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abstract

In this paper we study about topological dynamics, especially dynamical decomposition theorems and
generalized inverse limits.
In the first half of this thesis, we discuss dynamical decomposition theorems. It is well known that a

space X has at most dimension n (n ∈ {0}∪N) (i.e. dimX ≤ n) if and only if X can be represented as a
union of (n+ 1) zero-dimensional subspaces of X. Here we introduce ”dark spaces” and ”bright spaces”,
and prove that if f : X → X is a homeomorphism of an n-dimensional separable metric space X with
the zero-dimensional set of periodic points, then X can be decomposed into an zero-dimensional bright
space of f except n times and a (n− 1)-dimensional dark space of f except n times. Also we give some
dynamical decomposition theorems by using these spaces.
In the second half, we study topological structures of inverse limits with upper semi-countinuous set-

valued functions. In 2004, W.S. Mahavier [19] started studies of inverse limits with subset of
[
0, 1

]
×
[
0, 1

]
.

Since then, many topological properties of inverse limits of upper semi-continuous set-valued functions
have been studied by many authors. In this paper, we introduce new indexes Ĩ(Xi, fi,i+1) and W̃ (Xi, fi,i+1)
for an inverse sequence {Xi, fi,i+1} with upper semi-countinuous set-valued functions, and new space
”dimensionally stepwise space”. By using them we investigate some topological structures of such inverse
limits.
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1 Introduction

In chapter 2, we define some notations and study some basic properties of topological dimension,
dynamical systems, and inverse limits of mapping.
In chapter 3, we discuss dynamical decomposition. A union X = A0 ∪ A1 ∪ · · · ∪ An is called a

decomposition if Ai are pairwise disjoint. It is well known that a space X has at most dimension n (n ∈
{0} ∪ N) (i.e. dimX ≤ n) if and only if X can be represented as a union of (n + 1) zero-dimensional
subspaces of X. In [1], J. M. Aarts, J. Fokkink, and J. Vermeer discussed some dynamical decomposition
theorems. Here we introduce new notions of‘bright spaces’and‘dark spaces’of homeomorphisms except
n times, and by use of the notions we will find some dynamical decomposition theorems of spaces related
to given homeomorphisms. Finally, as a special case we consider the case that given homeomorphism is
a continuum-wise expansive homeomorphism.
In chapter 4, we discuss what compactum can be obtained as an inverse limit with set-valued functions.

Inverse limits have played very important roles in the development of continuum theory and topological
dynamics. In 2004, W.S. Mahavier [19] started studies of inverse limits with subset of [0, 1] × [0, 1]
and in 2006, W.T. Ingram and W.S. Mahavier [12] started inverse limits of upper semi-continuous set
valued functions. Since then, many topological properties of inverse limits of upper semi-continuous
set valued functions have been studied by many authors. In [14] and [13] W. T. Ingram and W. S.
Mahavier discussed several results concerning connectedness of such inverse limits. [21] V. Nall showed
other sufficient conditions of connectedness. In [9] A. Illane proved that a simple closed curve can not be
obtained as an inverse limit on

[
0, 1

]
with a single upper semi-continuous function. In [22] V. Nall showed

that the arc is the only finite graph that is an inverse limit on
[
0, 1

]
with a single upper semi-continuous

function. Also, Nall showed any inverse limit on
[
0, 1

]
with a single upper semi-continuous function can

not be n-cell for n > 1. In [4] and [15] properties of shape of inverse limits was discussed. In first section,
we study dimension of such inverse limits. It is well-known that inverse limits of sequences of single-valued
continuous functions have dimension bounded by the dimensions of the factor spaces. V. Nall [20] proved
that inverse limits of sequences of upper semi-continuous set-valued functions with 0-dimensional values
have dimension bounded by the dimensions of the factor spaces and I. Banic [2]discussed previous case
of finite-dimensional valued functions. H. Kato [15] generalized these results by using ”expand-contract
sequences”. Here we introduce ”inverse expand-contract sequences”
In second section, we introduce ”stepwise spaces” and give a sufficient condition of step wiseness. As

a corollary, we obtain that any n-dimensional manifold can not be represented as any inverse limit with
single upper semi-continuous bonding function on

[
0, 1

]
for n > 1.

In final section, we study ANR properties of generalized inverse limits. H. Kato [16] introduced ”weak
homotopically trivial within small neighborhoods” and used it to prove ANR of a given space. By using
this idea, we discuss ANR properties of generalized inverse limits.
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2 Preliminaries

We assume that all spaces X are separable metric spaces in this paper. Also, let N and Z denote
the set of natural numbers and the set of integers, respectively. For a subset A of X, |A| denotes the
cardinality of a set A, cl(A) denotes the closure, bd(A) denotes the boundary, and int(A) denotes the
interior. Also, diamA is a diameter of A, i.e. diamA = sup{d(x, y) | x, y ∈ A}, where d is a metric of X.
A compactum is a compact metric space.
A continuum is a nonempty compact connected metric space. A subcontinuum is a continuum which

is a subset of a space. If a continuum that contains more than one point, we call it nondegenerate.
An arc means a continuum which is homeomorphic to the closed interval

[
0, 1

]
. I means the unit

interval
[
0, 1

]
.

A graph is a continuum which can be written as the union of finitely many arcs any two of which are
either disjoint or intersect only in one or both of their end points.
A Tree means a graph which contains no simple closed curve.
A subspace J of a graph G is a free arc in G if J is homeomorphic to the unit interval and J \ {e, e′} is

an open set of G, where e and e′ are the two end points of J . Similarly, A simplex △ in a polyhedron P
is a free simplex of P if the interior △ \ ∂△ of △ is an open set of P , i.e., △ is not a face of any other
simplex.
Let X be a space and A be a subspace of X. We say A is a retract of X if there is a map r : X → A

such that r|A is the identity map on A. Such a r is called retraction.
A space X is an absolute neighborhood retract (abbrev. ANR) if for each metric space M containing

X as a closed set, there is a retraction r : U → A from some open neighborhood U ⊂M in X. If U = M ,
X is called an absolute retract (abbrev. AR).
A compact space X is an fundamental absolute retract (abbrev. FAR) if there exists a decreasing

sequence of compact ARs Xi such that X =
∩

Xi

2.1 Topological dimension

Let X be a space and U , V be two covers of X. Then V is a refinement of U , if for every V ∈ V there
exists a U ∈ U such that V ⊂ U .

Definition 1. [5] Let X be a space and let U be a family of subsets of X. Then, we define order of U as
follows;

ord(U) = sup{ordx(U)| x ∈ X},

where ordx(U) is the number of U which contains x.

Definition 2. [5] For a space X we define the topological dimension of X, denoted by dimX, which is
an integer n larger than or equal to −1, or ∞, the definition of the dimension function dim consists in
the following conditions;

• dimX ≤ n if every finite open cover of X has a finite open refinement of order ≤ n+ 1,

• dimX = n if dimX ≤ n and dimX > n− 1,

• dimX =∞ if dimX > n for all n = −1, 0, 1, . . .

Theorem 1. [5](the countable sum theorem) If a space X can be represented as the union of a sequence
F1, F2, . . . of closed subspaces such that dimFi ≤ n for each i ∈ N, then dimX ≤ n.
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Theorem 2. [5] A space X satisfies dimX ≤ n if and only if X can be represented as the union of two
subspaces Y and Z such that dimY ≤ n− 1 and dimZ ≤ 0.

Theorem 3. [5] A space X satisfies dimX ≤ n if and only if X can be represented as the union of (n+1)
subspaces Z1, Z2, · · ·Zn+1 such that dimZi ≤ 0 for i = 1, 2, · · · , n+ 1.

Theorem 4. [5] If f : X → Y is a closed mapping between two spaces and there is k ≥ 0 such that
dim f−1(y) ≤ k for each y ∈ Y , then dimX ≤ dimY + k.

Theorem 5. [5] Suppose that f : X → Y is a closed mapping between two spaces. If dimY ≤ n and
dimDi(f

−1) ≤ n−i for each i = 1, 2, . . . , n+1, then dimX ≤ n, where Di(f
−1) = {y ∈ Y | dim f−1(y) ≥

i}. In particular, if f : X → Y is a closed mapping such that dimY ≤ 1 and dimD1(f
−1)+dim f−1(y) ≤ 1

for each y ∈ Y , then dimX ≤ 1.

