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Abstract 

 

Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are age-related conditions. 

T2D is characterized as a peripheral metabolic disorder and AD a degenerative disease 

of the central nervous system, respectively. The incidence of both disturbances is 

increasing and has become a major public health concern in many industrialized 

countries. Despite intense research, best strategies to treat and prevent these costly 

diseases are still under investigation. However, it is now widely recognized that T2D 

and AD share many pathophysiological features including increased oxidative stress and 

amyloid aggregation. 

Amyloid Beta (Aβ) is the components of the amyloid deposits in the AD brain, while 

the component of the amyloidogenic peptide deposit in the pancreatic islets of 

Langerhans is identified as human islet amyloid polypeptide (hIAPP). These two 

proteins are originated from the amyloid precursor protein and have a high sequence 

similarity. Although the amino acid sequences of amyloidogenic proteins are diverse, 

they all adopt a similar structure in aggregates called cross-beta-spine. Add at that, 

extensive studies in the past years have found that like Aβ1-42, hIAPP forms early 

intermediate assemblies as spherical oligomers, implicating that these oligomers possess 

a common folding pattern or conformation. These similarities can be used in the search 

for effective pharmacotherapy for T2D, since potent therapeutic agents such as 

antioxidants with a catechol moiety, proved to inhibit Aβ aggregation, may play a key 

role to inhibit the aggregation of hIAPP responsible of the β cell death in the pancreas of 

diabetic patients. 

Tamarix gallica is one of the medicinal halophyte species having a powerful 

antioxidant system. Although it was traditionally used for the treatment of various liver 

metabolic disorders, there is no report about the use of this plant for the treatment or 

prevention of T2D and AD.  

Therefore, the aim of this work is to investigate its protective effect towards T2D and 

AD by isolation and identification of the bioactive compounds with α-glucosidase 

inhibitory activity and antioxidant potential, which play a role in the regulation of 

glucose metabolism in diabetic patient, as well as, the polymerization of hIAPP and Aβ 
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aggregation inhibitors. 

Dried and crushed aerial parts of T. gallica were extracted with 70% EtOH and then 

partitioned with CHCl3, EtOAc, BuOH, and H2O. From the CHCl3 and EtOAc layers, 

10 flavonoids 1-10 were isolated and identified using the bioassay-guided fractionation 

for α-glucosidase inhibition assays. And among those substances, O-methylated and 

glucuronosylated flavonoids were selected to conduct further advanced experiment.  

For α-glucosidase inhibitory activity, p-nitrophenol-α-D-glucopyranoside (p-NPG) 

and glucose oxidase assays were performed to determine the inhibition potential of each 

flavonoid and to study the structure-activity relationship of flavonoids 1-10. The 

enzyme kinetic protocol was used to study the mechanism of action. Synergistic 

potential of the selected substances, when applied with a very low concentration of 

acarbose, was also performed, suggesting that they can be used not only as α-

glucosidase inhibitors but also combined with established α-glucosidase inhibitors to 

reduce the adverse effect. 

The antioxidant potential of the purified flavonoids 1-10 was evaluated by DPPH 

(2,2-diphenylpicrylhydrazyl) and superoxide dismutase (SOD) assays. Furthermore, 

thioflavin T (Th-T) assay using 42-mer amyloid β-protein (Aβ1-42) for AD and hIAPP 

which is a 37-residue peptide secreted by the pancreatic β cells for T2D and 

transmission electronic microscopy (TEM) observation were conducted to evaluate the 

amyloid aggregation of flavonoids 1-10 and to study their structure-activity relationship.  

From this research, it was concluded that glucuronosylated flavonoids playing a role 

in the regulation of glucose metabolism as α-glucosidase inhibitors and antioxidant 

substances may also inhibit the amyloid aggregation, and that the flavonoids with a 

catechol moieties inhibiting Aβ aggregation, might be used to inhibit the aggregation of 

hIAPP responsible of the β cell destruction in the pancreas of diabetic patients.   
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Chapter I 

General introduction  

 

Diabetes mellitus (DM) and Alzheimer’s disease (AD) are age-related conditions
1,2)

. 

Nowadays, the incidence of both Diabetes mellitus (DM) and Alzheimer’s disease (AD) 

is increasing at an alarming rate and has become a major public health concern in many 

industrialized countries
3)

.   

DM is one of the most common metabolic diseases, affecting more than 240 million 

people worldwide and it is projected that this number will continue to increase in the 

next decade because of the sedentary life style and inappropriate diet
4)

.   

AD is the most common form of dementia and is characterized by progressive 

cognitive and behavioral deficits. This disease affects over 24 million people globally 

and the worldwide prevalence of AD is estimated to double in the next 20 years
5)

.      

Despite many years of intense research, the field lacks consensus regarding the 

etiology and pathogenesis of type 2 diabetes (T2D) and AD, and therefore the best 

strategies for treating and preventing these costly diseases are still under investigation
6)

.    

However, growing evidence supports the concept that AD is fundamentally a 

metabolic disease with substantial and progressive derangements in brain glucose 

utilization. And, many epidemiological studies have shown that diabetic individuals 

have a significantly higher risk of developing AD
7,8)

.     

Moreover, AD is now recognized to be heterogeneous in nature, and not solely the 

end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid β 

peptides and hyperphosphorylated tau. Other factors, including impairments in energy 

metabolism and increased oxidative stress should be incorporated into all equations 

used to develop diagnostic and therapeutic approaches to AD
6,8)

.   

In addition, many research suggested that it is imperative for future therapeutic 

strategies of AD to abandon the concept of uni-modal therapy in favor of multi-modal 

treatments that target distinct impairments at different levels
9)

.  

Common pathophysiological features between T2D and AD have already been 

reported including glucose metabolism, increased oxidative stress and amyloid 

aggregation
6, 10-13)

.  
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The role that glucose plays in the diabetic conditions is well known, yet, glucose was 

also reported to be the only required source of energy for neurons and any disruption in 

glucose metabolism leads to compromised neuronal functions. Adolfsson et al. reported 

that the hypoglycemic condition (low blood glucose) can ameliorate brain status in 

AD
14)

.     

Amyloid β (Aβ) is the components of the amyloid deposits in the AD brain and 

originated from the amyloid precursor protein (APP)
 15)

, while the component of the 

amyloidogenic peptide deposit in the pancreatic islets of Langerhans is identified as 

islet amyloid polypeptide (IAPP), a 37-amino acid peptide
16,17)

.   

These two proteins have a high sequence similarity, where the chaperone protein 

pathway preventing IAPP and Aβ aggregation may be common and act on both of them. 

It has been suggested that the decreased capacity of this shared chaperone protein is 

responsible for the development of AD and T2D. This means that islet amylogenesis is 

increased in patients with AD, and that the density of neurite plaques and their diffusion 

are positively related to the duration of diabetes
17)

.  Although the amino acid sequences 

of amyloidogenic proteins are diverse, they all adopt a similar structure in aggregates 

called cross-beta-spine
18)

.  Add at that, extensive studies in the past years have found 

that like Aβ1-42, IAPP forms early intermediate assemblies as spherical oligomers
19-20) 

that are recognized by soluble Aβ oligomers antibody
21) 

implicating that these oligomers 

possess a common folding pattern or conformation
13)

.    

A healthy body physiology tends to maintain a balance between production of ROS 

and body’s antioxidant defense system and the alteration of this system. It is known that 

diabetic patients have more oxidative cellular environment as compared to healthy 

ones
22)

.
 
    

Furthermore, Aβ aggregation and oxidative stress have both way relationships 

controlling each other’s turnover. Oxidative stress channels regulate Aβ dynamicity 

from non-aggregated form to aggregated form. Furthermore, aggregated Aβ acts like a 

source of free radical production to drive brain towards neurodegeneration
23)

.   

The significance of these results is that therapeutic strategies designed to treat T2D, 

and oxidative stress could help slow the progress or reduce the severity of AD. 

Correspondingly, a number of studies have already demonstrated that treatment with 
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hypoglycemic can be protective in reducing the incidence and severity of AD brain 

pathology
 24)

.   

Halophyte is a kind of plants growing in a wide variety of saline habitats. Living in 

extreme environment, salt tolerant plants have to deal with frequent changes in salinity 

level. This can be done by developing adaptive responses including the biosynthesis of 

several bioactive molecules. Currently, an increasing interest is granted to these species 

because several of their secondary metabolites are restricted to halophytic species or are 

found in higher concentration than in glycophytes
 25)

.     

For the present research, Tamarix gallica L. was selected as a plant material (Figure 

1). It is a tree or shrub halophyte from coastal regions and desert. It is a relatively long-

living plant that can tolerate a wide range of environmental conditions and resist to 

abiotic stresses. Furthermore, T. gallica was reported to have a higher content of 

polyphenols compared to some other species of halophytes
26)

.    

The choice of this plant was made based on three main reasons:  

First of all, T. gallica was traditionally employed for the treatment of various 

diseases and was reported to be used as astringent, anti-inflammatory, cicatrizing agent, 

antiseptic and stimulant of perspiration
27-29)

.  It is also known for its effectiveness in 

conditions associated with hepatic insufficiency and the treatment of various liver 

disorders. The distinguished feature of growing in harsh climatic conditions is often 

ascribed to their high contents in antioxidant substances.  And the enhanced synthesis of 

secondary metabolites under stressful conditions in halophyte is believed to protect the 

cellular structures from oxidative effects
25)

.    
 
 

Furthermore, this halophyte is used for the preparation of poly-herbal drugs 

commercially available such as Liv 52, reported for protection activity against liver 

paracetamol, ethanol, tert-butyl hydroperoxide, and CCl4 inducing hepatotoxicity and 

other liver disease, and Livergen used for its hepatoprotective effect
27)

.   

The third reason is that T. gallica, like most Tamarix species, is considered as an 

invasive plant in the country from where they are not originated. The nature 

conservancy nominated Tamarisks as one of America’s twelve worst invaders and the 

control measures are often expensive and ineffective. Therefore, it would be of interest 

to valorize the use of this plant instead of its eradication because of the ecological 

problem that it causes
26)

.     
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Some compounds were already identified from T. gallica such as rhamnetin (a), 

kaempferide (b), rhamnocitrin (c), coniferyl alcohol 4-O-sulfate (d),  2,7-dimethyl ether 

ellagic acid (e), β-sitosterol β-D-glucoside (f), and 12-hentriacontanol (g) (Figure 2)
30-32)

.      

But, there is little report about the bioactivity of isolated substances from this 

halophyte for the prevention of diseases and the main reported activity was related to 

the solvent extract. 

