e., 2j+1t− 2 < k < 2j+1t. Therefore we may

consider [2j+1t]− 1 ≤ k ≤ [2j+1t]. As for the 1st term, we get

LJ ≥ ess. sup
t∈IJ

J−1∑
j=0

ψSt
j,0(t)

(j + 1)2
j
2

= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

∑
k∈Z

bkN2(2
j+1t− k)

= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

{
b−1N2(2

j+1t+ 1) + b0N2(2
j+1t− 0)

}

= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

{
b−1(1− 2j+1t) + b02

j+1t
}

= ess. sup
t∈IJ

J−1∑
j=0

1

j + 1

{
b−1 − 2j+1t(b−1 − b0)

}
.

Here we used that 0 < 2j+1t ≤ 3
8 for 0 ≤ j ≤ J and t ∈ IJ . Since b−1 =

√
4− 2

√
3 =

√
3 − 1 and

b−1 − b0 =
√
3+3
2 , we see that

LJ ≥
J−1∑
j=0

1

j + 1

{
b−1 − 2j+1 · (2−J−3 + 2−J−4) · (b−1 − b0)

}
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≥
J−1∑
j=0

1

j + 1

{
b−1 − 2(J−1)+1 · (2−J−3 + 2−J−4) · (b−1 − b0)

}

≥
J−1∑
j=0

c

j + 1
(c > 0).

As for the 2nd term, noting that |bk| is decreasing for k ≥ 0, we get

MJ ≤ ess. sup
t∈IJ

∞∑
j=J

|ψSt
j,0(t)|

(j + 1)2
j
2

= ess. sup
t∈IJ

∞∑
j=J

1

j + 1

∣∣∣ ∑
k∈Z

bkN2(2
j+1t− k)

∣∣∣
= ess. sup

t∈IJ

∞∑
j=J

1

j + 1

∣∣∣b[2j+1t]−1N2(2
j+1t− [2j+1t] + 1)

+b[2j+1t]N2(2
j+1t− [2j+1t])

∣∣∣
≤ ess. sup

t∈IJ

∞∑
j=J

|b[2j+1t]−1|+ |b[2j+1t]|
j + 1

≤ C

J
+ ess. sup

t∈IJ

∞∑
j=J+2

2|b[2j+1t]−1|
j + 1

≤ C

J
+

∞∑
j=J+2

2|b2j−J−2−1|
j + 1

.

Here we used that [2j+1t]− 1 ≥ [2j−J−2]− 1 = 2j−J−2− 1(≥ 0) for j ≥ J +2 and t ∈ IJ . Moreover,
we easily see that

MJ ≤ C

J
+ c1 +

∞∑
h=2

8(2−
√
3)2

h−1

J + h+ 2
≤ C ′ +

∞∑
h=2

8(2−
√
3)h

1 + 1 + 2
≤ C ′′,

where C ′ is independent of J . Thus, it follows that

∥f̃0∥L∞(R) ≥ LJ −MJ ≥
J−1∑
j=0

c

j + 1
− C ′′.

This holds for all J ≥ 0, that is, ∥f̃0∥L∞(R) = ∞ and this completes the proof of Theorem 2.2.

-4 -2 0 2 4

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 1: the graph of f0 Figure 2: the graph of f̃0

Remark 2.6. If we take only B0(R)-norm (sup-norm) instead of L∞(R)-norm (ess. sup-norm),
by substituting t = 0, we immediately find that

∥f̃0∥B0(R) ≥
∣∣∣ ∞∑
j=0

∣∣∣ (−1)j

(j + 1)2
j
2

∣∣∣ψSt
j,0(0)

∣∣∣ = ∣∣∣ ∞∑
j=0

∑
k∈Z bkN2(−k)

j + 1

∣∣∣ = ∞∑
j=0

b−1

j + 1
= ∞.

11



In the above estimate of ∥f̃0∥L∞(R) , we used the sequence of the interval {IJ} since the essential

supremum excludes the measure zero set {t = 0}. We also remark that
∑∞

j=0

∣∣∣ (−1)j

(j+1)2
j
2

∣∣∣ψSt
j,0(t) does

not converge to f̃0(t) uniformly (while
∑∞

j=0
(−1)j

(j+1)2
j
2

ψSt
j,0(t) converges to f0(t) uniformly).

3 Takagi Function and its Wavelet Expansion

3.1 Takagi Function

The Takagi function is well-known as a nowhere differentiable continuous function. Let S(x) =
mink∈N |x− k| be the sawtooth function. Then the Takagi function is defined by

T (x) =
∞∑
j=0

2−jS(2jx). (6)

Using B-spline N2(x), restricted the support only on the interval [0, 1] and multiply the height by
2, we can get another representation of the Takagi function as

T (x) =
∞∑
j=0

2j−1∑
k=0

2−j−1N2(2
j+1x− 2k).

