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Chapter 1

Introduction

Understanding consumer’s brand choice behavior is critical in formulating

marketing strategies. One of the most significant factors of consumer brand

choice behavior is a dynamic behavior whereby the consumer’s past choices

affect its current choice behavior. This phenomenon is widely known as state

dependence.

“The empirical existence of state dependence is universally agreed upon

(Freimer & Horsky, 2012, page 647)” and widely applied to the context of

brand choice behavior. There are mainly two types of state dependence;

positive and negative. They are sometimes referred to as inertia and variety-

seeking respectively. In addition to these two state dependence, Bawa (1990)

suggests another type of state dependence which he calls “hybrid behavior”

whereby a consumer exhibits inertial behavior at first but becomes variety-

seeking after a certain period of time.

Despite his unique attempt, there are several limitations in Bawa’s model.

Most importantly, his model does not account for consumer heterogeneity.

Therefore in Chapter 2, we develop the hybrid model to accommodate con-

sumer heterogeneity while increasing the number of brands treated by the
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model.

In an analysis of consumer good market, one must take into account for

the fact that marketing activities of a firm would trigger the reactions from

the other players in the market. Some researchers such as Sudhir (2001) and

Villas-Boas & Zhao (2005) formulate such interactions among manufactur-

ers and retailers as well as among manufacturers where each party behaves

strategically based on its predictions of the other players’ behavior and mar-

ket conditions.

What has been missing in the previous studies is testing retailer Stack-

elberg formulation, whereby the retailer acts as market leader and manufac-

turers follow. Therefore in Chapter 3, we accommodate the purported power

increase of retailers with respect to manufacturers1 by mathematically deriv-

ing retailer Stackelberg model, extending the approach of Che et al. (2007).

We empirically investigate whether manufacturers’ effort to develop special

featured brands is still rewarding in terms of profit margins using Japanese

yogurt as an example. Formulating a new game theoretic framework to de-

scribe this phenomenon and testing it with the real data, albeit a small one,

would be of great interest to researchers in the field as well as of practi-

cal importance to those working for innovative manufacturers facing similar

circumstances.

In Chapter 4, we incorporate Nash bargaining framework into the frame-

work employed in Chapter 3 to analyze the relationship between manufac-

turers and retailers more closely. Though papers in this field such as Misra

& Mohanty (2008) and Draganska et al. (2010) well describe the behavior of

1The increased power of retailers is attributed to the emergence of giant retailers that

exert strong buying power and enjoy economy of scale, their sophisticated information

systems regarding consumers, and increased retailer concentration (Kim, 2010)

2



the market players, the retailer Stackelberg formulation is missing. Thus we

accommodate the retailer Stackelberg game in the Nash bargaining model

framework given power increase of retailer and test it using Japanese canned

tuna as an example. Though the result is limited to a specific product cate-

gory in a specific market, we believe that our result has a broader significance

to the literature.

In summary, the organization of this dissertation is as follows: Chapter

2 exclusively focuses on consumer’s brand choice behavior with hybrid state

dependence. Chapter 3 extends the traditional market-wide framework in

describing the relationship among firms to accommodate an important game

reflecting the recent trend of increased power of retailers, namely retailer

Stackelberg game. We bring this formulation to the Japanese yogurt market

to examine if premium brands are still able to command commensurate a

profit given the power shift from manufacturers to retailers. Chapter 4 ex-

tends the framework of Chapter 3 further and incorporates Nash bargaining

theory, which enables researchers to calibrate the channel-wise bargaining

power of manufacturers and retailers in more flexible manner.
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Chapter 2

Understanding Consumer’s

Complex Brand Choice

Behaviors with State

Dependence

2.1 Introduction

Two behavioral patterns seemingly persisting across more than one purchase

occasion have been extensively studied in marketing literature, namely inertia

and variety-seeking. Such inter-temporal behavioral phenomena are often

jointly referred to as state dependence.

Accounting for state dependence is important in formulating marketing

strategy. Chintagunta (1998) states “knowing if consumers in a market are

inertial or variety prone is very important in formulating marketing strategies

(Chintagunta, 1998, 254).” He suggests that the existence of variety prone

consumers motivates managers to expand a product line so that consumers
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switch to their own other product, and brand retention should be emphasized

in an inertial market. Lattin & McAlister (1985) and Gupta et al. (1997) also

implicitly suggest to have a variety of products as variety-seeking consumers

would not be satisfied by a single product due to their desire to experience a

wide range of features. On the other hand, Gupta et al. (1997) recommends

encouraging the current choice of the brand through coupon program, a

temporal price cut, and manufacturer advertising if consumers are inertial.

Roy et al. (1996) claims that inducing trial of a brand should be encouraged

if the strong inertia exists.

Knowing the joint effects of marketing mix variables and state dependence

is also important in the following sense: The effects of marketing mix vari-

ables could be wrongly measured if state dependence is not accounted for. If a

repeated purchase of a certain brand is due to inertia rather than promotional

activities, the effect of promotion would be overestimated. If variety-seeking

effect is ignored, on the other hand, heterogeneity across consumers could be

exaggerated or undermined; if increased sales of a promoted brand in current

period is partly due to variety-seeking consumers who purchased competing

brand on the previous occasion, the effect of current promotion would be

overestimated if variety-seeking effect is ignored when it exists. Researchers

such as Guadagni & Little (1983), Gupta et al. (1997), and Seetharaman

(2003) argue that an effect of promotion must account for the multi-period

impact due to inertia; else the effect of promotion would be underestimated

by predicting only a single period incremental sales.
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2.2 Literature Review

There are many possible rationales of inertia. Jeuland (1979) and Guadagni

& Little (1983) call it brand loyalty; Givon (1984) explains it as a risk avoid-

ance behavior; Erdem (1996) calls it habit persistence, that is, a reinforce-

ment of tastes or preferences by past behavior; and Keane (1997) counts habit

persistence (use of a brand causes one to acquire a taste for that brand) and

learning combined with risk aversion (use of a brand gives one knowledge

about its attributes, making it a safe choice for a subsequent purchase occa-

sion) as the explanation for inertia. Some researchers consider it as the con-

sequence of monetary switching cost (e.g. the existence of repeat-purchase

coupons and ”frequent flyer” programs), transaction cost, and psychologi-

cal switching cost such as learning cost associated with switching behavior

or non-economic brand loyalty (Klemperer, 1987a,b; Farrell & Klemperer,

2007; Dubé et al., 2009).

To account for inertia, the loyalty variable suggested by Guadagni &

Little (1983) is sometimes used as the effect of this variable has been shown to

remain significant even after controlling the effects of other variables (Lattin,

1987; Keane, 1997). The other specifications include use of the last purchase

indicator variable or the number of purchases of a brand by a consumer.

On the other hand, rationales of variety-seeking behavior include a sa-

tiation to brand attributes (McAlister, 1982; Lattin & McAlister, 1985), an

intrinsic desire for a change (Givon, 1984), and the existence of a composite

need, where the consumers’ needs cannot be filled best by a single product

(Lattin & McAlister, 1985).

The early research on this topic modeled variety-seeking behavior deter-

ministically (e.g., McAlister (1982), Givon (1984), and Lattin & McAlister

(1985)), whereas Trivedi et al. (1994) stochastically modeled the intensity of
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variety-seeking behavior as a random variable. Lattin & McAlister (1985)

employed a perceptional difference on features shared between two brands

(a previously purchased brand and a brand the consumer faces on the cur-

rent purchase occasion) to model a satiation from brand attributes. Trivedi

et al. (1994) constructed the similarity index for attributes of brands by a

questionnaire asking perceived similarity among brands.

Meanwhile, Bawa (1990) suggested the “hybrid behavior,” which assumes

both inertia and variety-seeking behavior for the same consumer. The hybrid

behavior hypothesized in his model was characterized by a consumer who

exhibits an inertial behavior for a certain period of time and then switches

to exhibit a variety-seeking behavior once a certain period of time passes.

In other words, at least for some consumers, the model hypothesizes that

the marginal utility of the same brand increases first but starts to decrease

after the repeated consumptions of that brand, and brand switching occurs

once the utility of that brand becomes lower than those of the other brands.2

He justifies the hybrid behavior based on the psychological paper of Berlyne

(1970) which finds that a hedonistic value, such as pleasantness, increases

at first as a stimulus becomes more familiar but starts to decrease once the

stimulus loses its novelty due to the repeated exposure.

Despite its unique attempt, there are several limitations in Bawa (1990).

Besides he analyzed the only two-brand case, the model did not incorpo-

rate the effects of marketing variables and heterogeneity across consumers,

which had been empirically found to affect consumers brand choice behav-

ior. However, as Bawa (1990) attempted, a variety-seeking tendency may

2There are some papers which assume both inertia and variety-seeking behaviors, such

as Lattin (1987), but these papers usually assume inertia for some consumers and variety-

seeking behaviors for the other, and these behavioral tendencies are not allowed to change

over time.
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emerge in the course of repeated consumptions of the same brand and worth

more detailed research. Although several papers (e.g., Givon (1984), Lattin

(1987), and Seetharaman & Chintagunta (1998)) accommodate both inertia

and variety-seeking, they did not allow the same consumer to switch its ten-

dencies to seek or avoid variety over time. Therefore in this chapter, we try to

capture such behavior while accounting for heterogeneity across consumers

and the effect of marketing variables.

2.3 The Specification of State Dependence

We use the brand loyalty variable of Guadagni & Little (1983), which we

will refer to it as “GL variable” henceforth, to express inertial part of the

hybrid behavior in constructing the model. We will denote the GL variable

at consumer i’s purchase occasion ti for brand j = 1, . . . , J by GLjti . The

initial value of the GL variable at ti = 1 is given by

GLj1 =

α if brand j is the first purchase of consumer i

(1− α)/(J − 1) otherwise

(2.3.1)

and

GLjti = α ·GLj(ti−1) · Iij(ti−1) (2.3.2)

for ti = 2, . . . , Ti, where α is a parameter between 0 and 1, and Iij(ti−1) is an

indicator function taking unity if consumer i selects brand j on occasion ti−1.

It should be noted that the GL variable is scaled so that their sum across

brands is unity on each purchasing occasion; the GL variable is designed not

to overwhelm the effect of other components of utility.3

3To show that the GL variable sums to unity, let us take an example of the GL variables

on occasions ti = 1 and ti = 2. On occasion ti = 1, it is obvious that they sum to unity
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To capture the effect of variety-seeking, we include “run,” the number of

consecutive purchases of the same brand, defined in Bawa (1990) to the utility

function. The purpose of including run is to “put a brake” on the GL variable,

which keeps increasing as long as the same brand is kept being purchased.

By including run, the utility for the same brand would start to decline as

a result of the repeated consumptions of the same brand if run negatively

affects utility. If a consumer has an inertial tendency, the coefficients of both

the GL variable and run would significantly be non-negative and the variety-

seeking behavior could be detected by the non-positive coefficient of the GL

variable and/or run. Meanwhile, the hybrid behavior could be detected by

the relative magnitudes of the positive coefficient of the GL variable and

negative coefficient of the run. In the next section, we explain the model.

2.4 The Latent Class Model

In this study, we allow for the co-existence of consumers with different behav-

ioral patterns by employing the latent class model. The latent class model

is one of the general models to incorporate heterogeneity across consumers

assuming a finite number of segments. The segment is a subset to which

consumers belong, where members in the same segment are assumed to be

homogeneous in intrinsic preferences to brands and responsiveness to the

marketing variables. The idea behind this type of model is that there is an

underlying multi-dimensional distribution of consumers’ heterogeneity (i.e.,

because of the division by J−1 in (2.3.1). At ti = 2, α is multiplied to all the GL variables

consumer i has on occasion ti = 1 by the term α ·GLjti−1 in (2.3.2) regardless of the brand

chosen in the period and as a result they sum up to α. In addition, (1 − α) is added to

one of the GL variables by the second term on the right-hand side of the equation (2.3.2),

and hence they together sum up to unity. The same is true for ti = 3, 4, . . . .
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intrinsic preferences for brands and relative responsiveness to the marketing

variables) which characterizes their behavior, and the latent class model as-

sumes discrete underlying distribution. The overall choice probabilities of

brands are given by the weighted sum of segment-level choice probabilities in

this model (Bucklin et al., 1998). In other words, each of the unconditional

choice probabilities for brands “can be decomposed into a weighted average

of underlying (or “latent”) choice probabilities (Kamakura & Russell, 1989,

380).” Because the finite representation of consumer’s characteristics of the

latent class model coincides well with the concept of a segment, the model is

widely employed in the marketing literature.

2.4.1 Specification of the Model

We define the utility of consumer i = 1, . . . , N for brand j = 1, . . . , J on

occasion ti = 1, . . . , Ti as

Uijti = xijtiβs + εijti

where xijti is a 1×R vector of the explanatory variables a consumer i faces

on occasion ti, which consists of a set of the dummy variables for brands

except for a base brand, the shelf price of brand j, a dummy variable for

coupon usage times a coupon face value, the dummy variables for feature and

display, the GL variable, and run. The βs is a corresponding R× 1 vector of

parameters for segment s = 1, . . . , S. The random error term εijti captures

the unobserved part of the utility which is assumed to follow independently,

identically distributed (“i.i.d.” henceforth) Gumbel distribution.

The relative sizes of segment s is defined as λs such that

0 < λs ≤ 1
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for all s and

S∑
s=1

λs = 1. (2.4.1)

Each consumer has different membership probabilities for each segment be-

cause membership probabilities are estimated from each consumer’s purchase

history. Accordingly, the term λs can be viewed as the “likelihood of finding

a household in segment s (Kamakura & Russell, 1989, 380)” in the sample.

For consumer i, let yijti be entries of Ti × J matrix Yi

Yi =


yi11 . . . yiJ1

...
. . .

...

yi1Ti . . . yiJTi

 (2.4.2)

and denote each row as yiti . Since we assume εijti follow i.i.d. Gumbel

distribution, we can express the probability that consumer i in segment s

chooses brand j at the occasion ti in the standard logit form as

Pr{(yi1ti , . . . , yiJti) = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
J−j

)|Si = s;βs} =
exp(xijtiβs)∑J
l=1 exp(xiltiβs)

(2.4.3)

where the random variable Si indicates the segment consumer i belongs to,

assuming we could observe the segment membership of consumer i. We

abbreviate (2.4.3) as

Pr(Yiti = j|Si = s;βs) =
exp(xijtiβs)∑J
l=1 exp(xiltiβs)

(2.4.4)

henceforth for notational convenience.

The unconditional choice probability of a randomly selected consumer i

for brand j can be obtained by integrating out the equation (2.4.3) by the
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density in the population λs as4

Pr(Yiti = j) =

∫
Pr(Yiti = j|Si = s;βs)λsds. (2.4.5)

Since the relative size of the segment λs is discrete, (2.4.5) is written as

Pr(Yiti = j) =
S∑
s=1

λs · Pr(Yiti = j|Si = s;βs).

This is a weighted average of logit formula evaluated at each mass point

(segment), as pointed out by Kamakura & Russell (1989).

Suppose that consumer i has the choice history defined asHi = (Yi1, . . . , YiTi),

where element Yiti indicates the brand purchased at occasion ti. Then the

conditional choice probability that consumer i has the choice history Hi given

that the consumer belongs to segment s is written as

Pr(Hi|Si = s;βs) =

Ti∏
ti=1

J∏
j=1

{Pr(Yiti = j|Si = s;βs)}yijti . (2.4.6)

The unconditional probability of randomly selected consumer i having the

choice history Hi can be written as

Pr(Hi;β) =
S∑
s=1

λs · Pr(Hi|Si = s;βs) (2.4.7)

where β is defined as R× S parameter matrix

β = (β1, · · · ,βS) =



β11 · · · β1s · · · β1S

...
. . .

...
. . .

...

βr1 · · · βrs · · · βrS
...

. . .
...

. . .
...

βR1 · · · βRs · · · βRS


.

4The model of the form (2.4.5) is sometimes called mixed logit model and λs is called

mixing distribution. The latent class model can be regarded as the special case of mixed

logit model where mixing distribution is discrete (Train, 2003). See Appendix A.3 for

detail.
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Let us further define, for each consumer i, the multinomial indicator random

variable zi(s) which takes one if consumer i belongs to segment s and 0 oth-

erwise, assuming we know the membership probability of consumer i belong-

ing to segment s given its purchase history Hi denoted as Pr(Si = s|Hi;βs).

Then this membership indicator random variables zi(s)’s are entries of N×S

matrix Z as

Z =


z1

...

zN

 =


z1(1) . . . z1(S)

...
. . .

...

zN(1) . . . zN(S)

 .

The row sums of the matrix Z above are all unity. Assuming we were able

to observe Z, the likelihood given the choice histories of all consumers is

written as5

L(λ,β|H ,Z) =
N∏
i=1

S∏
s=1

{λs · Pr(Hi|Si = s;βs)}zi(s)

where H = (H1, . . . , Hi, . . . , HN) is the choice history of all consumers in

the sample and λ = (λ1, . . . , λS) is 1×S vector of relative sizes of segments.

Accordingly, the log likelihood is

l(λ,β|H ,Z) =
N∑
i=1

S∑
s=1

zi(s) · ln Pr(Hi|Si = s;βs) +
N∑
i=1

S∑
s=1

zi(s) · lnλs.

(2.4.8)

If we were able to observe Z, the algorithm to estimate parameters (λ,β) is

as follows:

Step 0.1: Set t = 0. Set the initial values β̂
(0)
s for s = 1, . . . , S and set

5The term λs · Pr(Hi|Si = s;βs) is the joint probability that consumer i belongs to

segment s and has choice history Hi. Note, however, that the relative size of segment λs

is unknown and has to be estimated.
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λ
(0)
s = 1/S for s = 1, . . . , S.

Step 0.2: Calculate l(t)
(
λ(t), β̂(t)|H,Z

)
using (2.4.8).

Step 1: Calculate λ
(t+1)
s for s = 1, . . . , S from the method which will be

explained below.

Step 2: Estimate β̂
(t+1)
s for s = 1, . . . , S using the scoring or Newton-

Raphson method.6

Step 3: Calculate l(t+1)
(
λ(t+1), β̂(t+1)|H,Z

)
using (2.4.8). If

l(t+1)
(
λ(t+1), β̂

(t+1)
s |H,Z

)
and l(t)

(
λ(t), β̂

(t)
s |H,Z

)
are close enough, stop the

iteration as the likelihood is maximized. Else set t = t+ 1 and goto Step 1.

Because we cannot possibly obtain Z, we employ EM algorithm to estimate

λ and β as explained in the following subsection.

2.4.2 EM algorithm

If the segment memberships of consumers Z were completely known, the vec-

tor of parameters βs can be estimated by the algorithm described above using

well-known methods such as Newton-Raphson method. EM algorithm takes

advantage of this fact and in the algorithm, consumer’s membership to the

segment zi(s) is first assumed to be missing and is imputed by its “expecta-

tion.” Then the conditional likelihood is “maximized” based on the expected

values of membership to segments. The consumer’s expected membership

is then updated using the updated likelihood. This cycle of “expectation”

6See Appendix A.6 for detail.
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of membership to the segment and “maximization” of likelihood is repeated

until the likelihood converges.

Taking the expectation with respect to zi(s) for the log likelihood (2.4.8),

we have

E[l(λ,β|H ,Z)] =
N∑
i=1

S∑
s=1

hi(s) · ln Pr(Hi|Si = s;βs) +
N∑
i=1

S∑
s=1

hi(s) · lnλs

(2.4.9)

where

hi(s) = E[zi(s)] =
S∑
l=1

zi(l) · Pr(Si = l|Hi;βl) = Pr(Si = s|Hi;βs)

(2.4.10)

is the expected values of the indicator random variable zi(s). Since parameter

β only appears in the first term and λ only appears in the second term on the

right-hand side of the equation (2.4.9), they can be estimated by maximizing

E[l(λ,β|H ,Z)] alternately.

Let us first look at the second term on the right-hand side of the equation

(2.4.9). Since we have the condition
∑S

s=1 λs = 1 from (2.4.1), the second

term can be maximized by the method of Lagrange multipliers given βs. Let

us define

L =
N∑
i=1

S∑
s=1

hi(s) · lnλs − λ

{
S∑
s=1

λs − 1

}
.

Then we have (S + 1) set of equations by partially differentiating L with

respect to λs for s = 1, . . . , S and λ. Setting resulting formulas zero as

∂L
∂λ1

=
∑N

i=1 hi(1)

λ1
− λ = 0

...

∂L
∂λS

=
∑N

i=1 hi(S)

λS
− λ = 0

∂L
∂λ

= −
∑S

s=1 λs + 1 = 0,

(2.4.11)
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we have

λs =
1

λ

N∑
i=1

hi(s) (2.4.12)

for s = 1, . . . , S from the first S equations in (2.4.11). Substitute these

equations to the last equation in (2.4.11), we obtain

1

λ

N∑
i=1

hi(1) + · · ·+ 1

λ

N∑
i=1

hi(S) = 1

or

N = λ,

since hi(1) + · · ·+ hi(S) = 1. Then we have

λs =

∑N
i=1 hi(s)

N
(2.4.13)

for s = 1, . . . , S from (2.4.12). The solution (2.4.13) means that the relative

size of segment s is the average of segment membership for s across all con-

sumers in the sample. The term hi(s) = Pr(Si = s|Hi;βs) in (2.4.10) can be

calculated using the definition of conditional probability as7

hi(s) =
Pr(Si = s,Hi;βs)

Pr(Hi;β)
=

λs · Pr(Hi|Si = s;βs)∑S
s=1 λs · Pr(Hi|Si = s;βs)

. (2.4.14)

We obtain λs by substituting (2.4.14) to (2.4.13).