2.2 Dynamical systems

A dynamical system is a pair of a space X and a homeomorphism f : X → X.
For a homeomorphism f : X → X of a space X and k ∈ N, let Pk(f) denote the set of periodic points

of period ≤ k. Also, P
(
f
)
denotes the set of all periodic points of f .

For a point x ∈ X, Of (x) = {fp(x) | p ∈ Z} denotes the orbit of x.
Let f : X → X be a homeomorphism, L ⊂ X be a subset of X, and j = 0, 1, 2, . . . . Then Af (L, j)

denotes the set of all points x ∈ X whose orbit appears in L just j times, i.e.

Af (L, j) = {x ∈ X | |{p ∈ Z | fp(x) ∈ L}| = j}.

Note that P (f) ⊂ Af (L, 0) and Af (L, j) is f -invariant for each j = 0, 1, 2, . . . , i.e. f(Af (L, j)) =
Af (L, j). If i ̸= j, then Af (L, i) ∩Af (L, j) = ∅.

Definition 3. A homeomorphism f : X → X of a compact metric space (X, d) is expansive if there is
c > 0 such that for any x, y ∈ X with x ̸= y, there is an integer k ∈ Z such that d(fk(x), fk(y)) ≥ c.

Definition 4. A homeomorphism f : X → X of a compact metric space (X, d) is continuum-wise
expansive if there exists c > 0 such that for any nondegenerate subcontinuum A of X, there exists an
integer k ∈ Z such that diam fk(A) ≥ 0.

Note that every expansive homeomorphism is continuum-wise expansive. Such c > 0 is called an
expansive constant for f .

Proposition 1. [17] Let f : X → X be a homeomorphism of a compact metric space X. Then the
following conditions are equivalent.

1. f is a continuum-wise expansive homeomorphism.

2. There is δ > 0 such that if C is any finite open cover of X with mesh(C) < δ and any γ > 0, there is a
sufficiently large natural number N such that if A,B ∈ C, each component of f−n(cl(A))∩fn(cl(B))
has diameter less than γ for each n ≥ N .

A subset Z of X is a bright space of f except n times
(
n ∈ {0} ∪ N

)
if for any x ∈ X,

|{p ∈ Z|fp(x) ̸∈ Z}| ≤ n.

Also we say that L = X\Z is a dark space of f except n times. Note that for any x ∈ X, |Of (x)∩L| ≤ n.
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2.3 Inverse limits

Definition 5. For each i ∈ N, let Xi be a space and let fi,i+1 : Xi+1 → Xi be a continuous function.
Then the inverse limit, denoted lim←−{Xi, fi,i+1}, is the set of all

(
x1, x2, · · ·

)
∈

∏∞
i=1Xi such that xi =

fi,i+1(xi+1) for each i.

Proposition 2. If Xi is a continuum for every i ∈ N, then lim←−{Xi, fi,i+1} is also continuum.

Theorem 6. [5] If for every i, let Xi is a compact metric space with dimXi ≤ n and fi,i+1 : Xi+1 → Xi

be a continuous function, then dim lim←−{Xi, fi,i+1} ≤ n.

3 Dynamical decomposition theorems

3.1 Some dynamical results

In [1], J. M. Aarts, J. Fokkink, and J. Vermeer proved an interesting theorem.

Theorem 7. Suppose that X is a space with dimX ≤ n and f : X → X is a homeomorphism. Then
there exists an f-invariant zero-dimensional dense Gδ-set Z of X such that

X = Z ∪ f(Z) ∪ f2(Z) ∪ · · · ∪ fn(Z)

if and only if dimPk(f) < k for each 1 ≤ k ≤ n.

Proposition 3. Suppose that X is a space with dimX ≤ n and f : X → X is a homeomorphism. Then
there exist f-invariant zero-dimensional dense Gδ-sets Ef(j)(j = 0, 1, 2, . . . , n) of X such that

X = Ef(0) ∪ Ef(1) ∪ · · · ∪ Ef(n).

Proof. First, we prove the following claim (I);
for each zero-dimensional f -invariant set A of X, there is an zero-dimensional f -invariant Gδ-set A

′ with
A ⊂ A′.
To prove the claim (I), choose an zero-dimensional Gδ-set A

′ with A ⊂ A′, i.e. A′ =
∩

i∈N Ui, where Ui

is an open set of X. Then the set A′ =
∩
{fp(Ui) | i ∈ N, p ∈ Z} is the desired Gδ-set.

Since X is separable, there is a countable dense set D′ of X and we put D =
∪
{fp(D′) | p ∈ Z}. Then

D is countable, dense and f -invariant.
We will show the following claim (II);

there is a zero-dimensional f -invariant dense set E0 of X such that D ⊂ E0 and dim
[
(X \ E0) ∪ D

]
≤

n− 1 = dimX − 1 .
To prove the claim (II), choose a countable open base {Ui | i ∈ N} of X such that bd(Ui) ∩D = and

dim(Ui) ≤ n− 1 for each i ∈ N (see [2]). Put

L =
∪
{fp(bd(Ui)) | i ∈ N, p ∈ Z}.

Note that L is an f -invariant Fσ -set of X such that L∩D = ∅. By countable sum theorem of dimension,
dim(L ∪D) ≤ n− 1. Put E0 = X \ L. Then E0 satisfies the desired conditions.
Next, we consider the (n − 1)-dimensional space X1 = (X \ E0) ∪D. If we apply the above claim (II)

to f |X1 : X1 → X1, we obtain a zero-dimensional f -invariant subset E1 of X1 such that D ⊂ E1 and
dim

[
(X1 \ E1) ∪ D

]
≤ n − 2. If we continue this procedure, we obtain subsets Ej(j = 0, 1, . . . , n) of X

such that each Ej is a dense f -invariant zero-dimensional subsets of X and

X =
∪
{Ej | j = 0, 1, 2, . . . , n}.

Finally, by use of the claim (I), we obtain f -invariant zero-dimensional dense Gδ-sets Ef(j)(j =
0, 1, 2, . . . , n) of X, which satisfy the desired conditions.
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3.2 Dynamical decomposition theorems using dark spaces and bright spaces

In this section, we show other types of dynamical decomposition theorems using the technique in [10].

Lemma 1. Suppose that X is a space with dimX ≤ n and f : X → X is a homeomorphism with
dimP (f) ≤ 0. Let F be an Fσ-set of X with dimF ≤ 0. Then for each j ∈ N, there is a locally finite
countable open cover C(j) = {C(j)α | α ∈ N} of X such that

1. mesh(C(j)) < 1
j ,

2. ord(G) ≤ n, where G = {fp(bd(C(j)α)) | α ∈ N, j ∈ N, and p ∈ Z}, and

3. F ∩ L = ϕ, where L =
∪
{(bd(C(j)α)) | α ∈ N, j ∈ N}.

Proof. Since F is an Fσ-set of X with dimF ≤ 0, we can put F =
∪

j∈N Fj , where Fj is an zero-
dimensional closed set in X. For each j ∈ N, we choose a locally finite countable open cover D(j) of
X such that mesh(D(j)) < 1

j . We put D(j) = {D(j)α | α ∈ N}. Note that D(j)α may be an empty
set. Take an open shrinking B(j) = {B(j)α | α ∈ N} of D(j) such that B(j) = {cl(B(j)α) | α ∈ N} is
a closed shrinking of D(j). For each j ∈ N and each k ∈ N with k ≥ j, we can find an open shrinking
D(j, k) = {D(j, k)α | α ∈ N} of D(j) and a closed shrinking B(j, k) = {B(j, k)α | α ∈ N} of D(j, k) such
that[
a
]
D(j, j) = D(j),B(j, j) = B(j),[

b
]
cl(B(j)α) = B(j, j)α ⊂ B(j, j + 1)α ⊂ · · · ⊂ D(j, j + 1)α ⊂ D(j, j)α = D(j)α,[

c
]
ord{cl(fp(D(j, k + 1)α \B(j, k + 1)α)) | α ∈ N, 1 ≤ j ≤ k and |p| ≤ k} ≤ n, and[

d
][
D(j, k + 1)α \B(j, k + 1)α

]
∩
∪k+1

j=1 Fj = ∅.