From this representation, we see that the Takagi function can be constructed from dilations and
translations of a single function as in the case of wavelet expansions. In this section, we are going
to consider the generalized Takagi function having the form of

F (t, x) =
∞∑
j=0

cjt
jG
(
Ψj(x)

)
, (7)

where Ψj is a j-fold iteration by Ψ. It is known that cj = (j + 1)−1 is the critical case of
differentiability in x (see [17]). Yamaguti and Hata [14] showed that (7) with cj = 1 gives
F (t, x) =

∑J
j=0 t

jG(Ψj(x)) + tJ+1F (t,ΨJ+1(x)), and that by taking the limit as J → ∞ the
function F (t, x) is characterized by the solution of the functional equation

F (t, x) = tF
(
t,Ψ(x)

)
+G(x), (t, x) = [0, 1)×R,

with an initial function G such that supp G ⊂ [0, 1]. As for cj = (j + 1)−1, we prove the following:

Proposition 3.1. The function F (t, x) of (7) with cj = (j + 1)−1 satisfies the functional equation

F (t, x) = tF
(
t,Ψ(x)

)
− t

∫ 1

0
sF
(
ts,Ψ(x)

)
ds+G(x), (t, x) = [0, 1)×R,

with an initial function G such that supp G ⊂ [0, 1].

Proof. Integration by parts gives∫ 1

0
1 ·
∫ s

0
ζF
(
tζ,Ψ2(x)

)
dζds =

∫ 1

0
sF
(
ts,Ψ2(x)

)
ds−

∫ 1

0
s2F

(
ts,Ψ2(x)

)
ds.
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Hence, we have

F (t, x)

= t
{
tF
(
t,Ψ2(x)

)
− t

∫ 1

0
sF
(
ts,Ψ2(x)

)
ds+G

(
Ψ(x)

)}
−t
∫ 1

0
s
{
tsF

(
ts,Ψ2(x)

)
− ts

∫ 1

0
τF
(
tsτ,Ψ2(x)

)
dτ +G

(
Ψ(x)

)}
ds+G(x)

= t2F
(
t,Ψ2(x)

)
+

1∑
j=0

tj

j + 1
G
(
Ψj(x)

)
− t2

∫ 1

0
sF
(
ts,Ψ2(x)

)
ds

−t2
∫ 1

0
s2F

(
ts,Ψ2(x)

)
ds+ t2

∫ 1

0
1 ·
∫ s

0
ζF
(
tζ,Ψ2(x)

)
dζds

= t2F
(
t,Ψ2(x)

)
+

1∑
j=0

tj

j + 1
G
(
Ψj(x)

)
− 2t2

∫ 1

0
s2F

(
ts,Ψ2(x)

)
ds.

Recursively, we also get

F (t, x)

= t2
{
tF
(
t,Ψ3(x)

)
− t

∫ 1

0
sF
(
ts,Ψ3(x)

)
ds+G

(
Ψ2(x)

)}
+

1∑
j=0

tj

j + 1
G
(
Ψj(x)

)
−2t2

∫ 1

0
s2
{
tsF

(
ts,Ψ3(x)

)
− ts

∫ 1

0
τF
(
tsτ,Ψ3(x)

)
dτ +G

(
Ψ2(x)

)}
ds

= t3X
(
t,Ψ3(x)

)
+

2∑
j=0

tj

j + 1
G
(
Ψj(x)

)
− t3

∫ 1

0
sF
(
ts,Ψ3(x)

)
ds

−2t3
∫ 1

0
s3F

(
ts,Ψ3(x)

)
ds+ 2t3

∫ 1

0
s ·
∫ s

0
ζF
(
tζ,Ψ3(x)

)
dζds

= t3F
(
t,Ψ3(x)

)
+

2∑
j=0

tj

j + 1
G
(
Ψj(x)

)
− 3t3

∫ 1

0
s3F

(
ts,Ψ3(x)

)
ds

= tJF
(
t,ΨJ(x)

)
+

J−1∑
j=0

tj

j + 1
G
(
Ψj(x)

)
− JtJ

∫ 1

0
sJF

(
ts,ΨJ(x)

)
ds.

If we take J → ∞, since 0 < t < 1 it follows that

F (t, x) =
∞∑
j=0

tj

j + 1
G
(
Ψj(x)

)
.

As an application of (7) with cj = 1, Yamaguti and Hata introduced in [14] the Takagi function
by choosing G(x) = Ψ(x) = N2(2x) and t = 2−1. We remark that the famous tent map is defined by
xn+1 = N2(2xn) and the iteration by Ψ(x) = N2(2x) yields a chaotic dynamical system in the sense
of Devaney. In this paper, for better match with the wavelet analysis, we shall propose another
chaotic dynamical system

B2(x) =


2x if 0 < x ≤ 2−1,

2x− 1 if 2−1 < x ≤ 1,
0 otherwise,
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which is called the Bernoulli shift map, and more generally

Bp(x) =



px if 0 < x ≤ 1 · p−1,

px− 1 if 1 · p−1 < x ≤ 2 · p−1,

px− 2 if 2 · p−1 < x ≤ 3 · p−1,
...

px− (p− 1) if (p− 1) · p−1 < x ≤ 1,
0 otherwise.