The parameters of the right-hand side of the equation (2.4.9) for seg-

ment s can be estimated independently for each segment since the vectors of

parameters βs are independent across segments. The first term on the right-

hand side of the equation (2.4.9) for segment s is written with the notation

7Note that hi(s) in (2.4.14) can be interpreted as the posterior distribution of consumer

i’s membership probability for segment s with prior distribution λs and likelihood Hi given

segment membership Si = s as we mentioned earlier.
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similar to (2.4.6) as

N∑
i=1

hi(s) · ln Pr(Hi|Si = s;βs)

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

{hi(s) · yijti · ln Pr(Yiti = j|Si = s;βs)} . (2.4.15)

EM algorithm

Step 0.1: Set t = 0. Set the initial values β̂
(0)
s for s = 1, . . . , S and set

λ
(0)
s = 1/S for s = 1, . . . , S.

Step 0.2: Set s = 1. Obtain h
(t)
i (s) for i = 1, . . . , N by calculating Pr(Yiti =

j|Si = s;βs) using (2.4.3) first then (2.4.6) and (2.4.7) successively with β̂
(t)
s

and λ
(t)
s and substitute these interim results to (2.4.14). Set s = s + 1 and

repeat Step 0.2 until s = S.

Step 0.3: Calculate E
[
l(t)
(
λ(t), β̂(t)|H,Z

)]
using (2.4.9).

Step 1: Update λ
(t+1)
s from (2.4.13) using h

(t)
i (s).

Step 2: Estimate β̂
(t+1)
s by maximizing (2.4.15) with (2.4.3) and h

(t)
i (s) ob-

tained previously. The actual maximization is done by the Newton-Raphson

method or its variant.

Step 3: Update Pr(Yiti = j|Si = s;βs)
(t+1) by substituting β̂

(t+1)
s to (2.4.4)

obtained in Step 2.

Step 4: Calculate h
(t+1)
i (s) from (2.4.14) with updated β̂

(t+1)
s and λ

(t+1)
s
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for i = 1, . . . , N . Set s = s+ 1 and goto Step 1. If s = S, goto Step 5.

Step 5: Calculate E
[
l(t+1)

(
λ(t+1), β̂(t+1)|H,Z

)]
using (2.4.9). If

E
[
l(t+1)

(
λ(t+1), β̂

(t+1)
s |H,Z

)]
and E

[
l(t)
(
λ(t), β̂

(t)
s |H,Z

)]
are close enough,

stop the iteration as the expected log likelihood is maximized. Else set s = 1

and t = t+ 1, and return to Step 1.

2.5 Data

We use ERIM database, the panel data of U.S. consumers in Sioux Falls,

SD which was collected from 1st week of 1986 to 34th week of 1988. ERIM

database is the data collected by the now-defunct ERIM division of A.C.

Nielsen on panels of consumers in Sioux Falls and Springfield for academic

research.8

We chose a ketchup category for our empirical analysis for the following

reasons. First, because we were interested in consumer’s brand choice be-

havior with the possible presence of state dependence, product categories in

which a consumer exhibited a strong genuine preference to a specific brand

were not suitable because a consumer would choose the specific brand any-

way. Secondly, the products that were purchased with relatively high fre-

quency were preferable, since we would incorporate the effect of past brand

purchases on the current purchasing occasion.

Because there were more than forty Stock Keeping Units (SKUs) in the

original panel data, we used the following criteria to select SKUs for our

analysis. First, we dropped the SKUs whose market shares were less than

8We acknowledge the James M. Kilts Center, University of Chicago Booth School of

Business for letting us use the data.
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1% because some consumers in these data sets were not able to choose them.

This left fourteen SKUs. Next, we chose the SKUs whose sizes were either 32

or 28 ounces, which seemed to be the standard sizes of ketchup judged by their

market shares; they accounted for 81.6% of the market shares. The other

sizes included 14, 40, 44 and 64 ounce, but those who bought the ketchup

of these sizes might have different demographic characteristics and thus may

have different purchasing patterns from those who bought the standard sized

ketchup. This left eight SKUs and there were 516 consumers who chose

ketchup from these eight SKUs with 3,933 purchase records.

Next, we checked how many stores carried all these SKUs, because if con-

sumers bought ketchup from the other stores than those carrying all SKUs,

their SKU selections could have been influenced by the lack of selection.

There were fifteen stores in Sioux Falls but only five of them carried all eight

SKUs.9 If we removed the consumers that bought at least one ketchup in

stores other than these five, only 120 consumers with 497 purchase records

would be left for the analysis. The large reduction of data was because the

sixth, seventh, and eighth selling SKUs were simultaneously available only

in few stores in Sioux Falls. Hence we chose to retain only top-selling five

SKUs. Among fifteen stores, twelve of them carried all top-selling five SKUs.

After eliminating the consumers who purchased ketchup in stores other than

these twelve, 255 consumers with 1,791 purchase records remained.

Finally, since we were interested in the consumer’s brand choice behavior

across time, we chose to retain the consumers who made more than or equal

to five purchases of ketchup during the period, which left 137 consumers

with 1,504 purchase records. After screening data, we collected consumer ID,

9We assumed that the store carried the SKU if at least one purchase record of the SKU

was found in that store during the data collection period.
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SKU purchased, its shelf price, coupon values (when used), store ID, date of

purchase, an indicator variable whether it was displayed, and an indicator

variable whether it was featured on each purchasing occasion. Table 2.5.1

presents the summary statistics of the five SKUs analyzed in this study.

Table 2.5.1: Summary statistics of the SKUs

Market Mean Price Mean Value Coupon

SKU Share per oz. of Coupons Usage Display Feature

Heinz 32 oz. 31.7% 3.37 1.24 37.9% 11.5% 43.8%

Heinz PLS 28 oz. 15.8% 4.38 2.41 33.1% 16.7% 34.6%

Hunt’s PLS & GLS 32 oz. 14.3% 3.22 1.30 32.6% 11.9% 36.7%

Del Monte 32 oz. 6.4% 2.87 1.00 7.2% 11.2% 36.0%

Control 32 oz. 5.0% 2.65 1.64 3.8% 5.7% 24.5%

2.6 Empirical Results

We constructed and tested two other models to calibrate the validity of our

proposal model. Model 1 only used marketing variables as explanatory vari-

ables, Model 2 incorporated GL variable along with the marketing variables,

and Model 3 is our proposal model which incorporated GL variable and run

in addition to marketing variables.

We determined the number of segments based on Akaike Information

Criteria (AIC).10 The number of segments was chosen to be four because no

significant reduction in AIC was observed for Model 3 when the number of

segments was increased from four to five as presented in Table 2.6.1. The es-

timated parameters of Model 3 are presented in Table 2.6.2. The coefficients

10We also used BIC criteria but it yielded the similar result.
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Table 2.6.1: Akaike Information Criteria of the three models

Model 1 Model 2 Model 3

2 segments 1310.6 1058.2 1041.8

3 segments 948.5 861.3 835.6

4 segments 842.6 805.6 796.7

5 segments 819.1 796.5 794.2

6 segments 809.5 803.8 813.0

of SKUs indicate intrinsic preferences for them with respect to “Control 32

oz.” which we chose as the base SKU.

All coefficients of Model 3 are consistent with the expected economic

behavior; coefficients of prices are negative; those of coupon, display, and

feature are all positive in all segments; and the intrinsic preferences to SKUs

and responsiveness to marketing variables differ significantly across segments.

To reproduce the dynamic behavioral patterns regulated by the model, we

calculated the purchasing probabilities for each SKU and segment, assuming

a consumer makes five consecutive purchases of the same SKU. Table 2.6.3

presents the results. For example, the number at rows t = 3 is the purchasing

probability of SKU given two consecutive purchases of that SKU. In the

calculation, we used the average prices and assumed no promotion took place

during the period.

Table 2.6.3 shows that, consumers in segments 1 and 4 exhibit strong iner-

tia while those in segments 2 and 3 exhibit weak and modest variety-seeking

tendencies respectively. While consumers in segment 2 can be characterized

by its strong preferences to Heinz products, those in segment 3 are least price

sensitive and have relatively low coefficients for coupons and features. Con-

sumers in segment 4 are most price sensitive and they respond to promotions

most.
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Table 2.6.2: Parameter estimates of the proposed model

Segment 1 Segment 2 Segment 3 Segment 4

Heinz 32 oz. -0.08 4.28 1.89 1.44

(0.015) (0.018) (0.012) (0.016)

Heinz PLS 28 oz. 1.31 2.66 1.73 2.40

(0.007) (0.007) (0.007) (0.007)

Hunt’s PLS & GLS 32 oz. 0.03 0.30 2.71 -2.53

(0.007) (0.005) (0.010) (0.006)

Del Monte 32 oz. 1.18 -2.14 1.07 -1.15

(0.007) (0.001) (0.004) (0.006)

Price -0.85 -0.74 -0.67 -2.51

(0.070) (0.077) (0.068) (0.071)

Coupon 2.79 5.02 3.29 5.47

(0.021) (0.021) (0.018) (0.020)

Display 3.42 3.90 3.86 4.75

(0.007) (0.007) (0.007) (0.007)

Feature 5.62 2.50 2.94 5.89

(0.013) (0.012) (0.012) (0.013)

GL variable 4.30 0.74 1.74 5.61

(0.014) (0.016) (0.010) (0.013)

Run 0.51 *-0.13 -0.22 -0.12

(0.089) (0.066) (0.052) (0.053)

Size of Segments 26.1% 23.4% 28.9% 21.7%

Total Log Likelihood -365.8

*90% level significance. All the other coefficients were significant at 95% level. The

numbers in parentheses are standard errors.
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Table 2.6.3: The dynamic purchase probabilities of the SKUs
Heinz 32 oz. Segment 1 Segment 2 Segment 3 Segment 4

t=0 8.8% 87.6% 20.6% 33.5%

t=1 56.1% 91.7% 42.4% 93.6%

t=2 74.9% 91.1% 40.4% 95.3%

t=3 86.7% 90.5% 37.7% 96.2%

t=4 93.1% 89.7% 34.7% 96.8%

t=5 96.4% 88.8% 31.3% 97.1%

Heinz PLS 28 oz. Segment 1 Segment 2 Segment 3 Segment 4

t=0 15.0% 8.3% 9.0% 7.1%

t=1 70.1% 12.4% 21.9% 68.7%

t=2 84.5% 11.7% 20.5% 75.3%

t=3 92.3% 10.9% 18.8% 79.4%

t=4 96.1% 10.0% 16.8% 81.9%

t=5 98.0% 9.2% 14.8% 83.5%

Hunt’s PLS & GLS 32 oz. Segment 1 Segment 2 Segment 3 Segment 4

t=0 11.2% 1.8% 52.5% 0.9%

t=1 62.4% 2.8% 75.8% 21.6%

t=2 79.5% 2.7% 74.2% 27.6%

t=3 89.4% 2.5% 72.0% 32.6%

t=4 94.6% 2.3% 69.3% 36.3%

t=5 97.2% 2.0% 66.0% 38.8%

Del Monte 32 oz. Segment 1 Segment 2 Segment 3 Segment 4

t=0 47.4% 0.2% 12.8% 9.0%

t=1 92.2% 0.3% 29.4% 74.0%

t=2 96.5% 0.3% 27.7% 79.8%

t=3 98.4% 0.3% 25.5% 83.3%

t=4 99.2% 0.3% 23.1% 85.5%

t=5 99.6% 0.2% 20.5% 86.7%

Control 32 oz. Segment 1 Segment 2 Segment 3 Segment 4

t=0 17.6% 2.1% 5.1% 49.5%

t=1 73.9% 3.2% 13.2% 96.6%

t=2 86.9% 3.0% 12.3% 97.5%

t=3 93.5% 2.8% 11.1% 98.0%

t=4 96.8% 2.5% 9.9% 98.3%

t=5 98.3% 2.3% 8.6% 98.5%

23



2.7 Discussions of the Results

Our proposal model fits the data best compared to the competing models

with a fair number of significant variables, indicating that segments are het-

erogeneous in behavioral patterns over time. These results suggest important

implications for marketers. Specifically, the information in Table 2.6.3 can

be used as a reference for brand managers to plan their marketing strategies

and promotion. For example, since consumers in segment 1 exhibit strong

inertia, Del Monte may not need much promotion. When competitor pro-

motes, however, it also may need to promote the brand to retain customers.

Since consumers in this segment have low coefficients for coupon and display

but have a high coefficient for a feature, Del Monte should use features when

it promotes the brand. Consumers in segment 2 exhibit a strong preference

for Heinz brands, and there seems to be little chance for the other brands

to be selected. From Heinz perspective, promotion for this segment is not

necessary since consumers in this segment would purchase its brands anyway.

Consumers in segment 3 are the main target for Hunt’s. However, because

consumers in this segment are the least price sensitive, it may restructure

its current promotional planning especially because it uses a lot of coupons.

Consumers in segment 4 also exhibit strong inertia but they are most price

sensitive and respond to promotions most. The rigorous price competition

between Heinz and Control can be expected for this segment. While Heinz

should promote its Heinz 32 ounce to segment 4, Hunt’s and Del Monte are

better off to spend their promotional budgets on segment 1 or 3, since they

have little chance to attract consumers in segment 4.
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2.8 Conclusion

In this study, we developed the comprehensive model which can accommo-

date inertia, variety-seeking, and hybrid behavior along with the hetero-

geneous preferences to brands and sensitivities to marketing variables and

empirically tested the model using the panel data of ketchup. Though the

hybrid behavior was minimal in our data, this study shed a light on the

possible presence of the hybrid behavior and provides plenty of marketing

insights of practical importance.

For future studies, the proposed model can be tested using different data

sets for the validity of the model. Moreover, analyzing the competitive ac-

tions/reactions to promotion and pricing strategies incorporating state de-

pendence would be an opportunity for future research.
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Chapter 3

Inference on Strategic

Interactions among

Manufacturers, Retailers, and

Consumers

3.1 Introduction

In consumer packaged good market, manufacturers and retailers strategi-

cally interact. The approach called a structural market equilibrium model is

sometimes employed to model such interaction. This approach describes the

interaction of manufacturers, retailers, and consumers imposing their opti-

mizing behavioral assumptions; manufacturers and retailer are assumed to

maximize their own profits and consumers are assumed to maximize their

utilities. Examples of such papers are Sudhir (2001), Yang et al. (2003),

Villas-Boas & Zhao (2005), and Che et al. (2007) to name a few.

A structural market equilibrium model allows the variety of competitive
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structure of the market via different combinations of inter-firms interactions.

The two main descriptive factors of the market structure in previous stud-

ies are horizontal strategic interactions among manufacturers and vertical

strategic interaction among manufacturers and retailers; they are Bertrand

competition/tacit collusion and manufacturer Stackelberg/vertical Nash re-

spectively. Bertrand competition refers to own-brands profits maximizing

behavior of manufacturers and tacit collusion refers to the behavior of man-

ufacturers which collectively maximizes total profits from all brands in the

market. Manufacturer Stackelberg game assumes that manufacturers act as

Stackelberg leaders with respect to retailers and choose their wholesale prices

anticipating a reaction of retailers, conditional on the wholesale prices of com-

peting brands. Vertical Nash game, on the other hand, assumes that man-

ufacturers and retailers move simultaneously; manufacturers choose prices

taking retail prices of competing brands and retail margin of their brands as

given. In either case, the retailer chooses retail prices to maximize profits

taking wholesale prices as given (Choi, 1991; Sudhir, 2001).

The model is widely used in the literature as it offers rich insights of the

market and provides an empirical method to test theories. Choi (1991) argues

that whether market structure is characterized by manufacturer Stackelberg

or vertical Nash depends on the concentration of the market (i.e., whether a

market is governed by a few large firms or bunch of small firms). Similarly,

Sudhir (2001) argues that firms in long-term competition can achieve tacit

collusion partly because it is easier to employ a punishment strategy11 in the

concentrated market where a small number of manufacturers have majority

of market share.

11It is the strategy in the game theory where a firm penalizes a competing firm by initi-

ating a rigorous price competition once a competing firm deviates from collusive behavior.
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The findings in this area are mixed. On the one hand, Nevo (2001)

and Che et al. (2007), which analyze cereal market and Villas-Boas & Zhao

(2005), which analyzes ketchup market support Bertrand competition in the

respective markets. On the other hand, Sudhir (2001) finds cooperative

behavior in yogurt and peanut butter market where two leading brands have

a majority of market shares (82% and 66% respectively). On the vertical

relationship between a retailer and manufacturers, Sudhir (2001) and Che

et al. (2007) compare manufacturer Stackelberg and vertical Nash game to

find manufacturer Stackelberg outperforms vertical Nash game.12

What has been missing in the literature is the retailer Stackelberg formu-

lation whereby the retailer has control over pricing with respect to manufac-

turers. Given the purported power shift from manufacturers to a retailer, this

game has to be considered along with manufacturer Stackelberg and vertical

Nash. Therefore in this research, we extend Che et al. (2007) by mathe-

matically formulating retailer Stackelberg and conduct an economic analysis

taking Japanese yogurt market as an example to investigate whether manu-

facturers’ effort to develop special featured brands is still rewarding in terms

of margins. This is of interest of manufacturers as it is the conventional

wisdom that the power in the distribution channel has shifted from man-

ufacturers to retailers and manufacturer’s effort may only benefit retailers.

To the best of our knowledge, this is the first instance of a retailer Stack-

elberg formulation in the context of discrete choice model.13 This study is

hence unique in that it successfully portrays the symmetrical relationship

12The other empirical papers presume one game as vertical interaction. For example,

Nevo (2001) presumes only vertical Nash game whereas Yang et al. (2003) and Villas-Boas

& Zhao (2005) only presume manufacturer Stackelberg game.
13Choi (1991) introduces retailer Stackelberg formulation but the model in that paper

assumes linear demand function.
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between manufacturer Stackelberg and retailer Stackelberg games, whereby

the vertical Nash game is located in the midpoint of those games.

The rest of this chapter is organized as follows. The next section describes

the model. We briefly explain our data in section 3.4. We will present results

for data analysis in section 3.5. We discuss the results and concludes this

chapter in section 3.6.

3.2 The model

In this section, we explain the model. Our model specification largely follows

that of Sudhir (2001), Villas-Boas & Zhao (2005), and Che et al. (2007).

3.2.1 Demand-Side Specification

We employ the multinomial logit model for consumer brand choice behavior.

Specifically, the utility of consumer i choosing brand j at time ti is defined

as vijti and written as14

vijti = xjti · βs − αs · pjti + simkj · SDs + ξjti

where xjti (a subset of xjt defined for all t and j) is the set of explanatory

variables including brand dummy variables; pjti is the price; simkj is the

attribute similarity index of brand j with respect to the previously purchased

brand k; and ξjti is the unobserved demand characteristics which can be

observed by firms and consumers but not by a researcher. Then the choice

probability of consumer i for brand j at occasion ti is written as

Prijti =
exp(vijti)

1 +
∑J

k=1 exp(vikti)
(3.2.1)

14The term ξjti is subset of ξjt where the latter is defined for all calendar dates and

brands in the panel, and the former is retrieved from ξjt.
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where the addition of 1 in the denominator in (3.2.1) stands for the outside

option which is a consequence of the specification vi0ti = εi0ti .

We assume following properties for ξjt:

E[ξjt] = 0 (3.2.2)

Cov[ξjt,Xjkt] = 0 (3.2.3)

E[ξ2
jt|Xjkt] <∞ (3.2.4)

where Xjkt ≡ (xjt, simkj). The coefficients βs, αs, and SDs are parameters

to be estimated, where subscript s corresponds to segment s in the latent

class model which we employed in Chapter 2.

The attribute similarity index

We use the attribute similarity index to capture the state dependence in

consumer brand choices following Che et al. (2007).15 The similarity between

the brand purchased on the previous occasion (brand k) and the brand a

consumer faces on the current purchase occasion (brand j) is specified as

simkj =
Ikj +

∑L
l=1 Ikjl · rl

1 +
∑L

l=1 rl

where Ikj is an indicator variable taking unity if k = j, Ikjl is an indicator

variable taking unity if two brands share the same level of attribute l =

1, · · · , L, and rl > 0 is importance weight to be estimated. The similarity

index is designed to take value between 0 (brands are totally dissimilar)

15The idea of the attribute similarity index can be found in previous papers (e.g., Lat-

tin (1987)), but the specification in previous literature requires a questionnaire which

explicitly asks subjects for the perceived similarity between brands. The advantage of the

specification of Che et al. (2007) is that it does not require such information and simi-

larities between brands can be calibrated from the data, although the level of attributes

shared by brands must be arbitrary set by researchers.
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and 1 (brands are identical). The coefficient of the similarity index, SDs,

can either be positive or negative which corresponds to inertial and variety-

seeking behavior of consumers respectively. Following Che et al. (2007), we

parametrize SDs by the demographic variables as

SDs = γs0 + DEMOi · γs

where DEMOi = (Di1, . . . , DiQ) is vector of demographic characteristics of

consumer i, and γs0 and γs = (γs1, . . . , γsQ)T are corresponding parameters.

Let R be R ≡ 1 +
∑L

l=1 rl. Then the term simkj · SDs can be written out as

simkj · SDs =
γs0
R
· Ikj +

γs0 · r1

R
· Ikj1 + · · ·+ γs0 · rl

R
· IkjL

+
γs1
R
· Ikj ·Di1 +

γs1 · r1

R
· Ikj1 ·Di1 + · · ·+ γs1 · rl

R
· IkjL ·Di1 + . . .

+
γsQ
R
· Ikj ·DiQ +

γsQ · r1

R
· Ikj1 ·DiQ + · · ·+ γsQ · rl

R
· IkjL ·DiQ.

In estimation, we treat multiplicative terms of unknown parameters such as

γs0/R as a single parameter and estimate γs0, γs and rl for l = 1, . . . , L by

least squares. We illustrate an example in Appendix A.9 to show how these

parameters can be estimated.