Although it was traditionally used for the treatment of various liver disorders, which 

is closely related to the glucose metabolic regulation, there is no report about the use of 

this plant for the treatment or prevention of T2D or/and AD. 

Therefore, the aim of this research is to investigate the contributions of polyphenols 

from the halophyte T. gallica to prevent T2D and AD by isolation and identification of 

antioxidant substances with α-glucosidase inhibition activity and polymerization of 

amyloid aggregation inhibition potential. 
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Figure 1. Dried aerial part of Tamarix gallica L. 
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Figure 2. Example of some known substances isolated from T. gallica.                        

(a): rhamnetin, (b): kaempferide, (c): rhamnocitrin, (d): coniferyl alcohol 4-O-sulfate, 

(e): 2,7-dimethyl ether ellagic acid, (f): β-sitosterol β-D-glucoside, and (g): 12-

hentriacontanol.  
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Chapter II  

Isolation of bioactive compounds for α-glucosidase inhibitory activity from 

Tamarix gallica 

 

II-1. Introduction 

Diabetes mellitus (DM) is one of the leading and serious health concerns worldwide. 

Type 2 diabetes (T2D) accounts for more than 90% of all cases of diabetes globally
33)

. 

Despite numerous pharmaceutical strategies for treatment of diabetes, its incidence 

continues to increase. Postprandial hyperglycemia contributes much to the overall 

glycemic control in T2D patients. Hence its management is considered as a major 

therapeutic strategy
34)

. This can be achieved by delaying the release of glucose through 

the inhibition of carbohydrate hydrolyzing enzyme α-glucosidase (EC 3.2.1.20) in the 

digestive tract
35,36)

. Commercial α-glucosidase inhibitors such as acarbose and voglibose 

have been used to treat diabetes, while they exhibit side effects including liver disorders, 

abdominal pain, acute hepatitis, abdominal fullness, and diarrhea
37-39)

.  
 
Therefore, 

identifying and characterizing other inhibitors of α-glucosidase is still needed. 

Hyperglycemia results also in the generation of reactive oxygen species (ROS), 

ultimately leading to increased oxidative stress in a variety of tissues that may partially 

mediate the initiation and progression of diabetes-associated complications. Hence, 

supplementation with antioxidant can be beneficial for diabetic patients, not only to 

maintain antioxidant levels in the body but also to treat the long-term complications that 

can arise
 40)

.  
 
 

T. gallica L. was mentioned as a remarkable spectrum of biochemical and 

pharmacological activities, especially for the treatment of liver disorders that are tightly 

related to the glucose regulation system in the human body. However, there is no report 

about the use of this plant for the treatment or prevention of T2D. Thus, the objective of 

this chapter is to isolate α-glucosidase inhibitory active compounds from this halophyte 

and to verify their antioxidant potential.  
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II-2. α-glucosidase inhibitory activity of T. gallica extracts 

Dried and crushed aerial part (200 g) of T. gallica were extracted with 70% ethanol 

and left at room temperature for 24h. After filtration, the extract was evaporated in a 

rotary evaporator. The residue was partitioned among hexane (200 mL x 2), CHCl3 (200 

mL x 2), EtOAc (200 mL x 3), BuOH (200 mL x 3), and H2O (200 mL).  

Yeast and mammalian α-glucosidase inhibition potential of different solvents extract 

from T. gallica was measured at different concentrations of 1, 10 and 100 µg/mL and 

their effective inhibition was displayed in Figures 3 and 4.  

The results show that all extracts are dose dependent and that they are more sensitive 

to yeast enzyme than the mammalian α- glucosidase.  

Based on the exhibited activity of each layer and by taking into consideration NMR 

data, CHCl3 and EtOAc layers were selected to conduct further purification aiming to 

identify the α-glucosidase inhibitory active compounds. 

II-3. Isolation and structure elucidation of bioactive compounds for α-glucosidase inhibitory 

activity 

From the CHCl3 layer and EtOAc layer, 10 active compounds were identified. The 

structures of these substances (Figure 5) were confirmed by NMR spectral analyses (Tables 1, 

2, and 3) and compared with the literature
41-44)

.
 

The 
1
H NMR spectrum of compound 1 were characterized by the presence of an AMX 

system which is typical of a flavanone structure with resonances at δH 5.40 (dd, J = 12.9 and 

2.5 Hz, H-2), δH 3.12 (dd, J = 17.0 and 12.9 Hz, H-3), and δH 2.68 (dd, J = 17.0 and 2.5 Hz, 

H-3) and the compound was identified as naringenin (1). 

 The 
1
H NMR spectra of compounds 2, 3, 4, 5, and 6 suggested a flavanol structure 

presenting an AX system in ring A with two meta-protons at δH 6.28 (d, J = 1.9 Hz, H-6) and 

δH 6.67 (d, J = 1.9 Hz, H-8)  for 2; δH 6.23 (d, J = 1.9 Hz, H-6) and δH 6.52 (d, J = 1.9 Hz, H-

8)  for 3; δH 6.25 (d, J = 1.5 Hz, H-6) and δH 6.53 (d, J = 1.5 Hz, H-8)  for 4; δH 6.27 (d, J = 

2.0 Hz, H-6) and δH 6.55 (d, J = 2.0 Hz, H-8)  for 5; δH 6.21 (d, J = 1.9 Hz, H-6) and δH 6.41 

(d, J = 1.9 Hz, H-8) for 6.  

In the B-ring, an ABX system was observed for 2, 3, 4, and 5: two aromatic protons ortho-

coupled with each other and one singlet proton. Compound 2 was identified as quercetin. 
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Compounds 3, 4, and 5 are similar to quercetin with the addition of one methoxyl group for 3 

and 5 (δH 3.89 and δH 3.95, respectively) and two methoxyl groups for 4 (δH 3.86 and δH 3.85). 

By comparing with commercially available compounds, substances 3, 4, and 5 were identical 

to rhamnetin, rhamnazin, and tamarixetin, respectively.  

A characteristic resonance of AA’XX’ system was observed in the B-ring of 6, suggesting 

that compound 6 is kaempferol. 

The 
1
H NMR spectra of compounds 7 and 8 suggest that the aglycone is similar to the 

structure of quercetin with the presence of anomeric proton at δH 5.22 (d, J = 7.5, H-3). The 

HRESI-MS data of the two compounds suggest a monoglucuronide conjugate of quercetin. 

Compound 7 was identified as quercetin 3-O-β-D-glucuronide (MW 478) and compound 8 

was identified as quercetin 3-O-β-D-glucuronide methyl ester (MW 492).  

The 
1
H NMR spectra of compounds 9 and 10 suggest that the aglycone is similar to the 

structure of kaempferol with the presence of anomeric proton at δH 5.23 (d, J = 7.4, H-3). The 

HRESI-MS data of the two compounds suggest a monoglucuronide conjugate of kaempferol. 

Compound 9 was identified as kaempferol 3-O-β-D-glucuronide (MW 462) and compound 10 

was identified as kaempferol 3-O-β-D-glucuronide methyl ester (MW 478).  

The purified active substances are mainly O-methylated and glucuronosylated flavonoids. 

These kinds of substances are usually reported as being less toxic than their aglycone. Add at 

that, glucuronosylated flavonoids are reported as substrates for human L-glucuronidase and 

they play an important role in the metabolic system of the human body
 45)

. 

Therefore, it will be of interest to investigate their effect as a multi-modal treatment 

targeting the common pathophysiological features of both disturbances T2D and AD which 

will be the objective of Chapters III and IV.  

II-4. Antioxidant activity   

Biological effects of ROS are controlled in vivo by a wide spectrum of enzymatic and non-

enzymatic defense mechanisms, in particular superoxide dismutases (SOD), which catalyze 

dismutation of superoxide anions to hydrogen peroxide and catalase, which then converts 

H2O2 into molecular oxygen and water. The role of those enzymes, as protective one, is well 

known and has been investigated extensively
65)

.  

SOD activities of flavonoids 1-10 are represented in Figure 6 and the result shows that 4, 5, 

7, 8, and 9 have the highest inhibition percentage. A similar result was also observed in case 

of DPPH assay (Figure 7).  
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O-methylated and glucuronosylated flavonoids showed a higher inhibition percentage than 

their aglycone analogs, proving that methylation decrease the activity of quercetin (2) and 

kaempferol (6). 

II-5. Experimental  

II-5-1. General procedure 

1
H NMR spectra were obtained with a Bruker Avance 500 spectrometer in CD3OD. The 

resonance at δH 3.35 was used as an internal reference for the 
1
H NMR spectra. ESI-MS and 

HRESI-MS spectra were recorded with a Waters Synapt G2 mass spectrometer. 

II-5-2. Plant materials 

The aerial part of T. gallica was collected at Tunisia. The voucher specimen (UT-ARENA-

01097) is maintained at Alliance for Research on North Africa (ARENA), University of 

Tsukuba. 

II-5-3. Extraction and isolation 

Dried and crushed aerial part (200 g) of T. gallica were extracted with 70% EtOH (900 mL 

x 3) and left at room temperature for 24 h. After filtration, the extract was evaporated in a 

rotary evaporator. The residue was partitioned among hexane (200 mL x 2), CHCl3 (200 mL x 

2), EtOAc (200 mL x 3), BuOH (200 mL x 3), and H2O (200 mL) to give hexane (2.6 g), 

CHCl3 (1.1 g), EtOAc (2.4 g), BuOH (26.4 g), and H2O (17.4 g) soluble materials, 

respectively.  

 The CHCl3 layer (TGC, 1.1 g) was chromatographed on a silica gel column (ϕ 3.0 × 35 cm, 

Nacalai Tesque, Inc., Japan) with acetone-hexane (0:100 → 10:90 → 20:80 → 30:70 → 40:50

→ 50:50 → 60:40 → 80:20 → 100:0), which yielded eight fractions, TGC-1-8 (Figure 8).  

Taking into consideration the inhibitory activity of each obtained fraction towards yeast 

and mammalian enzymes, TGC-5 and TGC-6 were selected for further purification (Figures 9 

and 10).  

TGC-5 (299.4 mg) eluted with acetone-hexane (40:60) was purified by octadecyl-silane 

(ODS) HPLC [TSKgel ODS-80Ts (ϕ 4.6 × 250 mm, Tosoh Corporation, Japan), flow rate 1.0 

mL/min; MeCN/H2O–0.1% trifluoroacetic acid (TFA) (5:95 (5 min) → 30:70 (5 min) → 

40:60 (40 min) → 40:60 (10 min) → 55:54 (2 min) → 100:0 (2 min)); detection UV (210, 
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254, and 280 nm)] to yield naringenin (1, 3.4 mg, , tR 41 min), quercetin (2, 1.2 mg, tR 43 

min), rhamnetin (3, 2.9 mg, tR 46 min), and rhamnazin (4, 1.6 mg, tR 72 min) (Figure 11). 

