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AD, Atopic Dermatitis 

Dex, dexamethasone 

CAIA, Collagen Antibody Induced Arthritis 

CIA, Collagen Induced Arthritis 

 Fex, fexofenadine. 

FITC, Fluorescein isothiocyanate 

HXR, histamine X receptor where X indicates the receptor number 

KO, Knock Out 

 p.o., orally (per os) 

RA, Rheumatoid Arthritis 

WT, Wild Type 
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General Introduction:  Histamine is a biologically active amine which involved in local immune responses as well 

as regulating diverse physiological functions. Histamine exerts its function through corresponding receptors. 

Physiological and pharmacological profiling predicted that histamine receptor consists of several subtypes. Two of 

major histamine receptor subtypes, H1R and H2R, have already been well studied pharmacologically; and H1R 

antagonists have been developed as drugs to treat allergic rhinitis, atopic dermatitis (AD), insomnia. On the other 

hand, H2R antagonists are used as drug to treat heart burn and acid reflux. It was highly expected that there might be 

additional histamine receptor subtypes through pharmacological studies; and H3R and H4R were identified by 

molecular biological approaches. The function of H3R has already expected to involve the central and peripheral 

regulation of the levels of histamine and other neurotransmitters, however, there was nearly no known information 

about H4R function. H4R is expressed mainly on cells of the immune system so I studied the role of H4R focused on 

its involvement in the inflammation and immunity.   

 

Part 1: Atopic dermatitis (AD) is a disease were traditional H1R antagonists are primarily used, but the efficacy of 

H1R antagonist is not sufficient and there is need for better therapies. My studies focused on the role of H4R in 

dendritic cell migration to the lymph node and a reduction of T cell responses to antigen stimulation resulting in 

decreased inflammation in the skin. Ongoing pruritus is a common comorbidity of AD, and I have identified 

superior efficacy of H4R antagonist to H1R antagonist in controlling pruritus in preclinical disease model.  

 

Part 2: I have studied on the role of H4R in autoimmunity, especially in Rheumatoid arthritis (RA). Although 

elevated histamine levels occur in RA patients, they do not respond to traditional H1R or H2R antagonists. I have 

identified that H4R with its expression in immune cells could pay a pivotal role in preclinical disease models. H4R 

was involved in both innate and adaptive immunity in preclinical RA models and contributed to the recruitment of 

mast cell to the inflamed synovium and reduction of key cytokines such as IL-17.  

 

General Discussion: My studies have identified novel role of H4R in physiological and pathophysiological 

conditions. The AD study (Part 1) demonstrated H4R antagonists are anti-pruritic and anti-inflammatory in a mouse 
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model of Th2-dependent skin inflammation. This effect was superior to that of existing H1R antagonists. The anti-

inflammatory properties appeared to be driven by a reduction in Th2 cell activation that can be partially accounted 

for by a reduction in the migration of antigen-bearing dendritic cells to the lymph nodes. Therefore, the effects of the 

H4R antagonists on pruritus, inflammation, and Th2-cell responses point to their therapeutic potential for the 

treatment of inflammatory skin disorders such as AD. The other studies focused on RA (Part 2) clearly showed a 

role of H4R in arthritis. Importantly, the receptor has effects in both a model of inflammatory arthritis and one of 

autoimmune arthritis, suggesting that H4R can affect both innate and adaptive immune responses. Taken as a whole, 

my study suggests that the H4R can be not only the initiator of inflammation, but also potentiator of inflammatory 

responses. Therefore, antagonism of H4R would not be expected to be immunosuppressive, but rather lead to a 

dampening of the initial inflammatory response, thereby leading to a reduction in inflammation in a variety of 

disease states, including allergic or autoimmune. I would also discuss on the recent data from a human phase II trial 

demonstrating H4R antagonists reduce histamine-induced pruritus in AD patients. As a whole, my research on H4R 

has significantly contributed to increase our understanding on histamine and H4R and how they modify immunity 

and inflammation.  
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General Introduction 
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Histamine is a biologically active amine which involved in local immune responses as well as regulating diverse 

physiological functions. Histamine exerts its function through corresponding G protein coupled receptors. 

Physiological and pharmacological profiling predicted there would be more than one single histamine receptor. Two 

of major histamine receptor subtypes, H1R and H2R, were identified in the 1940s and thus had already been well 

studied. Antagonists drugs H1R to have been developed as drugs to treat allergic rhinitis, atopic dermatitis (AD), and 

insomnia. On the other hand, H2R antagonists are used as drug to treat heart burn and acid reflux. In fact Nobel 

prizes were award to Daniel Bovet in 1957 for the discovery of H1R antagonists and to Sir James Black in 1988 for 

the identification H2R antagonists. However, it was highly expected that there might be additional histamine 

receptor subtypes as histamine still produced pharmacology when both H1R and H2R were blocked with antagonist.  

The H3R in 1999 and H4R in 2000 were identified by molecular biological approaches. The function of H3R is still 

being characterized but as it express on in the central nervous system it likely plays a role in regulating 

neurotransmitters.  H4R is expressed in both the central nervous system and more interestingly on immune cells.   In 

the mid-2000s knock out mice and antagonists were generated as tool to allow the characterization of the fourth 

histamine receptor. There was nearly no known information about H4R function. Because of H4R is expression 

mainly on immune cells the first works focused is role in inflammation and immunity.    Within this works focus is 

on the discovery the role H4R plays in the pathogenesis of atopic dermatitis (AD) and Rheumatoid Arthritis (RA).   

However, it should be noted others and myself have also characterized H4R role in pain, asthma, and colitis. 

 

AD is an extremely common disease effecting 20% of people at some part of their life.   Although generally a 

disease of childhood that patients outgrow, it does effect some patients throughout their lives.    The disease is 

characterized by itchy, red, swollen and cracked skin.   In children it can be present anywhere, but in adults it's 

general found on the hands, feet, knees and elbows.  The disease can be exacerbated by frequent bathing, and the 

desire to itch areas of the effected skin.   AD a disease where traditional H1R antagonists are primarily used, but the 

efficacy of H1R antagonist is not sufficient and there is need for better therapies. Here within are the results of 

studies identifying for the first time the role H4R in AD.  Specifically how H4R antagonists affects dendritic cell 

migration to the lymph node results in a reduction of T cell responses to antigen stimulation.  This leads to decreased 

inflammation in the skin pre-clinically. Ongoing pruritus is a common comorbidity of AD and not controlled by 
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current therapies.   Yet, in these studies H4R antagonists have superior efficacy to a H1R antagonist in controlling 

pruritus in a preclinical disease model.   

 

Rheumatoid arthritis is a chronic progressive autoimmune disease that attacks the joints of patients.   Although the 

cause is unknown genetic and environmental factors play a role leading to 0.5 to 1% of the population being 

effected.   The ongoing inflammation in the joints can be severe leading to destruction of the joint and loss of 

mobility or functional use of the hands.     Promising drugs such as anti-TNF-a antibodies have been developed over 

the years to slow the course of the disease they are not curative and for unknown reason they become ineffective in 

patients after several years of use.   New curative treatments or treatment for patients where current therapies are 

ineffective are needed.   Although elevated histamine levels occur in RA patients, they do not respond to traditional 

H1R or H2R antagonists. Yet again H4R with its expression in immune cells could pay in autoimmune disease like 

RA.    Here within find the results of studies were H4R was involved in both innate and adaptive immunity in 

preclinical RA models and contributed to the recruitment of mast cell to the inflamed synovium and reduction of key 

cytokines such as IL-17.   Treatment with H4R antagonist resulted in greatly reduced RA like disease severity in two 

pre-clinical models of RA.  In addition, the TH17 cytokine was greatly reduce likely be one of several mechanism of 

the efficacy. 
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Part 1: H4R and Atopic Dermatitis 
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Abstract 
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The role of histamine H4 receptor (H4R) was investigated in a Th2 cell-mediated mouse skin 

inflammation model that mimics several of the features of atopic dermatitis. Treatment with two specific 

H4R antagonists before challenge with fluorescein isothiocyanate (FITC) led to a significant reduction in 

ear edema, inflammation mast cell and eosinophil infiltration. This was accompanied by a reduction in the 

levels of several cytokines and chemokines in the ear tissue. Upon ex vivo antigen stimulation of lymph 

nodes, H4R antagonism reduced lymphocyte proliferation and the levels of IL-4, IL-5 and IL-17. One 

explanation for this finding is that lymph nodes from animals dosed with the H4R antagonist, JNJ 

7777120, contained a lower number of FITC positive dendritic cells. The effect of H4R antagonism on 

dendritic cell migration in vivo may be an indirect result of the reduction in tissue cytokines and 

chemokines or a direct effect on chemotaxis. In addition to anti-inflammatory effects, JNJ 7777120 also 

significantly inhibited the pruritus exhibited in the model. Therefore, the dual effects of H4R antagonists 

on pruritus and Th2 cell mediated inflammation point to their therapeutic potential for the treatment of 

Th2-mediated skin disorders including atopic dermatitis.  
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Introduction 
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The histamine H4 receptor (H4R) is the most recently described histamine receptor and is 

primarily expressed on hematopoietic cells, in particular, dendritic cells, mast cells, and 

eosinophils(for a recent review see Huang and Thurmond 2008). Notably, the H4R exerts 

profound effects in regulating immune cell functions, i.e. chemotaxis, cytokine and chemokine 

expression (Huang and Thurmond 2008). A number of in vivo studies have demonstrated H4R 

involvement in both innate and adaptive immune responses  (Coruzzi et al. 2007; Dunford et al. 

2006; Thurmond et al. 2004; Varga et al. 2005). In particular the H4R has been shown to mediate 

Th2 responses in vivo and in vitro and antagonists of the receptor reduce lung inflammation in a 

mouse model of allergic asthma (Dunford et al. 2006). These, and other lines of evidence, make 

H4R a promising immunomodulatory target for the treatment of allergic, autoimmune, and other 

inflammatory diseases (Huang and Thurmond 2008; Thurmond, Gelfand, and Dunford 2008). In 

addition to its effects in inflammation, the H4R has also been shown to direct pruritic responses 

in mice (Bell, McQueen, and Rees 2004; Dunford et al. 2007; Rossbach et al. 2009). This dual 

effect on allergic inflammation and pruritus suggests that the H4R is a promising new therapeutic 

target for treating allergic skin diseases such as atopic dermatitis. 