The price endogeneity problem

Since ξjt could be correlated with price and might result in biased estimation

(Berry, 1994; Besanko et al., 2003; Nevo, 2001; Villas-Boas & Winer, 1999;

Villas-Boas & Zhao, 2005), we employ the two-stage least squares (2SLS)

method.16 In the method, we replace prices with κ0 + zjt · κ1 in the assumed

pricing equation below

pjt = κ0 + zjt · κ1 + ηjt (3.2.5)

16See Appendix A.5 for detail.
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where zjt is called an instrument which is correlated with pjt but not with ξjt,

κ0 and κ1 are parameters to be estimated, and ηjt is a random error term.

We additionally assume the following properties for ηjt:

E[ηjt] = 0 (3.2.6)

Cov[zjt, ηjt] = 0 (3.2.7)

E[η2
jt|zjt] <∞. (3.2.8)

If prices are endogenously determined, the terms ξjt and ηjt will be corre-

lated since κ0 + zjt · κ1 is uncorrelated with ξjt by construction and thus ηjt

represents a correlated (with ξjt) part of pjt. This correlation should arise

from the principle of the system where ηjt can represent both the cost shock

and demand shock (i.e., if the demand for the particular brand is high, a firm

can charge a premium price for the brand). In order to check the existence

of price endogeneity, we further assume that ξjt and ηjt jointly follow the

bi-variate normal distribution as the correlation in that distribution equates

dependence between them.

The choice of instruments

The choice of instruments is not a trivial issue. Villas-Boas & Zhao (2005)

used the lagged prices as instruments since they are readily available to re-

searchers. Che et al. (2007) used the prices of brands in the other market

avoiding the use of the lagged price because they hypothesized that firms

might incorporate the effect of current price on the next period. In some

studies, average prices of brands produced by the other firms are used as

suggested in Berry et al. (1995). In this research, we used the average retail

prices of yogurt in five stores we excluded from the analysis owing to lack of

price information because those prices in other stores would reflect the gen-
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eral economic condition that would have affected retail prices in the target

store as well and they would not be correlated with the unobserved demand

shock ξjt which would include the effect of store-level promotions such as

in-store display.

The market share

We denote the observed market share from the panel data and the mar-

ket share calculated from the estimated demand parameters as S̃jt(pt) and

Sjt(pt) respectively for brand j at time t. The market share depends on all

the explanatory variables in (3.2.1) but we only use an argument pt to empha-

size that market share endogenously depends on prices pt = (p1t, · · · , pJt)T .

Given the estimated demand parameters, the market share of brand j at t,

denoted as Sjt(pt), is calculated as

Sjt(pt) =
S∑
s=1

[
I∑
i=1

P̂rjts · λs

]
where s = 1, . . . , S are segments; λs is the fraction of segments; the term

P̂rjts =
exp(v̂jts)

1 +
∑J

k=1 exp(v̂kts)

is the estimated probability of brand j being chosen by the consumer be-

longing to segment s at time t; and v̂jts is the estimated utility defined as

v̂jts ≡ xjt · β̂s − α̂s · p̂jt + simkj · ŜDs + ξ̂jt. Note that we replace the price

and ξjt with the expected price p̂jt and ξ̂jt respectively to avoid endogeneity

problem in constructing v̂jts from vjts.

3.2.2 Supply-Side Specification

We follow Che et al. (2007) and estimate margins with a forward-looking

model, whereby firms account for the effect of current prices on future de-

mand. In the following subsection, we start with a myopic model and present
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how to derive manufacturers and retailers margins. Next, we will present how

to derive margins in a forward-looking model. Henceforth, we denote manu-

facturer Stackelberg, vertical Nash, and retailer Stackelberg as MS, VN, and

RS respectively.

Following the preceding research, we assume that the retailer is a local

monopolist which maximizes joint category profit.17 The assumption of a

local monopolist is often justified by empirical reports which find that there

is little evidence of intra-store competitions (Sudhir, 2001). However, we

note that the effect of store competition is partly captured by the unobserved

demand term ξ as promotion in the other retail store would affects demand

or utility of brands in the store we analyze.

Profit functions

We will explain Bertrand competition game in the following, as collusion

game is the special case of Bertrand competition game. The profit function

of the monopolistic retailer and manufacturers are respectively defined as

πRt =
J∑
j=1

(pjt − wjt)SjtM (3.2.9)

and

πft =
∑
j∈Jf

(wjt −mcjt)SjtM (3.2.10)

where Jf is a subset of brands produced by manufacturer f = 1, . . . , F ; Sjt,

wjt, and mcjt are the market share, the wholesale price, and the marginal

17A retailer could use other pricing rules such as brand profit maximization rule where

a retailer sets up a profit function for each brand instead of total profit maximization.

However, Sudhir (2001) empirically shows that a retailer attains a maximum profit when

it engages in category profit maximization, which supports the assumption widely adopted

in the literature.
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cost of brand j at time t respectively; and M is the market size. Then the

first-order condition (FOC) of the profit functions18 are

Sjt +
J∑
k=1

[
(pkt − wkt)

∂Skt
∂pjt

]
−

J∑
k=1

[
∂wkt
∂pjt

Skt

]
= 0 (3.2.11)

and

Slt +
∑
k∈Jf

(wkt −mckt)
∑
h∈Jf

∂Skt
∂pht

· ∂pht
∂wlt

 = 0 (3.2.12)

respectively19 with the fixed M removed.

Stacking (3.2.11) vertically for j = 1, . . . , J and rearranging them in a

matrix form, the retail margins in the general form are obtained as
p1t − w1t

...

pJt − wJt

 = −


∂S1t

∂p1t
· · · ∂SJt

∂p1t
...

. . .
...

∂S1t

∂pJt
· · · ∂SJt

∂pJt


−1 I −


∂w1t

∂p1t
· · · ∂wJt

∂p1t
...

. . .
...

∂w1t

∂pJt
· · · ∂wJt

∂pJt





S1t

...

SJt


(3.2.13)

assuming the inverse of the first matrix on the right-hand side of equation

(3.2.13) exists. Similarly, by stacking (3.2.12) vertically for l = 1, . . . , J and

rearranging them, the optimal manufacturer margins in the general form can

be obtained as
w1t −mc1t

...

wJt −mcJt

 = −




∂p1t
∂w1t

· · · ∂pJt

∂w1t

...
. . .

...

∂p1t
∂wJt

· · · ∂pJt

∂wJt




∂S1t

∂p1t
· · · ∂SJt

∂p1t
...

. . .
...

∂S1t

∂pJt
· · · ∂SJt

∂pJt

 · ∗Ω

−1

S1t

...

SJt


(3.2.14)

18The optimal retail price pkt should not be affected by the price of the other brands;

else, pkt will no longer be optimal. Thus, ∂pkt/∂pjt becomes 0 if pkt is assessed at its

optimal level.
19Note that it is assumed ∂mckt/∂wlt = 0 for all k, l = 1, . . . , J , as wholesale price

would not affect marginal cost in general.
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where “·∗” denotes element-by-element multiplication and Ω is a J ×J own-

ership matrix whose (j, k) element, denoted as Ωjk, is an indicator variable

taking 1 if brands j and k are made by the same manufacturer and 0 other-

wise.20 The response curves ∂wkt/∂pjt in (3.2.13) and ∂pht/∂wlt in (3.2.14)

will be determined in MS, RS, and VN games respectively below.

Retailer margins in the MS game

We briefly review how retailer and manufacturer margins are derived in the

MS game. The game is solved backward and retail margins are derived first.

In the second stage of the game, since wholesale prices are already determined

before retail prices are, we have

∂wkt
∂pjt

= 0 (3.2.15)

for all k, j = 1, . . . , J . Substituting (3.2.15) to (3.2.13) yields the optimal

retailer margin as

(pt −wt) = Φ−1
t St (3.2.16)

where (pt−wt) = (p1t−w1t, . . . , pJt−wJt)T , Φt is the matrix whose (j, k) el-

ement is −∂Skt/∂pjt, and St = (S1t, . . . , SJt)
T .21 Note that Slt and ∂Skt/∂pht

in (3.2.16) can be directly observed and calculated.

Manufacturer margins in the MS game

On the other hand, in deriving manufacturer margins, the matrix of how a

retailer optimally reacts to wholesale price change, ∂pht/∂wlt in (3.2.14), must

be indirectly inferred. Since the change in wholesale price of a brand would

20The derivation of FOCs is presented in Appendix A.8.
21For convenience in comparison to Che et al. (2007), notations and most definitions

are the same as those in that paper.
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affect retail prices of all brands, the term ∂pht/∂wlt needs to be estimated

by totally differentiating the FOC of the retail profit function with respect

to the wholesale price as

J∑
j=1

[
∂Sgt
∂pjt

+
∂Sjt
∂pgt

+
J∑
k=1

(pkt − wkt)
∂2Skt
∂pjt∂pgt

]
dpjt −

∂Slt
∂pgt

dwlt = 0

(3.2.17)

for some g. Denoting the terms inside the bracket on the left hand side of

equation (3.2.17) as ν(g, j), we have the set of J equations for some l as
ν(1, 1)dp1t + ν(1, 2)dp2t + · · ·+ ν(1, J)dpJt = ∂Slt

∂p1t
dwlt,

...

ν(J, 1)dp1t + ν(J, 2)dp2t + · · ·+ ν(J, J)dpJt = ∂Slt

∂pJt
dwlt.

(3.2.18)

Defining Ggt ≡ (ν(g, 1), . . . , ν(g, J)), we rewrite the expression in (3.2.18) in

matrix form as
G1t

...

GJt




dp1t

...

dpJt

 =


∂Slt

∂p1t
...

∂Slt

∂pJt

 dwlt

or 
∂p1t/∂wlt

...

∂pJt/∂wlt

 =


G1t

...

GJt


−1

∂Slt

∂p1t
...

∂Slt

∂pJt

 , (3.2.19)

assuming the inverse of the J × J matrix (G1t · · ·GJt)
T exists. Transposing

the both sides of (3.2.19), we have(
∂p1t

∂wlt
· · · ∂pJt

∂wlt

)
=

(
∂Slt
∂p1t

· · · ∂Slt
∂pJt

)(
GT

1t · · ·GT
Jt

)−1

for some l. Stacking this vector vertically for l = 1 · · · J , we have
∂p1t
∂w1t

· · · ∂pJt

∂w1t

...
. . .

...

∂p1t
∂wJt

· · · ∂pJt

∂wJt

 =


∂S1t

∂p1t
· · · ∂S1t

∂pJt

...
. . .

...

∂SJt

∂p1t
· · · ∂SJt

∂pJt

(GT
1t · · ·GT

Jt

)−1
. (3.2.20)
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Substituting (3.2.20) to (3.2.14), we have the manufacturers’ margins as

(wt −mct) = −[[Φt]
TG−1

t Φt · ∗Ω]−1St (3.2.21)

where (wt −mct) = (w1t −mc1t, . . . , wJt −mcJt)T . We note that Gt is the

matrix whose (j, h) element is

∂Sjt
∂pht

+
∂Sht
∂pjt

+
J∑
k=1

(pkt − wkt)
∂2Skt
∂pjt∂pht

.

Manufacturer margins in the RS game

In the RS game, we have ∂(pht − wht)/∂wlt = 0 for all h, l = 1, . . . , J in the

second stage since the retail margin on brand h or (pht − wht) is set prior to

wholesale prices being set. Equivalently, we have ∂plt/∂wlt = 1

∂pht/∂wlt = 0
(3.2.22)

since ∂wlt/∂wlt = 1 and ∂wht/∂wlt = 0. Then, from (3.2.22) and (3.2.12),

we have

Slt +
J∑
k=1

Ωlk

[
(wkt −mckt)

∂Skt
∂plt

]
= 0. (3.2.23)

Stacking (3.2.23) vertically for l = 1, . . . , J and rearranging them, we derive

the optimal manufacturer margins in the RS game as

(wt −mct) = [Φt · ∗Ω]−1St. (3.2.24)

Retailer margins in the RS game

To derive retail margins in the RS game, the matrix of how manufacturers

optimally react to retail price change ∂wkt/∂pjt in (3.2.13) must be inferred.

Similar to the MS case, we totally differentiate the FOC of the manufacturers’
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profit function in (3.2.23) with respect to pjt and solve the resulting equations

for ∂wkt/∂pjt, the optimal reaction curve of the manufacturer.

Stacking the total derivatives of FOC of the manufacturer profit function

in (3.2.23) with respect to pjt vertically for l = 1, . . . , J , we have
dS1t

dpjt
+
∑J

k=1

[
Ω1k

dwkt

dpjt
· ∂Skt

∂p1t
+ Ω1k(wkt −mckt) d

dpjt

(
∂Skt

∂p1t

)]
= 0

...

dSJt

dpjt
+
∑J

k=1

[
ΩJk

dwkt

dpjt
· ∂Skt

∂pJt
+ ΩJk(wkt −mckt) d

dpjt

(
∂Skt

∂pJt

)]
= 0

(3.2.25)

since the marginal cost is not affected by the retail price (i.e., ∂mckt/∂pjt = 0

for all k, j = 1, . . . , J). Further we have

dSlt
dpjt

=
∂Slt
∂p1t

· ∂p1t

∂pjt
+ · · ·+ ∂Slt

∂pJt
· ∂pJt
∂pjt

=
∂Slt
∂pjt

since ∂Slt/∂pjt ≡ ∂Slt/∂pjt|p=p and

dwkt
dpjt

=
∂wkt
∂p1t

· ∂p1t

∂pjt
+ · · ·+ ∂wkt

∂pJt
· ∂pJt
∂pjt

=
∂wkt
∂pjt

since ∂pht/∂pjt = 0 for all h, j = 1, . . . , J and ∂pjt/∂pjt = 1 for all j =

1, . . . , J . Rearranging (3.2.25) as a matrix, we have


∂S1t

∂p1t
· · · ∂SJt

∂p1t
...

. . .
...

∂S1t

∂pJt
· · · ∂SJt

∂pJt

 · ∗Ω



∂w1t

∂pjt
...

∂wJt

∂pjt

 = −


∂S1t

∂pjt
+
∑J

k=1 Ω1k(wkt −mckt) ∂2Skt

∂p1t∂pjt
...

∂SJt

∂pjt
+
∑J

k=1 ΩJk(wkt −mckt) ∂2Skt

∂pJt∂pjt

 .
(3.2.26)

Stacking (3.2.26) horizontally for j = 1, . . . , J and rearranging them, we have
∂w1t

∂p1t
· · · ∂w1t

∂pJt

...
. . .

...

∂wJt

∂p1t
· · · ∂wJt

∂pJt

 = [Φt · ∗Ω]−1 ·Ht (3.2.27)

where Ht is a J × J matrix whose (l, j) element is

∂Slt
∂pjt

+
J∑
k=1

Ωlk(wkt −mckt)
∂2Skt
∂plt∂pjt

.
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We obtain retailer margins in the RS game by transposing both sides of

(3.2.27) and substituting it to (3.2.13) as

(pt −wt) = Φ−1
t [I −HT

t [[Φt]
T · ∗Ω]−1]St. (3.2.28)

Margins in the VN game

In the VN game, manufacturers and a retailer move simultaneously based on

their predictions of other players’ behavior. More specifically, manufacturers

set wholesale price assuming a certain level of retail margin for the brand;

a retailer sets retail margins irrespective of wholesale prices. This structure

is likely to emerge in the market where manufacturers and the retailer have

approximately equal power (Choi, 1991).

Che et al. (2007) substitutes (3.2.15) to (3.2.13) and derives retail mar-

gin in the VN game as (3.2.16), and substitutes (3.2.22) to (3.2.14) and

derives the manufacturer margin in the VN game as (3.2.24) because condi-

tions (3.2.15) and (3.2.22) simultaneously hold in VN game since the retailer

and manufacturers move simultaneously. We note that the margins of the

retailer and manufacturers become identical if manufacturers collude in this

game. This makes sense as the VN game assumes approximately equal power

between manufacturers and retailer.

Arriving at VN from two extreme directions

The termHT
t [[Φt]

T ·∗Ω]−1 in retail profit in the RS game is the matrix whose

(l, j) element is ∂wjt/∂plt. Notice that these terms are 0 for l, j = 1, . . . , J

when we employ the behavior (3.2.15) of manufacturers in the MS game.

In other words, retailer profit in the VN game can be obtained by applying

the manufacturer behavior in the MS game to the retail margin. Similarly,

the term [Φt]
TG−1

t in manufacturer profit in the MS game is (3.2.20) whose
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Table 3.2.1: Margins under each game

Manufacturer Stackelberg Vertical Nash Retailer Stackelberg

Retailer Margin Φ−1
t St Φ−1

t St Φ−1
t [I −HT

t [[Φt]
T · ∗Ω]−1]St

Manufacturer Margin −[[Φt]
TG−1

t Φt · ∗Ω]−1St [Φt · ∗Ω]−1St [Φt · ∗Ω]−1St

(l, h) element is ∂pht/∂wlt. Note that the matrix of these terms becomes

an identity matrix when we employ the behavior (3.2.22) of the retailer in

the RS game. This is the symmetrical relationship of MS and RS games we

refer to in section 3.1. In summary, we present the formulation of margins

under each game in Table 3.2.1. We note that margins under each game

with collusive manufacturers can be derived by making Ω an matrix with all

elements being unity.

The forward-looking model

We briefly review how to derive margins in the forward-looking model in this

section. Though we consider firms only look one-period ahead as in Che et al.

(2007), the following derivations can be generalized to more than one-period

ahead behavior.

Retailer’s margin (forward-looking model)

The objective function of forward-looking retailer is VR = πR1 + δπR2, where

πRt is a profit function defined in (3.2.9) for period t = 1, 2, and the term δ

is some exogenously given discount rate. Then FOCs for some j are ∂πR1

∂pj1
+ δ

∑J
k=1

∂πR2

∂Sk2
· ∂Sk2

∂Sk1
· ∂Sk1

∂pj1
= 0

∂πR2

∂pj2
= 0.

(3.2.29)

We have the set of equations as in (3.2.29) for j = 1, . . . , J . The first equation

corresponds to the objective function in period 1 and the second equation
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corresponds to that in period 2. Note here that firms become myopic in

period 2 in this setting.

As the margins in period 2, which is identical to the myopic case, is al-

ready derived, we only concern for the profit function in period 1 in the

following derivation. Our strategy is to decompose and translate each com-

ponent of the second term on the left-hand side of the first equation above

to the expression we can calculate. Clearly, the first component ∂πR2/∂Sk2

is (pk2−wk2). To calculate the second component ∂Sk2/∂Sk1, we exploit the

following relationship:

Sk2 = θk2|k1 × Sk1 +
J∑

l=1,l 6=k

θk2|l1 × Sl1 (3.2.30)

where θk2|k1 is the probability of purchasing brand k in period 2 given the

purchase of the brand in period 1. The term θk2|l1 is defined likewise for

brand l. The second term on the right-hand side of equation (3.2.30) can be

rewritten as

J∑
l=1,l 6=k

θk2|l1 × Sl1 = θk2|11 × S11 + · · ·+ θk2|k−1,1 × Sk−1,1 + θk2|k+1,1 × Sk+1,1 +

· · ·+ θk2|J1 × SJ1.

Since the terms Sl1 on the right hand side of equation can be rewritten as

Sl1 = (1−S11−· · ·−Sl−1,1−Sl+1,1−· · ·−SJ1) for all l = 1, . . . , J , l 6= k, all

Sl1 include the term −Sk1 on these relationships. Thus, the partial derivative

of the second term on the right-hand side of equation (3.2.30) with respect

to Sk1 is

∂
[∑J

l=1,l 6=k θk2|l1 × Sl1
]

∂Sk1

= −
J∑

l=1,l 6=k

θk2|l1

as ∂Sl1/∂Sk1 = −1 for l = 1, . . . , J , l 6= k. Thus taking partial derivative of
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both sides of (3.2.30) with respect to Sk1, we have

∂Sk2

∂Sk1

= θk2|k1 −
J∑

l=1,l 6=k

θk2|l1.

This is the second component and let us define it as ∆k. This term is the

repurchasing probability of the brand minus the switching probabilities from

the other brands, and can be calculated from the predicted market share

estimates.

In the same manner as we showed in the derivation of vector (pt −wt),

the second term on the left-hand side of the first equation in (3.2.29) can be

stacked vertically for j = 1, . . . , J and expressed by matrix form as

δ


∂S11

∂p11
· · · ∂SJ1

∂p11
...

. . .
...

∂S11

∂pJ1
· · · ∂SJ1

∂pJ1




∆1 · · · 0
...

. . .
...

0 · · · ∆J




p12 − w12

...

pJ2 − wJ2


where the second matrix is diagonal matrix with elements ∆k which we will

express as ∆. We also know from (3.2.9) that the first term on the left-hand

side of the first equation in (3.2.29) can be stacked vertically for j = 1, . . . , J

and expressed by
∂πR1

∂p11
...

∂πR1

∂pJ1

 =

I −


∂w11

∂p11
· · · ∂wJ1

∂p11
...

. . .
...

∂w11

∂pJ1
· · · ∂wJ1

∂pJ1





S11

...

SJ1

+


∂S11

∂p11
· · · ∂SJ1

∂p11
...

. . .
...

∂S11

∂pJ1
· · · ∂SJ1

∂pJ1




p11 − w11

...

pJ1 − wJ1

 .

Thus we haveI −


∂w11

∂p11
· · · ∂wJ1

∂p11
...

. . .
...

∂w11

∂pJ1
· · · ∂wJ1

∂pJ1





S11

...

SJ1

+


∂S11

∂p11
· · · ∂SJ1

∂p11
...

. . .
...

∂S11

∂pJ1
· · · ∂SJ1

∂pJ1




p11 − w11

...

pJ1 − wJ1



+δ


∂S11

∂p11
· · · ∂SJ1

∂p11
...

. . .
...

∂S11

∂pJ1
· · · ∂SJ1

∂pJ1




∆1 · · · 0
...