Tamarixetin (5, 2.0 mg, tR 37 min) was purified from TGC-6 (100.1 mg) using ODS HPLC 

[TSKgel ODS-80Ts (ϕ 4.6 × 250 mm), flow rate 1.0 mL/min; MeCN/H2O–0.1%TFA (5:95 (5 

min) → 30:70 (25 min) → 40:60 (10 min) → 40:60 (10 min) → 55:54 (2 min) → 100:0 (2 

min)); detection UV (210, 254, and 280 nm)] (Figure 12).  

The EtOAc-soluble portion (TGE, 987 mg) was eluted on an ODS column (Cosmosil 75 

C18-PREP, ϕ 3.0 × 35 cm, Nacalai Tesque, Inc., Japan) with MeOH/H2O (10 : 90 → 20:80 →

40:60 → 50:50 → 60:40 → 100 : 0), yielding six fractions, TGE-1-6 (Figure 13). 

TGE-6 (228.3 mg), showing the strongest activity among all the fractions (Figures 14 and 

15)  eluted with MeOH/H2O (100: 0) was fractionated by ODS HPLC [TSKgel ODS-80Ts (ϕ 

4.6 × 250 mm), flow rate 1.0 mL/min; MeOH/H2O–0.1%TFA (5:95 (5 min) → 55:54 (55 

min) → 85:15 (2 min) → 100:0 (2 min)); detection UV (280 and 320 nm)] to yield eight sub-

fractions TGE-6-1-8 (Figure 16).  

TGE-6-8 was identified as kaempferol (6, 3.3 mg, tR 37.5 min). TGE-6-3 (4.7 mg, tR 28.1 

min) was purified by ODS HPLC [TSKgel ODS-80Ts (ϕ 4.6 × 250 mm), flow rate 1.0 

mL/min; MeCN/H2O (5:95 (5 min) → 25:75 (41 min)); detection UV (210, 254, and 280 

nm)] (Figure 17) to yield quercetin 3-O-β-D-glucuronide (QGlcA) (7, 6.3 mg, tR 9.3 min), and 

quercetin 3-O-β-D-glucuronide methyl ester (QGlcA-Me) (8, 9.0 mg, tR 17.6 min).  

And then, TGE-6-5 (20 mg, tR 32.3 min) was also purified by ODS HPLC [TSKgel ODS-

80Ts (ϕ 4.6 × 250 mm), flow rate 1.0 mL/min; MeCN/H2O (5:95 (1 min) → 30:70 (45 min)); 

detection UV (210 nm)] (Figure 18)  to yield kaempferol 3-O-β-D-glucuronide (KGlcA) (9, 

2.0 mg, tR 11.5 min), and kaempferol 3-O-β-D-glucuronide methyl ester (KGlcA-Me) (10, 5.0 

mg, tR 12.3 min).  

 II-5-4.  p-NPG assay  

p-Nitrophenol α-D-glucopyranoside (p-NPG), p-nitrophenol, sodium phosphate, and 

sodium carbonate were purchased from Nacalai Tesque Inc., Kyoto, Japan. Yeast α-

glucosidase and intestinal acetone powders from rats were obtained from Sigma Aldrich 

Chemical Co., USA and acarbose was procured from LKT laboratories, Inc., USA.   

Yeast and mammalian α-glucosidase inhibitory activities were analyzed as follows: 

Mammalian α-glucosidase was prepared by homogenizing 100 mg of rat intestinal acetone 

powder in 3 mL of 0.9% NaCl solution (5,000 g x 30 min). 
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Twenty five µL of 3.5 U/100 mL stock solution of yeast enzyme were diluted into 12.5 mL 

of phosphate buffer to obtain the final α-glucosidase solution. 

The reaction mixture comprising 50 µL of 0.1 M phosphate buffer (pH 6.8), 10 µL of 1 

mM p-NPG, and 10 µL of the samples (in varying concentrations) was pre-incubated at 37°C 

for 5 min. Then, 10 µL yeast (0.07 U/mL) / mammalian α-glucosidase of was added as a 

substrate, followed by incubation at 37°C for 30 min. After then the reaction was stopped by 

adding 50 µL of Na2CO3 (0.1 M).  

Acarbose was used as a positive control and MeOH as a negative control. Since MeOH 

was used to dissolve the samples, a negative blank without the enzyme was prepared to 

subtract the possible interference of MeOH with the reaction.  

The enzyme activity was quantified by measuring the absorbance at 410 nm in a microtiter 

plate reader (Bio-TEK, USA).  

All experiments were performed in triplicate and the percentage of enzyme inhibition was 

calculated using the following formula
46)

:  

 

(%) inhibition = [(AC – AS) / AC] x 100, 

where AC is the absorbance of the control and AS is the absorbance of the tested sample. 

II-5-5. SOD activity 

SOD activity was determined with the use of kits obtained from Dojindo molecular 

technologies, Inc.  

The determination principle of SOD assay was that the superoxide anion (O
2-

) generated 

from the reaction of xanthine and xanthine oxidase and then the (O
2-

) oxidized the 

hydroxylamine, which generated the nitrite.  

Nitrite could be presented purplish red by the effect of chromogenic agent. Then the 

absorbance was taken at 550 nm by the spectrophotometer. When the samples are containing 

SOD, the superoxide anion radicals could be distinctively inhibited and as a result, the nitrite 

was reduced.  

The SOD activity of samples can be measured according to the formula: 

  

SOD activity (%) = [(blank 1-blank 3)-(sample-blank 2)] / (blank 1- blank 3); 
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with blank 1 being the coloring without sample, blank 2 sample blank and blank 3 reagent 

blank. Epigallocatechin gallate (EGCG) was used as a positive control.  

II-5-6. Free Radical  Scavenging  Activity (DPPH) assay 

In  a  96-well  micro  plate,  a 10 mM of test sample was dissolved in MeOH (50 mM). 

And 190 mL of a mixed  solution, prepared of  MilliQ:  400 mM MES  buffer: 0.4 mM DPPH 

solution dissolved in EtOH (3:4:1) were added. The reaction solution was measured at a 

wavelength 490 nm using a spectrophotometer.  The percentage of DPPH scavenging was 

calculated as follow:  

Antioxidant (%) = (1-B/A) x 100, 

where A represents  the  absorbance  of  the  control without  the  test  samples  and  B 

represents the absorbance in the presence of test samples. 
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Table 1. 
1
H NMR data of compounds 1, 2, and 6. 

Position 

Substances  

δH (m, J HZ) (500 MHz, CD3OD) 

1 2 6 

2 5.40 (dd, 12.9, 2.5, 1H) - - 

3 3.12 (dd, 17.0, 12.9, 1H) 

2.68 (dd, 17.0, 2.5, 1H) 
- - 

4 - - - 

5 - - - 

6 5.91 (s, 1H) 6.28 (d, 1.9, 1H) 6.21 (d, 1.9, 1H) 

7 - - - 

8 5.91 (s, 1H) 6.67 (d, 1.9, 1H) 6.41 (d, 1.9, 1H) 

9 - - - 

10 - - - 

1’ - - - 

2’ 7.34 (d, 8.0, 1H) 7.95 (s, 1H) 8.05 (d, 8.6, 1H) 

3’ 6.84 (d, 8.0, 1H) - 6.92 (d, 8.6, 1H) 

4’ - - - 

5’ 6.84 (d, 8.0, 1H) 8.10 (d,  8.9, 1H) 6.92 (d, 8.6, 1H) 

6’ 7.34 (d, 8.0, 1H) 7.08 (d, 8.9, 1H) 8.05 (d, 8.6, 1H) 
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Table 2. 
1
H NMR data of compounds 3, 4, and 5. 

Position 

Substances  

δH (m, J HZ) (500 MHz, CD3OD) 

3 4 5 

2 -  - 

3   - 

4 -  - 

5 -  - 

6 6.23 (d, 1.9, 1H) 6.25 (d, 1.5, 1H) 6.27 (d, 2.0, 1H) 

7 - - - 

8 6.52 (d, 1.9, 1H) 6.53 (d, 1.5, 1H) 6.55 (d, 2.0, 1H) 

9 - - - 

10 - - - 

1’ - - - 

2’ 7.74 (s, 1H) 7.81 (s, 1H) 7.79 (s, 1H) 

3’ - - - 

4’ - - - 

5’ 7.76 (d, 9.1, 1H) 7.84 (d, 8.5, 1H) 7.80 (d, 9.0, 1H) 

6’ 7.08 (d, 9.1, 1H) 7.08 (d, 8.5, 1H) 7.13 (d, 9.0, 1H) 

3’- OMe - 3.86 (s, 3H) - 

4’- OMe - - 3.95 (s, 3H) 

7-  OMe 3.89 (s, 3H) 3.85 (s, 3H) - 
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Table 3. 
1
H NMR data of substances 7, 8, 9, and 10. 