Remark 3.2. One can also take compactly supported (non-orthogonal) Riesz bases as G(x) =
N2(2x). Then, we remark that G(Ψj(x)) with Ψ(x) = B2(x) coincides with the one with Ψ(x) =
N2(2x) (the Takagi function case), i.e.,

G
(
Bj

2(x)
)
= Gj+1(x). (8)

The left-hand side enables us to detect the orbit from x easier than the right-hand side. Besides
G(x) = N2(2x) and Ψ(x) = B2(x), G can be generalized for the form G(Bj

p(x)).

Now we shall take the initial (piecewise linear) function

G(x) =
p−2∑
k=0

g(k + 1)N2(px− k), (9)

where g(k) ∈ R for 1 ≤ k ≤ p− 1. Since supp G ⊂ [0, 1], we also suppose that g(0) = g(p) = 0. For
given x ∈ [0, 1], define the numbers 0 ≤ ξj ≤ p− 1 by the base-p numeral system

x = 0.ξ1ξ2 · · · = 0 + ξ1p
−1 + ξ2p

−2 + · · · .

and define

D
(p)
J =

J∑
j=1

cj−1

(
g(ξj + 1)− g(ξj)

)
.

We call p-adic rational x of the form x = Kp−j withK ∈ Z and j ∈ N, i.e., finite fraction. When
x is a non p-adic rational, there exist infinite number of digits including “ξJ” such that ξJ ̸= 0.
Therefore, for the non p-adic rational x, we can take a subsequence {J−

m} such that ξJ−
m

̸= 0 and
put

r−m := cJ−
m−1

(
2g(ξJ−

m
)− g(ξJ−

m
− 1)− g(ξJ−

m
+ 1)

)
ξJ−

m
,

here we remark that g(ξJ−
m
− 1) is well-defined since ξJ−

m
̸= 0 and ξJ−

m
− 1 ≥ 0.

We also note that there exist infinite number of digits including “ξJ” such that ξJ ̸= p − 1.
Otherwise, after the last “ξJ”, we have ξJ (p − 1) (p − 1) · · · which results in (ξJ + 1) 00 · · ·. This
contradicts that ξj is the last. Therefore, we can also take a subsequence {J+

m} such that ξJ+
m
̸= p−1

for all x, and put

r+m := cJ+
m−1

(
2g(ξJ+

m
+ 1)− g(ξJ+

m
)− g(ξJ+

m
+ 2)

)
(ξJ+

m
+ 1),

here we remark that g(ξJ+
m
+ 2) is well-defined since ξJ+

m
̸= p− 1 and ξJ+

m
+ 2 ≤ p. We remark that

limm→∞ r±m = 0 when limj→∞ cj = 0.
Our purpose is to find a sufficient condition for the non-differentiability of the generalized Takagi

function. For the Takagi function T (x), Allaart and Kawamura [1] and Krüppel [18] paid attention
very carefully to the left-hand side derivative, and independently discovered the necessary and
sufficient condition for the improper infinite derivative T ′(x) = +∞.
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Proposition 3.3 (Allaart and Kawamura, Krüppel ). Let x ∈ (0, 1) be non-dyadic, and write
x =

∑∞
n=1 2

−an where {an} is a strickly increasing sequence of positive integers. Then, T ′(x) = ∞
if and only if

an+1 − 2an + 2n− log2(an+1 − an) → −∞,

In the Takagi function case, the parameter t = 2−1 has been fixed in (7). For the general
case p ≥ 2, the different choice of t = p−1 is crucial to deal with Bp(x). Indeed, taking into a
consideration the case cj = (j + 1)−1 as in Proposition 3.1, we can prove the following theorem.
This is a generalization of Proposition 3.3.

Theorem 3.4. Let p ≥ 2 and g(k) ∈ R for 1 ≤ k ≤ p− 1 (g(0) = g(p) = 0). Suppose that t = p−1,
Ψ(x) = Bp(x), G(x) =

∑p−2
k=0 gk+1N2(px− k), and put

T(x) := F (p−1, x) =
∞∑
j=0

cjp
−jG

(
Bj

p(x)
)
.

Then, T(x) is not differentiable at x ∈ [0, 1], if one of the following holds:

(i)
{
D

(p)

J+
m
+ r+m

}
m∈N

does not converge;

(ii)
{
D

(p)

J−
m
+ r−m

}
m∈N

does not converge if x is a non p-adic rational;

(iii) limm→∞
(
D

(p)

J+
m
+ r+m

)
̸= limm→∞

(
D

(p)

J−
m
+ r−m

)
if x is a non p-adic rational.

In the Takagi function T (x), we see that p = 2, cj = 1, G(x) = g(1)N2(2x) with g(1) = 1
(g(0) = g(2) = 0) and

D
(2)
J =

J∑
j=1

(1− 2ξj) =
J∑

j=1

(−1)ξj .