We put

C(j)α = int
[∩∞

k=j D(j, k)α
]
and C = {C(j)α | α ∈ N}.

Then C(j) = {C(j)α | α,∈ N} (j ∈ N) is the desired open cover of X.

Theorem 8. Suppose that X is a space with dimX = n and f : X → X is a homeomorphism. Then
there exists a bright space Z of f except n times such that Z is an zero-dimensional dense Gδ-set of X
and the dark space L = X \ Z of f is an (n− 1)-dimensional Fσ-set of X if and only if dimP (f) ≤ 0.

Proof. Suppose dimP (f) ≤ 0. Since X is separable, there is a dense countable set D of X. Also we
choose a zero-dimensional Fσ-set H of X with dim(X \H) ≤ n− 1 (see [2]). Then the set F = D ∪H is
also a zero-dimensional Fσ-set of X. By Lemma 1, we have a countable base {Bi | i ∈ N} of X such that
ord(G) ≤ n and L ∩ F = ∅, where G = {fp({bd(Bi)) | i ∈ N, p ∈ Z} and L =

∪
{bd(Bi) | i ∈ N}. Put

Z = X \ L. Note that D ⊂ Z and L ⊂ X \ F . Then Z is dense in X and dimL ≤ n − 1 and hence Z
and L are the desired spaces.
Conversely, we assume that there exists an zero-dimensional bright space Z of f except n times. Then

we see P (f) ⊂ Z, which implies that dimP (f) ≤ 0.

Corollary 1. Suppose that X is a space with dimX = n and f : X → X is a homeomorphism. Then
there exists an zero-dimensional dense Gδ-set Z of X such that for any (n+1) integers k0 < k1 < · · · < kn,

X = fk0(Z) ∪ fk1(Z) ∪ · · · ∪ fkn(Z)
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if and only if dimP (f) ≤ 0.

Proof. Suppose that dimP (f) ≤ 0. By above Theorem, there exists an zero-dimensional bright space
Z of f except n times such that Z is a dense Gδ-set of X. Let x ∈ X and let k0 < k1 < · · · < kn be any
(n+1) integers. Then we can find some ki such that f−ki(x)(= y) ∈ Z. Then x = fki(y) ∈ fki(Z), which
implies that X = fk0(Z) ∪ fk1(Z) ∪ · · · ∪ fkn(Z).
Conversely, we assume the existence of Z satisfying the above condition. We will show that P (f) ⊂ Z.

Let x ∈ P (f). Then there is k ∈ N such that fk(x) = x. Consider (n + 1) integers ki = i · k(i =
0, 1, 2, . . . , n). Since x ∈ Z ∪fk(Z)∪f2k(Z)∪· · ·∪fn·k(Z), x ∈ f i·k(Z) for some i ∈ {0, 1, 2, . . . , n}. Then
x = f−i·k(x) ∈ Z. Since P (f) ⊂ Z and Z is zero-dimensional, hence dimP (f) ≤ 0.

Theorem 9. Suppose that X is a space with dimX = n and f : X → X is a homeomorphism with
dimP (f) ≤ 0. If L is a dark space of f except n times such that L is an Fσ-set of X and dim(X \L) ≤ 0,
then dimAf (L, j) = 0 for each j = 0, 1, . . . , n. In particular, there is the f-invariant zero-dimensional
decomposition of X related to the dark space L:

X = Af (L, 0) ∪Af (L, 1) ∪ · · · ∪Af (L, n).

Proof. Note that Af (L, 0) ⊂ X \L(= Z) and hence Af (L, 0) is an f -invariant zero dimensional subset of
X. We will prove that dimAf (L, j) = 0 for each j = 1, 2, . . . , n. Since L is an Fσ-set of X, we can put
L =

∪
i∈N Li, where Li is a closed subset of X. Let 1 ≤ j ≤ n. For any j integers k1 < k2 < · · · < kj and

natural numbers i1, i2, . . . , ij , we consider the set

A(k1, k2, . . . , kj : Li1 , Li2 , . . . , Lij ) = {x ∈ Af (L, j) | fkp(x) ∈ Lip(p = 1, 2, . . . , j)}.

Then we can easily see that A(k1, k2, . . . , kj : Li1 , Li2 , . . . , Lij ) is closed in the subspace Af (L, j). Note
that if k ̸= kp(p = 1, 2, . . . , j), then

fk(A(k1, k2, . . . , kj : Li1 , Li2, . . . , Lij)) ⊂ Z

and hence A(k1, k2, . . . , kj : Li1 , Li2 , . . . , Lij ) is zero-dimensional. Also note that

Af (L, j) =
∪
{A(k1, k2, . . . , kj : Li1 , Li2 , . . . , Lij )|k1 < k2 < · · · < kj(∈ Z) and i1, i2, . . . ij ∈ N}.

By the countable sum theorem of dimension, we see that dimAf (L, j) = 0.

3.3 Dynamical decomposition theorems of continuum-wise expansive homeomor-
phisms

As a special case, we consider the case that f is a continuum-wise expansive homeomorphism of a
compact metric space X.

Theorem 10. Suppose that X is a compact metric space with dimX = n and f : X → X is a continuum-
wise expansive homeomorphism. Then there exists a compact (n − 1)-dimensional dark space L of f
except n times such that If L is a dark space of f except n times such that dimAf (L, j) = 0 for each
j = 0, 1, . . . , n. In particular, there is the f -invariant zero-dimensional decomposition of X related to the
compact dark space L;

X = Af (L, 0) ∪Af (L, 1) ∪ · · · ∪Af (L, n).

Proof. Since f is a continuum-wise expansive homeomorphism, we have a positive number δ as in (2) of
Proposition 1. Since dimP (f) ≤ 0, by Lemma 1 there is a finite open cover C of X such that
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1. mesh(C) < δ,

2. ord(G) ≤ n, where G = {fp(bd(C))|C ∈ C, p ∈ Z},

3. bd(C) ∩ P (f) = ∅ for each C ∈ C, and

4. dimH ≤ n− 1, where H =
∪
{bd(C) | C ∈ C}.

Let C = {C1, C2, . . . , Cm} and put

C ′
1 = cl(C1), C

′
i+1 = cl(int

[
Ci+1 \

∪
k≤iCk

]
) (1 ≤ i ≤ m− 1).

Then C′ = {C ′
1, C

′
2, . . . , C

′
m} is a finite closed partition of X. Let L = {bd(C ′) | C ′ ∈ C′}. Then L ⊂ H

and we can easily see that L is a compact (n−1)-dimensional dark space of f except n times. We will show
that dimAf (L, j) = 0 for each j = 0, 1, 2, . . . , n. Let 1 ≤ j ≤ n. For any j integers k1 < k2 < · · · < kj , we
consider the set

A(k1, k2, . . . , kj) = {x ∈ Af (L, j) | fkp(x) ∈ L (p = 1, 2, . . . , j)}.

Then we see that the space A(k1, k2, . . . , kj) is closed in the subspace Af (L, j). We will show that
dimA(k1, k2, . . . , kj) = 0. Let x ∈ A(k1, k2, . . . , kj) and let γ > 0 be any positive number. Then there is a
sufficiently large natural number N such that N > |ki| (i = 1, 2, . . . , j) and N satisfies the condition (2) of
Proposition 1. We can choose 1 ≤ α, β ≤ m such that f−N (x) ∈ int(C ′

α) and fN (x) ∈ int(C ′
β). Then the

diameters of components of the compactum fN (C ′
α)∩ f−N (C ′

β) are less than γ. Since fN (C ′
α)∩ f−N (C ′

β)
can be covered by finite mutually disjoint open sets of X whose diameters are less than γ, there is a closed
and open neighborhood V of x in the subspace A(k1, k2, . . . , kj) such that V ⊂ fN (int(C ′

α))∩f−N (int(C ′
β))

and diamV < γ. This implies that dimA(k1, k2, . . . , kj) = 0. Note that

Af (L, j) =
∪
{A(k1, k2, . . . , kj) | k1 < k2 < . . . < kj (∈ Z)}.