Position 
Substances  

δH (m, J HZ) (500 MHz, CD3OD) 

 7 8 9 10 

2 - - - - 

3 - - - - 

4 - - - - 

5 - - - - 

6 6.20 (d, 1.5, 1H) 6.20 (d, 2.0, 1H) 6.21 (d, 1.9, 1H) 6.21 (d, 1.9, 1H) 

7 - - - - 

8 6.35 (d, 1.5, 1H) 6.39 (d, 2.0, 1H) 6.41 (d, 1.9, 1H) 6.41 (d, 1.9, 1H) 

9 - - - - 

10 - - - - 

1’ - - - - 

2’ 7.52 (s, 1H) 7.52 (s, 1H) 8.05 (d, 8.6, 1H) 8.05 (d, 8.6, 1H) 

3’ - - 6.92 (d, 8.6, 1H) 6.93 (d, 8.6, 1H) 

4’ - - - - 

5’ 6.98 (d, 8.5, 1H) 6.98 (d, 8.5, 1H) 6.92 (d, 8.6, 1H) 6.93 (d, 8.6, 1H) 

6’ 7.57 (d, 8.5, 1H) 7.57 (d, 8.5, 1H) 8.05 (d, 8.6, 1H) 8.05 (d, 8.6, 1H) 

1’’ 5.22 (d, 7.5, 1H) 5.22 (d, 7.5, 1H) 5.23 (d, 7.4, 1H) 5.23 (d, 7.4, 1H) 
2’’ 3.57 (m, 1H) 3.57 (m, 1H) 3.56 (m, 1H) 3.56 (m, 1H) 
3’’ 3.51 (m, 1H) 3.51 (m, 1H) 3.46 (m, 1H) 3.46 (m, 1H) 
4’’ 3.41 (m, 1H) 3.41 (m, 1H) 3.40(m, 1H) 3.40 (m, 1H) 
5’’ 3.72 (d, 9.6, 1H) 3.68 (d, 9.4, 1H) 3.74 (d, 9.8, 1H) 3.74 (d, 9.8, 1H) 
6’’ - - - - 
6’’-OCH3 3.64 (s, 3H) - 3.64 (s, 3H) - 
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Figure 3. α-Glucosidase inhibitory activity against yeast enzyme. 
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Figure 4. α-Glucosidase inhibitory activity against mammalian enzyme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100

Acarbose 70% Ethanol

extract

Hexane

layer

Chloroform

layer

Ethyl acetate

layer

Butanol

layer

Water

layer

α
-g

lu
co

si
d

as
e 

in
h
ib

it
io

n
 (

%
) 

 

concentration (µg/mL) 



 

19 
 

 

 

 

 

 1                                2                                                    6 

 

 

 

 

                     

                     3                                                4                                          5 

 

 

 

 

                       7                                                                    8 

 

 

 

 

 9 10 

 

Figure 5. Structures of flavonoids 1-10.  
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Figure 6. SOD activity of flavonoids 1-10. 
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 Figure 7.  Antioxidant activity of flavonoids 1-10 
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Tamarix gallica (aerial parts) 200 g 

 

 

                                                               extraction with EtOH/H2O (7:3)             

EtOH extract (55.7 g) 

                                                                           partit. with hexane, EtOAc, CHCl3 ,BuOH, 

and H2O 

 

Hexane layer               CHCl3 layer       EtOAc layer        BuOH layer           H2O layer  

     (2.6 g)                     (TGC, 1.1 g)        (TGE, 2.4 g)           (26.4 g)                      (17.4 g) 

 

                                               SiO2 C.C. with acetone/hexane (0-100%) and 100% MeOH 

                                           

 

TGC-1          -2                 -3              -4               -5                 -6                -7             -8       -9 (100% MeOH) 

                                                                      (299.4 mg)   (100.1 mg)                     

  

  ODS HPLC ODS-80Ts, (MeCN:H2O-0.1%TFA 

5:95→30:70→55:45→100:0→0:100→95:5)                   TGC-6-4  

                                                                                     (5, 20 mg)                               

 

  TGC -5-1              -2                 -3              -4                 -5               -6               -7                             

                                              (1, 3.4 mg)                   (2, 1.2 mg)  (3, 2.9 mg)   (4, 1.6 mg)  

              

 

Figure 8. Isolation scheme of α-glucosidase inhibitory active compounds from TGC. 

 

 

 

 

 

 

ODS HPLC ODS-80Ts,(MeCN:H2O-

0.1%TFA 

 5:95 → 30:70 → 40:60 → 40:60 → 55:54 

→ 100:0 → 0:100 → 5:95) 
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Figure 9. α-Glucosidase inhibitory activity against yeast enzyme of TGC-1─9.   
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Figure 10. α-Glucosidase inhibitory activity against mammalian enzyme of TGC-1─9. 
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Figure 11. HPLC chromatogram of TGC-5.  
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Figure 12. HPLC chromatogram of TGC-6. 
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Tamarix gallica (aerial parts) 200 g 

 

 

                                                               extraction with EtOH/H2O (7:3)             

EtOH extract (55.7 g) 

                                                                           partit. with hexane, CHCl3,EtOAc, BuOH,  

and H2O 

 

Hexane layer               CHCl3 layer       EtOAc layer        BuOH layer           H2O layer  

     (2.6 g)                     (TGC, 1.1 g)        (TGE, 2.4 g)           (26.4 g)                      (17.4 g) 

 

                                                                             ODS C.C. with MeOH/H2O 

                                           

 

                                                  TGE-1                   -2              -3              -4                -5            -6                 

                                               (140.5 mg) (194.9 mg) (323.6 mg)  (15.6 mg)    (1.6 mg)    (228.3 mg) 

ODS HPLC (ODS-80Ts + MeCN:H2O-0.1%TFA,  

5:95→30:70→55:45→100:0→0:100→95:5)  

                                                                                                    

               TGE-6-1               -2                 -3              -4                -5               -6                -7              -8                     

                                                          (24.7 mg)                     (20.0 mg)                                       (6, 3.3 mg)  

ODS HPLC (ODS-80Ts MeCN:H2O,      

5:95→30:70→30:70→100:0→95:5) 

 

   

 

  

ODS HPLC (ODS-80Ts MeCN:H2O,            

5:95→25:75→25:75→100:0→95:5)                               TGE-6-5-1               -2                         

                                                                                          (9, 2.0 mg)       (10, 5.0 mg)    

 

   

 

                                                 TGE-6-3-1                  -2   

                                                 (7, 6.3 mg)          (8, 9.0 mg)                            

     

Figure 13. Isolation scheme of α-glucosidase inhibitory active compounds from TGE. 
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Figure 14. α-Glucosidase inhibition against yeast enzyme of TGE-1─6.  
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Figure 15. α-Glucosidase inhibitory activity against mammalian enzyme of TGE-1─6. 
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Figure 16. HPLC chromatogram of TGE-6.  
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Figure 17. HPLC chromatogram of TGE-6-3.  
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Figure 18. HPLC chromatogram of TGE-6-5. 
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Chapter III 

Structure-activity relationship, mechanism of action and synergistic 

effect of the isolated flavonoids 1-10 for α-glucosidase inhibitory activity 

 

III-1. Introduction 

Nowadays, it is well established that flavonoids undergo extensive metabolism after 

ingestion. After the release of the aglycone by hydrolysis, glucuronosylation, and 

methylation of the aglycones occur in the intestinal epithelial cells by the action of 

uridine 5′-diphospho-glucuronyltransferases (UGT) and catechol O-methyltransferases 

(COMT) before they enter the bloodstream. There is even report about some efflux of 

these metabolites back into the small intestine. Once in the bloodstream, the conjugates 

reach the liver, where they are further methylated/ glucuronosylated as part of phase II 

liver metabolism, and then the cells of the different organs in the human body. 

Metabolism can also occur in the kidney and the conjugates are recycled back to the 

small intestine through the bile (Figure 19)
47)

.  

Absorption, metabolism, and bioavailability are remarkably different among the 

flavonoid subclasses. Indeed, the most abundant flavonoids in the human diet may not 

necessarily be the most bioavailable or the most biologically active. Flavonoid 

subclasses have different absorption kinetics and are highly metabolized, with the 

resulting metabolites differing in biological activity from their parent compounds and 

from each other. It is now recognized to be imperative to identity the flavonoid 

metabolites that may exert beneficial effects on health
48)

. 

The objective of this chapter is to study the structure-activity relationship of the 

flavonoids 1-10 isolated from T. gallica compared with their aglycones, to determine 

their inhibition mechanism and finally, to check their synergistic effects.       

III-2. Inhibitory activity and structure-activity relationship of the isolated flavonoids 1-

10 

Alpha-glucosidase inhibition potential of different purified flavonoids 1-10 was 

measured and their effectiveness was displayed in Table 4.  
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Rhamnetin (3), tamarixetin (5), rhamnazin (4), KGlcA (9), KGlcA-Me (10), QGlcA 

(7), and QGlcA-Me (8) are reported for the first time as α-glucosidase inhibitors. 

The results revealed that among all the tested flavonoids, compound 8 showed the 

strongest inhibitory potential with an IC50 62.3 µM which is slightly lower than that of 

the positive control acarbose which showed an IC50 95.1 µM for the yeast α-glucosidase 

(Table 4). 

The inhibitory sequence for the aglycone compounds was 2 > 6 > 1, while, for 

quercetin and its O-methylated flavonoids was: 3 > 2 > 5 > 4.  

For the glucuronide substances, quercetin analogs 7 and 8 showed a slightly higher 

inhibition percentage compared to kaempferol analogs 9 and 10.  

The structure-activity relationship study of quercetin (2), kaempferol (6), and 

naringenin (1) shows that the B-ring plays an important role for the α-glucosidase 

activity.  

Furthermore, and according to the obtained data, an unsaturated C-ring and the 

number of hydroxyl group in B-ring enhance the inhibitory activity.  

Methoxylation of flavonoids affected also the inhibitory potential for α-glucosidase 

in vitro depending on the replaced site. In fact, the substitution of a hydroxyl group with 

a methoxy one in A-ring decrease significantly the α-glucosidase inhibition activity, 

while the same substitution in the B-ring reduced the potential of quercetin (2) and 

rhamnetin (3) leading to the conclusion that the catechol moiety in B-ring is a factor of 

activity enhancement.  

Tadera et al. suggested that the unsaturated C-ring, 3-OH, 4-CO, and the hydroxyl 

substitution on the B-ring enhanced the α-glucosidase inhibitory activity
49)

.
  

Li et al. reported that the glycosylation of hydroxyl group on flavonoids at C-3 

weakened the inhibition against α-glucosidases
50)

.
 
The larger volume and polarity of 

glucosides compared to their aglycone structures might play a role in their activity 

depending in their target.  

However, according to the obtained results from the current report, the substitution 

of the hydroxyl group at C-3 position by a glucuronic acid and its methyl ester analog 

increased significantly the inhibition activity of quercetin (2) and kaempferol (6) 

towards α-glucosidase and so far, no publications have reported investigation of the 
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relation between the α-glucosidase inhibitory activity and the replacement of 3-OH on 

flavonoids by glucuronic acid and glucuronic acid methyl ester. 

III-3. Mechanism of action: Inhibition mode  

The mechanism of inhibition of flavonoids 1-10 was evaluated by Michaelis Menten 

saturation kinetics represented by LB plot (Figures 20─29). The kinetics of inhibition 

(Tables 5─14) was evaluated by varying the concentration of p-NPG (0.25-16 mM) in 

the presence or absence of flavonoids 1-10 at two different concentrations (16 and 64 

µg/mL) and the following results were obtained:  

    The double-reciprocal plot displayed competitive inhibition for 1, mixed inhibition 

for 2, 3, 4, 5, and 6, and a non-competitive inhibition for 7, 8, 9, and 10 (Table 15). In 

fact, in the case of 1, Vmax was unchanged while Km increased when the concentration of 

the inhibitor was increased (Table 5) which corresponds to the competitive inhibition 

mode: the inhibitor binds to the same site on the enzyme that the substrate would 

normally do and this kind of inhibition is reversible. For 2, 3, 4, 5, and 6, Km decreased 

and/or increased, while Vmax decreased in all the cases (Tables 6─10). This type of 

parameters is characteristic of the mixed inhibition where the inhibitor binds to the 

enzyme at a different site away from the active site. In this situation, the inhibitor can 

bind to both free enzyme or enzyme-substrate complex and the later has a residual 

enzyme activity.  Add at that, the analysis of the glucuronosylated flavonoids showed a 

constant Km and a decrease in the rate of Vmax that cannot be overcome by increasing the 

flavonoid concentrations (Tables 11-14). This inhibition is irreversible and classified as 

non-competitive inhibition where the inhibitor binds to the enzyme at an allosteric site 

causing shape change of the enzyme’s active site.     