. . .
...

0 · · · ∆J




p12 − w12

...

pJ2 − wJ2

 = 0
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or
p11 − w11

...

pJ1 − wJ1

 = −


∂S11

∂p11
· · · ∂SJ1

∂p11
...

. . .
...

∂S11

∂pJ1
· · · ∂SJ1

∂pJ1


−1 I −


∂w11

∂p11
· · · ∂wJ1

∂p11
...

. . .
...

∂w11

∂pJ1
· · · ∂wJ1

∂pJ1





S11

...

SJ1



−δ


∆1 · · · 0
...

. . .
...

0 · · · ∆J




p12 − w12

...

pJ2 − wJ2

 (3.2.31)

assuming the inverse of Φ1 exists. The second equation of (3.2.29) can be

obtained as the myopic case. In estimation, we first estimate margins of

myopic model for t = 2, . . . , T and use these margins in computing the first-

period margins. This derivation is that of RS game; those of MS and VN

game can be obtained by applying (3.2.15) to (3.2.31), where (3.2.31) reduces

to 
p11 − w11

...

pJ1 − wJ1

 = −


∂S11

∂p11
· · · ∂SJ1

∂p11
...

. . .
...

∂S11

∂pJ1
· · · ∂SJ1

∂pJ1


−1

S11

...

SJ1



−δ


∆1 · · · 0
...

. . .
...

0 · · · ∆J




p12 − w12

...

pJ2 − wJ2

 .

Manufacturers’ margins (forward-looking)

The derivation of manufacturers’ margins in the one-period forward-looking

model follows much of the retail counterpart. The objective function is VM =

πf1 + δπf2 and the FOCs are
∂πf1
∂wj1

+ δ
∑

j∈Jf
∂πf2
∂Sk2
· ∂Sk2

∂Sk1
· ∂Sk1

∂wj1
= 0

∂πf2
∂wj2

= 0.
(3.2.32)
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Clearly, ∂πf2/∂Sk2 = (wk2 − mck2). The term ∂Sk2/∂Sk1 is the same as

in the case of retailer’s margin. Note that the set of equations consist of∑
j∈Jf ∂πf2/∂Sk2 ·∂Sk1/∂wj1 or

∑
j∈Jf (wk2−mck2)∂Sk1/∂wj1 for j = 1, . . . , J

is equal to the second terms of the left-hand side of equations in (3.2.12) and

thus can be written as


∂p11
∂w11

· · · ∂pJ1

∂w11

...
. . .

...

∂p11
∂wJ1

· · · ∂pJ1

∂wJ1




∂S11

∂p11
· · · ∂SJ1

∂p11
...

. . .
...

∂S11

∂pJ1
· · · ∂SJ1

∂pJ1

 · ∗Ω



w12 −mc12

...

wJ2 −mcJ2


or simply [[Φ1]TG−1

1 Φ1 · ∗Ω](w2 −mc2). Thus the second term on the left-

hand side of the first equation of (3.2.32) becomes δ[[Φ1]TG−1
1 Φ1·∗Ω]∆(w2−

mc2). Since the first term of the first equation in (3.2.32), if stacked ver-

tically for j = 1, . . . , J , is S1 + [[Φ1]TG−1
1 Φ1 · ∗Ω](w1 − mc1), we have

S1 + [[Φ1]TG−1
1 Φ1 · ∗Ω](w1−mc1) + δ[[Φ1]TG−1

1 Φ1 · ∗Ω]∆(w2−mc2) = 0

or (w1 −mc1) = −[[Φ1]TG−1
1 Φ1 · ∗Ω]−1S1 − δ · ∆(w2 −mc2) assuming

the inverse of [[Φ1]TG−1
1 Φ1 · ∗Ω] exists. This derivation is that of MS game;

those of VN and RS game can be obtained by assuming (3.2.22) in which

case G−1
1 Φ1 becomes an identity matrix. The collusion case is obtained by

making Ω an matrix with all elements being unity.

3.3 Estimation

3.3.1 Demand-Side Estimation

On the demand-side estimation, we first obtain p̂jt, η̂jt and ξ̂jt by prelimi-

nary analysis by 2SLS estimation. Then we maximize simulated likelihood

function using p̂jt and ξ̂jt.
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Estimating ξjt and ηjt

The joint distributions of ξjt and ηjt are estimated as residuals in the following

equations if the logit specification in (3.2.1) are justified:

ln S̃jt − ln S̃0t = xjt · β − α · pjt + simkj · SD + ξjt (3.3.1)

pjt = κ0 + zjt · κ1 + ηjt (3.3.2)

for all i, j and t respectively. Note that these equations follow from (3.2.1)

and (3.2.5) respectively. We first estimate the equation (3.3.2) by ordinary

least squares (OLS) and obtain p̂jt and η̂jt. Then we substitute p̂jt to pjt in

the equation (3.3.1) to correct possible endogeneity between price and the

unobserved product characteristics.22 The structure of (3.3.1) and (3.3.2)

guarantees that all ξ̂jt is paired with η̂jt and vice versa for all j and t.

Following Draganska & Jain (2004), we assume that ξjt and ηjt are inde-

pendent across t and their marginal densities are both normally distributed.

Let the sum of the purchasing occasions for all consumers T1 + · · · + TN be

T . We estimate ξjt and ηjt as follows:

22Since we assume conditions (3.2.2) and (3.2.3), the least-square estimates β̂, α̂, and

ŜD are BLUE by Gauss-Markov theorem if Cov(ξjt, ξjt′) = 0 for all t 6= t′ and V (ξjt) =

σ2
ξj

for all t. Moreover, under rank condition where the outer product of the vector

defined as Z ≡ (xjt, simkj , 1, zjt) being full-rank, the assumption of E[ZT , ξjt] = 0, β̂,

α̂, and ŜD are consistent. Since V (ξjt) = σ2
ξj

for all t, β̂, α̂, and ŜD are asymptotically

normal. Similarly, since we assume conditions (3.2.6) and (3.2.7), κ̂0 and κ̂1 are BLUE

by Gauss-Markov theorem if Cov(ηjt, ηjt′) = 0 for all t 6= t′ and V (ηjt) = σ2
ηj for all t.

Under the rank condition of the outer product of (1, zTjt) being full-rank and the condition

E[zTjt, ηjt] = 0 which follows from conditions (3.2.6) and (3.2.7), κ̂0 and κ̂1 are consistent.

Since V (ηjt) = σ2
ηj for all t, κ̂0 and κ̂1 are asymptotically normal.
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Step 1: Run OLS regression to estimate κ̂0 and κ̂1 as follows:

pj,t1=1

pj,t1=2

...

pj,t1=T1

...

pj,ti=1

pj,ti=2

...

pj,ti=Ti
...

pj,tN=1

pj,tN=2

...

pj,tN=TN



=



1, zj,t1=1

1, zj,t1=2

...

1, zj,t1=T1

...

1, zj,ti=1

1, zj,ti=2

...

1, zj,ti=Ti
...

1, zj,tN=1

1, zj,tN=2

...

1, zj,tN=TN



 κ0

κ1

+



ηj,t1=1

ηj,t1=2

...

ηj,t1=T1

...

ηj,ti=1

ηj,ti=2

...

ηj,ti=Ti
...

ηj,tN=1

ηj,tN=2

...

ηj,tN=TN



.

The left-hand side is the T ×1 vector with each a vector with each row being

pjti with inner loop of ti and outer loop for i = 1, · · · , N and the first term

on the right-hand side if the T × 2 matrix with each row being (1, zjti) with

inner loop of ti and outer loop for i = 1, · · · , N . Obtain p̂jti and η̂jti .
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Step 2: Run OLS regression as follows:

ln S̃j,t1=1 − ln S̃0,t1=1

ln S̃j,t1=2 − ln S̃0,t1=2

...

ln S̃jt1=T1 − ln S̃0,t1=T1

...

ln S̃j,ti=1 − ln S̃0,ti=1

ln S̃j,ti=2 − ln S̃0,ti=2

...

ln S̃j,ti=Ti − ln S̃0,ti=Ti

...

ln S̃j,tN=1 − ln S̃0,tN=1

ln S̃j,tN=2 − ln S̃0,tN=2

...

ln S̃j,tN=TN − ln S̃0,tN=TN



=



xj,t1=1, p̂j,t1=1, Ikj

xj,t1=2, p̂j,t1=2, Ikj
...

xj,t1=T1 , p̂j,t1=T1 , Ikj
...

xj,ti=1, p̂j,ti=1, Ikj

xj,ti=2, p̂j,ti=2, Ikj
...

xj,ti=Ti , p̂j,ti=Ti , Ikj
...

xj,tN=1, p̂j,tN=1, Ikj

xj,tN=2, p̂j,tN=2, Ikj
...

xj,tN=TN , ̂pj,tN=TN , Ikj




β

−α

ψT

+



ξj,t1=1

ξj,t1=2

...

ξj,t1=T1

...

ξj,ti=1

ξj,ti=2

...

ξj,ti=Ti
...

ξj,tN=1

ξj,tN=2

...

ξj,tN=TN



.

The vector on the left-hand side is the T × 1 vector with each row being

ln S̃jti − ln S̃0ti with inner loop of ti and outer loop for i = 1, · · · , N . The

first term on the right-hand side is the T × (7 + 1 + 12) matrix with each

row being (xjti , p̂jti , Ikj) with inner loop of ti and outer loop for i = 1, · · · , N

where Ikj = (Ikj, Ikj1, . . . , Ikj3, Ikj · gen, . . . , Ikj3 · gen, Ikj · age, . . . , Ikj3 · age)

in our case and ψT is corresponding vector of parameters. Obtain ξ̂jti .

Likelihood function

The likelihood function of purchase history of consumer i is written as

Li =

Ti∏
ti=1

∫ { J∏
j=0

[Prijti ]
yijti × f(ξjti |ηjti)× f(ηjti)

}
dξjti (3.3.3)
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where yijti is an indicator function taking unity if consumer i chooses brand j

at time ti and 0 otherwise, f(ηjti) is the density function of ηjti , and f(ξjti |ηjti)

is the conditional density of ξjti .

We use the latent class model of Kamakura & Russell (1989) under which

the likelihood (3.3.3) for consumer i is replaced with Li(Si = s), the likelihood

of consumer i belonging to the segment s or Si = s, as

L =
I∏
i=1

{
S∏
s=1

Li(Si = s)× Pri(s)

}
(3.3.4)

where S is the number of supports of the discrete mass points (i.e., seg-

ments) and Pri(s) is the membership probability of consumer i belonging to

segment s. The parameters βs, αs, and SDs are estimated by maximizing

this likelihood function.

3.3.2 Supply-Side Estimation

On the supply-side, we first compute the margins under different competitive

assumptions conditional on the estimated demand-side parameters. Then we

estimate the parameters in marginal cost equation which is written as

mcjt = wj0 + inputjt ·wr

where wj0 is brand-specific intercept term, inputjt is vector of observable cost

shifters with R elements, and wr = (w1, · · · , wR)T is vector of coefficients.

We utilize the following equation

pjt − ĈMRjt − ĈMM jt = mcjt + εjt (3.3.5)

to estimate wj0 and wr, where ĈMRjt and ĈMM jt are computed margin

for retailer and computed margin for manufacturer for brand j at time t

respectively. Assuming error terms εjt follow the normal distribution with
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mean zero and finite variance (which we will estimate), the right-hand side

of the following equation

εjt = pjt − ĈMRjt − ĈMM jt − wj0 − inputjt ·wr (3.3.6)

also follows the normal distribution. Then we set up the likelihood function

on the supply-side as

T∏
t=1

J∏
j=1

g(εjt) (3.3.7)

where g(·) is the marginal density of εjt. Given those specifications, the al-

gorithm to estimate wj0 and wr is as follows:

Step 0: Set ite = 0. Set the initial values of demand parameters β
(ite)
s ,

α
(ite)
s , and ψ(ite) for s = 1, · · · , S where superscript stands for iteration and

subscript stands for segment. Set Pri(s)
(ite), the initial value of membership

probability of consumer i for segment s, to be 1/S for i = 1, · · · , N and

s = 1, · · · , S.

Step 1: Set i = 1, s = 1, and ti = 1.

Step 2: Calculate utilities v̂ijti for consumer i for brands j = 1, · · · , J using

p̂jt, β
(ite)
s , α

(ite)
s , ψ(ite), and ξ̂jt.

Step 3: Calculate the logit probabilities as in (3.2.1) using v̂ijti obtained

in Step 2 for j = 1, · · · , J . Denote it as P̂ijti .

Step 4: Calculate Liti as

Liti =
J∏
j=1

[
P̂ijti

]yijti
.
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Step 5: Increase ti by 1. If ti < Ti, go back to Step 2. Else calculate

Li =

Ti∏
ti=1

Liti .

This is the contribution of consumer i to the likelihood function.

Step 6: Increase i by 1. If i < N , go back to Step 2.

Step 7: Increase s by 1. If s < S, go back to Step 2.

Step 8: Calculate the likelihood L as in (3.3.4).

Step 9: Update demand parameters by maximizing the likelihood func-

tion L in equation (3.3.4). Denote them as β
(ite+1)
s , α

(ite+1)
s , ψ(ite+1), and

Pri(s)
(ite+1). Set Pri(s)

(ite+1) =
∑N

i=1 Pri(s)
(ite)/N for i = 1, · · · , N and

s = 1, · · · , S. Let ite = ite+ 1.

Step 10: Repeat Step 2 through Step 9 until the likelihood function L

converges.

Step 11: Calculate the retailer and manufacturers margins given the es-

timated demand parameters. Note that margins are different depending on

the type of games employed.

Step 12: Estimate marginal cost parameters by maximizing the likelihood

in (3.3.7) using (3.3.6) and calculate residual ηjt.
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Step 13: Calculate the supply-side likelihood as

T∏
t=1

J∏
j=1

g(ηjt).

3.4 Data

We use daily scanner-panel data on the yogurt category sales between Jan-

uary 2007 and December 2008 in an anonymous retail chain located in west-

ern Tokyo, Japan.23 This market is suitable for our analysis because it al-

ready had two well-established brands with a special feature using newly

found bacilli24 and a power shift from manufacturers to retailers was said

to already have been observed in the Japanese food industry (Kim, 2010).

Between two types of yogurt−box type and snack type−we choose the latter

for our empirical analysis as the former did not have a brand with a special

feature.

We choose the seven top-selling brands for our empirical analysis.25 Table

3.4.1 summarizes the data of the brands. Brand 5 and its low-fat version,

brand 6 are the brands with a special feature which had existed during the

observation period.

After choosing consumers that only purchased the selected brands at least

twice during the period, 183 consumers who made 15,194 shopping trips

23This work is supported by Grant-in-Aid for Scientific Research (A)21243030. The orig-

inal CCL-CAFE data are provided by CUSTOMER COMMUNICATIONS, Ltd, through

the introduction from Prof. Tadahiko Sato of the Graduate School of Business Sciences of

the University of Tsukuba, Tokyo. We thank them for the generous offer.
24We cannot disclose the name of the bacilli as it would identify the product.
25The combined market share of the seven selected brands is 44.5%, excluding box-type

yogurt. The number is relatively small because there existed 300 brands during the study

period and market share of each brand was small. We chose the top-selling seven brands

because the minor brands had many missing daily price information.
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Table 3.4.1: Summary statistic of the brands

Average Price Manufacturer Market Raw Milk Fat Level Agar Fat Sugar

(yen per gram) ID Share Usage Usage (g/100g) (g/100g)

Brand 1 0.45 1 4.0% No Middle Yes 2.5 7.8

Brand 2 0.50 2 10.4% Partial Middle Yes 2.1 14.6

Brand 3 0.51 3 2.5% All High Yes 4.1 14.9

Brand 4 0.48 4 3.7% Partial Low No 1.8 15.2

Brand 5 1.13 4 10.9% Partial Middle No 3.0 9.7

Brand 6 1.13 4 4.8% Partial Low No 1.4 9.2

Brand 7 0.86 5 8.2% Partial low No 1.9 13.4

and purchased 2,550 units of yogurt remained. The available demographic

variables in our data are age and gender. The average age of the consumers

is 59.4 (with the standard deviation of 19.6) and 76.5% of them are female.

In addition, we collected weekly data on ingredients (raw milk prices,

cream price indexes, and international sugar prices), labor wages for the four

prefectures where the seven selected brands had been produced, and interna-

tional oil price during the study period. Because all data are only available

on monthly basis, we transformed them into weekly data by applying the

linear filtering process employed by Slade (1995) as

Wt = 0.25Wt−1 + 0.50Wt + 0.25Wt+1

where Wt in week t is the input price in the corresponding month (Besanko

et al., 1998). As for the international price of sugar, we multiplied it to the

amount of sugar each brand contains. Also, since cream is mixed in yogurt

to increase fat content, we multiplied price index of cream to the amount

of fat each brand contains. We used raw milk prices as they were, and we

took log for labor wage cost and international oil prices. We also included

manufacturer dummy variables to infer the firm-specific cost structure with

manufacturer 1 as the basis.
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The attributes we used for similarity index are: “Raw Milk Usage” (the

amount of raw milk contained, 3 levels), “Fat Level” (the amount of fat, 3

levels), and “Agar Usage” (whether it uses agar or not, 2 levels).26

3.5 Empirical Results

3.5.1 Demand-Side Results

We find that the latent class model with four segments is optimal.27 Table

3.5.1 presents parameter estimates of the demand model (with standard er-

rors in parentheses); “Brand” entries represent the brand-specific intercepts

relative to the outside option; presented under “Demographics” are esti-

mated parameters for SDs
28; “Agar Usage” entry is the estimate of impor-

tance weight for this attribute in calculating the attribute similarity index29;

estimated segment sizes are reported below price coefficients.

Overall, our findings are economically consistent. Segments are hetero-

geneous in responsiveness to marketing variables and coefficient of prices

are negative. Although the estimates of demographics are generally non-

significant, we find some patterns for each segment. For example, segment

2 is characterized by variety-seeking behavior regardless of the age and gen-

der. Specifically in segment 2, a male aged 94 (the maximum age in the

26Agar is used to produce so-called “hard-type” yogurt.
27We increased the number of segments to minimize AIC. Although AIC was lower for

the five-segments model than for the four-segments model, we chose the latter because the

size of fifth segment became 0.7% in the five-segments model, as targeting a segment size

less than 0.7% out of a sample size of 183 does not make much sense.
28We only presented importance weight estimates for segment 1 because we used these

estimates for the models with greater number of segments.
29We found “Raw Milk Usage” and “Fat Level” to be non-significant.
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Table 3.5.1: Parameter estimates of the proposed model

Variables Segment 1 Segment 2 Segment 3 Segment 4

Brand 1 -0.64 -1.30** -3.97** 0.39

(0.591) (0.331) (0.472) (0.595)

Brand 2 0.67 4.00 1.92* -1.85**

(1.029) (3.224) (0.868) (0.366)

Brand 3 -0.76 -0.41 1.01 2.68*

(0.505) (0.381) (0.551) (1.200)

Brand 4 0.40 2.03 -8.14** 5.57

(0.937) (2.017) (1.102) (3.754)

Brand 5 8.79** 2.45** 6.84** 0.94**

(1.683) (0.060) (2.143) (0.011)

Brand 6 7.18** 8.98** -5.63** -0.40**

(0.785) (1.400) (1.493) (0.006)

Brand 7 4.04** 1.92** -1.49** 7.60**

(0.986) (0.327) (0.335) (1.590)

Price Coefficient -11.27** -12.59** -10.03** -14.33**

(2.227) (2.391) (3.016) (2.250)

Segment Size 76.5% 12.4% 3.7% 7.5%

Demographics

Intercept -0.32 -6.84* -9.43** -3.77

(1.333) (2.887) (2.015) (1.999)

Male Dummy 0.33 0.02 8.81** 1.35

(0.769) (1.395) (0.590) (0.994)

Age (logged) 0.19 2.26 5.91 1.59

(5.537) (12.120) (8.285) (8.183)

The Attribute Similarity Index

Agar Usage 0.36**

(0.078)

Number of Parameters 47

Number of Observations 15,194

Log-likelihood -7,324.7

** Significant at 1% level.

* Significant at 5% level.

55



Table 3.5.2: Fits across games in the forward-looking model

Manufacturer-Retailer Interaction Manufacturer Interaction Log-likelihood

Manufacturer Stackelberg Bertrand competition 5.4

Collusion 36.3

Vertical Nash Bertrand competition 23.7

Collusion 49.0

Retailer Stackelberg Bertrand competition -174.6

Collusion -173.4

sample) would have SD of −6.84 + 0.02 + 2.26 ∗ log(94) = −2.36. All the

other consumers in this segment would have SD lower than −2.36 and thus

would exhibit variety-seeking behavior. In segment 1, males of all ages and

females aged more than 48 years have a tendency toward inertia. In segment

3, males of all ages and females aged more than 39 years have a tendency

toward inertia. In segment 4, females of all ages and males aged less than 34

years would exhibit variety-seeking behavior.

3.5.2 Supply-Side Results

The fits across games

We calculated the log-likelihood for six games (i.e., Bertrand/Collusion and

MS/VN/RS games) to compare the fits. Table 3.5.2 presents the result. We

find that VN-Collusion game fits the data best. Thus we report the result of

this game in the following.