By countable sum theorem of dimension theory, we see that dimAf (L, j) = 0. By the similar arguments
to the case j ≥ 1, we see that the case j = 0 is true, i.e. dimAf (L, 0) = 0.

4 Inverse limits with set-valued functions

For a space X, 2X denotes the collection of nonempty closed subsets of X.

Definition 6. Let f : X → 2Y be a set-valued function and let A be a subset of X. Then we define

f(A) =
∪
{f(x) | x ∈ A}.

Also for a subset B of Y , we define

f−1(B) =
∪
{x ∈ X | f(x) ∩B ̸= ∅}.

f is called surjective if f(X) = Y .

Definition 7. Let f : X → 2Y and g : Y → 2Z be set-valued functions. Then

gf(x) = g(f(x)) =
∪
{g(y) | y ∈ f(x)}.

Also, for i ≤ j, we define fi,j : Xj → 2Xi by fi,j = fi,i+1fi+1,i+2 · · · fj−1,j.
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Definition 8. Let f : X → 2Y be a set-valued function. Then f is called upper semi-continuous if
for each point x of X and each open neighborhood V of f(x) there is an open neighborhood U of x such
that for every y ∈ U, f(y) ⊂ V .

Definition 9. Let Xi(i ∈ N) be a sequence of spaces and let fi,i+1 : Xi+1 → 2Xi be an upper semi-
continuous function for each i ∈ N. Then the inverse limit with upper semi-continuous functions,
denoted lim←−{Xi, fi,i+1}, is the space

lim←−{Xi, fi,i+1} = {(x1, x2, · · · ) ∈
∏∞

i=1Xi | xi ∈ f(xi+1) for each i},

which has the topology inherited as a subspace of the product space
∏∞

i=1Xi. The function fi,i+1 is called
a bonding map and Xi is called a factor space.
If f : X → 2X is an upper semi-continuous function, we consider the inverse sequence {X, f} =
{Xi, fi,i+1}, where Xi = X, fi,i+1 = f (i ∈ N). We put

lim←−{X, f} = {(xi)∞i=1 | xi ∈ f(xi+1) for each i ∈ N}.

Definition 10. Let {Xi, fi,i+1} be an inverse sequence with set-valued functions. For m ≤ n, we put

G(f ;m,m+ 1, . . . , n) = {(xi) ∈
∏n

i=mXi | xi ∈ fi,i+1(xi+1) for each m ≤ i ≤ n− 1}.

In particular,

G(f1,2) = G(f ; 1, 2) = {(x1, x2) ∈ X1 ×X2 | x1 ∈ f1,2(x2)}

is the graph of f1,2.

Definition 11. Let lim←−{Xi, fi,i+1} be an inverse limit of a sequence {Xi, fi,i+1} of spaces and upper
semi-continuous functions. Then the function

π[m,n] : lim←−{Xi, fi,i+1} → G(f ;m,m+ 1, . . . , n),

defined by π[m,n](x1, x2, . . . , xm, . . . , xn, xn+1, . . . ) = (xm, . . . , xn), is called the natural projection.

Proposition 4. Let X and Y be compact spaces and let f : X → 2Y be a set-valued function. Then f is
upper semi-continuous if and only if the graph of f is closed in X × Y .

4.1 dimension of inverse limits with set-valued functions

Recall that if each bonding map is a continuous mapping, the dimension of the inverse limit does not
exceed dimensions of the factor spaces. But in the case that each bonding map is set-valued, the fact is
not true.

Example 1. [14] Let f : I → 2I be the upper semi-continuous function defined by f(x) = I for every
x ∈ I. Then lim←−{I, f} is the Hilbert cube.

In Theorem 5.3 of [20] Nall proved the following theorem.

Theorem 11. [20] If for every i, let Xi be a space with dimXi ≤ n and let fi,i+1 : Xi+1 → 2Xi be an upper
semi-continuous function such that dim fi,i+1(x) ≤ 0 for every x ∈ Xi+1, then dim lim←−{Xi, fi,i+1} ≤ n.

In [2] Banič studied dimension of special types of inverse limits.
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Theorem 12. [2] Let A be a closed subset in I, let f : I → I be a continuous function, and let f̃ : I → 2I

be an upper semi-continuous function defined by

f̃(x) = { I (x ∈ A)
f(x) (otherwise),

then dim lim←−{I, f̃} = 1 or ∞.

On the other hands, there is a 2-dimensional inverse limit whose factor space is 1-dimensional.

Example 2. [14](Example 139) Let f : I → 2I be given by f(x) = 0 (0 ≤ x ≤ 1
2), f(12) =

[
0, 12

]
, f(x) =

1
2 (12 < x < 1), and f(1) =

[
1
2 , 1

]
. Then lim←−{I, f} is the union of a 2-cell and an arc intersecting only

one point.

In [15] H. Kato showed more generalized theorem by using ”expand-constant sequence”. To define this
sequence, we consider the following conditions;

Definition 12. For a function f : X → 2Y , put

D1(f) = {x ∈ X | dim f(x) ≥ 1}

D1(f
−1) = {y ∈ Y | dim f−1(y) ≥ 1},

respectively.

Definition 13. [15] Let Xi be a sequence of spaces and let fi,i+1 : Xi+1 → 2Xi be an upper semi-continuous
function. For y ∈ Xi and x ∈ Xi′ (i ≤ i′), we consider the following symbols:

y ← x⇐⇒ y ∈ fi,i′(x)

x◁⇐⇒ x ∈ D1(f
−1
i′,i′+1)

▷y ⇐⇒ i ≥ 2 and y ∈ D1(fi−1,i)

Also, for x ∈ Xi and y ∈ Xi′ (i+ 2 ≤ i′), we consider the following symbols:

x ≺ ▷y ⇐⇒ y ∈ D1(fi′−1,i′) and dim[f−1
i′,i′+1(x) ∩ fi′−1,i′(y)] ≥ 1

In particular,

x ⋄ y ⇐⇒ i′ = i+ 2, x ∈ D1(f
−1
i,i+1), y ∈ D1(fi+1,i+2),

and
dim[f−1

i,i+1(x) ∩ fi+1,i+2(y)] ≥ 1.

Definition 14. [15] For each xi ∈ Xi with xi ∈ D1(f
−1
i,i+1), we consider the following sequence:

▷ym1 ≺ ▷ym2 ≺ ▷ym3 ≺ · · · ≺ ▷ymk−1
≺ ▷ymk

← xi◁,

where 2 ≤ m1,mk ≤ i, mj + 2 ≤ mj+1(j = 1, 2, . . . , i− 1), and ymj ∈ Xmj (j = 1, 2, . . . , i). In this case,
we say the sequence {ymj , xi| 1 ≤ j ≤ k} is an expand-contract sequence in {Xi, fi,i+1}∞i=1 with
length k.

Definition 15. [15]For any expand-contract sequence

S : ▷ ym1 ≺ ▷ym2 ≺ ▷ym3 ≺ · · · ≺ ▷ymk−1
≺ ▷ymk

← xi◁,
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we put d(S) =
∑k

j=1 dim fmj−1,mj (ymj ). We define the index as follows;

J̃({Xi, fi,i+1}) = sup{d(S)| S is an expand-contract sequence in {Xi, fi,i+1}}

If there is no expand-contract sequence in {Xi, fi,i+1}, we put J̃({Xi, fi,i+1}) = 0.

Theorem 13. [15] Let Xi be a sequence of compacta and let fi,i+1 : Xi+1 → 2Xi be an upper semi-
continuous function for each i ∈ N. Suppose dimD1(fi,i+1) ≤ 0, then

dim lim←−{Xi, fi,i+1} ≤ J̃({Xi, fi,i+1}) + sup{dimXi| i ∈ N}.

Theorem 14. [15] Let Xi be a sequence of 1-dimensional compacta and let fi,i+1 : Xi+1 → 2Xi be a
surjective upper semi-continuous function for each i ∈ N. Suppose that for each i ≥ 2, Zi is a zero-
dimensional closed subset of Xi such that fi,i+1|Xi+1\Zi+1

: (Xi+1 \ Zi+1) → Xi is a mapping for each

x ∈ Xi+1 \ Zi+1 and i ∈ N. If J̃({Xi, fi,i+1}) = k, then

k ≤ dim lim←−{Xi, fi,i+1} ≤ k + 1.