 

Atopic dermatitis is a common chronic inflammatory skin disease with symptoms that include 

skin lesions, pruritus and dry skin (for recent reviews see Akdis et al. 2006; Bieber 2008; Homey 

et al. 2006). The condition is often predictive of subsequent atopic disorders such as allergic 

rhinitis and asthma.   All atopic diseases share certain pathogenic and immunologic elements 

such as eosinophilia and elevated IgE levels (Spergel and Paller 2003; Cookson 2004; Avgerinou 

et al. 2008). Atopic dermatitis is thought to be driven, at least in the early stages, by Th2 cell 

responses, since lesions exhibit marked T cell infiltration and these cells predominantly express 
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IL-4, IL-5 and IL-13, especially during the acute phase, but Th1 responses may play a more 

dominant role in chronic lesions (Akdis et al. 2006; Bieber 2008; Homey et al. 2006). 

 

Histamine is recognized as a major inflammatory mediator released by mast cells, basophils, and 

other cells during allergic reactions and exerts its actions through four distinct G-protein-coupled 

receptors. An increase in histamine levels has been noted in the skin and plasma of atopic 

dermatitis patients (Johnson et al. 1960; Juhlin 1967) and basophils and mast cells are increased 

in atopic dermatitis lesions (Jarvikallio et al. 1997; Phanuphak et al. 1980; Horsmanheimo et al. 

1994). Antihistamines that target the histamine H1 receptor (H1R) are frequently used for the 

relief of the associated pruritus, but their effectiveness appears to be restricted to the first 

generation sedating H1R antagonists and non-sedating antihistamines have little benefit (Akdis et 

al. 2006). This suggests that either histamine is not involved in the disease pathophysiology or 

that receptors other than the H1R may be important in histamine-mediated responses in atopic 

dermatitis. 

 

To explore this I have used two potent and specific H4R antagonists to examine the role of H4R 

in mediating inflammation and pruritus in a Th2 cell-mediated mouse skin inflammation model. 

The FITC skin model used here is a contact dermatitis model, but it has been shown to be IgE, 

Th2 cytokine and CD4+ T cell dependent and is characterized by strong eosinophilia, unlike 

other Th2 sensitizers (Dearman and Kimber 2000; Takeshita et al. 2004). Thus, this model has 

several features similar to atopic dermatitis in humans. 
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Materials and Methods 
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Mice 

BALB/c mice were obtained from Charles River Laboratories (Wilmington, MA). WBB6F1 +/+ 

and WBBF1 W/W
v
 mice were from Jackson Laboratory (Bar Harbor, Maine). H4R deficient 

mice were generated as previously described (Hofstra et al. 2003) and crossed on to a BALB/c 

background for at least ten generations. Age matched animals were used in all experiments. Mice 

were housed in community cages on a 12 h light cycle and fed mouse chow and water ad libitum. 

All procedures were performed according to the internationally accepted guidelines for the care 

and use of laboratory animals in research and were approved by the local IACUC. 

 

Materials 

JNJ 7777120, (5-Chloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone), and JNJ 

28307474, 5-Fluoro-4-methyl-2--1H-benzoimidazole, were synthesized as previously described 

(Arienti et al. 2005; Jablonowski et al. 2003). Fluorescein isothiocyanate (FITC), 

dexamethasone, fexofenadine and dibutylphthalate were obtained from Sigma-Aldrich, Inc. (St. 

Louis, MO). The selectivity of JNJ 7777120 has been previously described (Thurmond et al. 

2004). The selectivity of JNJ 28307474 is given in Tables 1- 3. The binding assays were carried 

out as previously described (Thurmond et al. 2004). 

 

FITC model 

Female mice (6 to 8 wk old) were used. The abdomen of each animal was shaved and sensitized 

by the application of 100 l of FITC in dibutylphthalate and acetone on two consecutive days. 

Five days after the sensitization, the baseline thickness of the ears was measured using calipers 
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with the animals under light isofluorane anesthesia. One ear was then painted with 15 l of FITC 

and the contra-lateral ear was painted with vehicle (dibutylphthalate /acetone). Finally, the 

thickness of the ears was measured again 24 h after FITC application. Animals were then 

euthanized and biopsies of the ear collected. In addition, a repeat sensitization model was also 

performed in which animals were sensitized on days 1, 2 and 15, 16 and challenged on day 21. 

The thickness of the ears was measured again 24 h after FITC application. 

 

Compound administration  

All compounds were formulated in 2-hydroxypropyl-β-cyclodextrin for all experiments and were 

administered per os by oral gavage (p.o.) 20 min prior to FITC challenge and 4 hours post 

challenge. 

 

Histology 

For histological examination, ear specimens were fixed in 10% buffered formalin and embedded 

longitudinally in paraffin by standard methods. Four-micron sections were stained with Wright-

Giemsa stain. Individual parameters such as inflammation, edema and the number of abscesses 

were assessed and scored as follows:  
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Inflammation 

0- No visible inflammation  

1- Inflammatory cells present along less than 40% of the length of the skin 

2- Inflammatory cells present between 40 and 80% of the length of the skin 

3- Inflammatory cells present along greater than 80% of the length of the skin 

 

Edema 

0- No edema 

1- Increase in relative thickness from normal by 20% 

2- Increase in relative thickness from normal by 20 to 40% 

3- Increase in relative thickness from normal more than 40% 

 

Abscesses 

0- No abscesses 

1- Less than 2 

2- Less than 4 

3- Greater than or equal to 4 
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A total severity score was obtained by adding the scores from the three assessments above. The 

theoretical maximum severity score was nine. The score was determined from 6 whole sections 

from each animal. In addition the number of eosinophils and mast cells were quantitated from 8 

randomly selected high-power fields from 4 sections for each animal. 

 

Cytokine measurements in ear tissue 

Skin ear biopsies were pooled from four test animals. Biopsies were minced and then repeatedly 

homogenized with beads in PBS plus Complete
TM

 protease inhibitor cocktail (Roche Applied 

Science, Indianapolis, IN) at 4C. Supernatant was collected and analyzed for the presence of 

cytokines using a Luminex multiplex system (Luminex Corp., Austin TX) with a Mouse 

Cytokine LINCOplex Panel (Millipore, Billerica, MA) as per manufacturer’s protocol (mouse 

twenty-two cytokine kit). 

 

FITC-specific T cell responses in vitro 

Auricular lymph node cells were isolated from immunized mice, pooled and cultured in 

quadruplicate (5 X 10
5 
cells/well) with medium (RPMI 1640 supplemented with 10% fetal 

bovine serum, non-essential amino acids and β-mercaptoethanol) alone or with medium plus 10 

µg/mL FITC (diluted from 10 mg/mL stock in 100% DMSO) for 96 h. Cell culture supernatants 

were collected after three days, and cells were continued in culture with [
3
H]-Thymidine (1 

Ci/well) for another 18 h for proliferation assays. [
3
H]-Thymidine uptake was quantitated by 

liquid scintillation counting. Cytokine levels in cell culture supernatants were determined using a 

Luminex multiplex system (Luminex Corp., Austin TX) with a Bio-Rad Bioplex (Hercules, CA) 

or Mouse Cytokine LINCOplex Panel (Millipore, Billerica, MA) as per manufacturer’s protocol 
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(mouse eighteen or twenty-two cytokine kit, respectively). For anti-CD3/anti-CD28 

stimulations, 96-well plates were coated with 100 µl/well of 10 µg/ml anti-mouse CD3 (NA/LE) 

(BD Pharmingen, San Diego, CA) in PBS, incubated at 4
o
C overnight. Before adding cells the 

wells were aspirated and washed twice with PBS. After the addition of cells (5 x 10
5 
cells/well), 

anti-mouse CD28 (NA/LE) (BD Pharmingen, San Diego, CA) was added to a final concentration 

of 2 µg/ml and incubated for 72 h before processing as above for proliferation and cytokine 

production. 

 

Dendritic cell migration in vivo 

Mice were shaved and sensitized by application of 100 l of 0.5% FITC in dibutylphthalate and 

acetone onto the abdomen on two consecutive days. Five days after the sensitization, animals 

were dosed with compounds, and 30 min later, one ear was painted with 15 l of 0.5% FITC on 

both sides and the control ear was painted with vehicle (dibutylphthalate /acetone). Twenty-four 

hours after the application of FITC, mouse auricular lymph nodes were removed, and digested 

with 2.5 ml digestion buffer (RPMI 1640 containing 50 l of DNase I (Sigma-Aldrich, Inc., St. 

Louis, MO) and liberase III (Roche Applied Science, Indianapolis, IN)) for 20 min at 37
o
C. 

Fresh digestion buffer, 2.5 ml, was added and incubated for another 15 min at 37
o
C. Lymph 

nodes were gently dispersed with a 70 m cell strainer, flushed with 5 ml PBS containing 5 mM 

EDTA, spun down, washed once with 5 ml PBS containing 5 mM EDTA, and resuspended in 10 

ml FACS buffer (PBS with 1% fetal calf serum). Cells were counted and adjusted to 1 x 10
7
 

cells/ml and 1-2 x 10
6
 cells were used for each staining. Cells were incubated with 1:50 FcR 

blocker (BD Pharmingen, San Diego, CA) on ice for 15 min, stained with 1:50 PE-anti-CD11c or 

PE-anti-I-A
d
 (BD Pharmingen, San Diego, CA) for 45 min on ice. Cells were washed once with 
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3 ml FACS buffer, resuspended, and collected on FACSCalibur (BD Biosciences
 

Immunocytometry Systems, San Jose, CA). Right before analysis, 1 µg/ml propidium iodide was 

added to stain for dead cells. 

 

Pruritus Assessment 

Pruritus was quantified via counting of the number of bouts of scratching in a 15-min period 

starting 10 min after the application of FITC to the ear. Bouts of scratching were recorded and 

defined as previously described (Dunford et al. 2007). 
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Results 
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Histamine H4 receptor antagonism inhibits edema in a dermal inflammation model. 

Dermal inflammation was induced in Balb/C mice by topical exposure to fluorescein 

isothiocyanate (FITC) (Figure 1a). Mice were sensitized to FITC by painting on the abdomen on 

two consecutive days. Five days later FITC was applied to one ear and 24 h later the ear edema 

was evaluated as an indication of inflammation. The H4R-selective antagonist (Thurmond et al. 