Margins

Table 3.5.3 reports the estimated margins in the best-fitting model and their

standard errors (in parentheses). The standard errors turn out to be very

small because the prices of those brands stay fairly constant during the study
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Table 3.5.3: Retailer and manufacturer margins under each game

Retail Margin Brand 1 Brand 2 Brand 3 Brand 4 Brand 5 Brand 6 Brand 7

MS and VN 0.053 0.061 0.048 0.056 0.188 0.219 0.135

(0.0014) (0.0009) (0.0009) (0.0016) (0.0013) (0.0013) (0.0015)

RS

Bertrand 0.083 0.103 0.079 0.097 0.329 0.375 0.222

(0.0016) (0.0010) (0.0008) (0.0025) (0.0016) (0.0013) (0.0018)

Collusion 0.053 0.077 0.064 0.081 0.178 0.243 0.155

(0.0015) (0.0019) (0.0015) (0.0033) (0.0010) (0.0022) (0.0015)

Manufacturer Margin

MS

Bertrand 0.029 0.061 0.045 0.071 0.141 0.181 0.101

(0.0010) (0.0014) (0.0009) (0.0030) (0.0011) (0.0015) (0.0010)

Collusion 0.053 0.077 0.065 0.083 0.177 0.242 0.155

(0.0016) (0.0020) (0.0018) (0.0035) (0.0011) (0.0023) (0.0015)

VN and RS

Bertrand 0.033 0.047 0.034 0.046 0.157 0.170 0.093

(0.0006) (0.0007) (0.0004) (0.0013) (0.0008) (0.0008) (0.0003)

Collusion 0.053 0.061 0.048 0.056 0.188 0.219 0.135

(0.0014) (0.0009) (0.0009) (0.0016) (0.0013) (0.0013) (0.0015)

period. We note that brand 5 and brand 6 yield the two largest margins, and

brand 6, in particular, yields the highest margins relative to the average retail

prices, implying that brands with the aforementioned special feature could

indeed earn a large amount of margins. The implications of these results are

discussed in section 3.6.

Marginal cost

Table 3.5.4 reports the result for the marginal cost estimation of the best-

fitting model. We find that after including the manufacturer dummy vari-

ables, all cost variables except for international oil price become non-significant

in the marginal cost estimation in the best-fitting model. International oil

price affects marginal cost as oil is required for a yogurt-making machine,
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Table 3.5.4: Marginal cost estimation of the vertical Nash-collusion forward-

looking model

Estimate Std.Err t-value Pr(> |t|)

Intercept 0.196 0.082 2.401 0.017

Manufacturer Dummy 2 -0.048 0.021 -2.280 0.023

Manufacturer Dummy 3 -0.037 0.021 -1.778 0.076

Manufacturer Dummy 4 0.163 0.017 9.563 0.000

Manufacturer Dummy 5 0.315 0.021 15.108 0.000

International Oil Price 0.037 0.018 2.015 0.044

refrigeration, air conditioning in yogurt factories, and transportation by re-

frigerator trucks.

3.6 Conclusion

In this chapter, we derived an RS game extending Che et al. (2007) and

showed that MS and RS games stand at opposite extremes whereas the

VN game lies in between these two games. We then empirically analyzed

Japanese yogurt market under the extended formulation, incorporating het-

erogeneity among consumers, state dependence in brand choice by the sim-

ilarity index variable, and firms’ forward-looking behavior while correcting

for price endogeneity.

We find that the brands with the differentiating feature (i.e., enhancing

the health effect of yogurt by newly found bacilli) enable the manufacturer

to command larger margins than the other brands, showing that the manu-

facturer’s effort in this direction could be interpreted as rewarding. However,

we also find that the power to charge larger margins does not spill over to the

other brands of a manufacturer, as the manufacturer’s margin on brand 4 is

in line with those of the others even though brand 4 is owned by the man-
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ufacturer producing brand 5 and brand 6. The fact that the retailer earns

the same amount of margins as manufacturers is somewhat counter-intuitive

given the conventional wisdom of the power shift from manufacturers to-

ward retailers; yet the fact that the retailer still earns large margins on these

brands might indicate such a power shift.

One of the limitations of this study is the assumption of the monopolistic

retailer, as retail competition is shown to affect the relationship between a

retailer and manufacturers (Raju & Zhang, 2005). We leave this issue for

future research.
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Chapter 4

Incorporating the Retailer

Stackelberg Game in Nash

Bargaining Model

4.1 Introduction

The relationship between manufacturers and retailers has been attracting

great attention from marketing literature. One of the main interests of the

literature has been to gain insight on the strategic interaction of these firms

such as a degree of coordination or split of profit in a channel (Besanko et al.,

1998; Nevo, 2001; Sudhir, 2001; Villas-Boas & Zhao, 2005). Some studies step

further to examine the effectiveness of specific tactics while incorporating

such interaction. For example, Che et al. (2007) analyzes a breakfast cereal

market in U.S. and shows that suppliers in midst of strategic interaction also

look forward in demand and make pricing decisions accordingly. Given the

purported increase in power of some of the retailers due to their increased

size and willingness to introduce private labels aggressively as well as will-
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ingness to invest in sophisticated information systems regarding consumers,

we extended the framework of Che et al. (2007) and derives a mathematical

formulation of market-level RS game in analyzing a Japanese yogurt market

in Chapter 3.

The research mentioned above mainly portrays the overall picture of the

market. Recent research instead formulates wholesale prices as the outcome

of the bargaining in each manufacturer-retailer pair to investigate the power

structure in the market more closely and obtain implications via Nash bar-

gaining model. For example, a theoretical study of Dukes et al. (2006) em-

ploying Nash bargaining model in two manufacturers−two retailers setting

(one powerful retailer and the other less powerful retailer) finds that the pres-

ence of a dominant retailer, in fact, benefits the manufacturers by increasing

channel margins via operational efficiency. The empirical work of Misra &

Mohanty (2008), which applies the generalized Nash bargaining model to

the real data in the context of logit demand model with a single retailer and

multiple manufacturers setup, shows that demand-supply structural model

incorporating Nash bargaining game outperforms the market-level game-

theoretic models in terms of data fit, providing the empirical support to

the model. Draganska et al. (2010) extends their work by allowing multiple

retailers30 and empirically shows that, in a German coffee market, the rela-

tive bargaining power between manufacturers and retailers is different across

each manufacturer-retailer pair rather than uniform across pairs as expected.

These studies contrast to previous models in that they enable researchers to

calibrate relative bargaining power between each manufacturer-retailer pair,

30Though Dukes et al. (2006) considers multiple retailers setup as well, their model

employs simple linear demand where demand decreases linearly as price of the goods

increases.
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rather than overall power structure in the market thus providing more de-

tailed insight into the market.

While models of Dukes et al. (2006), Misra & Mohanty (2008), and Dra-

ganska et al. (2010) successfully portray the behavior of market players to a

certain extent, what has been missing in their papers is the RS formulation.

Given aforementioned power increase of retailers, it is possible that some of

the retailers bargain aggressively with manufacturers over wholesale prices

and thus enjoy a larger profit. The limitation of the preceding papers is that

such behavior cannot be modeled because retailers are implicitly assumed to

passively react to whatever manufacturers offer. Therefore in this chapter,

we derive how to accommodate the RS game in the Nash bargaining model

framework so as to model powerful retailers and illustrate it empirically using

Japanese canned tuna as an example.

The rest of this chapter is organized as follows. Section 4.2 describes

our data. Section 4.3 reviews the previous approach in this literature and

presents our model and estimation procedure. Section 4.4 presents empirical

results and discuss their implications. Section 4.5 concludes our results.

4.2 Data

We use daily scanner-panel data on canned tuna between October 2008

and December 2009 in an anonymous retail chain located in western Tokyo,

Japan. This market is suitable for our analysis because there existed a private

brand in this category during the research period. By using the category with

a private brand, we can illustrate how to deal with it since a private brand

may not be the subject of bargaining. We choose the six top-selling brands
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Table 4.2.1: Summary statistic of the brands

Average Price (yen per gram) Manufacturer ID Market Share

Brand 1 1.08 1 41.8%

Brand 2 1.92 2 11.6%

Brand 3 1.29 3 21.6%

Brand 4 1.50 3 7.4%

Brand 5 1.52 4 8.2%

Brand 6 1.36 4 8.5%

for our empirical analysis.31 After choosing consumers who purchased out

of six brands more than twice during the period, 281 consumers who made

8,479 purchases remained. Table 4.2.1 summarizes the data on the brands.

The unit of price is Japanese yen per one gram. We note that brand 1 is the

private brand. To estimate marginal cost, we collected weekly data on ingre-

dients (wholesale prices of frozen tuna, big-eye, yellow-fin tuna, blue-fin tuna,

and southern tuna in Metropolitan Central Wholesale Market), international

oil prices, and heavy-oil prices during the study period.

4.3 The Model

In this section, we present the demand and supply models as well as the

estimation procedure.

4.3.1 Demand-Side Specification

We use a multinomial logit model to estimate consumer’s brand choice be-

havior employing the latent class model. The indirect utility of consumer

31The combined market share of the six selected brands is 99.1%.
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i (i = 1, . . . , N) for brand j (j = 1, . . . , J) on shopping occasion ti (ti =

1, . . . , Ti) is defined as

vijti = xjtiβs + Ikjγs + ξjti + εijti (4.3.1)

where xjti is vector of brand dummy variables and the retail price of brand j

that consumer i faces on shopping occasion ti, and Ikj is the last choice vari-

able of brand j relative to the previously purchased brand k which takes unity

if j = k and zero else. The term βs is the corresponding vector of parame-

ters for consumers in segment s and γs is the parameter for the last choice

variable. A positive (negative) value of γs reveals inertial (variety-seeking)

behavior, that is, a brand consumption experience increases (decreases) the

probability of repurchasing the brand on the consecutive purchasing occa-

sion. The term ξjti is a composite measure of unobserved (to the researcher)

demand characteristics that affect all consumers commonly and εijti are er-

rors distributed i.i.d. Gumbel. The outside option (j = 0) is specified as

determinant part of the utility being zero.

Demand-Side Estimation

To avoid the endogeneity problem between pjt and ξjt, we employ 2SLS for

price as follows:

pjt = κ0 + zjt · κ1 + ηjt

where zjt is the instrument for retail price pjt, κ0 and κ1 are parameters

to be estimated, and ηjt is an error term. They are defined for all brands

j = 1, . . . , J and dates t = 1, . . . , T in the study period. For the instrument,

we use the average retail prices of canned tuna in five stores we excluded

from the analysis owing to lack of price information.
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The likelihood function of the purchase history of consumer i belonging

to segment s (Li∈s) is given by

Li∈s =

Ti∏
ti=1

∫ { J∏
j=0

(
Prsijti

)yijti × f(ξjti |ηjti)× h(ηjti)

}
dξjti

where Prsijti is the logit purchase probability of consumer i who belongs to

segment s choosing brand j on shopping occasion ti, yijti is the indicator

function taking 1 if consumer i chooses brand j at time ti and 0 otherwise,

f(ξjti |ηjti) is the conditional density function of ξjti given ηjti , and h(ηjti) is

the density function of ηjti . Then, the demand-side likelihood function is

L =
I∏
i=1

{
S∏
s=1

Li∈s × Pri(s)

}
where Pri(s) is consumer i’s probability of membership in segment s.

4.3.2 Supply-Side Specification

In modeling supply-side behavior, we make the following assumptions. First,

we assume that a retailer is a local monopolist.32 The second assumption

is that, though some brands are produced by the same manufacturer, each

brand has its own bargaining power with respect to the retailer. However,

in setting the wholesale price of brands, the manufacturers account for their

impact on the other brands they own. The third assumption is that all

manufacturers and a retailer have rational expectations and can anticipate

ultimate equilibrium outcomes.

In this section, we first review the general framework of the Nash bar-

gaining game. Then we review the specification of Draganska et al. (2010)

and describe how an RS game can be accommodated to that framework.

32Though we analyze one-store data, retail competition is in fact reflected in that data as

the retailers compete in reality. If the RS behavior is found in our data, it would empirically

support our claim that the retailer acts aggressively despite the retail competition.
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The Nash bargaining model

Let us suppose the manufacturer and the retailer bargain over brand j. Then

the Nash bargaining solution can be obtained by maximizing

f(πrjt, π
w
jt) = (πrjt − drjt)λj(πwjt − dwjt)1−λj (4.3.2)

where πrjt and πwjt are the retailer and the manufacturer profits from brand j

respectively, drjt and dwjt are the retailer and the manufacturer disagreement

payoffs that are obtained if the negotiation fails, and λ is the parameter rep-

resenting the retailer’s bargaining power relative to the manufacturer which

takes between 0 and 1 inclusive.33 Sometimes the term λ is called “bargaining

power” and it depends on numerous factors such as negotiation skill of the

agent, risk tolerance level, and patience of a party that affects the outcome

of the bargaining (Dukes et al., 2006; Draganska et al., 2010). In contrast,

“bargaining position” refers to the relative strength of the party which is

already realized before a negotiation starts (Dukes et al., 2006). Specifically,

it is the value of a party’s outside option; the more it loses if the negotiation

fails, the weaker the party’s bargaining position. Both bargaining power and

bargaining position will affect the total channel profit and their split.

How the wholesale price is determined in the Nash bargaining

model

We review how the wholesale price is determined in the generalized Nash

bargaining model as proposed in Draganska et al. (2010) in the following.

One notable assumption of their paper is fixed retail price assumption; their

justification of that assumption is that retail prices cannot be contracted

upon (known as retail price unobservability). Notice that, if this formulation

33See Appendix A.10 for its derivation.
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is adopted, manufacturers can exercise price control on a product without

worrying about the decrease in its market share. In this sense, this formu-

lation presupposes MS game or retail prices would not be affected by the

change in wholesale prices.34

Taking partial derivative of (4.3.2) by wholesale price of brand j and

setting it zero, they obtain the FOC of (4.3.2) as

λj(π
r
jt − drjt)λj−1

∂πrjt
∂wjt

(πwjt − dwjt)1−λj + (πrjt − drjt)λj(1− λj)(πwjt − dwjt)−λj
∂πwjt
∂wjt

= 0

or

λj(π
w
jt − dwjt)

∂πrjt
∂wjt

+ (1− λj)(πrjt − drjt)
∂πwjt
∂wjt

= 0. (4.3.3)

Note that the wholesale margin is a function of wholesale price, so πwjt =

πwjt(wjt). Although the retail prices are not affected by the wholesale price,

the retail margins are πrjt = πrjt(wjt), so πrjt is also a function of wjt. The

retailer and the manufacturer profits of brand j are respectively defined as

πrjt = (pjt − wjt)SjtM (4.3.4)

and

πwjt = (wjt −mcjt)SjtM (4.3.5)

where Sjt, wjt, and mcjt are the market share, the wholesale price, and the

marginal cost of brand j at time t respectively and M is the market size.

Abbreviate Sjt(pjt) = Sjt(pjt(wjt)) = Sjt(wjt) as Sjt. Then FOCs of the

profit functions (4.3.4) and (4.3.5) with respect to wholesale price of brand

j are

∂πrjt
∂wjt

= (pjt − wjt)
∂Sjt
∂wjt

M +

(
∂pjt
∂wjt

− 1

)
SjtM (4.3.6)

34This assumption will be replaced in our formulation as will be explained.
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and

∂πwjt
∂wjt

= (wjt −mcjt)
∂Sjt
∂wjt

M + SjtM (4.3.7)

respectively.35 However, since

∂Sjt
∂wjt

=
J∑
h=1

∂Sjt
∂pht

· ∂pht
∂wjt

(4.3.8)

and ∂pht/∂wjt = 0 for all h and j from the fixed retail price assumption,

FOCs in (4.3.6) and (4.3.7) reduce to

∂πrjt
∂wjt

= −SjtM (4.3.9)

and

∂πwjt
∂wjt

= SjtM. (4.3.10)

The disagreement payoffs of the retailer and the manufacturer are respec-

tively defined as

drjt =
∑

k∈J\{j}

(pkt − wkt)∆s−jkt (p)M (4.3.11)

dwjt =
∑

k∈Jf\{j}

(pkt − wkt)∆s−jkt (p)M (4.3.12)

where Jf is the set of products sold by manufacturer. The term ∆s−jkt (p) is

the difference in market share of brand k when brand j is available and when

not, which is defined as

∆s−jkt (p) =

∫ [
exp(vskt)

1 +
∑

l∈Ω\{j} exp(vslt)
− exp(vskt)

1 +
∑

l∈Ω exp(vslt)

]
dF (s)

where vsjt is the deterministic part of the utility of brand j for consumers

in segment s and F (s) is the distribution function of segment s, which is

discrete in our specification.

35Note that it is assumed ∂mckt/∂wlt = 0 for all k, l = 1, . . . , J , as wholesale price

would not affect marginal cost in general. Similarly, ∂wjt/∂wkt = 0.
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Substituting (4.3.9), (4.3.10), (4.3.11), and (4.3.12) to (4.3.3) and re-

arranging, they have the optimal manufacturer’s margin in relation to the

retailer margin as

πwjt − dwjt =
1− λj
λj

(πrjt − drjt). (4.3.13)

Denote (pkt−wkt) and (wkt−mckt) as mr
kt and mw

kt respectively. From (4.3.4),

(4.3.5), (4.3.11), and (4.3.12), (4.3.13) can be rewritten as

mw
jtSjt −

∑
k∈Jf\{j}

mr
kt∆s

−j
kt (p) =

λ

1− λ

mr
jtSjt −

∑
k∈J\{j}

mr
kt∆s

−j
kt (p)

 .
(4.3.14)

Stacking (4.3.14) for all brands and rearranging yields

Ω · ∗


s1 −∆s−1

2 · · · −∆s−1
J

−∆s−2
1 s2 · · · −∆s−2

J

...
...

. . .
...

−∆s−J1 −∆s−J2 · · · sJ




mw

1

mw
2

...

mw
J



=


1−λ1
λ1

s1 −1−λ1
λ1

∆s−1
2 · · · −1−λ1

λ1
∆s−1

J

−1−λ2
λ2

∆s−2
1

1−λ2
λ2

s2 · · · −1−λ2
λ2

∆s−2
J

...
...

. . .
...

−1−λJ
λJ

∆s−J1 −1−λJ
λJ

∆s−J2 · · · 1−λJ
λJ

sJ




mr

1

mr
2

...

mr
J


(4.3.15)

dropping t for notational convenience.

Incorporating the RS game to the generalized Nash bargaining

model

We explain how the RS game can be incorporated into the generalized Nash

bargaining model in the following. In the RS game, a retailer sets its margin
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anticipating the behavior of manufacturers and then manufacturers follow.

Accordingly, we would not treat retail price being fixed unlike in Draganska

et al. (2010). Even under such circumstances, manufacturers would be able

to know the retail prices of their brands sooner or later and thus would take

them into account in the next negotiation. In the RS formulation, therefore,

a manufacturer cannot demand as much as it would under the fixed retail

price assumption since the increase in wholesale price would, in turn, increase

its retail price and is likely to lower its market share.

Specifically in the RS formulation, the retail margin is determined be-

forehand or ∂(pjt − wjt)/∂wkt = 0 for all j and k, or ∂pjt/∂wkt is 1 if j = k

and 0 else. As a result, (4.3.8) reduces to

∂Sjt
∂wjt

=
∂Sjt
∂pjt

. (4.3.16)

By ∂pjt/∂wjt = 1 and (4.3.16), equations (4.3.6) and (4.3.7) become

∂πrjt
∂wjt

= (pjt − wjt)
∂Sjt
∂pjt

M, (4.3.17)

and

∂πwjt
∂wjt

= (wjt −mcjt)
∂Sjt
∂pjt

M + SjtM, (4.3.18)

respectively. Notice, in (4.3.18), manufacturers would not be as well-off as

they would be under (4.3.10) in increasing wholesale prices because the first

term of (4.3.18) on the right-hand side is negative. Substituting (4.3.17) and

(4.3.18) to (4.3.3) yields

λj(π
w
jt − dwjt)mr

ktΦjt + (1− λj)(πrjt − drjt) (mw
ktΦjt + Sjt) = 0, (4.3.19)

where Φjt = ∂Sjt/∂pjt. Moving the second term on the left of (4.3.19) to the

right-hand side, substituting (4.3.11) and (4.3.12), dividing both sides by λj
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and stacking for j = 1, . . . , J , we have the set of equations in matrix form as

Ω · ∗



s1m
r
1Φ1 −∆s−1

2 mr
1Φ1 . . . −∆s−1

J mr
1Φ1

−∆s−2
1 mr

2Φ2 s2m
r
2Φ2 . . . −∆s−2

J mr
2Φ2

−∆s−3
1 mr

3Φ3 −∆s−3
2 mr

3Φ3 . . . −∆s−3
2 mr

3Φ3

...
...

. . .
...

−∆s−J1 mr
JΦJ −∆s−J2 mr

JΦJ . . . sJm
r
JΦJ




mw

1

mw
2

...

mw
J

 =



λ1−1
λ1

s1(mw
1 Φ1 + S1) −λ1−1

λ1
∆s−1

2 (mw
1 Φ1 + S1) · · · −λ1−1

λ1
∆s−1

J (mw
1 Φ1 + S1)

−λ2−1
λ2

∆s−2
1 (mw

2 Φ2 + S2) λ2−1
λ2

s2(mw
2 Φ2 + S2) · · · −λ2−1

λ2
∆s−2

J (mw
2 Φ2 + S2)

−λ3−1
λ3

∆s−3
1 (mw

3 Φ3 + S3) −λ3−1
λ3

∆s−3
2 (mw

3 Φ3 + S3) · · · −λ3−1
λ3

∆s−3
J (mw

3 Φ3 + S3)
...

...
. . .

...