Now we will define another index Ĩ(Xi, fi,i+1}).

Definition 16. [15] Let x ∈ Xm and y ∈ Xm′, where m′ ≥ m + 2. Then we consider the following
condition

x◁ ≻ y : x ∈ D1(f
−1
m,m+1), and dim[f−1

m,m+1(x) ∩ fm+1,m′(y)] ≥ 1

Note that x ⋄ y implies x ≺ ▷y and x◁ ≻ y.

Definition 17. [7] For each xn ∈ Xn with xn ∈ D1(fn−1,n), we consider the following sequence:

▷xn ← ym1◁ ≻ ym2◁ ≻ ym3◁ ≻ · · ·◁ ≻ ymk−1
◁ ≻ ymk

◁,

where n ≤ m1,mi + 2 ≤ mi for i = 1, 2, . . . , k − 1 and ymi ∈ Xmi for i = 1, 2, . . . , k. In this case we say
that the sequence {xn, yn | 1 ≤ i ≤ k} is an inverse expand-contract sequence in {Xi, fi,i+1}∞i=1

with length k.

For any inverse expand-contract sequence, consider

S : ▷ xn ← ym1◁ ≻ ym2◁ ≻ ym3◁ ≻ · · ·◁ ≻ ymk−1
◁ ≻ ymk

◁.

We put d(S) =
∑k

i=1 dim f−1
mi,mi+1

(ymi). We define the index Ĩ({Xi, fi,i+1}) as follows;

Ĩ({Xi, fi,i+1}) = sup{d(S)| S is an inverse expand-contract sequence in {Xi, fi,i+1}}

If there is no inverse expand-contract sequence in {Xi, fi,i+1}∞i=1, we put Ĩ({Xi, fi,i+1}) = 0. Note that
for any upper semi-continuous function f : X → 2X , Ĩ({X, f}) = J̃({X, f−1}).
We will define a weak inverse expand-contract sequence.

Definition 18. [7] We consider the following sequence:

ym1◁ ≻ ym2◁ ≻ ym3◁ ≻ · · ·◁ ≻ ymk−1
◁ ≻ ymk

◁.
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We say the sequence {ymi | 1 ≤ i ≤ k} is a weak inverse expand-contract sequence in {Xi, fi,i+1}∞i=1

with length k.

Also we put d(S) =
∑k

i=1 dim f−1
mi,mi+1

(ymi) and the index

W̃ ({Xi, fi,i+1}) = sup{d(S)| S is a weak inverse expand-contract sequence in {Xi, fi,i+1}}.

If each Xi is 1-dimensional, then Ĩ({Xi, fi,i+1}) (resp. W̃ ({Xi, fi,i+1})) is the maximal length of all (resp.
weak) inverse expand-contract sequences in {Xi, fi,i+1}. Note that Ĩ({Xi, fi,i+1}) ≤ W̃ ({Xi, fi,i+1})). In
general, Ĩ({X, f}) is not equal to J̃({X, f}) and Ĩ({X, f}) is not equal to W̃ ({X, f}).

Example 3. [7] Let C be a Cantor set in
[
1
2 ,

3
4

]
with {12 ,

3
4} ⊂ C. Let f : I → 2I be the surjective

upper semi-continuous function defined by as follows: f(
[
0, 14

]
) = 0, f(14) =

[
0, 14

]
, f((14 ,

1
2)) = 1

4 and
f |
[
1
2 ,

3
4

]
:
[
1
2 ,

3
4

]
→

[
1
4 ,

1
2

]
is a map with f(C) =

[
1
4 ,

1
2

]
, f(34) = C, f((34 , 1)) =

3
4 , f(1) =

[
3
4 , 1

]
. Then

▷1
4 ←

1
4◁ ≻

3
4◁

is a maximal inverse expand-contract sequence in {I, f}. Note that there is no x ∈ I such that

▷1
4 ≺ x← 3

4◁.

Also

▷1
4 ←

3
4 ◁ and ▷ 1

4 ←
1
4◁

are maximal expand-contract sequences in {I, f}. Hence J̃({I, f}) = 1 < 2 = Ĩ(I, f}). Let g = f−1, then
Ĩ({I, g}) = J̃({I, g}) = 1 < 2 = Ĩ(I, f}) = J̃({I, g}). Consider the map h : J =

[
1
4 , 1

]
→ 2J defined by

h(x) = f(x) ∩
[
1
4 , 1

]
. Then Ĩ(J, h}) = 0 < 1 = W̃ ({J, h}).

Theorem 15. [7] Let Xi be a sequence of compacta and let fi,i+1 : Xi+1 → 2Xi be an upper semi-
continuous function for each i ∈ N. Suppose dimD1(f

−1
i,i+1) ≤ 0, then

dim lim←−{Xi, fi,i+1} ≤ Ĩ({Xi, fi,i+1}) + sup{dimXi | i ∈ N}.

Proof. We consider the inverse f−1
i,i+1 : Xi → 2Xi+1 of fi,i+1 and the sequence {Xi, f

−1
i,i+1 :}. From the

proof of [15], we get

dimG(f ; 1, 2, . . . , i) = dimG(f−1; 1, 2, . . . , i) ≤ Ĩ({Xi, fi,i+1}) + sup{dimXi | i ∈ N}

for each i ∈ N. Hence dim lim←−{Xi, fi,i+1} ≤ Ĩ({Xi, fi,i+1}) + sup{dimXi | i ∈ N}.

4.2 Dimensionally stepwise spaces and inverse limits with set-valued functions

An important question with inverse limits is what structures of the inverse limit are determined by the
factor spaces and the bonding maps. For this problem, Nall [20] showed the following theorem;

Theorem 16. [20] Suppose f :
[
0, 1

]
→ 2

[
0,1
]
is a surjective upper semi-continuous function. Then

lim←−{
[
0, 1

]
, f} is not an n-manifold for any n > 1.
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We will use an idea of Nall in the proof of above theorem. Recall that an n-dimensionalCantor manifold
is an n-dimensional compact space such that for each representation of X as the union of two non-empty
closed proper subsets A and B, dim

[
A∩B

]
≥ n− 1. Note that every n-manifold is a Cantor n-manifold.

Proposition 5. [7] Let G be a graph and let f : G→ 2G be an upper semi-continuous function. If there
is a point x ∈ G such that dimπ−1

1 (x) = m, then there is a free arc J of G such that dimπ−1
1 (int(J)) = m

and dimπ−1
1 (z) ≥ m − 1 for each z ∈ J . In particular, there is an open set Um of lim←−{G, f} such that

dimUm = m.

Proof. Let σf : lim←−{G, f} → lim←−{G, f} be the shift map defined by

σf (x1, x2, x3, . . . ) = (x2, x3, . . . ).

Note that if H is a subset of lim←−{G, f} such that π[1,k](H) is degenerate, then (σf )
i|H : H → lim←−{G, f}

is injective for 1 ≤ i ≤ k (see the proof of Nall in [13], Theorem 5.5.).
Let x = x1 be a point of G such that dimπ−1

1 (x1) = m. Then we can choose a Cantor m-dimensional
manifold H in π−1

1 (x1). Let k ∈ N such that πk(H) is nondegenerate and πi(H) is degenerate for each
1 ≤ i < k. Let J be a free arc of G with J ⊂ int(πk(H)). Note that there do not exist two points
z, z′ ∈ J (z ̸= z′) such that dimπ−1

1 ({z, z′}) ≤ m − 2, because π−1
1 ({z, z′}) separates the continuum

H ′ = σ
(k−1)
f (H) which is homeomorphic to the Cantor m-dimensional manifold H. Hence we can choose

a small free arc J such that dimπ−1
1 (z) ≥ m− 1 for each z ∈ J . Put

K = {(xi)∞i=1 ∈ lim←−{G, f} | xi = πi(H) for 1 ≤ i < k and xk ∈ J}.

Then K ⊂ π−1
1 (x1) and K contains a nonempty open set of H, hence K is m-dimensional. Let

K ′ = π−1
1 (J) (= {(yi)∞i=1 ∈ lim←−{G, f} | y1 ∈ J}) (= σ

(k−1)
f (K)).