2004), JNJ 7777120, administered 20 min prior to and 4 h after FITC application reduced the ear 

edema in a dose dependent fashion (Figure 1b). The maximum inhibition seen was 39% and 

higher doses did not yield any further reduction. This level of inhibition was similar to that seen 

using dexamethasone dosed at 3 mg/kg p.o. The role of the H4R in this model is further 

supported by the reduction in ear edema in mice deficient in the H4R compared to wild-type mice 

(Figure 1c). In further support of an H4R specific affect a second H4R antagonist, JNJ 28307474 

(Tables 1 -3), of a completely different chemical class was also studied. This compound also 

inhibited ear edema formation with a maximal effect similar to that found with JNJ 7777120 

(Figure 1d). While this compound does have some cross-reactivity with muscarinic and 5-HT 

receptors (Tables 2 and 3), the only affinity it shares in common with JNJ 7777120 is at the H4R 

(Thurmond et al. 2004) supporting the conclusion that the effects seen are mediated via the H4R.  

 

The inflammation in this model was also assessed by histopathological analysis of the ears. 

Twenty-four hours after FITC challenge there was significant inflammation. This consisted of 

mainly neutrophils, but there was also an increase in the number of mast cells and eosinophils in 

the skin (Figures 2- 3). The increase in mast cells and eosinophils is consistent with a Th2 

response in this model. Treatment with the H4R antagonist led to a reduction both in the total 

severity score and in the number of eosinophils and mast cells (Figures 2- 3). 
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Analysis of cytokines and chemokines 

A full time course was carried out and all of the cytokine and chemokines levels peaked at 12-18 

h (Figure 4). Application of FITC lead to increases in IL-4 while IFN-ɣ levels were low (30-50 

pg/ml) and did not change with FITC treatment (data not shown). This, along with the observed 

eosinophilia, supports the previous findings that this model elicits a Th2 response (Dearman and 

Kimber 2000; Takeshita et al. 2004). In addition there were increases in GM-CSF, IL-1β, IL-6, 

TN-Fα, RANTES, MCP-1, MIP-1α and KC. IL-2, IL-9 and IL-12 were detected at low levels 

and there was no change between control and FITC treated ears (data not shown). IL-10, IL-5 

and IL-13 in the ear homogenates were too low to measure. Treatment with the H4R antagonist, 

JNJ 7777120, significantly reduced the levels of MIP-1α, RANTES, IL-4, MCP-1, IL-1β, IL-6, 

KC, and GM-CSF. TNFα was detected at low levels in the FITC challenged ears and this was 

significantly reduced by treatment with JNJ 7777120. The inhibition of the cytokine and 

chemokine levels was only partial, but this was consistent with effects on tissue cytokines seen in 

lung inflammation models (Dunford et al. 2006). Similar results were seen with the other H4R 

antagonist, JNJ 28307474 (data not shown). These results, along with the effect on ear edema at 

24 h, clearly support a role for the H4R in Th2-mediated skin inflammation. 

 

Ex vivo antigen re-stimulation is impaired in H4R antagonist dosed mice  

FITC-induced dermatitis in Balb/C mice is suggested to be CD4+ T cell-dependent and Th2-type 

driven (Dearman and Kimber 2000), and previous work has shown that the H4R is involved in 

Th2 cell activation (Dunford et al. 2006). In order to determine if the H4R-mediated 

inflammation in this model is due to effects on T cell function, Th2 cytokine levels were 

measured upon ex vivo antigen stimulation of lymph nodes. Draining lymph nodes were 
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harvested after ear edema measurements were taken. The total number of cells in the draining 

lymph node of FITC challenged mice was not different between vehicle and compound treated 

mice, but was increased compared to mice whose ears were not challenged with FITC. An equal 

number of cells were then cultured for 72 h in the presence of FITC and proliferation, as well as 

cytokine production, was measured. Cells from draining lymph nodes isolated from FITC 

exposed mice proliferated with ex vivo FITC stimulation and this was reduced in cells from the 

lymph nodes of mice dosed with JNJ 7777120 in vivo (Figure 5a). There was no change in 

proliferation upon anti-CD3/anti-CD28 stimulation suggesting that the effect was antigen 

specific. After antigen re-stimulation the production of IL-4, IL-5 and IL-17 was inhibited by 

treatment in vivo with JNJ 7777120 (Figures 5b-d). This result suggests that H4R antagonism 

impairs Th2 T cell functions and this contributes to the decreases in dermal inflammation in this 

model. 

 

Dendritic cells migration is impaired by H4R antagonism 

The above results suggest that H4R is involved in Th2-dependent inflammatory responses. In 

order to better understand the mechanisms involved, we tested the possibility that H4R plays a 

role in dendritic cell migration, as has been shown in vitro for human monocyte-derived 

dendritic cells and other cell types (Damaj et al. 2007; Gutzmer et al. 2005; Hofstra et al. 2003; 

Ling et al. 2004). Antigen-bearing dendritic cells were detected as positive for both FITC and 

two dendritic cell markers - CD11c and MHC II. FITC positive dendritic cells were detected in 

the auricular lymph nodes after FITC application on the ear (Figure 6a). Lymph nodes from 

animal dosed with JNJ 7777120 contained a lower number of FITC positive dendritic cells and 

this was evident with either CD11c or MHC II staining (Figure 6b,c). These results suggest that 
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the H4R is involved in the control of the migration of antigen-carrying dendritic cells to draining 

lymph nodes, and therefore can affect T cell priming. 

 

Inflammatory Pruritus is inhibited by a H4R antagonist 

Previously the H4R has been shown to be involved in mouse models of acute pruritus. Since 

pruritus is a hallmark feature of many inflammatory skin diseases such as atopic dermatitis, 

studies were performed to see if H4R antagonists were anti-pruritic in a disease model. The 

model (Figure 7a) was modified slightly from that used to assess inflammation (Figure 1a) to 

yield a stronger itch component. The scratching response in mice was attenuated by pretreatment 

with JNJ 7777120 in a dose dependent manner (Figure 7b). The H1R antagonist fexofenadine 

given at a dose (150 mg/kg) previously shown to completely inhibit histamine-induced edema 

formation (Dunford et al. 2007), had no significant effect on pruritus alone, nor did it enhance 

the effect of JNJ 7777120. 

 

As for the previous model (Figure 1a), FITC application in this model led to ear edema when 

measured 24 h after the challenge. JNJ 7777120 given 20 min prior to and 4 h after FITC 

application on the ear reduced the ear edema in a dose dependent fashion (Figure 7c). The dose 

response mimicked that seen with pruritus reduction. Once more, the effect of an H1R antagonist 

in this model was studied and fexofenadine (150 mg/kg) did not show any inhibition of ear 

edema (Figure 7c), nor was there any additive effect when dosed in combination with JNJ 

7777120. This indicates that an H4R antagonist, but not an H1R antagonist can have both anti-

inflammatory and anti-pruritic effects in this model. 
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To assess whether the effect of the H4R antagonists was dependent on mast cells, the extended 

FITC model (Figure 7a) was carried out in mast cell sufficient (WBB6F1 +/+) and mast cell 

deficient mice (WBBF1 W/W
v
). FITC application was able to induce edema and scratching in 

mast cell deficient mice and both could be inhibited by JNJ 7777120 (Figure 7d,e). This 

indicates that mast cells are not required for the H4R-mediated responses and that they are not the 

source of histamine for activating the H4R. Interestingly, while the edema was equivalent in both 

the mast cell deficient and wild-type animals, the scratching was much greater in the mast cell 

deficient mice. The mechanisms for this are unknown, but it has been seen previously with both 

substance P and compound 48/80 induced itch, although to a lesser extent (Hossen et al. 2003; 

Inagaki et al. 2002). Recently, it has been recognized that mast cells can have both negative and 

positive regulatory functions depending on the physiological situation (Galli, Grimbaldeston, and 

Tsai 2008). 
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Discussion 
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Histamine has been implicated in the pathophysiology of atopic dermatitis, but antihistamines 

that target the H1R are generally not considered to be effective (Akdis et al. 2006). Here I have 

used a mouse model to test the efficacy of H4R antagonists against allergic inflammation and 

pruritus in the skin. FITC challenge is a contact dermatitis model, but it has several features 

similar to atopic dermatitis in that it is IgE, Th2 cytokine and CD4+ T cell dependent (Dearman 

and Kimber 2000; Takeshita et al. 2004). In particular the model is characterized by strong 

eosinophilia that distinguishes it from other Th2 sensitizers (Figure 3 and Takeshita et al. 2004). 

Here I have confirmed the Th2 nature of this model by showing increases in eosinophils, mast 

cells and Th2 cytokines in the ear following FITC challenge. 

 

Previous work has suggested that the H4R modulates allergic lung inflammation mainly through 

its effects on Th2 cell induction. The data shown here demonstrate that this is also true for Th2 

responses in the skin. The levels of several pro-inflammatory cytokines and chemokines 

including IL-4 were increased in ear tissue upon FITC challenge and were inhibited by treatment 

with H4R antagonists. While the effects of dexamethasone on cytokine production were not 

studied, it has recently been shown that it too can reduce the tissue levels of IL-4 in this model 

(Boehme et al. 2009). The reduction in these inflammatory mediators may lead directly to an 

attenuation of edema formation, as it has been previously shown that blocking IL-4 and TNF-α 

can decrease edema in this model (Takeshita et al. 2004; Suto et al. 2006). In addition the 

number of mast cells and eosinophils in the ear were increased upon exposure to FITC and the 

levels of both of these could be reduced by treatment with H4R antagonists. The effects on mast 

cells and eosinophils could be indirect due to changes in cytokine or chemokine levels, or could 

be a direct effect since the H4R has been shown to mediate chemotaxis for both of these cell 
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types (Hofstra et al. 2003; Ling et al. 2004). In particular it has been shown in vivo that histamine 

can induce mast cell migration in the trachea and that this can be blocked by an H4R antagonist 

(Thurmond et al. 2004). 