−λJ−1
λJ

∆s−J1 (mw
JΦJ + SJ) −λJ−1

λJ
∆s−J2 (mw

JΦJ + SJ) · · · λJ−1
λJ

sJ(mw
JΦJ + SJ)



·


mr

1

mr
2

...

mr
J

 (4.3.20)

dropping t for convenience where Ω is a J ×J ownership matrix whose (j, k)

element, denoted as Ωjk, is an indicator variable taking unity if brands j

and k are made by the same manufacturer and 0 otherwise. Notice that in

(4.3.15), the manufacturers’ and the retailer’s margins are clearly separated,

while (4.3.20) contains retailer margin on the left-hand side and manufacturer

margin on the right-hand side as well. This is because only the total profit of

each party (i.e., (πrjt − drjt) and (πwjt − dwjt)) affects margins in (4.3.15), while

the rate of change in market shares with respect to retail prices (Φjt), market

shares (Sjt), and retailer margin affect manufacturer margin in (4.3.20).
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The retailer margin

As the equation (4.3.20) only relates manufacturer margins to retailer margin,

we still need to derive the retailer margins. There are two distinct approaches

doing so. One is to derive from the model by Draganska et al. (2010); the

other is to derive from the RS game as in Chapter 3. These two specifications

represent two different behavior of the retailer toward manufacturers. In the

model of Draganska et al. (2010), the retailer acts naively and does not

attempt to control wholesale prices in its favor but just accepts whatever

manufacturers offer. On the other hand, in the RS game, the retailer acts

aggressively and sets retail prices possibly in its favor at the expense of

manufacturers’ margins.

Retailer margins

We know from Chapter 3 that the retailer margin in the MS and VN games

is

(pt −wt) = [Φt]
−1St

where

Φt =


∂S1t

∂p1t
· · · ∂SJt

∂p1t
...

. . .
...

∂S1t

∂pJt
· · · ∂SJt

∂pJt

 .
We also know that retailer margin in the RS game when manufacturers com-

pete in Bertrand manner is

(pt −wt) = [Φt]
−1[I −HT

t [[Φt]
T · ∗Ω]−1]St

where Ht is a J × J matrix whose (l, j) element is

∂Slt
∂pjt

+
J∑
k=1

Ωlk(wkt −mckt)
∂2Skt
∂plt∂pjt
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as in (3.2.28). When manufacturers collude, we make Ω an matrix with all

elements being unity.

Supply-Side Estimation

To obtain the likelihood of the supply-model, we exploit the relationship

pjt − M̂Rjt − M̂M jt = mcjt + εjt

where M̂Rjt and M̂M jt are estimated margins of the retailer and the man-

ufacturer on brand j at time t respectively, and εjt is random error term. If

we assume that errors εjt follow a normal distribution with mean zero and

finite variance, the right-hand side of the equation

εjt = pjt − M̂Rjt − M̂M jt −mcjt (4.3.21)

would also follow the normal distribution. Furthermore, we parametrize the

marginal cost as

mcjt = ψj + inputjtψ (4.3.22)

where ψj is the brand-specific intercept term, inputjt is the vector of observ-

able cost shifters, and ψ is the corresponding vector of parameters.36 Then

by substituting (4.3.22) to (4.3.21), we have

εjt = pjt − M̂Rjt − M̂M jt − ψj − inputjtψ.

The supply-side likelihood function is

T∏
t=1

J∏
j=1

g(εjt) (4.3.23)

where g(·) is the density function of εjt.

36The cost shifters used in this analysis are listed in section 4.2.
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4.4 Empirical Results

We present our empirical results in this section. Remember that brand 1

is a private brand totally under control of this retailer (λ1 = 1) and we

assume that there does not exist manufacturer margin on the private brand

(mw
1 = 0). With this assumption, the equation (4.3.20) reduces to

Ω · ∗


s2m

r
2Φ2 . . . −∆s−2

J mr
2Φ2

...
. . .

...

−∆s−J2 mr
JΦJ . . . sJm

r
JΦJ




mw
2

...

mw
J

 =


λ2−1
λ2

s2(mw
2 Φ2 + S2) · · · −λ2−1

λ2
∆s−2

J (mw
2 Φ2 + S2)

...
. . .

...

−λJ−1
λJ

∆s−J2 (mw
JΦJ + SJ) · · · λJ−1

λJ
sJ(mw

JΦJ + SJ)




mr
2

...

mr
J

 .

4.4.1 Demand-Side Results

We find that the latent class model with five segments is optimal.37 Ta-

ble 4.4.1 presents parameter estimates of the demand model (with standard

errors in parentheses). In Table 4.4.1, “Brand” entries represent the brand-

specific intercepts relative to the outside option. The values of these inter-

cepts vary across segments. The coefficients of “Last Choice” variable are all

positive and significant, suggesting that consumers all have inertial tendency

in this product category in our data.

Preference to a private brand is mixed among segments; segments 3 and

segment 5 with the respective estimated segment sizes 40.2% and 24.1%

prefer the private brand while segment 4 with the estimated segment size

5.8% does not.

37We chose the five-segments model because the size of a segment becomes 0.01% in the

six-segments model though AIC supported six-segments model.
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Table 4.4.1: Parameter estimates of the demand model

Variables Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

Brand 1 2.54 -0.28 4.66** -5.27** 3.42**

(1.471) (0.581) (1.270) (0.063) (0.869)

Brand 2 2.66** 1.30** 7.78** 8.72** 7.28**

(0.421) (0.269) (0.198) (1.240) (0.376)

Brand 3 -3.25** 2.16 3.11** -1.82** -6.52**

(0.264) (1.219) (0.681) (0.256) (0.103)

Brand 4 1.22* -4.97** 3.10** 3.51** 1.97**

(0.503) (0.054) (0.275) (0.876) (0.231)

Brand 5 3.42** -2.86** 6.99** 1.19** 2.22**

(1.243) (0.173) (1.179) (0.416) (0.285)

Brand 6 -5.99** -6.72** -5.49** -4.21** -5.71**

(0.605) (0.514) (0.785) (1.349) (0.807)

Price Coefficient -5.54* -5.73** -8.16** -6.33* -7.85**

(2.659) (1.648) (2.367) (2.698) (1.268)

Last Choice 8.07** 6.94** 3.50** 4.69** 8.88**

(0.560) (0.544) (0.566) (0.449) (0.460)

Segment Sizes 12.4% 18.7% 40.2% 5.8% 24.1%

Number of Parameters 44

Number of Observations 8,479

Log-likelihood -5,180.3

** Significant at 1% level.

* Significant at 5% level.
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Table 4.4.2: Log-likelihood under each game

Manufacturer - Retailer game Manufacturers’ game Log-likelihood

Retailer Stackelberg Bertrand -192.96

Collusion -192.94

Manufacturer Stackelberg Bertrand -192.86

Collusion -192.86

Vertical Nash Bertrand -192.89

Collusion -192.88

Nash Bargaining Solution (Draganska et al., 2010) Bertrand -192.81

Collusion -192.84

Nash Bargaining Solution (Proposed) Bertrand -192.69

Collusion -193.25

Table 4.4.3: The relative bargaining power of the retailer (λj)

Draganska et al. (2010) Model Proposed Model

Brand 2 0.36 0.98

Brand 3 0.32 0.69

Brand 4 0.49 0.57

Brand 5 0.42 0.64

Brand 6 0.27 0.23

4.4.2 Supply-Side Results

Table 4.4.2 presents supply-side log-likelihood of each model.38 Though fits

across these games are very close, the proposed retailer Stackelberg model

with Bertrand competition fits the data best. We note that brand preferences

presented in Table 4.4.1 do not seem to be correlated with bargaining power

reported on the right-hand side column of Table 4.4.3. Hence bargaining

power is not an inherent characteristic of brand, and this finding is consistent

38We present log-likelihood because it turns out that all models have the same number

of explanatory variables.
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Table 4.4.4: Retailer and manufacturer margins under each game

Brand 1 Brand 2 Brand 3 Brand 4 Brand 5 Brand 6

Retail Margin

Manufacturer Stackelberg 0.152 0.158 0.172 0.167 0.150 0.149

(0.00053) (0.00052) (0.00086) (0.00076) (0.00088) (0.00073)

Retailer Stackelberg Bertrand 0.152 0.285 0.311 0.298 0.271 0.270

(0.00053) (0.00066) (0.00131) (0.00117) (0.00123) (0.00098)

Collusion 0.152 0.293 0.316 0.309 0.279 0.278

(0.00053) (0.00098) (0.00152) (0.00133) (0.00158) (0.00135)

Manufacturer Margin

Nash Bargaining Model Bertrand 0 (assumed) 0.070 0.065 0.041 0.033 0.013

by Draganska et al. (2010) - (0.00137) (0.00149) (0.00099) (0.00142) (0.00088)

Collusion 0 (assumed) 0.152 0.167 0.161 0.143 0.143

- (0.00039) (0.00065) (0.00078) (0.00065) (0.00047)

Nash Bargaining Model Bertrand 0 (assumed) 0.077 0.073 0.016 0.011 0.011

by the proposed model - (0.00020) (0.00027) (0.00014) (0.00002) (0.00040)

Collusion 0 (assumed) 0.056 0.064 0.140 0.214 0.047

- (0.00031) (0.00033) (0.00037) (0.00115) (0.00008)

with that of Draganska et al. (2010). The bargaining power does not seem

to be correlated with market share either.

Margins

Table 4.4.4 reports the estimated margins and their standard errors (in paren-

theses). Since brand 1 is a private brand, we assume that there is no manu-

facturer’s margin on it and its retailer margin is common across games. The

standard errors turn out to be very small because the prices of those brands

stay fairly constant during the study period. The interpretation of the result

is discussed in the next section.
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Table 4.4.5: Marginal cost estimation of the proposed model

Estimate Std.Err t-value

Intercept -0.03 0.24 -0.10

Brand Dummy 1 -0.15 0.03 -5.64

Brand Dummy 2 0.47 0.03 17.88

Brand Dummy 3 -0.14 0.03 -5.21

Brand Dummy 4 0.14 0.03 5.49

Brand Dummy 5 0.15 0.03 5.55

Lagged Heavy Oil Price 0.09 0.03 2.89

Lagged International Oil Price 0.16 0.07 2.40

Marginal cost

Table 4.4.5 reports the marginal cost estimation result for the proposed

model. We find that each of price of yellow-fin tuna, one-year-lagged in-

ternational oil price, and a one-year-lagged heavy-oil price is significant. But

when we included all of them, the price of yellow-fin tuna became insignifi-

cant, so we dropped it from our marginal cost estimation.

4.5 Conclusion and Discussion

In this chapter, we propose how to incorporate the RS formulation into the

Nash bargaining model framework and empirically analyze canned tuna mar-

ket in Japan. The main finding is that, according to the result of our RS

model, the data do support retailer’s relative dominance in that retailer mar-

gins are much larger than those of manufacturers as shown in Table 4.4.4,

though our fit relative to the model proposed by Draganska et al. (2010) is

only marginally better as shown in Table 4.4.2. We discuss our empirical

results below.
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Compared to Draganska et al. (2010), the values of λj in our model are

higher on average as expected (Table 4.4.3). Moreover, while all brands have

more bargaining power with respect to the retailer (i.e., λj > 1/2) in the

model of Draganska et al. (2010), the bargaining power lies in the retailer

for four out of five brands in our model. The explanation of this difference

is that the model of Draganska et al. (2010) presupposes an MS game in

deriving retail margins while we assume an RS formulation. If our analysis is

correct, the previous models significantly underestimate the power of retailers

by presupposing an MS game. The accurate description of the relationship

between a retailer and manufacturers is indispensable if firms make decisions

accounting for the consequences these models suggest.

Interestingly, brand 2 and brand 3 are actually better-off in terms of

margin in our model than in the model of Draganska et al. (2010) (Table

4.4.4). This is counter-intuitive because their respective bargaining power

(i.e., 1 − λj) are 0.02 and 0.31, which are much smaller than correspond-

ing estimates of 0.64 and 0.68 in the model by Draganska et al. (2010). This

could imply that the retailer could act as if it vertically integrates the brands,

eliminating or mitigating the double marginalization problem. This finding is

consistent with that of Dukes et al. (2006) which finds that the presence of a

dominant retailer actually benefits manufacturers. This result could encour-

age both retailers and manufacturers to cooperate, not only on developing

private brands but also on selling national brands.

In summary, we conclude that the power lies to the retailer in this mar-

ket from the facts that retailer has more bargaining power (Table 4.4.3) and

larger margins (Table 4.4.4). To our knowledge, this is the first study which

empirically shows that the retailer has more bargaining power than manu-

facturers.
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For future research, we need to develop a framework that embeds both

a model by Draganska (2010) and our model within so that employing this

comprehensive model would enable us to measure relative power of a retailer

to multiple manufacturers channel by channel.
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Appendix A

Appendix

A.1 Discrete Choice Model

In this section, we review widely used models for predicting consumers’ choice

behaviors in the differentiated products markets within the framework of

discrete choice models. In the framework, the consumer chooses only one

product among the choice set of the differentiated products.39 Importantly,

we incorporate the unobserved product characteristic in the models. This

is because some product characteristics such as style, durability, status, and

service at a point-of-sale are difficult to quantify but are likely to be corre-

lated with prices. It is well known that ignoring such correlation causes the

systematic error in estimation.

The models discussed in this section include logit model and mixed logit

model. The properties of these models are discussed as well.

39The usual assumption of the choice model is that it is exclusive, in the sense that choice

set includes all possible products or alternatives, and products are mutually exclusive and

the number of which is finite.
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A.1.1 A General Choice Probability Function

Consumers make decisions “under an assumption of (their) utility-maximizing

behavior (Train, 2003, 18).” The models under this assumption are referred

to as random utility models, and they are derived as follows. First, let us

assume that there are N consumers facing J+1 (j = 0, · · · , J) products in a

market, and the consumer i chooses product j. An alternative of not choos-

ing any of the j = 1, · · · , J products is sometimes characterized as choosing

“outside goods” and denoted as j = 0. The utility of consumer i for choosing

product j is denoted as Uij, j = 0, . . . , J and it is assumed to be known to the

consumer but not to the researcher. In the framework, a consumer chooses

product m if and only if the utility Uim is greater than the utilities Uij for

all product j 6= m, which is expressed as

Prim = Pr {Uij < Uim,∀j 6= m} . (A.1.1)

where Prim stands for consumer i’s choice probability for product m, and

{Uij < Uim,∀j 6= m} is an indicator function. The researcher usually ob-

serves the vector of some attributes x and specifies a function that relates

these observed attributes to consumer’s utility. We write this function as

Vij, which we call the “representative utility.” The utility is decomposed into

Vij and εij; the term εij captures the factors that affect utility but are not

included in Vij. Now the utility of consumer i for product j is rewritten as

Uij = Vij + εij. (A.1.2)

The term εij is assumed to have some density f(εij). The behavior of the

models largely depends on the specification of f(εij), as we will show in the

following subsections.

With these assumptions, the choice probability of consumer i for product
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m in (A.1.1) is expressed further as

Prim = Pr {Uij < Uim,∀j 6= m}

= Pr {Vij + εij < Vim + εim, ∀j 6= m}

= Pr {εij < εim + Vim − Vij,∀j 6= m}

=

∫
εij

{εij < εim + Vim − Vij,∀j 6= m} f(εij)dεij, (A.1.3)

where f(εij) is the joint density function of random error vector εij =

(εi0, · · · , εiJ). In words, the choice probability is integral of the indicator

function over all values of εij weighted by its density. We calculate (A.1.3)

as follows:

Prim = Pr {εij < εim + Vim − Vij,∀j 6= m}

=

∫ ∞
−∞

[∫ εim+Vim−Vi0

−∞
· · ·
∫ εim+Vim−Vi(m−1)

−∞

∫ εim+Vim−Vi(m+1)

−∞
· · ·∫ εim+Vim−ViJ

−∞
f(εi0, · · · , εiJ)dεi0 · · · dεi(m−1)dεi(m+1) · · · dεiJ

]
dεim

=

∫ ∞
−∞

[
∂

∂εim

∫ εi0

−∞
· · ·
∫ εiJ

−∞
f(εi0, · · · , εiJ)

dεi0 · · · dεiJ
]∣∣∣∣∣
εi0=εim+Vim−Vi0,··· ,εiJ=εim+Vim−ViJ

dεim

=

∫ ∞
−∞

[
∂

∂εim
f(εi0, · · · , εiJ)

]∣∣∣∣∣
εi0=εij+Vij−Vi0,··· ,εiJ=εij+Vij−ViJ

dεim

=

∫ ∞
−∞

Pm(εim + Vim − Vi0, · · · , εim + Vim − ViJ)dεim, (A.1.4)

where Pm is the partial derivative of f(εij) with respect to its mth argument.

In the subsections immediately follows, we derive so-called the logit model

and discuss some properties of the model.
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A.2 Logit Model

The logit model is “the easiest and most widely used discrete model (Train,

2003, 38).” Originally, Luce (1959) derived this model from the assumption

of independence from irrelevant alternatives (IIA); on the other hand, Mc-

Fadden (1974) derived the model from the assumption of utility-maximizing

behavior.

The representative utility used in the more modern logit model consists of

the observed characteristics and the unobserved characteristics as proposed

by Berry (1994). For product j, the observed characteristics are denoted

by an 1 × R row vector xj· = (xj1, . . . , xjr, . . . , xjR), where r = 1, · · · , R

is product characteristics which affect demands. Note that pj, the price of

product j, is an important element of xj·.

The unobserved product characteristic random variable is denoted as ξj.

The term ξj might be thought of the mean preferences of consumers i for the

unobserved product characteristics. The representative utility of choosing

product j for any consumer is written as

Vj = xj·β + ξj

where β is an R × 1 column vector of coefficient of xj·. The logit choice

probability is derived by assuming each εij is i.i.d. extreme value (Gumbel or

type I extreme value) across consumer i and products j, whose cumulative

distribution function is in the form of

P (εij) = exp{− exp(−εij)}

where P (·) is cumulative distribution function of εij. Accordingly, the joint

cumulative distribution function of εij is

P (εij) =
J∏
j=0

exp{− exp(−εij)}, (A.2.1)
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since εij are independent across i and j. Taking partial derivative of (A.2.1)

with respect to εim yields

∂P (εij)

∂εim
(εim + Vm − V0, · · · , εim + Vm − VJ)

= (−1)× {− exp(−εim)}
J∏
j=0

exp {− exp(−εim − Vm + Vj)}

= exp(−εim)
J∏
j=0

exp {− exp(−εim − Vm + Vj)} . (A.2.2)

The logit model can be derived by substituting equation (A.2.2) to (A.1.4)

as

Prim =

∫ ∞
−∞

[
∂P (εij)

∂εim
(εim + Vm − V0, · · · , εim + Vm − VJ)

]
dεim

=

∫ ∞
−∞

exp(−εim)
J∏
j=0

exp {− exp(−εim − Vm + Vj)} dεim

=

∫ ∞
−∞

exp(−εim) exp

{
−

J∑
j=0

exp(−εim − Vm + Vj)

}
dεim

=

∫ ∞
−∞

exp(−εim) exp

{
− exp(−εim)

J∑
j=0

exp(Vj − Vm)

}
dεim.

(A.2.3)

If we let x = − exp(−εim), x is in interval (−∞, 0) and dεim = dx/ exp(−εij),

85



so that (A.2.3) is rewritten as

Prm =

∫ 0

−∞
exp(−εim) exp

{
x

J∑
J=0

exp(Vj − Vm)

}
dx

exp(−εij)

=

∫ 0

−∞
exp

{
x

J∑
J=0

exp(Vj − Vm)

}
dx

=

exp
{
x
∑J

J=0 exp(Vj − Vm)
}

∑J
J=0 exp(Vj − Vm)

0

−∞

=
exp(0)− exp(−∞)∑J
J=0 exp(Vj − Vm)

=
1∑J

J=0 exp(Vj − Vm)

=
exp(Vm)∑J
J=0 exp(Vj)

. (A.2.4)

This is the standard formula for the logit choice probability. Note that market

share of product j is the choice probability itself in the standard logit model

framework as

sem(V ) = Prm

where V ≡ (V0, . . . , VJ), since the estimated market share of m denoted as

sem, where superscript e stands for “estimated”, depends on the representative

utilities of all the products in the market j = 0, . . . , J .

A.2.1 Estimation of the Logit Model

In this subsection, we follow Berry (1994) and review a method to estimate

parameter of logit model assuming we have the market share data including

the share of outside goods. If we take log of the right-hand side of the

equation (A.2.4), we have

log(sem(V )) = log

{
exp(Vm)∑J
j=0 exp(Vj)

}
. (A.2.5)
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Setting the utilities of the observed product characteristics and unobserved

product characteristics of a outside goods as x0· = (0, . . . , 0) and ξ0 = 0

respectively, we derive the utility of the outside goods as

Ui0 = εi0 (A.2.6)

since V0 = 0. Applying (A.2.6) to (A.2.4), the choice probability of outside

goods Pr0 under the logit model is

Pr0 =
exp(V0)∑J
j=0 exp(Vj)

=
exp(0)∑J
j=0 exp(Vj)

=
1∑J

j=0 exp(Vj)
.

Notice that this choice probability of outside goods coincides with the market

share of outside goods, and we have the market share of outside goods as

se0(V ) =
1∑J

j=0 exp(Vj)
. (A.2.7)

Substitute (A.2.7) to the denominator of (A.2.5) and obtain

log(sem(V )) = log(exp(Vm) · se0(V )) = Vm + log(se0(V )).

Therefore, we have

log(sem(V ))− log(se0(V )) = Vm = xm·β + ξm.

Assuming sem(V ) and se0(V ) equal to their observed counterparts som and so0

respectively at the true value of β and ξm, we can replace sem(V ) and se0(V )

with the observed market share som and so0 respectively to obtain

log(som)− log(so0) = xm·β + ξm. (A.2.8)

If OLS is applied to estimate β and ξm using the left-hand side of the equa-

tion (A.2.8) as a dependent variable and regarding ξm as the residuals, then

the OLS estimator would be inconsistent as explained in section A.4 if the

element of xm·, especially pm, is correlated with ξm.
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In order to avoid this problem, the 2SLS method is implemented. An

instrumental variable is defined as the variable that is correlated with the

endogenous variables xm· but is not with the error term (ξm in this case).

The 2SLS method allows the correlation between the endogenous variables

and error terms, but still estimates β consistently. The formal definition of

an instrumental variable and detailed discussion of 2SLS are given in section

A.5.