On the other hand, we are forced to take ξJ+
m

= 0 and ξJ−
m

= 1 for p = 2, and then r±m = 2 for all
m ∈ N. Therefore, for p-adic rationals, we get the non-differentiability of T (x) immediately by (i).
As for non p-adic rationals, it is possible that (i) or (ii) does not work. For instance, for the non
p-adic rational x = 0.101010 · · ·, we see that J+

m = 2m and J−
m = 2m− 1 and have

D
(2)

J+
m
=

2m∑
j=1

(1− 2ξj) = (1− 1) + · · ·+ (1− 1) = 0 for all m ∈ N,

and

D
(2)

J−
m
=

2m−1∑
j=1

(1− 2ξj) = 1 + (−1 + 1) + · · ·+ (−1 + 1) = 1 for all m ∈ N,

and r±m = 2 for all m ∈ N. Thanks to (iii), we can know that T (x) is not differentiable at
x = 0.101010 · · ·. For the case p = 2, we need not consider r±m which plays an important role in the
case p ̸= 2 unless limj→∞ cj = 0 (see Example 3.7).

Example 3.5. (p = 3): Let us consider

G(x) = g(1)N2(3x) + g(2)N2(3x− 1)

with g(1) = 1, g(2) = −1 (g(0) = g(3) = 0), and T(x) =
∑∞

j=0 cj3
−jG

(
Bj

3(x)
)
. The Cantor set C

is the uncountable set having measure zero of real numbers whose ternary expansion in base 3 does
not contain the digit 1. Then we have for x ∈ C

D
(3)

J±
m
=

J±
m∑

j=1

cj−1

(
g(ξj + 1)− g(ξj)

)
=

J±
m∑

j=1

cj−1,
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and r±m = ±3cJ±
m−1 since ξJ+

m
= 0 and ξJ−

m
= 2. Applying Theorem 2.2 with not only cj = 1 but also

cj = (j + 1)−1, we see that T(x) is not differentiable at x ∈ C.

Remark 3.6. We remark that {cj} = {(j +1)−1} in Example 3.5 (p = 3) belongs to ℓ2. Kôno [17]
considered {cj} also for the Takagi function T (x) and showed that T (x) is absolutely continuous
and hence differentiable almost everywhere if {cj} ∈ ℓ2. So, the measure-zero set C in Example 3.5
is excluded for the differentiability.

Example 3.7. (p = 4): Let us consider “table-top” function

G(x) = g(1)N2(4x) + g(2)N2(4x− 1) + g(3)N2(4x− 2)

with g(1) = g(2) = g(3) = 1 (g(0) = g(4) = 0), and T(x) =
∑∞

j=0 4
−jG

(
Bj

4(x)
)
. In fact, this T(x)

coincides with the Takagi function T (x) in the sense that

T (x) = lim
m→∞

2m−1∑
j=0

2−jN2

(
2Bj

2(x)
)
=

∞∑
j=0

(
2−2j−1N2

(
2B2j+1

2 (x)
)
+ 2−2jN2

(
2B2j

2 (x)
))
.

We remark that x = 0.1212 · · · is a undesirable point for D
(4)
Jm

. Indeed, we find that J±
m = m and

have

D
(4)

J±
m
=

m∑
j=1

(
g(ξj + 1)− g(ξj)

)
= 0 for all m ∈ N,

and r+m = 3(ξm − 1) and r−m = (2− ξm). Applying Theorem 3.4 with cj = 1, we see that T(x) is not
differentiable at x = 0.1212 · · ·, due to the oscillation of r±m.

The Baire category theorem also proves abstractly the existence of nowhere differentiable con-
tinuous functions. Indeed, the Baire category theorem says that a non-empty complete metric space
X = C0[0, 1] is not the countable union of nowhere dense closed sets Vj (j ∈ N) defined by

Xj =
{
f ∈ X; min

x∈[0,1]
sup
h̸=0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ j
}
.

Thus, f ∈ X − ∪∞
j=1Xj ̸= ϕ means that f ̸∈ Xj for all j ∈ N and hence

lim
h→0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ = +∞.

If we also consider X = L2(R) and the multiresolution space Xj = Vj where piecewise linear
continuous (Lipschitz continuous) functions on the intervals [k, k + 1] for all k ∈ Z, is given by the
Riesz basis {N2(2

jx − k); k ∈ Z}, then we can know the existence of functions which are nowhere
piecewise linear continuous. This suggests that nowhere Lipschitz continuous functions could be
expanded with MRA wavelets.

Now we devote ourselves to the absolutely continuous T (x) with cj = (j + 1)−1 (see [17]). The
absolute continuity allows us to differentiate T (x) under the integral excluding the measure zero
set. Then we can prove the following:

Theorem 3.8. For cj = 1, (j + 1)−1, the function

T (x) =
∞∑
j=0

(j + 1)−12−jN2

(
2Bj

2(x)
)

16



can be expanded as
T (x) =

∑
J∈Z

∑
K∈Z

dJ,Kψ
H
J,K(x),

where ψH is the Haar wavelet and

dJ,K =



2−3/2J
J−1∑
j=0

cj

(
2

[
K mod 2J−j

2J−j−1

]
− 1

)
if 0 ≤ j ≤ J − 1,K ≥ 0,

2J/2−1
∞∑
j=0

cj2
−j if J ≤ −1,K = 0,

0 otherwise.

(10)

In paticular, for cj = (j+1)−1, we have ∥T∥2L2(R) =
1
3Li2

(
1
4

)
+(log 2)2 and ∥T ′∥2L2(R) =

2
3π

2 where

Lis(z) =
∑∞

k=1
zk

ks is called polylogarithm.