From the values of inhibition constants (Ki) as is seen in Table 15, the sequence of 

affinity (1/Ki) between the tested substances  and α-glucosidase was deduced to be 8 > 7 

> 10 > 9 > 2 > 6 for the glucuronosylated flavonoids and 3 > 2 > 5 > 4 for the O-

methylated flavonoids, consistent with the IC50 data.  
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III-4. Specificity of flavonoids 1-10 for α-glucosidase inhibitory activity 

The activity towards mammalian α-glucosidase and their selectivity for sugar 

(sucrose and maltose) hydrolase inhibition were evaluated and the results are shown in 

Table 16. Each of the isolated flavonoids 1-10 showed a dose dependent inhibitory 

activity with an inhibition preference for maltose even at a very low concentration (1 

µM).  

A part of their structure functionality, the effectiveness of α-glucosidase inhibitors is 

affected by the origin of enzyme, as well as, the type of target substrate. In fact, 

phenolic compounds are considered as potent class of α-glucosidase inhibitors. But, 

most of yeast’s α-glucosidase inhibitors did not show any activity against mammalian α-

glucosidase (class III) due to the difference of molecular recognition in the target 

binding site of these enzymes.
 

Mammalian α-glucosidases (α-D-glucoside 

glucohydrolase EC.3.2.1.20) inhibitors, which interfere with enzymatic action in the 

brush border of the small intestine, could slow the liberation of D-glucose from 

oligosaccharides and disaccharides, resulting in delaying glucose absorption and 

decreasing postprandial plasma glucose levels. Hence, it was also of interest to evaluate 

the inhibitory activity of the purified flavonoids 1-10 towards mammalian α-

glucosidases, sucrase and maltase, as well as their selectivity for sugar hydrolase 

inhibition.  

According to the obtained data, flavonoids 1-10 inhibited both yeast and mammalian 

enzymatic activity at a dose-dependent effect and the substrate preference where 

different depending on the inhibitors’ chemical structures. This finding suggests that the 

isolated flavonoids 1-10 would have a physiological function relating to the prevention 

of glucose absorption at the small intestine within this experiment conditions. 

III-5. Synergistic effect of flavonoids 1-10 

The bioassay guided isolation process revealed that the separation of some 

compounds from the same fraction reduced their activity.  So, It was also of interest to 

establish whether quercetin or/and kaempferol analogs might interact synergistically on 

intestinal α-glucosidase inhibition. 
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There are reports of established α-glucosidase inhibitors such as acarbose and their 

effects on blood glucose levels after food uptake. Acarbose has been clinically studied 

in type 2 diabetes. A recent report has shown that the lowest dose of acarbose with 

clinical effects is 150 mg/day, with doses > 300 mg/day already exceeding the saturated 

binding of α-glucosidase
51, 52)

.
 
It was also reported that the most common adverse effect 

of acarbose is gastrointestinal disturbance which occurs in a dose-dependent manner.
 

Thus, it is possible that the mixture of flavonoids 1-10 together with acarbose may lead 

to the development of a novel combined therapy in type 2 diabetic patients.  

Data in Table 16 indicate that the O-methylated flavonoids 3-5 and glucuronosylated 

flavonoids 7-10  at very low concentration (1 µM) had a very low or no inhibitory 

activity in case of using sucrose as a substrate and moderate to low inhibition 

percentage in case of maltose. Therefore, it was of interest to establish whether O-

methylated and glucuronosylated flavonoids and acarbose might interact synergistically 

on intestinal α-glucosidase inhibition. Results of this experiment are represented in 

Figures 30 and 31 and show that when O-methylated flavonoids 3-5 and 

glucuronosylated flavonoids 7-10 were added to the assay system with acarbose (0.5 

µM and 3.12 µM), the percentage intestinal maltase and sucrase inhibition, respectively, 

were increased compared with acarbose. The combination at a low concentration 

produces more synergistic inhibition than either drug alone, suggesting that they may 

provide a significant clinical benefit in delaying postprandial hyperglycemia. As a 

consequence, it will be possible to reduce dosage of acarbose. However, further 

investigation in diabetic patients should be conducted.  

The synergestic effect might be explained in relation with the inhibition mode of 

each substances. In the simplest molecular case, two α-glucosidase inhibitiors targeting 

the same site, such as acarbose and 1, would produce an additive effect only. However, 

if two different binding sites for inhibitors exist on an enzyme, two α-glucosidase 

inhibitors may bind simultaneously and therefore, synergy can be a necessary 

consequence
53)

. In case of non-competitive, inhibitors have spesific and independent 

sites on the enzyme different from the active site. Thus, two inhibitors, for example 

acarbose and glucuronosylated flavonoids 7-10, are able to bind simultaneously, and 

this state is called “mutually non-exclusive” binding (Figure 32). In case of mixed 

inhibition, inhibitors also can bind to a site different from the active one and their for 
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can cause a synergestic effect (Figure 33). However, mixed inhibitors might act as a 

competitive inhibitor or/and non-competitive inhibitor, which may explain the 

difference between the O-methylated flavonoids 3-5 and their aglycones 2 and 6.    

III-6.  Experimental: general methods 

III-6-1. Determination of IC50 

The concentration of the inhibitor required to inhibit 50% of the enzyme activity (IC50) was 

calculated under the same p-NPG assay conditions, using concentrations of 25, 50, 75, 100, 

125, 150, 175, and 200 µmol/L for the flavonoids 1-10 and the following obtained curve were 

used to determine the IC50 (Figures 34-44). 

III-6-2. Disaccharide assay 

The α-glucosidase inhibition potential of the purified flavonoids 1-10 was measured at 

concentrations of 1, 10, and 100 µM, using the disaccharide assay as follows:  

Mammalian α-glucosidase was prepared by homogenizing 100 mg of rat intestinal acetone 

powder in 3 mL of 0.9% NaCl solution (5,000g x 30 min).  

The reaction mixture comprising from 50 μL of 0.1 M phosphate buffer (pH 6.8) and 10 

µL of the sample at various concentrations was mixed with 35 μL of maltose solution (5 mM) 

for maltase inhibition test, and 20 μL of sucrose (56 mM) for sucrase inhibition test.  

After pre-incubation for 5 min at 37°C, the enzyme solution was added, 20 µL in case of 

sucrase inhibition assay and 5 µL for maltase inhibition assay, and incubated with the mixture 

for 15 min at 37 °C.  

To stop/suspend the reaction, Tris-HCl buffer 2 M (75 μL) was added to the reaction 

mixture. The concentrations of glucose released from the reaction mixtures were determined 

using glucose oxidase method.  

The enzyme activity was quantified by measuring the absorbance at 490 nm in a microtiter 

plate reader (Bio-TEK, USA). Acarbose was used as a positive control.  

All experiments were performed in triplicate and the percentage of enzyme inhibition was 

calculated using the following formula: 

  

(%) inhibition = [(AC – AS) / AC] x 100, 
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where AC is the absorbance of the control and AS is the absorbance of the tested sample.  

III-6-3. Enzyme kinetic assay:  

To determine the inhibition mechanism of the flavonoids 1-10, enzyme kinetic parameters 

should be determined.  

III-6-3-1. Determination of the standard curve:  

In order to correlate between the fact that p-NPG and different molecules absorb in 

different wavelengths, the absorbance of known dilutions (100-1000 µM) of p-nitrophenol 

was conducted with the spectrophotometer at 410 nm (Table 17).  

From Figure 45, standard curve formula was determined as Y= 0.0123X; with Y: 

absorbance at 410 nm and X: p-nitrophenol concentration. 

III-6-3-2. Calculation of Vmax and Km for enzyme and p-NPG 

Vmax is the maximum rate of reaction for the enzyme and the substrate. Km is the specific 

enzyme constant of Michaelis equal to the concentration of substrate (sugar) that gives Vmax/2. 

These two basic kinetic parameters were obtained by conducting the following experiment: 

A series of tube was set up in which the enzyme amount is the same but the amount of p-NPG 

varies from 0.25 mM to 12 mM.  In each tube, 3.5 mL of buffer was mixed with 0.5 mL of p-

NPG at different concentration and 0.5 mL of enzyme stock solution.  

The reaction was run for 30 min, stopped with Na2CO3 (0.1 M) and then the absorbance 

was measured with the spectrophotometer at 410 nm.  

To obtain the velocity (V) of the reaction (Table 18), the approximate concentration (S) of 

the product, determined from the standard curve, was divided by the reaction duration:  

V=S/time (min) 

The effect of the different types of inhibitions can be graphically represented using 

Lineweaver-Burk plot (double reciprocal plot). This graph was obtained from the parameters 

(Table 19) determined by the velocity curve and it will be considered as the control for the 

following experiment (Figures 46 and 47).  



 

40 
 

III-6-3-3. Calculation of Vmax and Km for each sample: 

From the basic kinetic parameters of enzyme/p-NPG reaction and following the same 

experimental process, the effect of the flavonoids on Vmax and Km was determined. Four 

possible types of inhibitions can occur:   

- If Vmax decreases and Km may either be decreased or increased, the inhibition mode is 

classified as mixed one. 

- If Vmax is unchanged and Km is increased with the increase of the substrate 

concentration, the inhibition is competitive. 

- If Km is unchanged and Vmax decreases and cannot be overcome by increasing substrate 

concentration, the inhibition type is considered as a non-competitive.  

- If Km and Vmax decrease both, the inhibition is uncompetitive. 