 

A direct role for the H4R on Th2 cell function was seen after antigen restimulation of draining 

lymph nodes from FITC treated animals. Restimulation with FITC resulted in a profound 

increase in proliferation of cells from these mice compared to sham animals, which was 

significantly inhibited in lymph nodes taken from animals dosed with JNJ 7777120. However 

proliferation in response to anti-CD3/anti-CD28 stimulation was not affected. Similarly 

stimulation of the lymphocytes with either FITC or anti-CD3/anti-CD28 led to the production of 

the Th2 cytokines IL-5 and IL-4. The production of these cytokines upon FITC stimulation, but 

not anti-CD3/anti-CD28 stimulation, was significantly inhibited in lymph nodes taken from 

animals given JNJ 7777120. In addition, IL-17 was also produced upon antigen restimulation 

and this was inhibited by in vivo treatment with JNJ 7777120. Similar results have been reported 

in a mouse allergic lung inflammation model (Dunford et al. 2006). These results suggest that as 

for the lung, the H4R can modulate Th2 T cell responses in the skin.  

 

In the previous study it was shown that H4R on dendritic cells was necessary for proper 

stimulation of Th2 cells in vitro (Dunford et al. 2007). Therefore, some of the effects of H4R 

antagonists on in vivo Th2 responses may be directly related to the activation of Th2 cells. In 

addition to this, it appears that the H4R can mediate migration of dendritic cells from sites of 

inflammation to the lymph nodes. Dendritic cells and Langerhans cells in the skin are important 

antigen presenting cells necessary for the activation of T cells and are known, at least in the case 
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of dendritic cells, to express the H4R. Recently, it has been shown that the H4R is expressed on 

human inflammatory dendritic epidermal cells that are found in lesions of atopic dermatitis 

patients (Dijkstra et al. 2008). After activation, antigen presenting cells migrate from the site of 

inflammation to the draining lymph nodes where they interact and activate T cells. In this model 

treatment with an H4R antagonist reduced the number of FITC+ dendritic cells in the draining 

lymph nodes. Therefore, the reduction in the number of antigen presenting cells migrating to the 

lymph node with H4R antagonism may contribute to a reduction in Th2 cell activation. 

 

The effect on the number of dendritic cells in the lymph nodes may be an indirect effect related 

to the reduction in tissue cytokines and chemokines by H4R antagonism. In particular, TNF-a, 

IL-1B, GM-CSF and MCP-1 have all been shown to mediate dendritic cell or Langerhans cell 

migration from the skin to the lymph node (Cumberbatch and Kimber 1995; Cumberbatch et al. 

2000; Cumberbatch, Dearman, and Kimber 1997; Cumberbatch et al. 1999; Cumberbatch et al. 

2003; Suto et al. 2006; Smith et al. 1998; Mizumoto et al. 2001). In addition to the potential 

indirect effect, histamine acting via the H4R directly on human monocytes-derived dendritic cells 

or mouse bone-marrow derived dendritic cells has been shown to induce chemotaxis in vitro 

(Damaj et al. 2007; Gutzmer et al. 2005; Bäumer et al. 2008). Furthermore, Bäumer et al. have 

recently shown that histamine can enhance dendritic cell migration from mouse ear explants and 

that this effect could be blocked by JNJ 7777120 (Bäumer et al. 2008). Therefore, histamine can 

directly induce chemotaxis or can prime dendritic cells for activation by other chemokines to 

promote migration to the lymph nodes. Decreased dendritic cell migration to the lymph nodes 

should lead to reduced activation of T cells consistent with the reduction in T cells in the tissue 

and cytokine production. 
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The effects of the H4R antagonists on Th2 cytokines appeared to translate into a reduction in ear 

edema upon application of FITC. The inhibitory effect on edema is clearly H4R mediated since 

two chemically distinct compounds show equivalent effects and similar effects are seen in H4R-

deficient mice. However this reduction was only partial, indicating that only a portion of the 

edema is H4R mediated. This is consistent with a previous report showing that blocking the T 

cell cytokines IL-4 or IL-5 in this FITC model only gives a partial reduction in ear edema at 24 h 

(Takeshita et al. 2004). Interestingly, the inhibition seen with either H4R antagonist was 

equivalent to that seen with dexamethasone. 

 

In addition to the anti-inflammatory effects of H4R antagonists, this study shows that the 

compounds were also anti-pruritic in this mouse model of allergic skin inflammation. Histamine 

has long been known to be a mediator of itch in normal human skin and it induces increased 

pruritic responses in diseased skin of atopic dermatitis patients compared to normal skin 

(Steinhoff et al. 2003). However, the role of histamine in the pruritus associated with atopic 

dermatitis is much less clear mainly due to the fact that H1R antihistamines are generally 

considered to be ineffective in the treatment of atopic dermatitis-associated pruritus (Klein and 

Clark 1999; Akdis et al. 2006). Previous work has shown that the H4R receptor is involved in 

acute pruritus in mice induced by histamine, mast cell degranulation or direct stimulation of 

neurons (Dunford et al. 2007). In the model presented here the reduction in pruritic responses 

may due to a reduction in inflammation or a direct effect on sensory neurons, as postulated for 

the acute pruritus models. 
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It is of interest that both the edema and the pruritic responses to FITC are retained in the W/W
v
 

mice and that the H4R antagonist was still able to block both responses. This suggests that mast 

cells are not required for either the H4R-mediated edema or pruritic responses, although care 

should be taken with this interpretation since these mice still have some skin mast cells (<1% of 

the wild-type levels) and have other defects including a slight neutropenia that may affect the 

response (Nigrovic et al. 2008; Tsai et al. 2005). The mast cell-independent effects of the H4R on 

the edema and pruritus in this model is consistent with previous data in a mouse asthma model 

and other pruritus models (Dunford et al. 2007; Dunford et al. 2006). However, the mechanism 

for development of pruritus immediately after the application of FITC in the absence of mast 

cells in unknown. It is possible that it triggers histamine or other mediator production from other 

cells such as dendritic cells or keratinocytes. Intriguingly it was recently shown that the H4R can 

mediate the production of IL-31 (Gutzmer et al. 2009) and this cytokine has been linked to 

pruritus in atopic dermatitis (Castellani et al. 2006; Dillon et al. 2004). In addition the data 

suggests that mast cells are not the source of histamine that activates the H4R. Several other cell 

types in the skin have been shown to have the capacity to produce histamine upon stimulation 

including dendritic cells and keratinocytes (Malaviya, Morrison, and Pentland 1996; Dunford et 

al. 2006).   

 

Here it is shown that an H1R antagonist, fexofenadine, is not effective against either the 

inflammatory or pruritic responses in this model. The lack of effect on pruritus is consistent with 

the previous findings in acute pruritus models (Dunford et al. 2007) and with the lack of effect of 
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second-generation antihistamines, including fexofenadine, on itch in atopic dermatitis patients 

(Klein and Clark 1999). Furthermore, the fact that the H1R antagonist cannot block the FITC-

induced edema indicates that histamine itself is probably not driving this response, since this 

dose of fexofenadine can completely inhibit histamine-induced edema (Dunford et al. 2007). 

However, these conclusions should be taken with caution since they may depend on the H1R 

antagonist used. For example, diphenhydramine has been shown to block histamine and antigen-

induced itch, which is thought to be due to its central activity (Rossbach et al. 2009; Dunford et 

al. 2007).  It has also been shown that loratadine can inhibit histamine-induced itch whereas 

fexofenadine does not, however neither appear to inhibit compound 48/80 induce scratching 

(Hossen et al. 2005; Dunford et al. 2007). Whether these differences have to do with differences 

in distribution such as CNS penetration or perhaps non-H1R related effects of the compounds is 

not known. 

 

Concurrent with this research another study appeared addressing the effects on JNJ 7777120 on 

the pruritus induced by two other haptens, 2,4-dinitrochlorobenzene and toluene-2,4-diisocyanate 

(Rossbach et al. 2009). Consistent with the data shown in this work, JNJ 7777120 was able to 

significantly inhibit the pruritus induced by either hapten. However, the edema formation 24 h 

after hapten challenge was not affected. The difference between my finding and those reported in 

this work concerning the anti-inflammatory properties of H4R antagonists are unclear, but may 

reflect differences in mouse strains used or in the mechanism of action of the haptens. This is 

especially true for 2,4-dinitrochlorobenzene that is described as inducing a Th1-dependent effect 

(Rossbach et al. 2009). In particular the FITC model used here has a strong eosinophil 

component that is not found in other contact dermatitis models (Figure 3 and Takeshita et al. 
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2004). Eosinophilic inflammation may be particularly sensitive to H4R antagonism since it has 

been shown that eosinophil chemotaxis can be directly mediated by the H4R (Ling et al. 2004; 

Buckland, Williams, and Conroy 2003) and reductions in eosinophils have also been seen in 

asthma models (Dunford et al. 2006). The results presented here are also consistent with the 

effects of thioperamide, a dual H3R/H4R antagonist, in reducing edema and eosinophil 

infiltration in another skin inflammation model (Hirasawa et al. 2009).  

 

The data presented in this study show an effective anti-pruritic and anti-inflammation function of 

H4R antagonists in a mouse model of Th2-dependent skin inflammation. This effect was superior 

to that of H1R antagonists. The anti-inflammatory properties appeared to be driven by a 

reduction in Th2 cell activation that can partially be accounted for by a reduction in the 

migration of antigen-bearing dendritic cells to the lymph nodes. Therefore, the effects of the H4R 

antagonists on pruritus, inflammation and Th2 cell responses point to their therapeutic potential 

for the treatment of inflammatory skin disorders such as atopic dermatitis. 
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Part 2 H4R and Rheumatoid Arthritis 
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 The histamine H4 receptor (H4R) has been shown to drive inflammatory responses in models of 

asthma, colitis and dermatitis and in these models it appears to impact both innate and adaptive 

immune responses. In this study I utilized both H4R-deficient mice and a specific H4R 

antagonist, JNJ 28307474, to investigate the involvement of the H4R in mouse arthritis models.  

H4R-deficient mice and wild-type mice administered the H4R antagonist were studied in models 

of collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA). The impact 

on Th17 cells was assessed by restimulation of inguinal lymphocytes in the disease or 

immunization models and within vitro stimulation of whole blood.  

Both H4R-deficient mice and mice treated with the H4R antagonist exhibited reduced arthritis 

disease severity in both CAIA and CIA models. This was evident from the reduction in disease 

score and in joint histology. In the CIA model treatment with the H4R antagonist reduced the 

number of IL-17 positive cells in the lymph node and the total production of IL-17. Th17 cell 

development in vivo was reduced in H4R-deficient mice or in mice treated with an H4R 

antagonist. Finally, in both mouse and human treatment of blood with an H4R antagonist reduced 

the production of IL-17 when cells were stimulated in vitro. 