We can know from the coefficients dJ,K that the translation parameter K indicate singularity
points in of T (x) and the terms with J in the coefficients dJ,K defines the value of T (x). We think
that this behavior of coefficients explain the characteristics of the Takagi function T (x).

Remark 3.9. By using the Sobolev embedding theorem, we can find that T ∈ C1/2(R) since

∥T∥W 1,2(R)

(
= ∥T∥L2(R) + ∥T ′∥L2(R)

)
< ∞. But, it is known that even the Takagi function with

cj = 1 is Hölder continuous of any order α < 1 (see [2], [23]).

3.2 Proof of Theorem 3.4

Let us consider

T(x) =
∞∑
j=0

cjp
−jG

(
Ψj(x)

)
.

As stated in (8), the form G(Ψj(x)) with Ψ(x) = Bp(x) immediately gives

Ψj(x) =



pjx if 0 < x ≤ 1 · p−j ,

pjx− 1 if 1 · p−j < x ≤ 2 · p−j ,

pjx− 2 if 2 · p−j < x ≤ 3 · p−j ,
...

pjx− (pj − 1) if (pj − 1) · p−j < x ≤ 1,
0 otherwise.

At first, we shall suppose that x = xJ is a p-adic rational and put

xJ = 0.ξ1ξ2 · · · ξJ =
J∑

i=1

ξip
−i (ξJ ̸= 0).

• For the level j = 0, obviously we get

c0p
−0G(Ψ0(xJ)) = c0G(xJ) = c0G

( J∑
i=1

ξip
−i
)
.

• For the level j = 1, we rewrite Ψ(x) as

Ψ(x) =


px if 0 < (x− 0 · p−1) ≤ p−1,

p(x− q · p−1) if 0 < (x− q · p−1) ≤ p−1 for 1 ≤ q ≤ p− 1,
0 otherwise.
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For all cases 0 ≤ ξ1(= q) ≤ p− 1, we find that

c1p
−1G(Ψ1(xJ)) = c1p

−1G
(
p
( J∑

i=1

ξip
−i − ξ1 · p−1

))

=


c1p

−1G(0) if J = j,

c1p
−1G

( J∑
i=2

ξip
1−i
)

if J ≥ j + 1.

• For the level j = 2, we also rewrite Ψ2(x) as

Ψ2(x) =


p2x if 0 < (x− 0 · p−1 − 0 · p−2) ≤ p−2,

p2(x− q · p−1 − r · p−2) if 0 < (x− q · p−1 − r · p−2) ≤ p−2,
for 0 ≤ q, r ≤ p− 1 and q + r ̸= 0,

0 otherwise.

For all cases 0 ≤ ξ1(= q), ξ2(= r) ≤ p− 1, we find that

c2p
−2G(Ψ2(xJ)) = c2p

−2G
(
p
( J∑

i=1

ξip
−i − ξ1 · p−1 − ξ2 · r−1

))

=


c2p

−2G(0) if 1 ≤ J ≤ j,

c2p
−2G

( J∑
i=3

ξip
2−i
)

if J ≥ j + 1.

• For the level j = J − 1, similarly we get

cJ−1p
−(J−1)G(ΨJ−1(xJ)) =


cJ−1p

−(J−1)G(0) if 1 ≤ J ≤ j,

cJ−1p
−(J−1)G

( J∑
i=J

ξip
(J−1)−i

)
if J ≥ j + 1.

• For the level j = J , similarly we get

cJp
−JG(ΨJ(xJ)) =


cJp

−JG(0) if 1 ≤ J ≤ j,

cJp
−JG

( J∑
i=J+1

ξip
J−i
)

if J ≥ j + 1.

We remark that
∑J

i=J+1 does not make a sense. So, we see that

cJp
−JG(ΨJ(xJ)) = cJp

−JG(0).

• For the level j ≥ J + 1, we also see that

cjp
−jG(Ψj(xJ)) = cjp

−jG(0).

Thus, noting that G(0) = 0, we have

T(xJ) =
J−1∑
j=0

cjp
−jG

( J∑
i=j+1

ξip
j−i
)
=

J∑
j=1

cj−1p
−j+1G

( J∑
i=j

ξip
j−i−1

)
.
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Since G, given by (9), is a piecewise linear function, we rewrite G as

G(x) =


g(1)px if 0 < x ≤ p−1,(
g(q + 1)− g(q)

)
px+

(
g(q)− g(q + 1)

)
q + g(q)

if q · p−1 < x ≤ (q + 1) · p−1for 1 ≤ q ≤ p− 1,
0 otherwise.

Hence, for all the cases 0 ≤ ξj(= q) ≤ p− 1 we find that

G
( J∑

i=j

ξip
j−i−1

)
=
(
g(ξj + 1)− g(ξj)

)
p
( J∑

i=j

ξip
j−i−1

)
+
(
g(ξj)− g(ξj + 1)

)
ξj + g(ξj).