Since K and K ′ are homeomorphic, K ′ is m-dimensional. Put Um = π−1
1 (int(J)) ⊂ K ′. Note that Um

contains a nonempty open set of σ
(k−1)
f (H). Then dimUm = m.

Lemma 2. [7] Let G be a graph and let f : G → 2G be an upper semi-continuous function such that
dimD1(f

−1) ≤ 0 and W̃ ({G, f}) < ∞. Then lim←−{G, f} is finite dimensional and for any 1 ≤ n <

dim lim←−{G, f} there is a point y ∈ G such that dimπ−1
1 (y) = n.

Proof. Since Ĩ({G, f}) ≤ W̃ ({G, f}) <∞, by theorem 15 we see that lim←−{G, f} is finite dimensional.
For any natural number m ≥ 2, we will prove the following claim C(m).

C(m) : If there is a point y ∈ G such that dimπ−1
1 (y) = m, then there is a point y′ ∈ G such that

dimπ−1
1 (y′) = m− 1.

Suppose, on the contrary, that for any x ∈ G, dimπ−1
1 (x) ̸= m−1. Let y1 ∈ G such that dimπ−1

1 (y1) =
m. We choose a Cantor m-dimensional manifold H in dimπ−1

1 (y1). Let m1 ∈ N such that πm1+1(H) is
nondegenerate and πi(H) is degenerate for each 1 ≤ i ≤ m1, i.e., π[1,m1](H) is degenerate and π[1,m1+1](H)
is nondegenerate. Put π[1,m1](H) = (y1, y2, . . . , ym1). Let J1 be a free arc in int(πm1+1(H)). Then we
may assume that

dimπ−1
[1,m1+1](y1, y2, . . . , ym1 , x) = dimπ−1

1 (x) ≥ m− 1

for each x ∈ J1 (see above Proposition), and hence by the assumption,

dimπ−1
[1,m1+1](y1, y2, . . . , ym1 , x) = m.
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Let L = {Lj | j ∈ N} be a countable family of arcs in G satisfying that for any nonempty open set V
of G, there is Lj ∈ L with Lj ⊂ V . For k, j ∈ N, let J(k, j) be the set of all x ∈ J1 such that there is a
Cantor m-dimensional manifold Hx of π−1

[1,m1+1](y1, y2, . . . , ym1 , x) (∼= π−1
1 (x)), and πi(Hx) is degenerate

for 1 ≤ i < k, πk(Hx) contains Lj . Note that

J1 =
∪

k,j∈N
J(k, j) =

∪
k,j∈N

cl(J(k, j)).

By the Baire Category theorem, we can choose k, j ∈ N such that cl(J(k, j)) contains a nonempty
open set, hence dim cl(J(k, j)) = 1. Put m′

1 = k and we can choose a point ym′ ∈ int(Lj) such that
dimπ−1

1 (ym′
1
) ≥ m − 1 (see the proof of above Proposition). By the assumption, dimπ−1

1 (ym′
1
) = m.

Then f (m′
1−(m1+1))(ym′

1
) ⊃ J(k, j) and hence f (m′

1−(m1+1))(ym′
1
) ⊃ cl(J(k, j)). Then we can choose

ym2 ∈ G such that m′
1 ≤ m2,

ym1◁ ≻ ym′
1
← ym2◁,

and there is a free arc J2 in f−1(ym2) such that dimπ−1
1 (z) = m for each z ∈ J2. If we continue this

procedure, we obtain a sequence of natural numbers

m1 < m′
1 ≤ m2 < m′

2 ≤ m2 < . . . ,

and an infinite weak inverse expand-contract sequence

ym1◁ ≻ ym2◁ ≻ · · ·◁ ≻ ymk−1
◁ ≻ ymk

◁ · · · ,

in {G, f}. Then W̃ ({G, f}) =∞. This is a contradiction. Consequently, the claim C(m) is true. Consider
the map π1 : lim←−{G, f} → G. By Theorem 4, we can find for any 1 ≤ n < dim lim←−{G, f} there is a point

y ∈ G such that dimπ−1
1 (y) = n.

Definition 19. Let X be a space with dimX <∞. Then X is a dimensionally stepwise space if for
any 1 ≤ m ≤ dimX, there is an open subset Um of X such that dimUm = m.

Note that any zero-dimensional spaces and one-dimensional spaces are dimensionally stepwise spaces.

Theorem 17. Suppose that G is a graph and f : G→ 2G is an upper semi-continuous function such that
dimD1(f

−1) ≤ 0 and W̃ ({G, f}) <∞. Then X = lim←−{G, f} is a dimensionally stepwise space.

Proof. This theorem follows from Proposition 5 and Lemma 2.

Theorem 18. [7] Suppose that G is a graph and f : G → 2G is a surjective upper semi-continuous
function. If the inverse limit lim←−{G, f} is homeomorphic to a polyhedron P , then P is a dimensionally
stepwise space.

Proof. Since P is a polyhedron, the following condition (∗i) is true:

(∗i) If U is an open set of P with dimU = i (i ≥ 1), then U can not contain uncountable mutually
disjoint i-dimensional subsets.
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Let dimP = m. We may assume that m ≥ 2. Consider the map π1 : P → G. By the Theorem 4, we
can find a point y ∈ G such that dimπ−1

1 (y) ≥ m− 1. If dimπ−1
1 (y) = m, by Proposition 5 there is a free

arc J1 of G such that dimπ−1
1 (int(J)) = m and dimπ−1

1 (z) ≥ m − 1 for each z ∈ J1. By the condition
(∗i), we can find a point y1 ∈ J1 such that dimπ−1

1 (y1) = m − 1. Also, by Proposition 5 we can find a
free arc J2 such that dimπ−1

1 (int(J2)) = m− 1 and dimπ−1
1 (z) ≥ m− 2 for each z ∈ J2. By (∗m−1), we

can find a point y2 ∈ J2 such that dimπ−1
1 (y2) = m− 2. If we continue this procedure, we can prove that

for any 1 ≤ i < dimP = m there is a point z ∈ G such that dimπ−1
1 (z) = i. Then the theorem follows

from Proposition 5.

Corollary 2. Let G be a graph and let f : G→ 2G be an upper semi-continuous function. Suppose that
the inverse limit lim←−{G, f} = X satisfies the condition that dimX < ∞ and if U is any open set of X
with dimU = i ≥ 1, U can not contain uncountable mutually disjoint i-dimensional subsets. Then X is
a dimensionally stepwise space.

Corollary 3. No inverse limit with a single upper semi-continuous bonding function on a graph can be
an n-cell (n ≥ 2).

Example 4. Let f : I → C(I) be the surjective upper semi-continuous function defined by f(x) = 0 (x ∈[
0, 13)), f(

1
3) =

[
0, 13 ], f(x) =

1
3(x ∈ (13 ,

2
3)), f(

2
3) =

[
1
3 ,

2
3

]
, f(x) = 2

3 (x ∈ (23 , 1)), and f(1) =
[
2
3 , 1

]
. Note

that

0♢1
3♢

2
3◁

is a maximal weak inverse expand-contract sequence in {I, f}, and

is a maximal (inverse) expand-contract sequence in {I, f}. We see that Ĩ({I, f}) = 2 = J̃({I, f}) and
W̃ ({I, f}) = 3. Also {I, f} satisfies the condition of Theorem 18. Hence lim←−{I, f} is a 3-dimensional,
dimensionally stepwise space. In fact, lim←−{I, f} is a 3-cell with a fin.

Example 5. Let f : I → C(I) be the surjective upper semi-continuous function defined by f(0) = I and
f(x) = 0 (x ∈ (0, 1

]
). In this case, we have the inverse expand-contract sequence with infinite length as

follows;

▷0♢0♢0♢ . . .

Note that W̃ ({I, f}) = ∞. We see that lim←−{I, f} is the Hilbert cube. Note that lim←−{I, f} has no finite
dimensional nondegenerate open sets and hence it is not a dimensionally stepwise space.

4.3 ANR of inverse limits with set-valued functions

In this section, we study ANR properties of inverse limits with set-valued functions.