Mode of inhibition was measured with increasing concentrations of p-NPG (0.25, 0.5, 1.0, 

2.0, 4.0, 8.0, and 16.0 mM) as a substrate in the presence or absence of samples. Optimal 

amount of flavonoids 1-10 was determined based on the enzyme inhibitory activity assay. The 

inhibition mode was determined by Lineweaver-Burk (LB) plot analysis of the data calculated 

following Michaelis-Menten kinetics and Michealis equation: 

 

V= Vmax [S] / Km + [S] 

 

The Ki was calculated using Cheng Prusoff equation: 

  

Ki= IC50 / (1 + [S] / Km); 

Ki: inhibition constant; S: concentration of substrate; Km: Michaelis-Menten constant 

III-6-4. Dissacharide assay 

The α-glucosidase inhibition potential of the purified flavonoids 1-10 was measured at 

concentrations of 1, 10, and 100 µM, using disaccharide assay as follows: mammalian α-

glucosidase was prepared by homogenizing 100 mg of rat intestinal acetone powder in 3 mL 

of 0.9% NaCl solution (5,000g x 30 min). The reaction mixture comprising from 50 μL of 0.1 

M phosphate buffer (pH 6.8) and 10 µL of the sample at various concentrations was mixed 

with 35 μL of maltose solution (5 mM) for maltase inhibition test, and 20 μL of sucrose (56 

mM) for sucrase inhibition test. After pre-incubation for 5 min at 37°C, the enzyme solution 
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was added, 20 µL in case of sucrase inhibition assay and 5 µL for maltase inhibition assay, 

and incubated with the mixture for 15 min at 37 °C. To stop/suspend the reaction, 2 M Tris-

HCl buffer (75 μL) was added to the reaction mixture. The concentrations of glucose released 

from the reaction mixtures were determined using glucose oxidase method. The enzyme 

activity was quantified by measuring the absorbance at 490 nm in a microtiter plate reader 

(Bio-TEK, USA). Acarbose was used as a positive control. All experiments were performed 

in triplicate and the percentages of enzyme inhibition was calculated using the following 

formula:  

(%) inhibition = [(AC – AS) / AC] x 100, 

where AC is the absorbance of the control and AS is the absorbance of the tested sample. 

III-6-5- Synergistic effect assay.  

The synergistic potential of the purified flavonoids 2-10 was measured at concentrations of 

1 µM, using disaccharide assay as follows: mammalian α-glucosidase was prepared by 

homogenizing 100 mg of rat intestinal acetone powder in 3 mL of 0.9% NaCl solution 

(5,000g x 30 min). Acarbose was combined with and without flavonoids 2-10.  

In case of maltase activity test, acarbose was added at the concentration of 0.5 µM and for 

the sucrase activity assay, acarbose was added at the concentration of 3.12 µM.  

For this reaction, since flavonoids 2-10 were dissolved in MeOH, 10µL of dissolved 

acarbose was first of all added to appropriate wells and after that the MeOH was evaporated 

from each well, where the substances will be added as a following step, to obtain at the end 

the same volume of MeOH in all the wells.  

After evaporating the solvent of acarbose, the reaction mixture comprising from 50 μL of 

0.1 M phosphate buffer (pH 6.8) and 10 µL of the sample at 1 µM was mixed with 35 μL of 

maltose solution (5 mM) for maltase inhibition test, and 20 μL of sucrose (56 mM) for sucrase 

inhibition test.  

Once pre-incubation for 5 min at 37°C ended, the enzyme solution was added, 20 µL in 

case of sucrase inhibition assay and 5 µL for maltase inhibition assay, and incubated with the 

mixture for 15 min at 37°C. To stop/suspend the reaction, 2 M Tris-HCl buffer (75 μL) was 

added to the reaction mixture.  

The concentrations of glucose released from the reaction mixtures were determined using 

glucose oxidase method. The enzyme activity was quantified by measuring the absorbance at 

490 nm in a microtiter plate reader (Bio-TEK, USA).  
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Acarbose was used as a positive control. All experiments were performed in triplicate and 

the percentage of enzyme inhibition was calculated using the following formula: 

  

(%) inhibition = [(AC – AS) / AC] x 100, 

where AC is the absorbance of the control and AS is the absorbance of the tested sample.  

III-6-6. Statistical analysis.  

Data were expressed as means ± S.E.M. Statistical analysis was performed by Student’s t 

test. p-values were considered to be statistically significant as follow:  *p < 0.05; ** p < 0.01; 

*** p < 0.001 compared with acarbose. 
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Table 4. IC50 values of compounds 1-10. 

 

 

 

 

 

 

 

 

 

 

 

                                        

                                                

 

 

 

 

 

 

 

Substances IC50 (µM) 

naringenin (1) 180.2 ± 1.7 

quercetin (2) 114.6 ± 1.9 

rhamnetin (3) 94.6 ± 4.1 

rhamnazin (4) > 200 

tamarixetin (5) 190.0 ± 0.5 

kaempferol (6) 122.1 ± 3.2 

QGlcA (7) 76.1 ± 2.2 

QGlcA-Me (8) 62.3 ± 2.9 

KGlcA (9) 89.7 ± 3.7 

KGlcA-Me (10) 75.3 ± 1.5 

Acarbose 95.1 ± 1.4 
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Table 5.  Kinetic parameter of naringenin 1. 

 Control  

(without inhibitor) 

Substrate concentration 

 64 µg/mL 16 µg/mL 

Km 2.75 5.90 4.00 

Vmax 5.07 5.07 5.07 

Km/Vmax 0.54 1.16 0.78 

(-1/Km) -0.36 -0.17 -0.25 

1/Vmax 0.19 0.19 0.19 

 

 

 

 

 

Table 6.  Kinetic parameter of quercetin 2. 

 
Control 

(without inhibitor) 

Substrate concentration 

16 µg/mL 64 µg/mL 

Km 2.75 2.00 3.50 

Vmax 5.07 1.30 3.00 

Km/Vmax 0.54 1.54 1.17 

(-1/Km) -0.36 -0.50 -0.28 

1/Vmax 0.19 0.77 0.33 
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Table 7. Kinetic parameter of rhamnetin 3. 

 
Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 1.90 0.50 

Vmax 5.07 5.06 3.00 

Km/Vmax 0.54 0.37 0.17 

(-1/Km) -0.36 -0.53 -2.00 

1/Vmax 0.19 0.19 0.33 

 

 

 

 

 

 

 

Table 8. Kinetic parameter of rhamnazin 4. 

 
Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 2.10 1.90 

Vmax 5.07 4.54 2.71 

Km/Vmax 0.54 0.46 0.70 

(-1/Km) -0.36 -0.47 -0.53 

1/Vmax 0.19 0.22 0.37 
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Table 9. Kinetic parameter of tamarixetin 5. 

 
Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 2.10 1.90 

Vmax 5.07 3.44 2.71 

Km/Vmax 0.54 0.61 0.70 

(-1/Km) -0.36 -0.47 -0.52 

1/Vmax 0.19 0.29 0.36 

 

 

 

 

 

Table 10. Kinetic parameter of kaempferol 6. 

 
Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 2.10 1.90 

Vmax 5.07 3.44 2.71 

Km/Vmax 0.54 0.61 0.70 

(-1/Km) -0.36 -0.47 -0.53 

1/Vmax 0.19 0.29 0.37 

-   

 

 

 

 

 

 

 



 

47 
 

 

 

 

 

Table 11. Kinetic parameter of QGlcA 7. 

 
Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 2.75 2.75 

Vmax 5.07 4.31 2.46 

Km/Vmax 0.54 0.64 1.12 

(-1/Km) -0.36 -0.36 -0.36 

1/Vmax 0.19 0.23 0.41 

 

-   

 

 

 

 

Table 12.  Kinetic parameter of QGlcA-Me 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 2.75 2.75 

Vmax 5.07 4.09 1.31 

Km/Vmax 0.54 0.67 2.09 

(-1/Km) -0.36 -0.36 -0.36 

1/Vmax 0.19 0.24 0.76 
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Table 13. Kinetic parameter of KGlcA 9. 

 

Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 2.75 2.75 

Vmax 5.07 4.10 3.20 

Km/Vmax 0.54 0.67 0.85 

(-1/Km) -0.36 -0.36 -0.36 

1/Vmax 0.19 0.24 0.31 

 

 

 

 

 

Table 14. Kinetic parameter of KGlcA-Me 10. 

 

Control 

(without inhibitor) 

Substrate concentration 

64 µg/mL 16 µg/mL 

Km 2.75 2.75 2.75 

Vmax 5.07 4.10 2.31 

Km/Vmax 0.54 0.67 1.19 

(-1/Km) -0.36 -0.36 -0.36 

1/Vmax 0.19 0.24 0.43 
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Table 15. Kinetic parameters and inhibition mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substances Ki (µM) 1/Ki (µM
-1

) Inhibition mode 

naringenin (1) 149 0.0069 Competitive 

quercetin (2) 80.1 0.0125 Mixed 

rhamnetin (3) 51.7 0.0193 Mixed 

rhamnazin (4) 118.0 0.0084 Mixed 

tamarixetin (5) 92.7 0.0107 Mixed 

kaempferol (6) 81.4 0.0123 Mixed 

QGlcA (7) 55.3 0.0181 Non-competitive 

QGlcA-Me (8) 45.8 0.0218 Non-competitive 

KGlcA (9) 65.9 0.0152 Non-competitive 

KGlcA-Me (10) 55.4 0.0180 Non-competitive 
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Table 16. Specificity of flavonoids 1-10 for sucrase and maltase inhibitory activities. 

 

 

 

 

 

 

 

 

 

Substances 

α-Glucosidase inhibition (%) 

Sucrase activity Maltase activity 

1 µM 10 µM 100 µM 1 µM 10 µM 100 µM 

1 0.5 ± 2.5 5.9 ± 1.8 12.8 ± 2.6 4.7 ± 1.6 46.8 ± 0.5 71.8 ± 1.9 
  

2 0.2 ± 1.1 15.7 ± 1.3 21.8 ± 0.5 3.7 ± 1.1 16.9 ± 0.3 20.2 ± 1.5 
  

3 0.0 ± 2.8 24.9 ± 1.3 29.5 ± 0.5 8.5 ± 1.5 16.5 ± 2.3 23.7 ± 1.2 
  

4 0.1 ± 0.5 10.7 ± 1.9 17.5 ± 0.4 5.1 ± 0.2 17.0 ± 1.9 19.6 ± 1.7 
  

5 0.0 ± 1.8 12.9 ± 2.3 20.9 ± 1.2 7.5 ± 2.3 13.5 ± 1.3 20.7 ± 0.2 
  

6 1.0 ± 1.2 4.6 ± 2.5 9.2 ± 0.5 4.6 ± 0.3 12.0 ± 1.6 19.1 ± 0.5 
  

7 2.4 ± 2.5 20.0 ± 2.8 27.8 ± 0.5 4.1 ± 1.0 1.5 ± 1.6 62.0 ± 0.1 
  

8 2.2 ± 1.8 28.6 ± 0.1 30.9 ± 2.2 8.3 ± 1.5 18.9 ± 1.6 75.3 ± 0.5 
  

9 1.8 ± 0.5 3.0 ± 2.5 11.2 ± 1.5 4.9 ± 0.4 21.4 ± 0.9 31.7 ± 1.1 
  

10 2.5 ± 1.0 11.7 ± 2.6 16.7 ± 1.3 8.4 ± 1.3 15.2 ± 0.6 33.5 ± 1.1 
  

Acarbose  32.8 ± 1.5 33.3 ± 1.8 56.1 ± 0.6 6.1 ± 1.4 23.9 ± 0.9 62.5 ± 0.5 
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Table17. p-Nitrophenol absorbance at different concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-nitrophenol 

(µM) 
Absorbance 

average 
Erreur 

Corrected 

absorbance 

0 0.0540 0.0509 - 

1000 0.1966 0.1325 0.1420 

900 0.1818 0.2045 0.1278 

800 0.1676 0.1222 0.1136 

700 0.1534 0.1054 0.0994 

600 0.1392 0.0919 0.0852 

500 0.1250 0.0708 0.0710 

400 0.1108 0.0658 0.0568 

300 0.1489 0.0523 0.0426 

200 0.0966 0.0397 0.0284 

100 0.0908 0.0226 0.0142 
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Table 18. Determination of the velocity (V). 