A.3 Mixed Logit Model

The mixed logit model is a highly flexible model which can approximate

any random utility model by allowing the parameters associated with each

observed variable to vary across consumers (Revelt & Train, 1998; McFadden

& Train, 2000). The mixed logit model thus can represent heterogeneity

across consumers. Mixed logit probabilities are obtained as the integral of

the standard logit probabilities over a density of parameter,

Pr ij =

∫
Lij(β)f(β)dβ, (A.3.1)

where Lij(β) is the logit probability evaluated at parameter β as

Lij(β) =
expVij(β)∑J
j=0 expVij(β)

and f(β) is a density function of parameter. In words, “the mixed logit prob-

ability is a weighted average of the logit formula evaluated at the different

value of β (Train, 2003, 139).” The word “mixed” comes from the statistical

custom to call the weighted average of several functions a mixed function,

and the density which provides the weight is called mixing distribution.

“The mixed logit probability can be derived from utility-maximizing be-

havior in several ways that are formally equivalent but provide different in-
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terpretations (ibid, 141).” In the following subsections, two interpretations of

the mixed logit model are presented. The first one is the random-coefficients

and the other is error-component.

A.3.1 Random-Coefficients

Unlike (A.1.2), the utility that consumer i obtains from the alternative j is

written as

Uij = Vij(βi) + εij

where Vij(βi) is the observed component of utility which depends on the

parameter βi, which varies across consumers and has the density function

f(βi|Ω), where Ω is the set of the true parameters of this density function,

and εij is an unobserved error with i.i.d. extreme value.

We can write the probability that consumer i chooses alternative m con-

ditional on given βi, denoted as Lim(βi), in the standard logit form as

Lim(βi) =
exp(Vim(βi))∑J
j=0 exp(Vij(βi))

.

Since the researchers do not know the values of βi, the unconditional proba-

bility is obtained by integrating the conditional probability over all possible

value of βi as

Pr im =

∫
Lim(βi)f(βi|Ω)dβi,

which is mixed logit probability in (A.3.1). If the utility is linear in βi, then

Vij(β) can be written as xij·βi, where xij· = (xij0, . . . , xijr, . . . , xijR) is vector

of observed variables relating to alternative j and βi is corresponding vector

of parameters. If that is the case, Lim(βi) becomes

Lim(βi) =
exp(xij·βi)∑J
j=0 exp(xij·βi)

,
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and the mixed logit probability becomes

Pr im =

∫
exp(xij·βi)∑J
j=0 exp(xij·βi)

f(βi|Ω)dβi.

A.3.2 Error-Components

The second interpretation is called error-components. The utility in error-

component is specified as

Uij = xij·α+ zij·µi· + εij, (A.3.2)

where xij· and zij· ≡ (zij0, . . . , zijl, . . . , zijL) is vector of observed variables re-

lating to alternative j, α = (α0, . . . , αr, . . . , αR)T is vector of parameter which

are fixed over consumers and alternatives, and µi· = (µi1, . . . , µil, . . . , µiL)T is

vector of random terms that vary over consumers which has the distribution

g(µ|Ω) where Ω is the set of fixed parameters of the distribution g(·).

In this setting, xij·α is the component of the utility which is invariant

across consumers and zij·µi· is that varies across consumers. The terms

zij·µi· along with εij define the stochastic portion of utility which we de-

note as ηij ≡ zij·µi· + εij. In the error-component specification, utilities

are correlated with one another if zij· is non-zero, since the covariance of

the two stochastic component of alternatives ηij and ηig is Cov(ηij, ηig) =

E[zij·µi·+εij]
′[zig·µg·+εig] = z′ij·Wzig·, where W is the covariance of µi·. The

terms zij·µi· are interpreted as “error-components” because they can induce

heteroskedasticities and the correlations over the alternatives (Brownstone

et al., 2000).

The choice probability for each consumer i now depends on α and µi·.

We have the conditional choice probability of consumer i for alternative m

as

Pr im|µi
=

exp(xim·α+ zim·µi·)∑
j∈J exp(xij·α+ zij·µi·)

. (A.3.3)
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The unconditional choice probability is obtained by integrating (A.3.3) re-

spect to all the value of µi· as

Pr im =

∫ [
exp(xim·α+ zim·µi·)∑
j∈J exp(xij·α+ zij·µi·)

]
g(µ|Ω)dµi·.

As stated, random-coefficients and error-components specifications are for-

mally equivalent because if we decompose βi of random-coefficients into its

mean α and deviation µi, we have the utility Uij = xij·α + xij·µi· + εij,

which is that of error-components specification, defined by xij· = zij· (Train,

2003). The different interpretation or application of these models depends

on the purpose of research and the appropriateness of the model depending

on the situation. While random-coefficient model allows coefficients to vary,

which is more intuitively plausible than error-component, it is unreasonable

to apply it when there are many variables (ibid). On the other hand, when

substitution patterns are emphasized, error-components is more convenient.

While the different substitution patterns can be obtained by a different spec-

ification of function g(·), the most widely used mixing distributions are the

normal distribution and log-normal distribution (Bhat, 2001). When the

mixing distribution is discrete, the mixed logit model becomes the latent

class model. Because of the integration in the mixed logit model, the proba-

bility cannot be calculated in the closed form, especially if dimensions of the

parameter is large.

A.4 The Standard Asymptotic Results of Or-

dinary Least Squares (OLS) Estimator

OLS method is sometimes used in the regression analysis for parameter es-

timation. In this section, the properties of OLS estimator are discussed. In
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subsection A.4.1, OLS estimator is derived. In subsection A.4.2, (weak) con-

sistency of OLS estimator is shown under a set of standard assumptions. In

subsection A.4.3, asymptotic normality of OLS estimator is demonstrated

with an additional set of standard assumptions.

A.4.1 The OLS Estimator

Let us consider regression model with J observations

y = Xβ + ε =



x1·β + ε1
...

xi·β + εi
...

xJ ·β + εJ


=



∑R
r=1 x1rβr + ε1

...∑R
r=1 xirβr + εi

...∑R
r=1 xJrβr + εJ


(A.4.1)

where y = (y1, · · · , yi, · · · , yJ)T is a J × 1 vector of response or dependent

variables,

X =



x1·
...

xi·
...

xJ ·


=



x11 · · · x1r · · · x1R

...
. . .

...
. . .

...

xi1 · · · xir · · · xiR
...

. . .
...

. . .
...

xJ1 · · · xJr · · · xJR


= [x·1, · · · ,x·r, · · · ,x·R].

is an J × R matrix of R stochastic explanatory variables whose ith row is

denoted by xi· = (xi1, · · · , xir, · · · , xiR) and whose rth column is denoted by

x·r = (x1r, · · · , xir, · · · , xJr)T , β = (β1, · · · , βr, · · · , βR)T is a R × 1 vector

of parameters, and ε = (ε1, · · · , εi, · · · , εJ)T is a J × 1 vector of errors. The

assumption required for the existence of OLS estimator is as follows.

Assumption 1a
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The term XTX has rank R as

XTX = R (A.4.2)

where the term XTX can be written as

XTX =
[
x1·

T · · ·xi·T · · ·xJ ·T
]


x1·
...

xi·
...

xJ ·


=



x·1
T

...

x·r
T

...

x·R
T


[
x·1 · · ·x·r · · ·x·R

]

=



x11 · · · xi1 · · · xJ1

...
. . .

...
. . .

...

x1r · · · xir · · · xJr
...

. . .
...

. . .
...

x1R · · · xiR · · · xJR





x11 · · · x1r · · · x1R

...
. . .

...
. . .

...

xi1 · · · xir · · · xiR
...

. . .
...

. . .
...

xJ1 · · · xJr · · · xJR



=



∑J
i=1 xi1 · xi1 · · ·

∑J
i=1 xi1 · xir · · ·

∑J
i=1 xi1 · xiR

...
. . .

...
. . .

...∑J
i=1 xir · xi1 · · ·

∑J
i=1 xir · xir · · ·

∑J
i=1 xir · xiR

...
. . .

...
. . .

...∑J
i=1 xiR · xi1 · · ·

∑J
i=1 xiR · xir · · ·

∑J
i=1 xiR · xiR


.

(A.4.3)

Since XTX is symmetric R×R matrix, XTX is non-singular and invertible

with this assumption.

OLS estimator of β, which we denote β̂OLS, can be determined to make

the column vectors of X and the regression residuals ε̂i be orthogonal, i.e.,

XT ε̂i = 0. Since the residual ε̂i is written as y −Xβ̂OLS, we have XT (y −
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Xβ̂OLS) = 0, so that we obtain XTXβ̂OLS = XTy. From Assumption

1a, (XTX)−1 exists and we obtain the OLS estimator of β as

β̂OLS = (XTX)−1XTy. (A.4.4)

Substituting (A.4.1) to (A.4.4) gives

β̂OLS = (XTX)−1(XT (Xβ + εi))

= (XTX)−1(XTXβ +XTεi)

= (XTX)−1XTXβ + (XTX)−1XTεi

= β + (XTX)−1XTεi. (A.4.5)

If the second term of the last equation goes to 0 as the sample size increases,

the OLS estimator is (weakly) consistent, as we will show in the following

subsection.

A.4.2 (Weak) Consistency of the OLS Estimator

Assumptions for (weakly) consistent OLS estimator

Below we list the assumptions for OLS estimator to be (weakly) consistent.

Assumption 1b

The quantity x·r = (x1r, · · · , xJr)T is the realization of the r-th stochastic

explanatory variables whose distribution has finite mean µxr and finite vari-

ance σ2
xr

.40

40The mean of x·r is calculated using the joint distribution fX·1,...,X·R(x·1, . . . ,x·R) as

µxr = E[x·r] =

∫
x·r

∫
. . .

∫
fX·1,...,X·R(x·1, . . . ,x·R)dx·1, . . . , dx·r−1, dx·r+1, . . . , dx·R

=

∫
x·rfX·r (x·r)dx·r.

The variance σ2
xr

can be calculated similarly.
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Assumption 1c

The R stochastic explanatory variables x·1, . . . ,x·R do not have to be in-

dependent, nor identically distributed across r. Therefore the covariance

between x·k and x·r(k 6= r) is not necessarily zero and is defined as σ2
xk,xr

,

assuming their joint distributions have joint moments up to a second order.41

Assumption 1d

The set of explanatory variable xi· = (xi1, · · · , xir, · · · , xiR) is independent

across i. In other words, R explanatory variables are jointly sampled inde-

pendently over J samples.

On the error term

The error term εi = (ε1, . . . , εJ)T is the collection of measurement errors and

the residue effects of the variables not included in the model. We assume

that we are able to specify a good set of explanatory variables, and thus we

are able to assume the following:

41The covariance between x·k and x·r(k 6= r) is written as

σ2
xk,xr

= Cov(x·k,x·r) = E[xk,xr]− E[xk]E[xr].

The term E[xk] and E[xr] has finite values from Assumption 1b. The term E[xk,xr]

can be calculated using the joint distribution fX·1,...,X·R(x·1, . . . ,x·R) as

E[xk,xr] =

∫ ∫
x·k,x·r

∫
. . .

∫
fX·1,...,X·R(x·1, . . . ,x·r, . . . ,x·R)

dx·1, . . . , dx·k−1, dx·k+1, . . . , dx·r−1, dx·r+1, . . . , dx·R

=

∫ ∫
x·k,x·rfX·k,X·r (x·k,x·r)dx·kdx·r.
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Assumption 2a

E[εi] = 0, (A.4.6)

where 0 is J × 1 vector of zeros.

Assumption 2b

The terms εi are i.i.d. across i.

On the relationship between explanatory variables and error term

Assumption 3a

Between explanatory variable xir and the error εi for the same individual i,

we assume

Cov(xir · εi) = 0 (A.4.7)

for i = 1, . . . , J and r = 1, . . . , R. This assumption along with Assumption

2a and Assumption 2a leads to the condition42

E[xir · εi] = 0 (A.4.8)

for i = 1, . . . , J and r = 1, . . . , R. This suggests the orthogonal condition of

xir and εi, which is standard assumption of OLS.

With these assumptions, the (weak) consistency of OLS estimator is

shown as follows: The second term of the right hand side of (A.4.5) can

be rewritten as

(XTX)−1XTεi = (J−1XTX)−1J−1XTεi. (A.4.9)

42From (A.4.6) and (A.4.7), we have

E[xir · εi] = Cov(xir, εi) + E[xir]E[εi] = 0 + E[xir] · 0 = 0.
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Since elements of x·r are i.i.d. across i for all r from Assumption 1b,

Etemadi’s Strong Law of Large Numbers (SLLN) can be applied. With

the SLLN, (r, r)-th and (k, r)-th element of (A.4.3) times J−1 respectively

converge to their moments as

J−1(XTX)rr = J−1

J∑
i=1

xir
2 a.s.→ E[xT·r · x·r] = µ2

xr
+ σ2

xr
,

from Assumption 1b and

J−1(XTX)kr = J−1

J∑
i=1

(xik · xir)
a.s.→ E[xT·k · x·r] = µxk

· µxr + σ2
xk,xr

,

from Assumption 1b and Assumption 1c. Therefore, J−1XTX has non-

stochastic probability limit Q, since almost sure convergence implies conver-

gence in probability. The elements of Q are written as

plim
J→∞

J−1XTX ≡ Q =



E[x·1
T · x·1] · · · E[x·1

T · x·r] · · · E[x·1
T · x·R]

...
. . .

...
. . .

...

E[x·r
T · x·1] · · · E[x·r

T · x·r] · · · E[x·r
T · x·R]

...
. . .

...
. . .

...

E[x·R
T · x·1] · · · E[x·R

T · x·r] · · · E[x·R
T · x·R]



=



µ2
x1

+ σ2
x1

· · · µx1 · µxr + σ2
x1,xr

· · · µx1 · µxR
+ σ2

x1,xR

...
. . .

...
. . .

...

µxr · µx1 + σ2
xr,x1

· · · µ2
xr

+ σ2
xr

· · · µxr · µxR
+ σ2

xr,xR

...
. . .

...
. . .

...

µxR
· µx1 + σ2

xR,x1
· · · µxR

· µxr + σ2
xR,xr

· · · µ2
xR

+ σ2
xr


.

Thus we have

plim(J−1XTX)−1 = Q−1

as long asXTX is invertible because of Continuous Mapping Theorem, since

the inverse operator is continuous on the space of invertible matrices. Since
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XTX is invertible from Assumption 1a, (J−1XTX)−1 p→ Q−1 holds. Like-

wise, XTεi can be written as

XTεi =
[
x1·

T · · ·xi·T · · ·xJ ·T
]
εi =



x·1
T

...

x·r
T

...

x·R
T


εi

=



x11 · · · xi1 · · · xJ1

...
. . .

...
. . .

...

x1r · · · xir · · · xJr
...

. . .
...

. . .
...

x1R · · · xiR · · · xJR





ε1
...

εi
...

εJ


=



∑J
i=1 xi1 · εi

...∑J
i=1 xir · εi

...∑J
i=1 xiR · εi


.

(A.4.10)

Let us denote r-th row of a vector as (XTεi)r and multiply it by J−1, and

write

J−1 · (XTεi)r = J−1

J∑
i=1

xir · εi. (A.4.11)

From the SLLN, the equation (A.4.11) becomes

J−1

J∑
i=1

xir · εi
a.s.→ E(xir · εi) = 0, (A.4.12)

from the condition (A.4.8). Since (A.4.12) holds for every r = 1, . . . , R from

Assumption 3a, J−1XTεi have nonstochastic probability limit of 0 as

plim
J→∞

J−1XTεi = 0.

Thus the plim of the second term of the right side of the equation in (A.4.5)

becomes(
plim
J→∞

J−1XTX

)−1(
plim
J→∞

J−1XTεi

)
= (Q)−1 · 0 = 0
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from Slutsky’s theorem. Therefore, the OLS estimator is (weakly) consistent

since the second term in the last equation of (A.4.5) becomes a vector of

zeros.

Remark If, on the other hand, the explanatory variables are correlated

with error term as E[xir · εi] 6= 0 for some r, the OLS estimator in general is

not (weakly) consistent. Such a situation is taken care of in the next section

by introducing the 2SLS method.

A.4.3 Asymptotic Normality of the OLS Estimator

Asymptotic normality of OLS estimator will be demonstrated in this subsec-

tion. We first need an additional set of assumptions required for asymptotic

normality of OLS estimator as follows:

On the error term (continued.)

Assumption 2c

E[εiε
T
i ] = σ2I. (A.4.13)

On the relationship between explanatory variables and error term

(continued.)

Assumption 3b

The variance covariance matrix of XTεi are finite as

E[(XTεi)(X
Tεi)

T ] <∞.
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From (A.4.5), we have

√
J(β̂OLS − β) = {J−1(XTX)}−1J−1/2XTεi. (A.4.14)

Let us examine the asymptotic property J−1/2XTεi in the following. We

see that XTεi can be written as XTεi =
∑J

i=1 x
T
i·εi from (A.4.10). From

Assumption 3a, xTi·εi has mean 0 and its covariance E[(XTεi)(X
Tεi)

T ]

is finite from Assumption 3b. Then
∑J

i=1 x
T
i·εi becomes, as we will show

soon, as

J−1/2

J∑
i=1

xTi·εi
w
; N(0,BX), (A.4.15)

where BX is asymptotic variance of XTεi which is

V (XTεi) = E[(XTεi)(X
Tεi)

T ]− E[(XTεi)]E[(XTεi)
T ]

= E[(XTεi)(X
Tεi)

T ] = E[XTεiε
T
i X]. (A.4.16)

Since the term E[XTεiε
T
i X] involves two random variables, it can be written

as

E[XTεiε
T
i X] =

∫ ∫ (
XTεiε

T
i X
)
fX,εi(X, εi)dXdεi

=

∫ [∫ (
εiε

T
i |XTX = xTx

)
fεi|X(εi|X)dεi

]
XTXfX(X)dX

= E
[
εiε

T
i |xTx

] ∫
XTXfX(X)dX

= E
[
εiε

T
i

]
E
[
XTX

]
,

since X and εi are orthogonal from Assumption 3a. From Assumption

2c, we have

V (XTεi) = σ2E[XTX].

Iin order to show (A.4.15), we first need the following theorem.
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Theorem A.4.3.1 43

For random vectors X = (X1, · · · , XR) and Y = (Y1, · · · , YR), a necessary

and sufficient condition for X
w
; Y is that

R∑
r=1

trXr
w
;

R∑
r=1

trYr

for each t = (t1, · · · , tR) in RR.

Proof The necessity part will be proven first as follows: Define the function

ht(x) = t · x, which maps RR → R1, where t · x denotes the inner product.

Let us assume that this mapping RR → R1 is measurable and the set of Dh

of its discontinuities are measurable. If Pr{X ∈ Dh} = 0, Pr{Y ∈ Dh} = 0

and X
w
; Y, then

R∑
r=1

trXr = ht(X)
w
; ht(Y) =

R∑
r=1

trYr

holds from Continuous Mapping Theorem.

The sufficiency of the proof is as follows: The continuity theorem implies

that if for one dimensional characteristic function ofX, E[exp(is
∑R

r=1 trXr)]

converges to that of Y, E[exp(is
∑R

r=1 trYr)] or

E[exp(is
R∑
r=1

trXr)]
w
; E[exp(is

R∑
r=1

trYr)] for all s,

then it follows that X
w
; Y. If we let s = 1, we immediately know that

the characteristic function of X converges pointwisely to that of Y from the

assumption of the Theorem. �

43See (Billingsley, 1986, 397).
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Let Si =
∑J

i=1 x
T
i·εi for notational convenience and define Y = (Y1, · · · , YR)

which is normally distributed with mean 0 and covariance matrix BY . For

given t = (t1, · · · , tR), let

Zi =
R∑
r=1

tr · xTi·εi,

Z =
R∑
r=1

tr · Yr.

From Theorem A.4.3.1, it suffices to show that

J−1/2

J∑
i=1

Zi
w
; Z (A.4.17)

for arbitrary t. We have

J−1/2

J∑
i=1

Zi = J−1/2

J∑
i=1

R∑
r=1

tr · xTi·εi = J−1/2

R∑
r=1

tr

J∑
i=1

xTi·εi = J−1/2

R∑
r=1

trSi.

Since variance of Si is finite from Assumption 3b, Lindeberg’s condition

holds as E[(XTεi)(X
Tεi)

T ]{|XTεi| > εi} → 0 as J →∞ for some constant

vector εi > 0 from Assumption 3a. Then Lindeberg-Lévy Central Limit

Theorem suggests J−1/2Si
w
; N(0, σ2) for all i. Then condition (A.4.17)

holds as

J−1/2

R∑
r=1

trSi
w
;

R∑
r=1

trYr,

for all i. Then from the Theorem A.4.3.1, we have

J−1/2

J∑
i=1

xTi·εi
w
; Y

or

J−1/2

J∑
i=1

xTi·εi
w
; N(0,BX).

The equation (A.4.14) becomes

√
J(β̂OLS − β)

w
; N(0,Q−1BXQ

−1).

102



Since BX = σ2Q, we have

√
J(β̂OLS − β)

w
; N(0, σ2Q−1).

This tells us that β̂OLS will be normally distributed with mean β as sample

increases. This property is called asymptotic normality of OLS.

A.5 The Standard Asymptotic Result of Two-

Stage Least Squares (2SLS) Estimator

In this section, the property of 2SLS Estimator is presented.

A.5.1 Assumptions of the 2SLS Estimator

Remember a standard linear regression model with J observations in (A.4.1)

as

y = Xβ + ε

with assumptions

E(εi) = 0,

Cov(xir, εi) = 0, i = 1, . . . , J, r = 1, . . . , R− 1.