Therefore, exchanging the order of integration, we have

T(xJ) =
J∑

j=1

cj−1

(
g(ξj + 1)− g(ξj)

)( J∑
i=j

ξip
−i+1

)

+
J∑

j=1

cj−1p
−j+1

{(
g(ξj)− g(ξj + 1)

)
ξj + g(ξj)

}

=
J∑

i=1

ξip
−i+1

i∑
j=1

cj−1

(
g(ξj + 1)− g(ξj)

)

+
J∑

i=1

ci−1p
−i+1

{(
g(ξi)− g(ξi + 1)

)
ξi + g(ξi)

}

=
J∑

i=1

p−i+1
{
ξiD

(p)
i + ci−1

{(
g(ξi)− g(ξi + 1)

)
ξi + g(ξi)

}}
.

Taking J → +∞, we have

T(x∞) =
∞∑
i=1

p−i+1
{
ξiD

(p)
i + ci−1

{(
g(ξi)− g(ξi + 1)

)
ξi + g(ξi)

}}
for the non p-adic rational x∞. We remark that this representation has a meaning also for p-adic
rational by regarding x∞ as x∞ = 0.ξ1ξ2 · · · ξJ00 · · ·.

As for the right-hand side derivative, we see that ξJ+
m
̸= p− 1 for all m ∈ N. So, let us put

xm := x∞ + p−J+
m = 0.ξ1ξ2 · · · ξJ+

m−1 (ξJ+
m
+ 1) ξJ+

m+1 · · · .

Then, it follows that

T(xm)−T(x∞)

xm − x∞
= pD

(p)

J+
m
+ pcJ+

m−1

{(
g(ξJ+

m
+ 1)− g(ξJ+

m
+ 2)

)
(ξJ+

m
+ 1)

+g(ξJ+
m
+ 1)−

(
g(ξJ+

m
)− g(ξJ+

m
+ 1)

)
ξJ+

m
− g(ξJ+

m
)
}

= p
(
D

(p)

J+
m
+ r+m

)
.

As for the left-hand side derivative, we see that ξJ−
m
̸= 0 for all m ∈ N. So, let us put

xm := x∞ − p−J−
m = 0.ξ1ξ2 · · · ξJ−

m−1 (ξJ−
m
− 1) ξJ−

m+1 · · · .
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Then, it follows that

T(x∞)−T(xm)

x∞ − xm
= pD

(p)

J−
m
+ pcJ−

m−1

{(
g(ξJ−

m
)− g(ξJ−

m
+ 1)

)
ξJ−

m
+ g(ξJ−

m
)

−
(
g(ξJ−

m
− 1)− g(ξJ−

m
)
)
(ξJ−

m
− 1)− g(ξJ−

m
− 1)

}
= p

(
D

(p)

J−
m
+ r−m

)
.

Thus, we can conclude that T(x∞) is not differentiable at x∞ ∈ [0, 1], if one of (i), (ii) and (iii)
holds. This completes the proof of Theorem 2.2.

3.3 Proof of Theorem 3.8

First, let us compute the Fourier expansion of T (x) with cj = (j + 1)−1 on [0,1]. Another repre-
sentation of T (x) using sawtooth function S(x) is T̃ (x) =

∑∞
j=0(j +1)−12−j+1S(2jx) on [0, 1]. The

Fourier expansion of S(x) is given by

S(x) =
∑
n∈Z

βne
2πinx.

We can get the Fourier coefficients βn as

∫ 1

0
S(2x)e−2πinxdx =


− 1

π2n2 if n is odd ,
0 if n is even ( ̸= 0),
1
4 if n = 0.

Since S(2jx) =
∑

n∈Z βne
2πi(2jn)x, the Fourier coefficients βjn of S(2jx) is

βjn =


β2k+1 if n = 2j(2k + 1) with some k ∈ Z ,

1
4 if n = 0,
0 otherwise.

Noting that T̃ (x) converges uniformly, we see that,

T̃ (x) =
∑

j=0∞
(j + 1)−12−j+1S(2jx)

=
∞∑
j=0

(j + 1)−12−j+1
∑
n∈Z

βjne
2πinx

=
∑
n∈Z

 ∞∑
j=0

(j + 1)−12−j+1βjn

 e2πinx.
So, using the Parseval theorem, we can compute the L2-norm of T (x) as

∥T∥L2(R) = ∥T̃∥L2[0,1]

=
∑
n∈Z

 ∞∑
j=0

(j + 1)−12−j+1βjn

2

=
∞∑

m=0

∑
k∈Z

(
1

2m−1(m+ 1)(2k + 1)π2

)2

+

 ∞∑
j=0

(j + 1)−12−j+1 1

4

2

=
1

3
Li2

(
1

4

)
+ (log 2)2.
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The wavelet coefficients of T (x) with the Haar wavelet(10) is given by the inner product: i.e.,

dJ,K =

∫
R
T (t)ψH

J,K(t)dt =
∞∑
j=0

cj2
−j2J/2

∫ 1

0
N2

(
2Bj

2(t)
)
ψH(2J t−K)dt.

• For K ≤ −1, or 0 ≤ J and 2J ≤ K, the supports of N2

(
2Bj

2(t)
)
and ψH(2J t −K) are disjoint.