These results implicate the H4R in disease progression in arthritis and in the production of IL-17 

from Th17 cells. This work supports future clinical exploration of H4R antagonists for the 

treatment of rheumatoid arthritis. 
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Introduction 
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The histamine H4 receptor (H4R) has been linked to inflammation in several preclinical models 

and it holds promise as a target for treating allergic inflammation (for recent review see Walter, 

Kottke, and Stark 2011). Not so obvious would be a role in autoimmune diseases, although 

changes in histamine levels have been observed in such conditions (Tuomisto, Kilpelainen, and 

Riekkinen 1983; Frewin et al. 1986; Winterkamp et al. 2002). In addition H4R expression has 

been found in the synovial cells, primarily on fibroblast-like and macrophage-like cells, from 

rheumatoid arthritis patients (Ohki et al. 2007; Ikawa et al. 2005). 

 

Most of the models showing a role for the H4R in inflammation are allergic or Th2-driven 

inflammation that is commonly associated with histamine involvement. However, the H4R has 

been shown to mediate T cells responses in humans and mice (Dunford et al. 2006; Cowden, 

Riley, et al. 2010; Cowden, Zhang, et al. 2010; Lundberg et al. 2011; Gutzmer et al. 2009). The 

effects on T cells has prompted the question as to whether the H4R has roles beyond Th2 driven 

inflammation and whether the receptor could be involved in autoimmune diseases (Zhang, 

Venable, and Thurmond 2006). The receptor has been shown to be expressed on human Th17 

cells and in these cells can mediate the production of IL-17 (Mommert et al. 2012). Consistent 

with this, H4R-dependent decreases in IL-17 have been consistently shown even in mouse Th2 

driven inflammation models (Dunford et al. 2006; Cowden, Riley, et al. 2010; Cowden, Zhang, 

et al. 2010). 

 

In this work the requirement for the H4R is shown in both a mouse collagen-induced and a 

collagen antibody-induce arthritis model. Having effects in both models suggest a role for the 



44 
 

H4R in both innate and adaptive immune responses that drive arthritis in humans. In particular, 

one of the underlying mechanisms for the H4R effects may be in part due to modulation of Th17 

cells. These results suggest that antagonism of the H4R is a promising target to treat autoimmune 

diseases such as rheumatoid arthritis.   
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Materials and methods 
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Arthritis Models 

For the collagen antibody-induced arthritis (CAIA) model BALB/c mice were given 2 mg 

collagen antibody cocktail (Chondrex, Inc., Redmond, WA) intravenously on day 1 and then 

challenged with 20 μg LPS by intraperitoneal injection (ip) on day 3. Disease onset occurred on 

day 4, and mice were examined visually daily for the appearance of arthritis in the peripheral 

joints. For the collagen-induced arthritis (CIA) model DBA1/J mice were injected at the base of 

the tail with bovine type II collagen (Chondrex, Inc., Redmond, WA) emulsified in complete 

Freund's adjuvant (CFA) per the manufacture’s protocol.  On day 26 mice received 20 µg of LPS 

ip to synchronize the onset of arthritis. Animals were enrolled into treatment groups on days 27-

28 when any paw had a score of 1 or greater. To induce arthritis in C57BL/6 H4R deficient and 

wild-type animals the method was modified to included two CFA/collagen injection similar to 

that described previously (Inglis et al. 2008). For all models the severity of arthritis was graded 

on a scale of 0–4 for each paw in a blinded fashion. The scores for each of the four paws were 

added together to give a final score such that the maximal severity score was 16 and are 

presented as Mean±SEM. Where applicable, mice were treated orally (by gavage) with vehicle 

or the H4R antagonist JNJ 28307474 at the indicated doses twice a day at the time of disease 

onset (defined as a score of 1 or greater in any paw).  Paw tissue was prepared and histological 

analyses were performed as previously described (Bendele et al. 2000). In addition inguinal 

lymph nodes were collected in some studies and pooled per treatment group. A single cell 

suspension (RPMI 1640 supplemented with 10% fetal bovine serum, nonessential amino acids 

and 2-β-mercaptoethanol) was prepared and triplicates (10
5 
cells/well) were plated in 96 well 
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plate coated with 2 µg/ml of anti-CD3 and 1 µg/ml anti-CD28. After 24 h supernatants were 

collected and IL-17 and IFNγ were measured by ELISA. In addition cell were stained for CD4 

and intracellular IL-17 and analyzed by FACS. 

 

Th17 Cells Models 

An adoptive transfer model for Th17 cell development was previously described (McGeachy et 

al. 2009). Where indicated mice were treated with vehicle or JNJ 28307474 (50 mg/kg twice 

daily) starting the day after transfer of the OT-II cells just prior to the immunization.  

  

Statistical Analysis 

Details on the statistical analysis are given in each figure caption. All statistical analysis was 

carried out using GraphPad Prism (San Diego, CA). 
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Results 
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Collagen Antibody-induced Arthritis (CAIA) Model  

Wild-type and H4R-deficient mice on the BALB/c background were studied in the CAIA model. 

In wild-type mice there is an increase in clinical score that peaks and plateaus around Day 5 

(Figure 8a). The same pattern is seen in the H4R-deficient mice, but the disease severity as 

judged by the clinical scores is dramatically decreased. A Wilcoxon Ranked Sum test indicated a 

statistical difference in the time courses (p < 0.01) and there was a statistical significant 

difference between wild-type and H4R-deficient mice at every time point. When the disease 

severity is expressed as area under the curve (AUC), a statistically significant reduction in 

disease severity can be clearly visualized (Figure 8b). Histological examination was conducted to 

illustrate the joint pathology in diseased mice (Figure 9a). Consistent with the clinical score the 

H4R-deficient mice had a significant reduction in disease pathological severity was observed as 

indicated by inflammation, pannus, cartilage damage and bone damage (Figure 9b). As mast 

cells are a potential source of histamine in the synovium, the numbers of mast cells along the 

inflamed synovial lining of the diseased mice in different fields were counted, and a significant 

reduction of the mean mast cell numbers were observed between the wild-type and H4R-deficient 

mice. 

 

The data with the H4R-deficient mice point to a role for the receptor in mediating the 

inflammation seen in this model. To confirm this JNJ 28307474, a potent and specific H4R 

antagonist (Cowden, Zhang, et al. 2010) with a relatively long half-life in mice (Cowden, Yu, 

Challapalli, Huang, Kim, Fung-Leung, Ma, Riley, Zhang, Dunford Paul, et al. 2013), was used. 

JNJ 28307474 was given orally at various doses twice a day starting at the time of disease onset 
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(any paw with a score of 1 or greater). Treatment with 20 and 50 mg/kg JNJ 28307474 

significantly reduced the severity score as seen both from the time course (p<0.01 for 50 mg/kg 

by Friedman test) and the AUC of the score (Figure 10 a and b). The inhibition observed at 50 

mg/kg was similar to that seen in the H4R-deficient mice (Figure 8 b).  

 

The H4R is expressed on several cell types that may be involved in modulating the inflammation 

in this model. Of particular interest are dendritic cells since previously it was shown that lack of 

the H4R on splenic CD11c
+
 cells impaired their ability to activate T cells (Dunford et al. 2007). 

To investigate the role of these cells in the CAIA model, CD11c
+
 cells isolated from the spleens 

of wild-type or H4R-deficient mice were injected into H4R-deficient mice before antibody 

administration. H4R-deficient mice that received H4R-deficient CD11c
+
 cells had a reduced 

severity score compared to wild-type mice.  However, when these mice received wild-type 

CD11c
+
 cells the severity score was similar to wild-type mice, suggesting that the H4R on these 

cells was contributing to the disease progression. 

   

Collagen-induced Arthritis (CIA) Model 

To further understand the role of the H4R in mediating arthritis, a collagen-induced arthritis 

model was used. As for the CAIA model, treatment with JNJ 28307474 led to a dose-dependent 

reduction in the disease severity score with the highest dose of 50 mg/kg showing little increase 

in disease activity over the baseline (Figure 11a). The time courses for the 20 and 50 mg/kg 

doses were statistically reduced compared to the vehicle control (p<0.001 with a Friedman test). 

Calculation of the AUC of the severity score indicated that there was a trend for reduction at 5 

and 20 mg/kg, but a statistically significant reduction at 50 mg/kg (Figure 11b). 
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The reduction in severity score with the H4R antagonist suggests that the receptor mediates 

inflammation in this model. To confirm this, studies were carried out in H4R-deficient mice. 

However, the standard model is conducted in DBA1/J mice and the H4R-deficient mice were on 

the C57BL/6 background and therefore, the model was adapted to this strain (Inglis et al. 2008). 

Prior to receiving the LPS boost the incidence of arthritis in the H4R-deficient mice was lower 

(1/12) than in wild-type mice (10/12) and the average score was significantly reduced (Figure 

11c). After receiving the LPS boost all of the wild-type animals (12/12) developed scores of 

greater than 2, but only 7 of 12 H4R-deficient animals developed disease. At this point there was 

no statistically significant difference in the disease scores (Figure 11c). Fourteen days later, all of 

the wild-type mice still exhibited the same level of disease as at Day 5, but the disease appeared 

to improve in the H4R-deficient mice as evidenced by two mice (final incidence 5/12) completely 

recovering (score <2) and a statically significant decrease in the average score starting at Day 9 

(Figure 11c). Furthermore, if wild-type mice were treated with JNJ 28307474 on Day 5 after 

they all develop disease, the mice start to recover as measured by a decrease in the average 

disease score (Figure 11c) and at Day 19 the average disease score is similar to that seen in the 

H4R-deficient mice. Overall there was a statistically significant decrease in the incidence of 

arthritis in the H4R-deficient mice using either a Fisher’s Exact test (p < 0.007) or a log-rank 

survival method (p < 0.002). In total these results confirm that the H4R can mediate inflammation 

in the mouse CIA model. 

 

Histological examination was also conducted in this model to illustrate the joint pathology in 

diseased mice and representative data is shown in Figure 12a. Scoring of inflammation, pannus, 
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cartilage damage and bone damage showed inhibition by 50 mg/kg JNJ 28307474 for all of these 

parameters (Figure 12b). This is consistent with the effects seen with the CAIA model. As for the 

CAIA model, the mast cell numbers in the joint were decreased with treatment with JNJ 

28307474 and these have been reported to be increased in the model (Kakizoe et al. 1999). To 

further support the histological finding of a reduction in joint inflammation, the expression of 

inflammatory cytokines and chemokine in the joint was assessed. The message levels of IL-6. 