Definition 20. [16] Let X be a continuum contained in a metric space M . Then X is weak homotopi-
cally trivial within small neighborhoods of M provided that if f : Sn → X is any map from the
n-sphere Sn (n ≥ 0) to X, then f is null-homotopic in any neighborhood of X in M .

Note that if X is an FAR, then X is weak homotopically trivial within small neighborhoods of any ANR
M .
We consider the following property (∗);

there is a sequence {Vn}n≥0 of finite closed coverings of X such that
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1. V0 = {X}, and X =
∪
{intXV | V ∈ Vn} for each n,

2. lim
n→∞

mesh(Vn) = 0, and

3. if Vα ∈ V =
∪

n Vn and
∩

α Vα ̸= ∅, then
∩

α Vα is weak homotopically trivial within small neighbor-
hoods of M .

Also we consider the following property local (∗);

there is a sequence {Vn}n∈N of finite closed coverings of X such that

1. X =
∪
{intXV | V ∈ Vn} for each n,

2. lim
n→∞

mesh(Vn) = 0, and

3. if Vα ∈ V =
∪

n Vn and
∩

α Vα ̸= ∅, then
∩

α Vα is weak homotopically trivial within small neighbor-
hoods of M .

We need the following propositions in Lemma 3.2. of [16]

Proposition 6. [16] Suppose that Xi (i ∈ N) is a continuum contained in a metric space M . If X has
the property local (∗), then X is an ANR. Moreover, if X has the property (∗), then X is an AR.

Proposition 7. [16] Suppose that Xi is a finite dimensional compactum and let fi,i+1 : Xi+1 → 2Xi be
a surjective upper semi-continuous function for each i ∈ N such that f−1

i,i+1 is cell-like (i.e., f−1
i,i+1(xi+1)

is an FAR). Then the inverse limit lim←−{Xi, fi,i+1} is shape equivalent to X1. Moreover if X1 is an FAR,
then lim←−{Xi, fi,i+1} is also an FAR.

Proof. Consider the inverse sequence

X1 ← G(f ; 1, 2)← G(f ; 1, 2, 3)← · · ·

whose bonding maps pn,n+1 : G(f ; 1, 2, . . . , n + 1) → G(f ; 1, 2, . . . , n) are natural projections defined
by pn,n+1(x1, x2, . . . , xn, xn+1) = (x1, x2, . . . , xn). Since the projections p−1

n,n+1 are cell-like, pn,n+1 :
G(f ; 1, 2, . . . , n + 1) → G(f ; 1, 2, . . . , n) induces a shape equivalence. Hence we see that the inverse
lim←−{G(f ; 1, 2, . . . , i), pi,i+1} = lim←−{Xi, fi,i+1} is shape equivalent toX1. IfX1 is an FAR, then lim←−{Xi, fi,i+1}
is also an FAR.

In [13], Ingram gave many examples of inverse sequences of the unit interval I with upper semi-continuous
set-valued functions whose inverse limits are dendrites. We need the following condition. Let f : X → 2Y

be an upper semi-continuous function. Consider the condition Z(f) for f .

Z(f): For any x ∈ X and y ∈ Y with y ∈ f(x), any closed neighborhood A′ of x in X and any
closed neighborhood B′ of y in Y , there are a closed neighborhood A of x in X and a closed connected
neighborhood B of y in Y such that A ⊂ A′, B ⊂ B′, and the pair (B,A) satisfies the condition; for any
subcontinuum K of A with x ∈ K, the set C(B,A; K) = {z ∈ B | f−1(z) ∩ K ̸= ∅} (= f(K) ∩ B) is
connected.

Remark. Let K be any finite simplicial complex in I×I and let f ; I → 2I be the upper semi-continuous
function defined by G(f) = |K|. Then f satisfies the condition Z(f).

The main theorem of this section is the following.
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Theorem 19. Let Gi (i ∈ N) be a graph and let fi,i+1 : Gi+1 → 2Gi be a surjective upper semi-continuous
function for each i ∈ N such that f−1 is cell-like. Suppose that each fi,i+1 : Gi+1 → 2Gi satisfies
the condition Z(fi,i+1). Then the inverse limit lim←−{Gi, fi,i+1} of the inverse sequence {Gi, fi,i+1} is an
ANR which is homotopic to G1. Moreover, if G1 is a tree, then lim←−{Gi, fi,i+1} is an AR. Especially, if

dimD1(f
−1
i,i+1) ≤ 0 (i ∈ N) and Ĩ({Gi, fi,i+1}) = 0, then {Gi, fi,i+1} is a dendrite.

Proof. In the proof, we use the fact that the intersection of continua (= trees) contained in a tree is an
empty set or a tree.
Suppose that ε > 0 is a very small positive number. Let n ∈ N and (x1, x2, . . . , xn) ∈ G(f ; 1, 2, . . . , n).

Since f−1
i,i+1(xi) (i = 1, 2, . . . , n − 1) is a tree in Gi+1, we choose a closed neighborhood Ti+1 of f−1

i,i+1(xi)
in Gi+1 such that Ti+1 is a tree. Also, we choose a closed neighborhood Bi (i = 1, 2, . . . , n) of xi in Gi

such that Bi is a tree such that Bi+1 ⊂ Ti+1 (i = 1, 2, . . . , n − 1), diamBi ≤ ε, and f−1
i,i+1(Bi) ⊂ Ti+1 for

each i = 1, 2, . . . , n− 1. Put

V (x1, x2, . . . , xn;B1, B2, . . . , Bn; ε) = {(zi) ∈ lim←−{Gi, fi,i+1} | zi ∈ Bi (i = 1, 2, . . . , n)}.

Moreover, by use of the property Z(fi,i+1), we can choose closed neighborhoods Bn, Bn−1, . . . , B1 such that
V (x1, x2, . . . , xn;B1, B2, . . . , Bn; ε) is an FAR. First, we choose a small closed connected neighborhood
Bn of xn in Gn which is a tree and a small closed connected neighborhood B′

n−1 of xn−1 in Gn−1 such
that the pair (B′

n−1, Bn) satisfies the condition c(B′
n−1, Bn). Inductively, we have pairs (B′

i−1, Bi) (i =
n − 1, n − 2, . . . , 2) such that B′

i and Bi are small closed connected neighborhoods of xi in Gi, Bi ⊂
B′

i (i = n− 1, n− 2, . . . , 2) and the pair (B′
i−1, Bi) satisfies the condition c(B′

i−1, Bi). Put B1 = B′
1 . Let

Cn = Bn and let Cn−1 = C(B′
n−1, Bn;Cn) ∩ Bn−1, Cn−2 = C(B′

n−2, Bn−1;Cn−1) ∩ Bn−2. If we continue
this procedure inductively, we have the sequence Ci (i = n, n− 1, n− 2, . . . , 1) of trees such that xi ∈ Ci.
We will show that

V (x1, x2, . . . , xn;B1, B2, . . . , Bn; ε) = lim←−{Yi, gi,i+1},

where Y1 = C1, Y2 = f−1
1,2 (Y1) ∩ C2, Y3 = f−1

2,3 (Y2) ∩ C3, . . . , Yn = f−1
n−1,n(Yn−1) ∩ Cn, Yi = f−1

n,i (Yn) (i ≥ n)

and gi,i+1 : Yi+1 → 2Yi is the set-valued function defined by gi,i+1(z) = Yi ∩ fi,i+1(z) for z ∈ Yi+1. By the
definitions, we see that V (x1, x2, . . . , xn;B1, B2, . . . , Bn; ε)) ⊃ lim←−{Yi, gi,i+1}. We will show the converse
inclusion. Let

y = (yi) ∈ V (x1, x2, . . . , xn;B1, B2, . . . , Bn; ε).

Since yn ∈ Bn = Cn, then yn−1 ∈ C(B′
n−1, Bn;Cn) ∩ Bn−1 = Cn−1. Since yn−1 ∈ Cn−1, then

yn−2 ∈ C(B′
n−2, Bn−1;Cn−1) ∩ Bn−2 = Cn−2. If we continue this procedure, we see that yi ∈ Ci and

hence yi ∈ Yi for i ∈ N. This implies that y ∈ lim←−{Yi, gi,i+1}. Hence

V (x1, x2, . . . , xn;B1, B2, . . . , Bn; ε) = lim←−{Yi, gi,i+1}.