So, dJ,K = 0.

• For 0 ≤ J ≤ j and 0 ≤ K ≤ 2J − 1, N2

(
2Bj

2(x)
)
has 2C number of hats in supp ψH

J,K . Then,

change of variables gives∫ 1

0
N2

(
2Bj

2(t)
)
ψH(2J t−K)dt = C

∫ 1/2j

0
N2

(
2Bj

2(t)
)
dt− C

∫ 1/2j

0
N2

(
2Bj

2(t)
)
dt = 0

and dJ,K = 0.
• For J ≤ −1 and K = 0, we find that

dJ,K =
∞∑
j=0

cj2
−j2J/2

∫ 1

0
N2

(
2Bj

2(t)
)
ψH(2J t−K)dt

=
∞∑
j=0

cj2
−j2J/2

∫ 1

0
N2

(
2Bj

2(t)
)
dt

= 2J/2−1
∞∑
j=0

cj2
−j

• For 0 ≤ j ≤ J − 1 and 2J−jℓ ≤ K ≤ 2J−j−1(2ℓ+ 1)− 1 (ℓ = 0, 1, . . . , 2j − 1), by the definition of
the Haar wavelet,∫ 1

0
N2

(
2Bj

2(t)
)
ψ(2J t−K)dt =

∫ 2−J (K+ 1
2
)

2−JK
2j+1tdt−

∫ 2−J (K+1)

2−J (K+ 1
2
)
2j+1tdt

= −2j−2J−1.

• For 0 ≤ j ≤ J − 1 and 2J−j−1(2ℓ + 1) ≤ K ≤ 2J−j(ℓ + 1) − 1(ℓ = 0, 1, . . . , 2j − 1), in the same
way as above,∫ 1

0
N2

(
2Bj

2(t)
)
ψ(2J t−K)dt =

∫ 2−J (K+ 1
2
)

2−JK
(2− 2j+1t)dt−

∫ 2−J (K+1)

2−J (K+ 1
2
)
(2− 2j+1t)dt

= 2j−2J−1.

We can rewrite the last two cases as∫ 1

0
N2

(
2Bj

2(t)
)
ψ(2J t−K)dt =

(
2

[
Kmod 2J−j

2J−j−1

]
− 1

)
2j−2J−1

and we obtain (10).
Finally, we can also compute L2-norm of the derivative T ′(x). Noting the fact that ∂xN2(2x) =

ψH(x), by the Parseval theorem we have

∥T ′∥2L2(R) =

∥∥∥∥∥∥
∞∑
j=0

2j−1∑
k=0

(j + 1)−12−j∂x{N2(2
j+1x− 2k)}

∥∥∥∥∥∥
2

L2(R)
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=

∥∥∥∥∥∥
∞∑
j=0

2j−1∑
k=0

(j + 1)−12−j/2+1ψH
j,k(x)

∥∥∥∥∥∥
2

L2(R)

=
∞∑
j=0

2j−1∑
k=0

(j + 1)−22−j+2 =
2

3
π2.

This completes the proof of Theorem 3.4.

4 Feature Extraction of Distortion Sounds

4.1 Introduction

Music dictation is a very popular way to play music without using a score. However, the skill
of music dictation depends on one’s experience and sense. Recently, music using electric guitar
employs guitar effectors like distortion, chorus, modulation and etc. We will focus on distortion
which is one of the most famous guitar effectors. Our motivation is to improve music dictation
regardless of one’s skills and experience.

In this section, we assume the amplitude of the signal f(t) is normalized, i.e., max
t

|f(t)| = 1

and has a compact support. Distortion effector is a nonlinear transform [20], which is constructed
by the following two steps: amplification and clipping. Amplification is a transformation from the
original signal f(t) to f̌(t) = Cf(t) for some constant C > 1. Clipping means cutting the signal
off, which transforms from f̌(t) to f̃(t) = max{−1,min{1, f̌(t)}} (see Fig. 3). Since the distortion
effector process has clipping, which is a nonlinear transformation, it is difficult to analyze distortion
sounds by Fourier method.

From the preceding study, distortion is a relative measurement and there are several methods
used for distortion. One of the values of the describing distortions level is Total Harmonic Distortion
(DTHD) [5] [7] which is defined by,

DTHD =

√
H2

2 +H2
3 + · · ·+H2

N√
H2

1 +H2
2 +H2

3 + · · ·+H2
N

or

DTHD =

√
H2

2 +H2
3 + · · ·+H2

N

H1

where HN denotes the N -th harmonic response and H1 does fundamental response and it is denoted
in percent(%) or decibel(dB). Nevertheless, DTHD does not consider the original sound harmonic
and we have to recognize the original sound if we want to calculate DTHD. Therefore, we defined
the feature quantities of distortion sounds.