IL-1α, MCP-1, MIP-2 and TNF were all reduced in the joints of animals treated with JNJ 

28307474, although only the reductions in IL-6,  MCP-1, MIP-2 reached statistical significance. 

There was not a statistically significant reduction in collagen specific IgG levels. 

  

Th17 Cell Development 

In the CIA model the percentage of IL-17
+
CD4

+
 cells in the inguinal lymph node were increased 

in diseased animals compared to naïve animals and treatment with JNJ 28307474 lead to a 

reduction in this percentage (Figure 13a). In addition restimulation of lymphocytes with anti-

CD3 and anti-CD28 resulted in the production of IL-17 in diseased animals and this was reduced 

when the animals were treated with JNJ 28307474 (Figure 13b). No effect of the H4R antagonist 

on IFNɤ was seen, although it was increased in diseased animals (Figure 13b). 

 

It is difficult to determine whether the reduction in Th17 cells seen with H4R antagonist 

treatment in CIA is due to a direct role of the H4R in Th17 cell function or whether this only 

reflects a reduction in the inflammation driven by other anti-inflammatory mechanisms. 

Therefore, the role of the H4R on Th17 cell development in vivo was directly assessed using an 

adoptive transfer model with transgenic OT-II T cells specific for ovalbumin (McGeachy et al. 
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2009). Treatment with JNJ 28307474 led to a reduction in the number of OT-II Th17
+
 cells in the 

lymph node (Figure 13c). A role for the H4R in Th17 cell development in vivo was confirmed 

using H4R-deficient mice. Transferring H4R-deficient OT-II cells into wild-type or H4R-deficient 

mice also led to the reduction in the total number of OT-II Th17
+
 cells as seen with H4R 

antagonist treatment (Figure 13d). In addition transfer of wild-type OT-II cells into H4R-

deficient mice also produced the same effect. These results show that the H4R on both T cells 

and other host cells are necessary for Th17 cell development in vivo. 

 

Recently, H4R expression has been shown on human Th17 cells and the production of IL-17 is 

increased by treatment with an H4R agonist (Mommert et al. 2012). Mouse Th17 cells can also 

express the H4R as determined by RT-PCR (data not shown) and the impact of the H4R on IL-17 

by these cells was explored. Blood stimulated with anti-CD3/CD28 and IL-23 led to an increase 

in IL-17 production and this was decreased in blood taken from H4R-deficient mice or mice 

treated in vivo with the H4R antagonist JNJ 7777120 (Figure 13e). 

 

A similar effect on IL-17 production can be seen with human cells. A variety of stimuli were 

able to induce IL-17 production from human PBMC with the highest levels produced when a 

combination of anti-CD3, anti-CD28, IL-23 and IL-1β were used (Figure 13f). Treatment in vitro 

with either JNJ 7777120 or JNJ 28307474 was able to reduce the IL-17 level under all 

stimulation conditions. These results show that in humans and mice, the H4R can directly 

modulate IL-17 production.   
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Discussion 
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Previously the H4R has been shown to play a role in Th2 driven allergic models (Dunford et al. 

2006; Cowden, Riley, et al. 2010; Cowden, Zhang, et al. 2010). The effect in these models was 

postulated to be driven by inhibition of T cell responses. Indeed in the mouse asthma model, 

mice treated with an H4R antagonist only during the sensitization phase of the model, where T 

cell responses are initiated, exhibit reduced disease (Dunford et al. 2006; Beermann et al. 2012). 

This effect on T cells prompted the question as to whether the H4R could modulate responses of 

other T cell subtypes and, therefore, have a role in autoimmune diseases.  

 

The data presented here supports a role for the H4R in arthritis. In a CAIA model, H4R-deficient 

mice were largely protected from disease as judged by a reduction in disease score and by joint 

histology. A very similar effect was seen when mice were treated with the H4R antagonist, JNJ 

28307474. The fact that there are similar effects with H4R-deficient mice as with an H4R 

antagonist strongly supports a role for the H4R in this model. These results are similar to those 

seen in the K/BxN model of arthritis with histidine decarboxylase deficient mice that lack 

histamine (Rajasekaran et al. 2009). The CAIA and K/BxN transfer model have similar 

underlying mechanisms and, therefore it is reasonable to assume that the effects reported in 

histidine decarboxylase deficient mice are due to lack of histamine activation of the H4R. Both of 

these models are thought to be driven by the activation of the innate immune system and T cells 

are not thought to be involved until later in the disease progression. While the exact mechanisms 

for the role of the H4R in the models are not known, transfer of wild-type CD11c
+
 cells can 

restore the disease in H4R-deficient mice and there is evidence that the receptor can play a role in 

mast cell, dendritic cell, NK T cell and macrophage activation (Dunford et al. 2006; Desai and 
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Thurmond 2011;  2013; Leite-de-Moraes et al. 2009). Therefore, accumulating data suggests that 

H4R is a crucial player in modulating innate cell activation that is importing for initiating 

inflammatory responses and explains the effects seen in the CAIA model. 

 

To further explore the potential role of the H4R in arthritis a CIA model was employed that has a 

strong T cell component. As for the inflammatory arthritis model, both H4R-deficient mice and 

mice treated with an H4R antagonist, JNJ 28307474, exhibited a reduction in severity score and 

inflammation. H4R antagonist treatment is effective whether the compound is given semi-

therapeutically after the mice show the first signs of disease (Figure 11a) or therapeutically when 

animals have the maximum score (Figure 11c). Similar effects where observed in H4R-deficient 

mice. Interestingly prior to the LPS boost, H4R-deficient mice had a lower incidence of disease 

compared to wild-type mice. The administration of LPS led to increased disease in both the wild-

type and H4R-deficient animals, although the incidence and average score trended to be lower in 

the H4R-deficient mice. So it appears that the H4R-deficient mice are protected from developing 

arthritis in the model, but that some of this can be overcome by adding a strong inflammatory 

stimuli such as LPS. However, even though the LPS initially tended to increase the disease score 

in the H4R-deficient mice, after this point they start to recover whereas the wild-type mice have 

stable disease. Consistent with this, wild-type mice treated with JNJ 28307474 after the LPS 

boost, when they have the maximum score, start to recover and have a similar severity score to 

the H4R-deficient mice on day 19 that is significantly better than that of the wild-type mice.  

 

The effects of the H4R in the CIA model could be at least partly mediated by effects on Th17 

cells. It is known that the model is dependent on Th17 cells (Lubberts et al. 2004; Nakae et al. 
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2003; Lubberts et al. 2001) and treatment with the H4R antagonist significantly reduced the 

number of IL-17
+
 cells in the lymph node and the secretion of IL-17 when lymphoctyes were 

stimulated ex vivo. This could result from a direct role for the H4R in Th17 cell function since in 

an immunization model, H4R-deficient mice or mice treated with an H4R antagonist had a 

reduction in the development of Th17 cells (Figure 13 c,d). Of interest, the effects on the 

development of Th17 cells in the adoptive transfer model were apparent when either the donor T 

cells or the recipients were H4R-deficient. This implies that the receptor is required on both T 

cells and antigen presenting cells for optimal Th17 cell development. The results in mice appear 

to be consistent with effects on human Th17 cells, where blocking the H4R in vitro inhibits IL-17 

production from human PBMC. This is consistent with recent work showing that human Th17 

cells express the H4R and that IL-17 production can be increased with an H4R agonist (Mommert 

et al. 2012). Therefore, the H4R appears to play a direct role in Th17 activity and may explain the 

effects in the CIA model, although other mechanisms such as effects on macrophages and NK T 

cells may be involved.  

 

One outstanding question is the source of histamine in the animal models and its relevance to 

human arthritis. It is well-known that mast cells and basophils secrete histamine and thus are 

potential sources. Mast cells are known to be increased in the CIA model (Kakizoe et al. 1999) 

and here it is shown that treatment with an H4R antagonist in both models reduces the number of 

mast cells in the synovial lining. Mast cells have been shown to be important mediators in some 

animal models of arthritis and have been found to be increase in the synovium of rheumatoid 

arthritis patients; however it is still not clear whether they are key players in the disease (for 

reviews see Nigrovic and Lee 2007; Suurmond, Schuerwegh, and Toes 2010). Basophils may 
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also play a role and it was recently shown that histamine release from basophils amplifies IL-17 

release from T cells (Wakahara et al. 2012). Finally, it has become apparent that many immune 

cells such as dendritic cells, T cells and neutrophils are capable of producing histamine when 

stimulated (Dunford et al. 2006; Alcaniz et al. 2013; Aoi et al. 1989). It has been speculated that 

local production of histamine by dendritic cells can act in an autocrine fashion to modulate 

dendritic cell/T cell interactions (Thurmond, Gelfand, and Dunford 2008) and this local 

production of histamine in the joint or at sites of T cell activation may be the most relevant for 

H4R activation in human arthritis. 

 

Overall the data presented show an anti-inflammatory role for H4R antagonist in preclinical 

models and support the clinical study of such antagonist for the treatment of rheumatoid 

arthritis. In addition, the known safety profile of the H4R also supports clinical testing. The 

H4R-deficient mice are fertile and healthy and, outside of effects on inflammatory response, 

appear to have no other defects. In addition no safety issues have been observed with compound 

treatment either in this work or in other animal models (Cowden, Yu, Challapalli, Huang, Kim, 

Fung-Leung, Ma, Riley, Zhang, Dunford, et al. 2013; Cowden, Zhang, et al. 2010; Cowden, 

Riley, et al. 2010; Dunford et al. 2006; Varga et al. 2005). While it is still early, there have been 

reports of H4R in phase 1 clinical studies with no safety issues reported (for summary see 

Salcedo, Pontes, and Merlos 2013). Therefore, H4R antagonist may provide a safe and effective 

alternative for the treatment of rheumatoid arthritis. 