Note that for x ∈ Yi (i = 1, 2, . . . , n − 1), g−1
i,i+1(x) = f−1

i,i+1(x) ∩ Yi+1 (⊂ Ti+1). Hence g−1
i,i+1

is cell-like for i ∈ N. Since Y1 = C1 is a tree, by Proposition 7, lim←−{Yi, gi,i+1} is an FAR. Hence
V (x1, x2, . . . , xn;B1, B2, . . . , Bn; ε) is an FAR.
Let ε1 > ε2 > ε3 > · · · be a sequence of positive numbers with lim

i→∞
εi = 0. For n ∈ N, there is a finite

set Fn of G(g : 1, 2, . . . , n) such that

lim←−{Gi, fi,i+1} =
∪
{V (x1, x2, . . . , xn;B1, B2, . . . , Bn; εn) | (x1, x2, . . . , xn) ∈ Fn}.

Put
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Vn = {V (x1, x2, . . . , xn;B1, B2, . . . , Bn; εn) | (x1, x2, . . . , xn) ∈ Fn}.

By the definitions of V (x1, x2, . . . , xn;B1, B2, . . . , Bn; εn), we see that the sequence {Vn}n=1,2,... is a
family of finite closed coverings of lim←−{Gi, fi,i+1} satisfying the conditions (i) and (ii) of local (∗). Note
that
if V = V (x1, x2, . . . , xn;B1, B2, . . . , Bn; εn) ∈ {Vn}n=1,2,...,
then V can be represented by the inverse limit lim←−{Yi, gi,i+1} as above. If n ≤ n′,

V (x1, x2, . . . , xn;B1, B2, . . . , Bn; εn),
and

V (x′1, x
′
2, . . . , x

′
n′ ;B′

1, B
′
2, . . . , B

′
n′ ; εn′) ∈ {Vn}n=1,2,...,

then we see that

V (x1, x2, . . . , xn;B1, B2, . . . . , Bn; εn) ∩ V (x′1, x
′
2, . . . , x

′
n′ ;B′

1, B
′
2, . . . , B

′
n′ ; εn′)

= {(zi) ∈ lim←−{Gi, fi,i+1} | zi ∈ Bi ∩B′
i (i = 1, 2, . . . , n) and zj ∈ Bj (j = n+ 1, . . . , n′)}

is an empty set or an FAR, because that it can be represented by an inverse limit lim←−{Zi, gi,i+1}, where
Z1 is a tree and gi,i+1 is cell-like. Note that the intersection of decreasing sequence of FARs is also an
FAR. By using these arguments, moreover we see that {Vn}n=1,2,... also satisfies the condition (iii) of
local (∗). By Proposition 6, lim←−{Gi, fi,i+1} is an ANR. By Proposition 7, we see that the inverse limit
lim←−{Gi, fi,i+1} is shape equivalent to G1 and hence it is homotopy equivalent to G1. Moreover, if G1

is a tree, then lim←−{Gi, fi,i+1} is a contractible ANR and hence AR. If dimD1(f
−1
i,i+1) ≤ 0 (i ∈ N) and

Ĩ({Gi, fi,i+1}) = 0, then lim←−{Gi, fi,i+1} is 1-dimensional and hence it is a dendrite. This completes the
proof.

Corollary 4. Let Ii (i ∈ N) be a sequence of the unit interval I and let fi,i+1 : Ii+1 → 2Ii be a surjective
upper semi-continuous function for each i ∈ N such that f−1

i,i+1 is monotone and f satisfies Z(fi,i+1).

Then lim←−{Ii, fi,i+1} is an AR. Moreover, if dimD1(f
−1
i,i+1) ≤ 0 (i ∈ N) and Ĩ({Ii, fi, i+1}) = 0, then

lim←−{Ii, fi,i+1} is a dendrite.

Corollary 5. Let Ii (i ∈ N) be a sequence of the unit interval I and let Ki be a finite simplicial complex
in Ii × Ii+1 satisfying that for any x ∈ Ii+1, (Ii × {x}) ∩ |Ki| ̸= ∅ and for any y ∈ Ii, ({y} × Ii+1) ∩ |Ki|
is a nonempty connected set (=a closed interval). Let fi,i+1 : Ii+1 → 2Ii be the surjective upper semi-
continuous function defined by G(fi,i+1) = |Ki|. Then lim←−{Ii, fi,i+1} is an AR. Moreover, if dim |Ki| ≤
1 (i ∈ N) and Ĩ({Ii, fi,i+1}) = 0, then lim←−{Ii, fi,i+1} is a dendrite.

Corollary 6. If f : G → 2G is a surjective upper semi-continuous function such that f−1 is a tree,
dimD1(f

−1) ≤ 0, and W̃ ({G, f}) < ∞ and f satisfies Z(f), then the inverse limit lim←−{G, f} with
the single upper semi-continuous bonding function f is a dimensionally stepwise ANR-space which is
homotopic to G.

Example 6. [7] Let g : I → I be the map defined by

g(x) = x
2 (1 + sin π

2x)

for x ∈ (0, 1
]
and g(0) = 0. Let f = g−1 : I → 2I and h : I → 2I be the surjective upper semi-continuous

function defined by h(x) = 0 (x ∈
[
0, 1)) and h(1) = I. Consider the inverse sequence {Ii, fi,i+1}

defined by f1,2 = f, f2,3 = h, fi,i+1 = id (i ≥ 3). Note that f−1
i,i+1 is cell-like, each graph G(fi,i+1) is

homeomorphic to an arc, and hence locally connected. But it does not satisfies the condition Z(f1,2). For
the points x = 0, y = 0, the set C(B,A;K(= {0})) = {z ∈ B | f−1(z) ∩ {0} ̸= ∅} is not connected for
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any neighborhood A of x = 0 and any neighborhood B of y = 0. In fact, we see that lim←−{Ii, fi,i+1} is

homeomorphic to the following set X in the Euclidean 3-space R3;

X = {(x, y) ∈ R2 | x ∈ I, y = g(x)} ∪ S ×
[
0, 1

]
(⊂ R2 × R),

where S = {(x, 0) | x ∈ I, g(x) = 0}. Note that lim←−{Ii, fi,i+1} is not locally connected and hence not an
ANR.

Example 7. [13] Let f : I → 2I be the upper semi-continuous function defined by f(x) = {0, 1} (x ∈ I).
Note that f is not surjective, f satisfies the condition Z(f) and f−1(0), f−1(1) are arcs. But lim←−{I, f}
is a Cantor set and hence not an ANR.

Example 8. [13] Let f : I → C(I) be the surjective upper semi-continuous function defined by f(x) =
{0, x} (x ∈ I). Note that f satisfies the condition Z(f), Hence lim←−{I, f} is a dendrite. In fact, it is a
simple fan.

Example 9. Let f : I → 2I be the surjective upper semi-continuous function defined by f(x) = {0, 1} (x ̸=
1
2) and f(12) = I. Note that f satisfies the condition Z(f), f−1 is cell-like, dimD1(f

−1) ≤ 0 and

Ĩ({I, f}) = 0. Hence lim←−{I, f} is a dendrite. In fact, it is a dendrite with a Cantor set of endpoints.

Example 10. Let n ∈ N with n ≥ 2 and let f : I → C(I) be the surjective upper semi-continuous

function defined by f(x) = 0 (x ∈
[
0, 1

n)) and for 1 ≤ i ≤ n − 1, f( 1n) =
[
( (i−1)

n , 1
n

]
, f(x) = i

n (x ∈
( i
n ,

(i+1)
n )), f(1) =

[ (n−1)
n , 1

]
. Then

0 ⋄ 1
n ⋄

2
n ⋄ · · · ⋄

(n−1)
n ◁

is a maximal weak inverse expand-contract sequence in lim←−{I, f}. Note that Ĩ({I, f}) = J({I, f}) =

n − 1, W̃ ({I, f}) = n, f−1 is cell-like and f satisfies the condition Z(f). We see that lim←−{I, f} is
n-dimensional and a dimensionally stepwise AR. In fact, the space is a polyhedron.
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