[S] (mM) absorbance of the  

reaction product 
concentration of 

the product (µM) 
Velocity (V)  

(µM/min) 

0.25  0.0660    5.3672 0.1789 

0.5  0.1965  15.9810 0.5327 

1  0.3408   27.7073 0.9235 

2  0.6622   53.8373 1.7945 

4  1.2555 102.0691 3.4023 

8  1.7528 142.5081 4.7502 

16  1.7934 145.8081 4.8602 
 

 

 

 

Table 19. Kinetic parameters determined from the velocity curve. 

Km 2.75 

Vmax 5.07 

Km/Vmax 0.54 

(-1/Km) -0.36 

1/Vmax 0.19 
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Figure 19. Simplified schematic representing one step of human flavonoid metabolism. 

Ingested flavonoids undergo extensive intestinal metabolism. Metabolites are then transported 

to the liver via hepatic portal vein and undergo further metabolism. The liver metabolites can 

be transported to targeted cells and tissues.  
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Figure 20. Lineweaver-Burk plot graph of naringenin 1. 
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Figure 21. Lineweaver-Burk plot graph of quercetin 2. 
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Figure 22. Lineweaver-Burk plot graph of  rhamnetin 3. 
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Figure 23. Lineweaver-Burk plot graph of rhamnazin 4. 
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Figure 24. Lineweaver-Burk plot graph of tamarixetin 5. 
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Figure 25. Lineweaver-Burk plot graph of kaempferol 6. 
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Figure 26. Lineweaver-Burk plot graph of QGlcA 7. 
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Figure 27. Lineweaver-Burk plot graph of QGlcA-Me 8. 
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Figure 28. Lineweaver-Burk plot graph of KGlcA 9. 
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Figure 29. Lineweaver-Burk plot graph of KGlcA-Me 10. 
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Figure 30. The combined effect of acarbose and flavonoids 2-10 on 

intestinal maltase inhibition; results expresses as means ± S.E.M.; n=3; 

*p < 0.05; ** p < 0.01; *** p < 0.001 compared with acarbose (0.5 µM).
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Figure 31.  The combined effect of acarbose and flavonoids 2-10 on 

intestinal sucrase inhibition; results expresses as means ± S.E.M.; n=3. 

*p < 0.05; ** p < 0.01; *** p < 0.001 compared with acarbose (3.14 µM).
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Figure 32. Proposed mechanism for the synergistic effect of flavonoids 7-10 (non-

competitive inhibition). 
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Figure 33. Proposed mechanism for the synergistic effect of flavonoids 3-5 (mixed 

inhibition) 
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Tendency curve formula: Y = 0.338 X – 11.017 

 

Figure 34. α-Glucosidase inhibition activity of naringenin (1). 

 

 

 

 

 

 

 

 

 

 

 

Tendency curve formula: Y = 0.424 X – 1.702 

 

Figure 35. α-Glucosidase inhibition activity of kaempferol (6). 
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Tendency curve formula: Y = 0.438 X – 0.215 

 

Figure 36. α-Glucosidase inhibition activity of quercetin (2). 

 

 

 

 

 

 

 

 

 

 

 

Tendency curve formula: Y = 0.517 X + 1.054 

 

Figure 37. α-Glucosidase inhibition activity of rhamnetin (3). 
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Tendency curve formula: Y = 0.2373 X – 6.594 

 

Figure 38. α-Glucosidase inhibition activity of rhamnezin (4). 

 

 

 

 

Tendency curve formula: Y = 0.301 X – 7.095 

 

Figure 39. α-Glucosidase inhibition activity of tamarixetin (5). 
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Tendency curve formula: Y = 0.517 X + 10.626 

 

Figure 40. α-Glucosidase inhibition activity of QGlcA (7). 

 

 

 

Tendency curve formula: Y = 0.446 X + 22.189 

 

Figure 41. α-Glucosidase inhibition activity of QGlcA-Me (8). 
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Tendency curve formula: Y = 0.451 X + 9.572 

 

Figure 42. α-Glucosidase inhibition activity of KGlcA (9). 

 

 

 

Tendency curve formula: Y = 0.424 X + 18.073 

 

Figure 43. α-Glucosidase inhibition activity of KGlcA-Me (10). 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

α
-g

lu
co

si
d

as
e 

in
h
ib

it
io

n
 (

%
) 

 

concentration (µmol/L) 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

α
-g

lu
co

si
d

as
e 

in
h
ib

it
io

n
 (

%
) 

concentration (µmol/L) 



 

73 
 

 

 

Tendency curve formula: Y = 0.5207 X + 0.48143 

 

Figure 44.  α-Glucosidase inhibition activity of acarbose (positive control). 

 

 

 

Figure 45. Standard curve of p-nitrophenol. 
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Figure 46. Velocity curve of substrate-enzyme reaction.  
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Figure 47. Lineweaver-Burk plot graph (reference graph). 
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Chapter IV 

Effect of flavonoids 1-10 towards amyloid aggregation related to diabetes 

and Alzheimer’s diseases  

 

IV-1. Introduction  

Amyloid aggregation has become the subject of rapidly increasing research activities 

across a wide range of scientific disciplines. Such activities have been stimulated by the 

association of amyloid deposition with a range of debilitating medical disorders, from 

T2D to AD, many of which are major threats to human health and welfare in the 

modern world
54)

.
 

The amyloid state of a protein is a highly ordered form of aggregate in which the 

polypeptide chains adopt a fibrillary structure, which is capable of self-replication, for 

example through secondary processes. Amyloid fibrils are rich in β-sheet structure and 

typically form from unfolded or partially unfolded conformations of proteins and 

peptides, some of which are fragments of larger proteins. The amyloid state is 'generic' 

in that its characteristic architecture is not encoded by specific amino acid sequences
55)

.
 

The aim of this chapter is to investigate the protective effect of flavonoids 1-10 from 

T. gallica towards hIAPP and Aβ aggregation inhibitors, as well as, their antioxidant 

effect. 

Amyloid β (Aβ) is the components of the amyloid deposits in the AD brain, while the 

component of the amyloidogenic peptide deposit in the pancreatic islets of Langerhans 

is identified as islet amyloid polypeptide (IAPP).
 
 

IV- 2. Thioflavin-T (Th-T) assay of flavonoids 1-10  

The Thioflavin-T (Th-T) assay showed that both catechol and non-catechol types 

suppressed the aggregation of amyloid, but at a different degree of inhibition on a dose 

dependent way (Figures 48-67). 

 In fact, flavonoids possessing a catechol moiety had a lower IC50 than the non-

catechol type (Table 20) indicating that the position and number of the hydroxyl group 

in the aromatic ring is important for the determination of aggregation inhibition potency. 
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This result is consistent with previous reports concerning Aβ
56-60) 

and confirmed for 

hIAPP aggregation inhibition. This difference between the two substances types might 

be explained by the difference in the mechanisms of action
61)

.
 

From Table 20, it was also deduced that O-methylation of the flavonoids reduced 

significantly the inhibition potential of the aglycone form since the activity of 2 

considerably decreased when the hydroxyl group in the A-ring and B-ring were 

substituted with a methoxyl group in case of 3, 4, and 5.  
 

Among all the purified flavonoids 1-10, QGlcA (7) showed the strongest effect with 

an IC50 equal to 3.8 µM and 1.7 µM towards Aβ and hIAPP, respectively. Add at that it 

was observed that the glucuronide moiety increased the aggregation inhibitory activity 

of 2 and 6. 

Structure-activity relationship of flavonoids 1-10 (Table 20) suggest that, a part of 

the catechol moiety, carboxyl moiety, as well as, the presence or absence of double 

bond between C2 and C3 in C-ring, are important functional groups for amyloid 

aggregation inhibition.   

IV-3. Transmission electronic microscopy (TEM) observation of flavonoids 1-10   

The Transmission electronic microscopy (TEM) images of Aβ and hIAPP fibrils, 

when applied with QGlcA (7), its aglycone form quercetin (2), and the methyl ester 

analogue QGlcA-Me (8), show that the fibril formation was strongly inhibited by 7 

(Figures 69B and 73B) compared to 2 (Figures 69C and 73C) and 8 (Figures 69D and 

73D).  

O-Methyl group in the glucuronide moiety of 10 reduced the inhibitory potential of 9, 

same as observed for kaempferol (6) analogs (Figures 68 and 72). 

O-Methylated analogs 3, 4, and 5 of quercetin (2) didn’t inhibit the fibril formation 

of amyloids (Figures 70 and 74). 

Quercetin (2) is an antioxidant flavonoid widely distributed in the plant kingdom, 

including daily foods such as vegetables and fruits.
 
This substance was reported to 

inhibit a wide variety of diseases and/or aging in vivo, such as, the generation of Aβ 

peptides, interfering with Aβ aggregation.
 
However, the metabolic conversion of 
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quercetin (2) after oral intake is suggested to attenuate its biological activity since the 

aglycone form of  QGlcA (7) is not bioavailable in vivo, particularly in the brain
62)

.   

Ho et al., reported that similar to quercetin, the glyconosylated brain-targeting 

quercetin metabolite, QGlcA (7), is capable of interfering with the assembly of Aβ 

peptides into neurotoxic oligomeric Aβ aggregates. QGlcA (7) at 1:1 molar ratio with 

Aβ1-42 also significantly reduced the formation of higher-order Aβ1-42 species
63)

 which is 

in consistence with the obtained results.  