 

The work presented here clearly supports a role for the H4R in arthritis. Importantly, the receptor 

has effects in both a model of inflammatory arthritis and one of autoimmune arthritis suggesting 
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that it can impact both innate and adaptive immune responses. There are several potential 

mechanisms underlying this role including possible effects on Th17 cells. Taken as a whole, the 

current data suggests that the H4R can be viewed not necessarily as the initiator of inflammation, 

but as a potentiator of inflammatory responses. This is evidenced by the partial inhibition of 

TLR-mediated cytokine production previously observed (Dunford et al. 2006; Desai and 

Thurmond 2011; Cowden, Yu, Challapalli, Huang, Kim, Fung-Leung, Ma, Riley, Zhang, 

Dunford Paul, et al. 2013) and the fact that LPS can cause a flair in severity score in the H4R-

deficient mice that then resolves compared to wild-type mice. Therefore, antagonist of the 

receptor would not be expected to be immunosuppressive, but rather lead to a dampening of the 

initial inflammatory response and thereby leading to a reduction in inflammation in a variety of 

disease states, be they allergic or autoimmune in nature.  
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General Discussion 
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Although histamine, a biologically active amine, has been known for nearly 100 years its role 

and function are still being discovered and understood.   For much of that time only two 

histamine receptors H1R and H2R, were studied or known.   Around 2000, two new receptors for 

histamine were discovered, H3R and H4R.   Their role and function was completely unknown at 

the time.   Many scientists including myself began research to understand what if any function 

these new receptors played in disease.     H3R was expressed in the central nervous system as was 

the focus of other researchers.   However, in addition to expression in the central nervous system, 

H4R was expressed on immune cells.   As an immunologist this was a unique opportunity 

determine the function of this receptor.    Also key tools like knock out mice and receptor 

antagonists were generated that enabled me to understand the consequence of inhibiting H4R.   In 

this thesis I detailed the role of H4R in atopic dermatitis and Rheumatoid Arthritis although it 

should be noted others and myself  have reported on its role in asthma, colitis, and pain as well.     

In part one; I learned H4R does play a key role in AD.   Specifically, H4R reduces the amount of 

inflammation in the skin in pre-clinical model of AD.    FITC, a chemical was applied to mice to 

generate inflammation in the skin and the animals were treated with H4R antagonist. H4R 

antagonist reduced inflammation as measured by the ear skin thickness after FITC application. It 

reduces numbers of mast cells and eosinophils found in the skin characterized by histology.   To 

understand why there were fewer eosinophils and mast cells I began to look at the adaptive 

immune response.     First area of study was understanding the role of H4R antagonist on 

dendritic cell (DC) migration.    Animals treated with H4R antagonist had fewer dendritic cells in 

the lymph node after inflammation was induced in the skin.   DCs are key gate keepers of the 

immune system and present antigen to T cells.    A decrease in the number of DCs means fewer 

T cell are activated.  This was confirmed by measuring the response of Tcells to antigen ex-vivo 
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of animals treat with H4R  antagonist.    Tcells produce inflammation inducing cytokines such 

the TH2 cytokines IL-4 and IL-13 that drive the recruitment of mast cell and eosinophil to the 

skin in AD.   However, Tcells from animals treated with H4R produced reduced amounts of TH2 

cytokines IL-4 and IL-13.   This results in fewer eosinophils and mast cells being recruited to the 

skin and less inflammation and disease.     This in one key understanding gained from my works. 

Another key comorbidity of AD is pruritus.  To understand if H4R played a role in pruritus, I 

quantified the number of times the animals itched in the same pre-clinical model.    Treatment 

with H4R antagonist greatly reduced the number of times animals itch as a result of the FITC 

application.    Interestingly, only H4R antagonist the can penetrate into the central nervous 

system inhibited this itch and antagonist that are restricted to the periphery do not.   Although the 

key signaling mechanisms still need to discovered, this is the only documented role of H4R in the 

central nervous system. 

Most important to my research was if these pre-clinical studies would translate into a benefit in 

patients with AD.   Fortunately in the following years other researchers tested H4R antagonist in 

AD patients.    As predicted by my research AD patients had reduced inflammation in the skin 

and reported a reduced desire to itch (Murata et al. 2015).    

In part two, my research focused on the role of H4R in Rheumatoid Arthritis (RA).   It had been 

observed that in addition to TH2 cytokine being reduced in the AD studies, another cytokine IL-

17 was also reduced.    Although IL-17 has little to do with AD it's one of the key cytokines that 

drive autoimmunity in diseases like RA.    So to determine if H4R antagonist go reduced 

inflammation in RA I tested two pre-clinical models of RA with the focus on IL-17 levels.   The 

first model, collagen antibody induced arthritis, it’s induced by giving anti-collagen antibodies to 
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mice.   H4R KO and compound treated animals had reduced inflammation in the joints when 

quantified with a scoring system.    In second model collagen induced arthritis, the results were 

also the same.   Using histology method, the joints were imaged and the inflammation scored.   

H4R treated mice had reduced inflammation and joint damage.   Critically, the bone and cartilage 

were protected in mice that received treatment.   Next the effect on IL-17 production was 

quantified.   T cells from animals treated with H4R antagonist produced less IL-17 as measured 

by FACS and when restimulated ex vivo.   This reduction in IL-17 is one mechanism of H4R 

antagonism but there may be additional mechanism at work as well that have not been 

uncovered.     

Unlike AD, where these preclinical results will apply to human disease, the effect of H4R on RA 

patients is yet to be fully understood.   Since my work two clinical trials in RA patients with H4R 

antagonist have been completed.    In the first trial, treatment reduced inflammation and disease 

severity as expected from my pre-clinical work (Thurmond et al. 2016).  However, in second 

trial there was no effect although the investigators used a lower dose.   Until further clinical trials 

are conducted the role H4R in human RA is yet to be determined.    

In summary, H4R plays an important role in the immune system as a regulator of TH2 and TH17 

inflammation.    Antagonism of H4R lowered TH2 and TH17 driven inflammation resulting in a 

reduced severity of AD and RA pre-clinically.  The result of my research lead to testing of H4R 

antagonist in human patients with positive results for AD and undetermined results in RA. 
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Table 1. In vitro Ki for JNJ 28307474 Histamine Receptor Binding  

Receptor Species Ki (nM)
1 

H4 Human 4.9 ± 1.1 

H4 Mouse 109 ± 8 

H4 Rat 87 ± 9 

H4 Dog 62 ± 31 

H4 Guinea Pig 3.4 ± 0.6 

H3 Human 159 

H3 Rat 630 

H1 Human 2501 

H1 Mouse 1224 ± 208 

H1 Guinea Pig 3050 

H2 Human >1000 

1
 Data given as ± SEM if the assay was run at least two times. 
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Table 2.   JN28307474 selective by radioligand assay  .  

Target % Inhibition 
 at 1µ 

Target % Inhibition 
At @ 1µ 

    
A1 (h) - NK2 (h) - 
A2A (h) 30 NK3 (h) - 
A3 (h)  - NPY1 (h) - 
Alpha 1 - NPY2 (h) - 
Alpha 2 36 NT1 (h) - 
Beta 1 (h) - DOP (h) 10 
NE Transporter (h) 17 KOP (h) 28 
AT1 (h)  - MOP (h) 41 
BZD - ORL1 (h) - 
B2 (h) 
CCKA (h) 
D1 (h) 
D2 (h) 
DA transporter (h) 
ETA (h) 
GABA 
GAL2 (h) 
IL-1B (h) 
CCR2 (h) 
H1R 
H2R 
MC4 (h) 
MTI 

- 
- 

36 
11 
24 

- 
- 
- 
- 
- 
- 

42 
15 

- 

5 HT1a (h) 
5-HT2a (h) 
5-HT3 (h) 
5-HT5a (h) 
5-HT6 (h) 
5-HT7 (h) 
Sst 
VIP1 (h) 
VIA (h) 
Ca2+ channel 
K+V channel 
SK+Ca channel 
Na + channel 
CL- channel  

 31 
74 

- 
- 

21 
- 
- 
- 
- 

20 
- 
- 

59 
- 

    
Values are average from three replicates an “-“indicates average percent inhibition less than 10%: 
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Table 3. In vitro Ki values for JNJ28307474 for various receptors 

Receptor1 Ki (nM) 
5-HT1b 500 
5-HT1d 1600 
5-HT2a 630 
5HT-2b 1400 
5-HT2c 5000 
5-HT7 
(rat) 

>10000 

M1 
M2 
M3 

235 
180 
100 

M4 200 
1 
All receptors were human except otherwise noted 
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Figure 1. H4R antagonism reduces dermal inflammation. a, Balb/c mice (n = 7-14 mice per 

group) were sensitized to FITC on days 0 and 1 and then challenged on day six by application of 

FITC to one ear. On day seven the difference in ear thickness between the challenged and 

unchallenged ear was measured with calipers. b, The H4R antagonist, JNJ 7777120, given p.o. 20 

min prior to and 4 h after FITC application reduced swelling in a dose dependent manner. The 

degree of inhibition was similar to that of dexamethasone (Dex) given p.o. at 3 mg/kg. c, Ear 

edema was reduced in H4R-deficient mice (H4R (-/-)) compared to wild-type (WT) mice. d, Ear 

edema was also inhibited by a chemically distinct H4R antagonist, JNJ 28307474, given p.o. 20 

min prior to and 4 h after FITC application. As for JNJ 7777120, the degree of inhibition by JNJ 

28307474 was similar to that of dexamethasone (Dex) given p.o. at 3 mg/kg. *, p < 0.05; **, p < 

0.01; ***, p < 0.001 by one-way ANOVA with post-hoc Bonferroni’s test compared to vehicle 

(V) control for panels b and d and by a Student’s t-test for panel c. 
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Figure 2. H4R antagonism reduces inflammation. Balb/c mice (n = 7-14 mice per group) were 

sensitized to FITC on days 0 and 1 and then challenged on day six by application of FITC to one 

ear. On day seven ear specimens were taken for histology from mice that were not exposed to 

FITC (a), mice exposed to FITC and treated with vehicle (b) and mice exposed to FITC and 

treated with 50 mg/kg JNJ 7777120 (c). Magnification was 10x for all. d, The total severity score 

was quantitated based on a 0-3 score for inflammation, edema and abscesses. **, p < 0.01 by 

Student’s t-test comparing JNJ 7777120 to vehicle control. 
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Figure 3. H4R antagonism reduces the infiltration of eosinophils. Balb/c mice (n = 7-14 mice 

per group) were sensitized to FITC on days 0 and 1 and then challenged on day six by 

application of FITC to one ear. On day seven ear specimens were taken for histology and the 

number of eosinophils quantitated. a, Mice exposed to FITC and treated with vehicle and (b), 

mice exposed to FITC and treated with 50 mg/kg JNJ 7777120. Eosinophils are marked with a 

black arrow and mast cells with a red arrow (60x magnification). c, Quantification of eosinophils 

and mast cells per section. *, p < 0.05; ***, p < 0.001 by one-way ANOVA with post-hoc 