4.2 Proposed Method

Here, we consider the new feature of distortion sounds with wavelets. As mentioned, Fourier method
is not suitable to analyze distortion sound because of clipping. We define three ways of extracting
the feature of distortion sounds. First, we define the feature quantity based on the differential, that
is, we would focus on amplification as

E1(a) = max
b

1

a

∣∣∣∣∫
R
f(t)ψH

(
t− b

a

)
dt

∣∣∣∣ ,
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Figure 3: Schematic wave shape of f(t), f̌(t), and f̃(t)

where we choose ψ(t) as Haar wavelet (10) and we identify the sounds are more distorted as this
value is larger. The reason this E1 is based on the differentiation is that it measures the gradient of
the signal f(t). The correlation with Haar wavelet can treat the gradient of a signal in the integral
translation.

Because Haar wavelet has strong localization, we can extract the feature of distortion sound.
Previous method would not be useful to analyze distortion sound since distortion filter is a nonlinear
transform. The proposed method can be applied even though we do not know the original sound.
For each pitch sound, we can choose the wavelet dilation a ∈ R to compare the feature of distortion
sound. This method is independent of the state of signal (i.e., stable or unstable of sounds).

The second feature is based on the area of the signal.

E2 =

∫
R
|f(t)|2 dt,

i.e., E2 is the square of L2-norm of the signal f . We identify the sounds are more distorted as these
value is larger. Hence the area of the graph of the distortion sound get larger, we can judge the
distortion level. However, this method depends on the state of the sounds. Therefore, for unsteady
signal, we have to withdraw the one wave from the signal f and use the method. Moreover, because
instruments that have a lot of harmonic tones make various waveforms for each time, different
sounds cannot be compared in this way even if they are from same instrumental or same level of
distortion.

The third feature focuses on the clipped part of the waveform. We define

E3(a) =

∫
R

∣∣∣∣∫
R
|f(t)|1/4ψH

(
t− b

a

)
dt

∣∣∣∣ db
where ψ denotes the Haar wavelet, and we identify the sounds are more distorted as this value
is smaller. The more clipped part the signal has, the less the value of E3 is since

∫
R ψ(t)dt = 0.

The inner integral is similar to E1, differential way. Thus, we can think E3 is the norm of the
homogeneous Sobolev space Ẇ 1,1. The 1/4 power of the signal makes the difference of clipped
parts and others clear. This method also depends the state of sounds so we have to apply it for one
wave.

23



0 50 100 150 200 250 300 350 400 450

-1

0

1

0 50 100 150 200 250 300 350 400 450

-1

0

1

0 50 100 150 200 250 300 350 400 450

-1

0

1

0 50 100 150 200 250 300 350 400 450

-1

0

1

0 50 100 150 200 250 300 350 400 450

-1

0

1

0 50 100 150 200 250 300 350 400 450

-1

0

1

0 50 100 150 200 250 300 350 400

-1

0

1

1 2 3 4 5 6 7
0

10

20

1 2 3 4 5 6 7
0

10

20

1 2 3 4 5 6 7
0

10

20

1 2 3 4 5 6 7
0

10

20

1 2 3 4 5 6 7
-20

-10

0

10

Figure 4: 7 levels of distortion sounds (left) and features on the proposed method (right)

4.3 Experiments on the Proposed Method

In the rest of this section, we focus on E1 and analyze distortion sounds with it. In the left of
Figure 4, there are 7 waves of sounds from the pure sound (top) to the most distorted sound, square
wave (bottom). The right of Figure 4 is the features for 7 sounds with appropriate Haar wavelet
scale. The scales of the wavelets are smaller from the top to the 4th graph and the bottom graph is
the features on total harmonic distortion (THD). The vertical axes of the graphs on the right side of
Figure 4 represent the features using the proposed method while the horizontal axes represent the
seven sounds. On a horizontal axis, each number corresponds to a graph on the left side of Figure 4
with 1 corresponding to the topmost graph and 7 corresponding to the bottommost graph.

Figure 4 explains that proposed method extracts the feature of the distortion sounds since the
upper four graphs grow. Conversely, the THD doesn’t extract the distortion features. Therefore,
we can conclude that the THD is inappropriate to analyze distortion sounds and we could define
the appropriate feature to the distortion sounds.

4.4 Subjective Experiments

To compare our proposed method and human ears, we conducted subjective experiments for 14
people (4 people are experienced in playing the guitar and 10 are not). We prepared different 6
levels,18 sounds from clean sound to high level distortion sound. The experimental procedure is the
following:

• Let subjects listen to some sounds to recognize distortion sounds.

• Let subjects listen to two sounds, and subject would answer which is higher level of distortion
sounds.

We summarize the comparison of the subjective experiment result and our method in Fig. 4.4.
The left side of figure is the result from people who had experienced the guitar, the right side is the
one from people who had not experienced the guitar. The horizontal line shows that our proposed
method and the vertical number denotes the order of distortion sound that human ears distinguish
its level. The graphs in the Fig. 4.4 are growing and we can conclude our proposed method can
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Figure 5: the experiment results with guitar experienced people (left) and guitar inexperienced
people (right)

extract the distortion sound features that human auditory perception can listen to. Since this
method can be utilized if there are no information about original sound, it is valuable to compare
the distortion sounds.

As guitar experienced people are less, the error of the left graph in Fig. 5 is larger than the
left ones. However, there is no big difference between the both graphs. This is the advantage of
our proposal method since the its measure of distortion sound is independent of one’s skills and
experience.
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