The present in vitro study reports for first time QGlcA (7) and KGlcA (9) as hIAPP 

aggregation inhibitors. And, it suggests that substances with catechol and glucuronide 

moieties, showing Aβ aggregation inhibition, can be used also in case of hIAPP 

aggregation prevention. Therefore, it would be also of interest to extend this study to 

other amyloidogenic diseases.  

IV-4. Experimental  

IV-4-1. General methods  

Fort two-mer amyloid β-protein (Aβ1-42) was synthesized by the standard protocol
64)

. 

hIAPP (Amylin 1-37, human, purity > 95%) was purchased from Karebay Biochem Inc. 

IV-4-2. Th-T fluorescence assay  

Aggregative ability of amyloid was evaluated at 37°C by Th-T using 42-mer amyloid 

β-protein (Aβ1-42) for Alzheimer’s disease and  human islet amyloid polypeptide 

(hIAPP) which is a 37-residue peptide secreted by the pancreatic β –cells for T2D.   

Briefly, Aβ1-42 was dissolved in 0.1% NH4OH at 250 mM and hIAPP in 

hexafluoroisopropanol (HFIP). The amyloid solution was diluted 10-fold with 50 mM 

phosphate-buffered saline (PBS) (pH 7.4), and the solution incubated with or without 

samples.  

A 2.5 µL volume of a peptide solution was added to 250 µL of 1mM Th-T in 50 mM 

Glycine-NaOH buffer (pH 8.5). The fluorescence intensity was measured at an 

excitation wavelength of 420 nm and an emission wavelength of 485 nm by a 

Multidetection Microplate Reader.  
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Aβ1-42 was incubated alone for 2h, 6 h, 12 h, and 24 h, while hIAPP was incubated 

alone for 4 h, 8 h, and 24 h. 

IV-4-3. Transmission electronic microscopy (TEM)  

Effect of the flavonoids 1-10 on Aβ1-42 and hIAPP fibrillogenesis was investigated by 

using TEM.  

The incubating solution was the same as that used for preparing the samples in case 

of Th-T assay.  

A 5.0 µL volume of each sample was spotted on to a glow-discharged, Formvar-

carbon-coated grid and was incubated for 2 min and then washed twice with 5.0 µL of 

pure water (MiliQ).  

The grid was finally negatively stained twice for 1 min each with 5.0 µL of 0.4% 

silicotungstic acid, and the solution was removed. After air drying for 5 min, each 

sample was examined with TEM (JEM-1400 electron microscope, JEOL, Japan). 
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Table 20. IC50 of hIAPP and Aβ aggregation inhibitory activities of flavonoids 1-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substance name 

IC50 (µM) 

hIAPP  Aβ 

naringenin (1) 10.3 9.3 

quercetin (2) 1.8 15.7 

rhamnetin (3) 13.4 131.8 

rhamnezin (4) > 100 > 200 

tamarixetin (5) 10.6 90.7 

kaempferol (6) 25.4 51.6 

QGlcA (7) 1.7 3.8 

QGlcA-Me (8) 22.6 31.6 

KGlcA (9) 18.5 19.4 

KGlcA-Me (10) 28.2 22.4 



 

81 
 

 

 

 

 

 

 

 

Figure 48. Amyloid β aggregation inhibition activity of naringenin (1). 
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Figure 49. Amyloid β aggregation inhibition activity of quercetin (2). 
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Figure 50. Amyloid β aggregation inhibition activity of rhamnetin (3). 
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Figure 51. Amyloid β aggregation inhibition activity of rhamnazin (4). 
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Figure 52. Amyloid β aggregation inhibition activity of tamarixetin (5). 
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Figure 53. Amyloid β aggregation inhibition activity of kaempferol (6). 
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Figure 54. Amyloid β aggregation inhibition activity of QGlcA (7). 
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Figure 55. Amyloid β aggregation inhibition activity of QGlcA Me (8). 
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Figure 56.  Amyloid β aggregation inhibition activity of KGlcA (9). 
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Figure 57. Amyloid β aggregation inhibition activity of KGlcA Me (10). 
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Figure 58. hIAPP aggregation inhibition activity of naringenin (1). 
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Figure 59.  hIAPP aggregation inhibition activity of quercetin (2). 
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Figure 60.  hIAPP aggregation inhibition activity of rhamnetin (3). 
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Figure 61. hIAPP aggregation inhibition activity of rhamnezin (4). 
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Figure 62. hIAPP aggregation inhibition activity of tamarixetin (5). 
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Figure 63. hIAPP aggregation inhibition activity of kaempferol (6). 
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Figure 64. hIAPP aggregation inhibition activity of QGlcA (7). 
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Figure 65. hIAPP aggregation inhibition activity of QGlcAMe (8). 
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Figure 66. hIAPP aggregation inhibition activity of KGlcA (9). 
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Figure 67. hIAPP aggregation inhibition activity of KGlcA Me (10). 
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Figure 68. Transmission electron microscopy observation of Amyloid β aggregation 

inhibitory activity of 25 µM A β (A), 25 µM A β with 100 µM 9 (B), 25 µM A β 

with 100 µM 6 (C), and 25 µM Aβ with 100 µM 10 (D).  
 

             

Figure 69. Transmission electron microscopy observation of Amyloid β aggregation 

inhibitory activity of 25 µM A β (A), 25 µM A β with 100 µM 7 (B), 25 µM A β 

with 100 µM 2 (C), and 25 µM A β with 100 µM 8 (D).  
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Figure 70. Transmission electron microscopy observation of Amyloid β aggregation 

inhibitory activity of 25 µM A β (A), 25 µM Aβ with 100 µM 3 (B), 25 µM Aβ with 

100 µM 4 (C), and 25 µM Aβ with 100 µM 5 (D).  

   

                                              
 

Figure 71. Transmission electron microscopy observation of Amyloid β aggregation 

inhibitory activity of 25 µM Aβ (A), 25 µM Aβ with 100 µM 1 (B). 
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Figure 72. Transmission electron microscopy observation of hIAPP aggregation 

inhibitory activity of 25 µM hIAPP (A), 25 µM hIAPP with 100 µM 9 (B), 25 µM 

hIAPP with 100 µM 6 (C), and 25 µM hIAPP with 100 µM 10 (D). 

 

 

                

Figure 73. Transmission electron microscopy observation of hIAPP aggregation 

inhibitory activity of 25 µM hIAPP (A), 25 µM hIAPP with 100 µM 7 (B), 25 µM 

hIAPP with 100 µM 2 (C), and 25 µM hIAPP with 100 µM 8 (D).  
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Figure 74. Transmission electron microscopy observation of hIAPP aggregation 

inhibitory activity of 25 µM hIAPP (A), 25 µM hIAPP with 100 µM 3 (B), 25 µM 

hIAPP with 100 µM 4 (C), 25 µM hIAPP with 100 µM 5 (D). 

 

 

 

 

 

     
 

Figure 75. Transmission electron microscopy observation of hIAPP aggregation 

inhibitory activity of 25 µM hIAPP (A), 25 µM hIAPP with 100 µM 1 (B). 
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Chapter V 

General conclusion 

 

Ten flavonoids 1-10 were isolated and identified from the medicinal halophyte T. 

gallica as α-glucosidase inhibitors towards both yeast and mammalian enzymes: 

naringenin (1), quercetin (2), rhamnetin (3), rhamnezin (4), tamarixetin (5), kaempferol 

(6), QGlcA (7), QGlcA-Me (8), KGlcA (9), and KGlcA-Me (10). 

The flavonoids were also proved to exhibit an antioxidant activity and inhibition 

potential for Aβ and hIAPP aggregation.  

QGlcA-Me (8) showed the strongest α-glucosidase inhibition among all the purified 

flavonoids 1-10  with an IC50 equal to 62.3 µM, while QGlcA (7) have the most potent 

amyloid aggregation inhibition activity (IC50 1.7 µM in case of hIAPP and IC50 3.8 µM 

in case of Aβ).  

The structure-activity relationship study of α-glucosidase inhibitory activity shows 

that the presence of O-methyl moiety in the flavonoid increases its inhibitory potential, 

when substituted in the A-ring of the aglycone and in the glucuronide moiety. However, 

the substitution of OH group in the catechol of B-ring with OMe reduced considerably 

the inhibition potential.    

The substitution of OH group at C-3 position with glucuronide moiety also increased 

also the activity of quercetin (2) and kaempferol (6).  

The same result was also observed in case of amyloid aggregation inhibition. But, the 

methylation of the aglycone forms and the glucuronide moiety decreased their potential 

to inhibit the aggregation of Aβ and hIAPP. 

Glucuronosylated flavonoids are reported for the first time as α-glucosidase and 

hIAPP aggregation inhibitors. Consequently, advanced studies were conducted on those 

substances and compared with their aglycone and methylated analogs.    

The study of the mechanism of action for α-glucosidase inhibition activity suggested 

that, O-methylated and aglycone flavonoids have a mixed inhibition, while the 

glucuronosylated flavonoids have a non-competitive inhibition. 

Furthermore, O-Methylated and glucuronosylated flavonoids showed also a 

synergistic effect when applied with acarbose, suggesting that they can be used to 
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reduce the side effect of commercially available α-glucosidase inhibitors. The 

synergistic effect of those flavonoids can be related to their inhibition mode which is 

different from acarbose. In fact, acarbose is known to exhibit a competitive inhibition 

targeting the enzyme active site, yet the tested flavonoids target is different from that 

site and as a result, two different α-glucosidase inhibitors may bind simultaneously. 

In case of amyloid aggregation, QGlcA (7), KGlcA (9), and naringenin (1) showed 

inhibition potentials for the fibril formation. 

The obtained results provided a better understand about the structural moieties 

potentially important for the inhibition of α-glucosidase and amyloid aggregation.  

Add at that, it was find that O-methylated and glucuronosylated flavonoids, able to 

inhibit Aβ responsible of the neuronal cell death in AD, exhibit also aggregation 

inhibitory activity towards hIAPP, which are the cause of the cell destruction and 

insulin secretion disturbance in the pancreas of diabetic patients. 

It was proved also that the antioxidant potential of QGlC-A (7) was in correlation 

with its amyloid aggregation inhibition potential and α-glucosidase inhibition activity. 

However, the antioxidant potential of O-Methylated flavonoids 3─5 was in correlation 

with the α-glucosidase inhibition activity but not with their amyloid aggregation 

inhibition potential  

The conducted experiments may also be proposed to valorize the use of the invasive 

halophyte T. gallica (homeopathic drug) as a multi-model treatment that target diabetes 

and Alzheimer's diseases common pathophysiological features.   
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