Bonferroni’s test comparing JNJ 7777120 to vehicle control and α, p < 0.05; Ψ, p < 0.001 

comparing sham to vehicle.  
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Figure 4. H4R antagonism reduces inflammatory cytokines in tissue. Ear tissues from mice 

that were sensitized and challenged with FITC were harvested at various times after FITC 

challenge. The tissues homogenates were analyzed for cytokine and chemokine expression. Mice 

were either treated with vehicle (white bars) or JNJ 7777120 (50 mg/kg p.o.; black bars). *, p < 

0.05; **, p < 0.01; ***, p < 0.005 by Student’s T-test compared vehicle control at each time 

point. 
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Figure 5. H4R antagonism reduces Th2 cell responses. Peripheral lymph nodes were collected 

24 h after FITC challenge from mice treated with vehicle (white bars) or JNJ 7777120 (50 mg/kg 

p.o.; black bars). Lymphocytes were isolated and cultured with either 10 ug/mL FITC or a 

combination of anti-CD3 and anti-CD28. a, Proliferation was measured by 
3
H-thymidine 

incorporation after 96 h. b,c,d, IL-4, IL-5 and IL-17 levels were measured after 72 h using 

ELISA.**, p < 0.01 by Student’s t-test compared to vehicle control. 
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Figure 6. H4R antagonism reduces dendritic cell migration in vivo. Peripheral lymph nodes were 

collected 18 h after FITC challenge from mice treated with vehicle (white bars) or JNJ 7777120 (50 

mg/kg p.o.; black bars). Lymphocytes were stained for CD11c and MHC II. FACS analysis was carried 

out to determine the percentage of CD11c
+
 FITC

+
 and MHC II

+
 FITC

+
 cells. a, representative cytograms. 

b, quantification of the percentage of CD11c
+
 FITC

+
 cells. c, quantification of the percentage of MHC II

+
 

FITC
+
 cells. *, p < 0.05; **, p < 0.01 by Student’s t-test compared to vehicle control. 
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Figure 7. H4R antagonism reduces pruritus. a, Balb/c mice (n = 7-14 mice per group) were 

sensitized to FITC on days 0, 1, 13 and 14 and then challenged on day 20 by application of FITC 

to one ear. Bouts of scratching were measured for 15 min starting 10 min after FITC application 

whereas the difference in ear thickness between the challenged and unchallenged ear was 

measured on day 21. b, The H4R antagonist, JNJ 7777120, given p.o. given 20 min prior to FITC 

application reduced the pruritus, whereas the H1R antagonist, fexofenadine (Fex), given at 150 

mg/kg p.o. had no effect. c, The H4R antagonist, JNJ 7777120, given p.o. 20 min prior and 4 h 

after FITC application reduced the swelling induced by FITC challenge in the model given in 

(a), whereas the H1R antagonist, fexofenadine (Fex), given at 150 mg/kg p.o. had no effect. d, e, 

The model given in (a) was carried out in mast cell sufficient (WBB6F1 +/+; white bars) and 

mast cell deficient (WBBF1 W/W
v
; black bars) mice. The H4R antagonist, JNJ 7777120, given 

p.o. 20 min prior and 4 h after FITC application reduced the pruritus (d) and edema (e) in the 

mast cell sufficient and deficient mice. *, p < 0.05; **, p < 0.01; ***, p < 0.005 by one-way 

ANOVA with post-hoc Bonferroni’s test compared to vehicle (V) control. 
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Figure 8. Comparison of H4R-deficient and wild-type mice in CAIA  model (a) H4R-deficient 

(▲, n = 9) and wild-type (■, n = 5) BALB/c mice were given collagen antibody cocktail and 

then challenged with LPS ip two days later. Starting the next day, mice were examined visually 

for the appearance of arthritis in the peripheral joints, and the severity of arthritis was graded on 

a scale of 0–4 for each paw. The mean and SEM for the sum of the severity scores are given in 

panel (b). Significant reduction mean disease severity score in H4R-deficient (H4R-/-) compared 

to wild-type (H4R+/+) can be seen when comparing the area under the curve (AUC, Panel b). 

Statistical significance was calculated for each time point of the severity score or comparing the 

AUC using a Mann-Whitney test. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 9.  Effects on histology in CAIA model (a) Paws were collection for histology and 

stained with toluidine blue. Representative images are shown for wild-type on the left and H4R-

deficient on the right. The top images are a 16x magnification whereas the bottom are 200x. (b) 

Sections for all animals were scored for inflammation, pannus, cartilage and bone damage and 

the mean and SEM of these scores are given. Statistical comparison of wild-type (black bars, n = 

5) and H4R-deficient mice (white bars, n = 9) was conducted using a Mann-Whitney test. *p < 

0.05, **p < 0.01. 
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Figure 10. Effects of JNJ 28307474 in CAIA Model. (a) Wild-type BALB/c mice (n = 5 per 

group) were given collagen antibody cocktail and then challenged with LPS ip two days later. 

The day after LPS administration mice where treated with vehicle (○), 5 mg/kg (■), 20 mg/kg 

(▲) or 50 mg/kg (●) JNJ 28307474. All doses were given orally twice a day. The mice were 

examined visually for the appearance of arthritis in the peripheral joints, and the severity of 

arthritis was graded on a scale of 0–4 for each paw. The mean and SEM for the sum of the 

severity scores are given. (b) The area under the curve (AUC) for each time course was 

calculated and the mean AUC and SEM are given. For both panels statistical significance 

between each JNJ 28307474 group and vehicle was assessed by a one-way ANOVA with post-

hoc Dunnett’s test. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 11. Effects of the H4R in CIA Model. (a) Wild-type DBA1/J mice (n = 11 per group) 

were immunized with CFA/collagen and boosted with LPS on day 26. Mice where treated with 

vehicle (○), 5 mg/kg (■), 20 mg/kg (▲) or 50 mg/kg (●) JNJ 28307474. All doses were given 

orally twice a day. The mice were examined visually for the appearance of arthritis in the 

peripheral joints, and the severity of arthritis was graded on a scale of 0–4 for each paw. The 

mean and SEM for the sum of the severity scores are given. (b) The area under the curve (AUC) 

for each time course was calculated and the mean AUC and SEM are given. For panels (a) and 

(b) statistical significance between each JNJ 28307474 group and vehicle was assessed by a one-

way ANOVA with post-hoc Dunnett’s test. *p < 0.05, **p < 0.01, ***p < 0.001. (c) Wild-type 

(n = 22) or H4R-deficient (▼, n=12) C57BL/6 mice were immunized twice with CFA/collagen 

and boosted with LPS on day 28. The mice were examined visually for the appearance of 

arthritis in the peripheral joints, and the severity of arthritis was graded on a scale of 0–4 for each 

paw. The mean and SEM for the sum of the severity scores are given. On day 5 wild-type mice 

were treated orally with vehicle (о, n = 12) or 50 mg/kg twice daily JNJ 28307474 (■, n =10). 

Statistical significance between H4R-deficient and wild-type mice or JNJ 28307474 and vehicle 

treated mice was determined using a Mann-Whitney test for each time point. *p < 0.05, **p < 

0.01, ***p < 0.001. 

  



104 
 

 



105 
 

 

Figure 12.  Effects on histology in CIA Model (a) Paws were collection for histology and 

stained with H&E (top) and toluidine blue (bottom). Representative images are shown for naive 

(unimmunized) mice (left), immunized and vehicle treated (middle) and immunized and treated 

with 50 mg/kg JNJ 28307474 orally (right). (b) Sections for all animals were scored for 

inflammation, pannus, cartilage and bone damage and the mean and SEM of these scores are 

given. Statistical comparison of treated groups (n = 11 per group) to the vehicle group (n = 11) 

was assessed by a one-way ANOVA with post-hoc Dunnett’s test. *p < 0.05. 
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Figure 13. Effects of the H4R on Th17 cells. The percentage of IL-17
+
 CD4

+
 cells in the inguinal 

lymph node (a) and the levels of IL-17 and IFNɤ produced after stimulation with anti-CD3/anti-

CD28 (b) were measured in naive (unimmunized) mice, vehicle treatment mice or mice treated 

orally with 50 mg/kg JNJ 28307474 twice daily. (c) OT-II cells were transferred into wild-type 

mice one day before immunization with the specific ovalbumin peptide. Starting the day of 

immunization mice were treated with vehicle (n = 7) or 50 mg/kg twice daily JNJ 28307474 

orally (n = 6). Ten days later lymph nodes were harvested and the total number of OT-II Th17
+
 

cells was determined by FACS. (d) Wild-type (WT) or H4R-deficient (KO) OT-II cells were 

transferred into either wild-type (WT) or H4R-deficient (KO) host mice (n = 6-8 mice per group). 

One day later the mice were immunized with the specific ovalbumin peptide. Ten days later 

lymph nodes were harvested and the total number of OT-II Th17
+
 cells was determined by 

FACS. (e) Blood from H4R-deficient mice (H4R-/-), wild-type mice treated orally for 20 min 

with 20 mg/kg JNJ 7777120 or vehicle was stimulated in vitro with anti-CD3/CD28 and IL-23 

for 18 h. IL-17 measured by ELISA. Non-stimulated (Non-Stim) blood from wild-type mice was 

used as a control. (f) Human PBMC (n = 5 donors; 2-4 replicates each) were incubated vehicle 

(dimethylsulfoxide, black bars), 1 µM JNJ 7777120 (open bars) or 1 µM JNJ 28307474 (hatched 

bars) for 1 h and then various stimuli were added as indicated and further incubation for 48 h. IL-

17 was measured by ELISA. For panels (a-c) statistical significance was determined by a Mann-

Whitney test. *p<0.05, ***p<0.001, ns is not significant when comparing JNJ 28307474 

treatment to vehicle. Ψ p<0.01 comparing vehicle to naïve animals. For panels (d-f) statistical 

significance between groups was assessed by a one-way ANOVA with post-hoc Dunnett’s test. 

*p < 0.05, **p < 0.01, ***p < 0.001. 
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