This time, assume that an ith element of Rth column vector ofX, xiR, is cor-

related with the error term εi, but the other elements of xi·, (xi1, . . . , xi,R−1)

are uncorrelated with εi for i = 1, . . . , J . For instance, in equality (A.2.8), it

is clear that the unobserved product quality ξm is correlated to at least one

of xm· such as prices. As we discussed at the end of the previous section,

the ordinary least square method would lead to an inconsistent estimator in

such a situation because of the correlation between xiR and εi.
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The 2SLS method to be discussed below is one way to find a (weak) consis-

tent estimator even in such case. In this method, what is called “instrumen-

tal variable”, denoted as zih, h = 1, . . . ,M , is introduced. The instrumental

variables are defined as the variables such that

Cov(zih, xiR) 6= 0

Cov(zih, εi) = 0

 for h = 1, . . . ,M, i = 1, . . . , J.

If the variables (xi1, . . . , xi,R−1) satisfy the condition above, they also can

serve as the instrumental variable for xiR. Define the matrix

Z ≡ (z1·, , . . . , zi·, . . . ,zJ ·)
T ,

where zi· ≡ (xi1, . . . , xi,R−1, zi1, . . . , ziM) is an 1×L vector (L = R−1+M) of

instrumental variables, whose lth column is denoted as z·l. Let us assume, as

in the previous section, that for a given l, the elements of z·l are realizations

of lth stochastic variables whose moments exist up to second order, and zil

is i.i.d. across i. Let us denote its population mean and variance of z·l as µzl

and σzl respectively.

A.5.2 The 2SLS Estimator

In the first step of 2SLS method, the Rth column vector of X is regressed by

OLS on the space spanned by the column vector of instrumental variables Z

to obtain x̂·R. We can write

x̂·R =



x̂1R

...

x̂iR
...

x̂JR


=



x11 · · · x1,R−1 z11 · · · z1M

...
. . .

...
. . .

...

xi1 · · · xi,R−1 zi1 · · · ziM
...

. . .
...

. . .
...

xJ1 · · · xJ,R−1 zJ1 · · · zJM


b1 = Zb1,
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where b1 ≡ (b1
1, . . . , bL

1)T is L× 1 vector of parameters. Define X̂ as X̂ ≡

(x̂1·, . . . , x̂i·, . . . , x̂J ·)
T , where x̂i· ≡ (xi1, . . . , xi,R−1, x̂iR).

As the second step, y is regressed on X̂ to obtain the 2SLS estimator

denoted as β̂2sls, as

β̂2SLS = (X̂TX)−1X̂Ty, (A.5.1)

assuming that X̂TX is invertible. Since x̂·R is orthogonal projection, b1 =

(ZTZ)−1ZT x̂·R, the projection matrix associated with this operation Pz is

Pz = Z(ZTZ)−1ZT .

Since Pz is symmetric idempotent, we have

X̂TX̂ = (PzX)T PzX = XTPz
T · PzX

= XTPz
TPz

TX = XTPz
TX = (PzX)T X = X̂TX.

Let us write X̂ using Z as X̂ = Zb as

X̂ =



x11 · · · x1,R−1 · · · x̂1R

...
. . .

...
. . .

...

xi1 · · · xi,R−1 · · · x̂iR
...

. . .
...

. . .
...

xJ1 · · · xJ,R−1 · · · x̂JR


=



x11 · · · x1,R−1 z11 · · · z1M

...
. . .

...
. . .

...

xi1 · · · xi,R−1 zi1 · · · ziM
...

. . .
...

. . .
...

xJ1 · · · xJ,R−1 zJ1 · · · zJM


·



1 . . . 0 b1
1

...
. . .

...
...

0 . . . 1
...

0 . . . 0
...

...
. . .

...
...

0 . . . 0 bL
1


= Zb. (A.5.2)
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There is (R− 1)× (R− 1) identity matrix stacked on the M × (R− 1) zero

matrix in the last matrix b, which corresponds to (x·1, . . . ,x·R−1), whereas

(b1
1, . . . , bL

1) in the last matrix corresponds to x̂·R as the product of Z and

(b1
1, . . . , bL

1) produces x̂·R. The quantity b is an (L×R) matrix

b = (ZTZ)−1ZTX, (A.5.3)

since Zb = Z(ZTZ)−1ZTX = PzX=X̂. With (A.5.2) and (A.5.3), X̂TX

can be written as

X̂TX = (Zb)TX = bTZTX = XTZ(ZTZ)−1ZTX. (A.5.4)

In the same manner, X̂Ty can be written as

X̂Ty = (Zb)Ty = bTZTy = XTZ(ZTZ)−1(ZTy). (A.5.5)

Let us substitute (A.5.4) and (A.5.5) for (A.5.1) to obtain

β̂2SLS =
(
XTZ(ZTZ)−1ZTX

)−1 ·
(
XTZ(ZTZ)−1ZTy

)
. (A.5.6)

Substituting (A.4.1) to (A.5.6), we have the 2SLS estimator as

β̂2SLS =
(
XTZ(ZTZ)−1ZTX

)−1

·
(
XTZ(ZTZ)−1ZT (Xβ + ε)

)
=

(
XTZ(ZTZ)−1ZTX

)−1

·
(
XTZ(ZTZ)−1ZTX

)
β

+
(
XTZ(ZTZ)−1ZTX

)−1

·
(
XTZ(ZTZ)−1ZTε

)
= β +

(
J−1XTZ(J−1ZTZ)−1J−1ZTX

)−1

·
(
J−1XTZ(J−1ZTZ)−1J−1ZTε

)
. (A.5.7)

If the second term in the last equation above goes to 0 as sample size in-

creases, the 2SLS estimator is consistent, which is the case under certain

conditions as we will show in the next subsection.
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A.5.3 (Weak) Consistency of the 2SLS Estimator

The (weak) consistency of 2SLS estimator would be shown in this subsection.

The assumptions needed for 2SLS estimator to be (weak) consistent are

E[(xTi·εi)
T (xTi·εi)] <∞, (A.5.8)

E(zi·
T εi) = 0, i = 1, . . . , J, (A.5.9)

E[(zTi· εi)
T (zTi· εi)] <∞, i = 1, . . . , J, (A.5.10)

rank E(ZTZ) = L, (A.5.11)

rank E(ZTX) = R. (A.5.12)

As in the last section, let us assume that x·r has population mean µxr and

population variance σxr
2 for r = 1, . . . , R, and that the joint distribution of

x·R and z·l has a moment up to second order. Then matrices XTZ,ZTZ,

and ZTX are

XTZ =



x·1
T · z·1 · · · x·1

T · z·l · · · x·1
T · z·L

...
. . .

...
. . .

...

x·r
T · z·1 · · · x·r

T · z·l · · · x·r
T · z·L

...
. . .

...
. . .

...

x·R
T · z·1 · · · x·R

T · z·l · · · x·R
T · z·L


,

ZTZ =



z·1
T · z·1 · · · z·1

T · z·l · · · z·1
T · z·L

...
. . .

...
. . .

...

z·l
T · z·1 · · · z·l

T · z·l · · · z·l
T · z·L

...
. . .

...
. . .

...

z·L
T · z·1 · · · z·L

T · z·l · · · z·L
T · z·L


,
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and

ZTX =



z·1
T · x·1 · · · z·1

T · x·r · · · z·1
T · x·R

...
. . .

...
. . .

...

z·l
T · x·1 · · · z·l

T · x·r · · · z·l
T · x·R

...
. . .

...
. . .

...

z·L
T · x·1 · · · z·L

T · x·r · · · z·L
T · x·R


,

respectively.

Since elements of x·r and z·l are assumed to be i.i.d. across i, Etemadi’s

SLLN can be applied, assuming the mean µxr and µzl are finite for all r and

l. We have

J−11 · x·r = J−1

J∑
i=1

xir
a.s.→ E(x·r) = µxr , r = 1, . . . , R

and

J−11 · z·l = J−1

J∑
i=1

zil
a.s.→ E(z·l) = µzl , l = 1, . . . , L.

As stated in the previous section, SLLN can be applied to the sample average

of square of z·l, and sample average of the product of x·r ·z·l as long as their

means are finite. The terms J−1z·l
Tz·l converge as

J−1

J∑
i=1

zil
2 a.s.→ E(z·l

2) = µzl
2 + σzl

2

for l = 1, . . . , L, since σzl
2 = E(z·l

2) − µzl
2. The terms J−1zg

Tzh (g 6= h)

converge as

J−1

J∑
i=1

(zig · zih)
a.s.→ E(z·g · z·h) = µzg · µzh + σzg ,zh

2

since σzg ,zh
2, the covariance between z·g and z·h, equals to E(z·g·z·h)−µzg ·µzh .

Also J−1x·r
T · z·l converges as

J−1

J∑
i=1

(xir · zil)
a.s.→ E(x·r · z·l) = µxr · µzl + σxr,zl

2
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for l = 1, . . . , L and r = 1, . . . , R, since σxrzl
2, the covariance between x·r

and z·l, equals to E(x·r · z·l) − µxr · µzl , as J increases. The same is

true for J−1z·l
T · x·r. Therefore, J−1XTZ, J−1ZTZ and J−1ZTX have

non-stochastic probability limits denoted as QXTZ , QZTZ , and QZTX re-

spectively, since almost sure convergence implies convergence in probability.

Therefore we have

plim
J→∞

J−1XTZ ≡ QXTZ =



E(x·1
T · z·1) · · · E(x·1

T · z·l) · · · E(x·1
T · z·L)

...
. . .

...
. . .

...

E(x·r
T · z·1) · · · E(x·r

T · z·l) · · · E(x·r
T · z·L)

...
. . .

...
. . .

...

E(x·R
T · z·1) · · · E(x·R

T · z·l) · · · E(x·R
T · z·L)



=



µx1 · µz1 + σx1,z1
2 · · · µx1 · µzl + σx1,zl

2 · · · µx1 · µzL + σx1,zL
2

...
. . .

...
. . .

...

µxr · µz1 + σxr,z1
2 · · · µxr · µzl + σxr,zl

2 · · · µxr · µzL + σxr,zL
2

...
. . .

...
. . .

...

µxR
· µz1 + σxR,z1

2 · · · µxR
· µzl + σxR,zl

2 · · · µxR
· µzL + σxR,zL

2


,

plim
J→∞

J−1ZTZ ≡ QZTZ =



E(z·1
T · z·1) · · · E(z·1

T · z·l) · · · E(z·1
T · z·L)

...
. . .

...
. . .

...

E(z·l
T · z·1) · · · E(z·l

T · z·l) · · · E(z·l
T · z·L)

...
. . .

...
. . .

...

E(z·L
T · z·1) · · · E(z·L

T · z·l) · · · E(z·L
T · z·L)



=



µz1
2 + σz1

2 · · · µz1 · µzl + σz1,zl
2 · · · µz1 · µzL + σz1,zL

2

...
. . .

...
. . .

...

µzl · µz1 + σzl,z1
2 · · · µzl

2 + σzl
2 · · · µzl · µzL + σzl,zL

2

...
. . .

...
. . .

...

µzL · µz1 + σzL,z1
2 · · · µzL · µzl + σzL,zl

2 · · · µzL
2 + σzL

2


,
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and

plim
J→∞

J−1ZTX ≡ QZTX =



E(z·1
T · x·1) · · · E(z·1

T · x·r) · · · E(z·1
T · x·R)

...
. . .

...
. . .

...

E(z·l
T · x·1) · · · E(z·l

T · x·r) · · · E(z·l
T · x·R)

...
. . .

...
. . .

...

E(z·L
T · x·1) · · · E(z·L

T · x·r) · · · E(z·L
T · x·R)



=



µz1 · µx1 + σz1,x1
2 · · · µz1 · µxr + σz1,xr

2 · · · µz1 · µxR
+ σz1,xR

2

...
. . .

...
. . .

...

µzl · µx1 + σzl,x1
2 · · · µzl · µxr + σzl,xr

2 · · · µzl · µxR
+ σzl,xR

2

...
. . .

...
. . .

...

µzL · µx1 + σzL,x1
2 · · · µzL · µxr + σzL,xr

2 · · · µzL · µxR
+ σzL,xR

2


.

Likewise, ZTε can be written as

ZTε =
[
z1·

T . . . zi·
T . . . , zJ ·

T

]


ε1
...

εi
...

εJ


=



z·1
T

...

z·l
T

...

z·L
T


ε

=



z11 · · · zi1 · · · zJ1

...
. . .

...
. . .

...

z1l · · · zil · · · zJl
...

. . .
...

. . .
...

z1L · · · ziL · · · zJL





ε1
...

εi
...

εJ


=



∑J
i=1 zi1 · εi

...∑J
i=1 zil · εi

...∑J
i=1 ziL · εi


=



z·1
Tε
...

z·l
Tε
...

z·L
Tε


.

(A.5.13)

If we multiply resulting vector on the right-hand side of the equation in
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(A.5.13) by J−1, we can write lth row of J−1ZTε as

J−1

J∑
i=1

zil · εi.

From assumption (A.5.9) and Etemadi’s SLLN, we have

J−1

J∑
i=1

zil · εi
a.s.→ E(zil · εi) = 0. (A.5.14)

Since the equation (A.5.14) holds for every l, J−1ZTε have nonstochastic

probability limit of 0 as

plim
J→∞

J−1ZTε = 0.

The matrix QZTZ is invertible from assumption (A.5.11). Also, since

QXTZ ·QZTZ
−1 ·QZTX is (R×L)× (L×L)× (L×R) = R×R matrix from

(A.5.11) and (A.5.12), this is nonsingular matrix and is invertible. Therefore,

from matrix inverse rule, we have

(J−1ZTZ)−1 p→ QZTZ
−1

and

[J−1XTZ(J−1ZTZ)−1J−1ZTX]−1 p→ (QXTZ ·QZTZ
−1 ·QZTX)−1.

Thus the probability limit of the second term in (A.5.7) becomes 0 from

Slutsky’s theorem as

β +
(
J−1XTZ(J−1ZTZ)−1J−1ZTb

)−1

·
(
J−1XTZ(J−1ZTZ)−1J−1ZTε

)
p→ β + (QXTZ ·QZTZ

−1 ·QZTX)−1 ·QXTZ ·QZTZ
−1 · 0 = β.

Therefore, the consistency of 2SLS estimator is proven. 2SLS estimator is

simply called instrumental variable estimator when the number L equal to

that of R.
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A.5.4 Asymptotic Normality of the 2SLS Estimator

From the (A.5.7), we see that

β̂2SLS − β =
(
J−1XTZ(J−1ZTZ)−1J−1ZTX

)−1

·
(
J−1XTZ(J−1ZTZ)−1J−1ZTε

)
and

√
J(β̂2SLS − β) =

(
J−1XTZ(J−1ZTZ)−1J−1ZTX

)−1

·
(
J−1XTZ(J−1ZTZ)−1J−1/2ZTε

)
.

(A.5.15)

The term ZTε on the right-hand side of the equation (A.5.15) can be written

as

ZTε =
∑J

i=1 z
T
i· εi =



z11

...

z1l

...

z1L


ε1 + . . .+



zi1
...

zil
...

ziL


εi + . . .+



zJ1

...

zJl
...

zJL


εJ .

Therefore, zTi· εi is a sequence of i.i.d. L×1 vectors such that E[(zTi· εi)
T (zTi· εi)]

is finite from the assumption, and its mean is 0 from assumption as well.

Then it follows that
∑J

i=1 z
T
i· εi satisfies the condition for Lindeberg-Lévy

Central Limit Theorem which requires

E(zTi· εi)
2{|zTi· εi| > ε} → 0

for some ε > 0. Then
∑J

i=1 z
T
i· εi satisfies the Lindeberg-Lévy Central Limit

Theorem as

J−1/2

J∑
i=1

zTi· εi
w→ N(0,BZ),
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where BZ is a variance of ZTε which is

V (ZTε) = E[(ZT · ε)2]− [E(ZT · ε)]2 = E[(ZT · ε)2]− 0

= E[(ZT · ε)(ZT · ε)T ] = E[(ZT · ε)(εT · xi·)]

= E(ε2ZTZ) = E(ε2)E(ZTZ).

It follows that (A.5.15) is asymptotically normally distributed with mean 0

and variance matrix V2SLS as

V2SLS = (Q)−1 ·QXTZ ·QZTZ
−1
(
E(ε2)QZTZ

)
·
[
(Q)−1QXTZ ·QZTZ

−1
]T

= E(ε2)(Q)−1QXTZ ·QZTZ
−1 ·QZTZ ·

QZTZ
−1 ·QZTX ·

{[
QXTZ ·QZTZ

−1 ·QZTX

]T}−1

= E(ε2)(Q)−1QXTZ ·QZTZ
−1 ·QZTX ·

{
QXTZ ·QZTZ

−1 ·QZTX

}−1

= E(ε2)(Q)−1,

since E(ZTZ) = QZTZ , where (Q)−1 is (QXTZ ·Q−1
ZTZ
·QZTX)−1. Again,

we assume that variance of error term to be σ2. Then we can write

√
J(β̂2SLS − β)

w→ N(0, σ2(QXTZ ·Q−1
ZTZ
·QZTX)−1).

A.6 Scoring (Newton-Raphson) Method

In order to maximize the (log) likelihood function, the algorithm called scor-

ing method, the variant of Newton-Raphson method, can be employed. First

we explain Newton-Raphson method. We denote the β at (t + 1)-th itera-

tion by adding superscript as β(t+1). In this method, a second-order Taylor

expansion of LL(β(t+1)) around LL(β(t)) is taken as

LL(β(t+1)) =
(
β(t+1) − β(t)

)T
gt +

1

2

(
β(t+1) − β(t)

)T
Ht

(
β(t+1) − β(t)

)
,

(A.6.1)
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where R× 1 vector gt is the gradient at β(t)

gt =

(
∂LL(β)

∂β

)∣∣∣∣
β=β(t)

and R×R matrix Ht is matrix of the second derivatives

Ht =

(
∂gt
∂β

)∣∣∣∣
β=β∗

=

(
∂2LL(β)

∂β∂βT

)∣∣∣∣
β=β∗

where β∗ is between β(t) and β(t+1). The value of β(t+1) maximizing (A.6.1)

is obtained by setting its derivative zero as

∂LL
(
β(t+1)

)
∂β(t+1)

= gt +Ht

(
β(t+1) − β(t)

)
= 0.

This means

β(t+1) = β(t) +
(
−H−1

t gt
)
,

assuming Ht is invertible.

The scoring method is version of Newton-Raphson method where by the

likelihood function l
(t)
s

(
π,β

(t)
s |H ,Z

)
is replaced with its expected value

E
[
l
(t)
s

(
π,β

(t)
s |H ,Z

)]
to reduce the average number of iterations that can

fluctuate from sample to sample if we employ the random l
(t)
s

(
π,β

(t)
s |H ,Z

)
.

A.6.1 Estimating Parameters

In this subsection, we demonstrate how to calculate gradient and Hessian

in the standard logit specification. We assume that a panel data of pur-

chase histories for consumers i = 1, . . . , N who purchase one of j = 1, . . . , J

products at ti = 1, . . . , Ti occasions. We also assume that all the products

are available for the group of consumers. Remember that the standard logit

model, by modifying (2.4.3), can be written as

Pr(j|β) =
exp(xijtiβ)∑J
l=1 exp(xiltiβ)
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where xijti is 1×R vector and β is R× 1 parameter vector. Accordingly the

likelihood function of the logit model can be written as

L(β) =
N∏
i=1

Ti∏
ti=1

J∏
j=1

(Pr(j|β))yijti ,

and the log likelihood is written as

l(β) =
N∑
i=1

Ti∑
ti=1

J∑
j=1

yijti log(Pr(j|β))

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

yijti log(exp(xijtiβ)−
J∑
l=1

exp(xiltiβ))

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

yijti

{
xijtiβ − log

(
J∑
l=1

exp(xiltiβ)

)}
. (A.6.2)

The gradient

Differentiating (A.6.2) with respect to the vector β, we have tentatively

∂l(β)

∂β
=

N∑
i=1

Ti∑
ti=1

J∑
j=1

yijti

xTijti −
(
∂
∑J

l=1 exp(xilti
β)

∂β

)
∑J

l=1 exp(xiltiβ)

 , (A.6.3)

since

∂xijtiβ

∂β
=


∂xijti

β

∂β1
...

∂xijti
β

∂βR

 =


xijti1

...

xijtiR

 = xTijti .
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The last term on the right hand side of (A.6.3) is

∂
∑J

l=1 exp(xiltiβ)

∂β
=

J∑
l=1



∂ exp(xilti
β)

∂β1
∂ exp(xilti

β)

∂β2
...

∂ exp(xilti
β)

∂βR

 =
J∑
l=1


exp(xiltiβ)xilti1

exp(xiltiβ)xilti2
...

exp(xiltiβ)xiltiR



=
J∑
l=1

exp(xiltiβ)


xilti1

xilti2
...

xiltiR

 =
J∑
l=1

exp(xiltiβ)xTilti .

(A.6.4)

Substituting (A.6.4) back to (A.6.3) yields

∂l(β)

∂β
=

N∑
i=1

Ti∑
ti=1

J∑
j=1

yijti

{
xTijti −

∑J
l=1(exp(xiltiβ)xTilti)∑J

l=1 exp(xiltiβ)

}

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

{
yijtix

T
ijti
−
yijti

∑J
l=1

(
exp(xiltiβ)xTilti

)∑J
l=1 exp(xiltiβ)

}

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

{
yijtix

T
ijti
−

exp(xijtiβ)xTijti∑J
l=1 exp(xiltiβ)

}

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

{
yijtix

T
ijti
− Pri(j|β)xTijti

}
=

N∑
i=1

Ti∑
ti=1

J∑
j=1

{yijti − Pri(j|β)}xTijti . (A.6.5)

This is R× 1 vector of gradient.
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The Hessian

Differentiate (A.6.5) further with respect to βT to obtain tentatively

∂2l(β)

∂β∂βT
=

∂
(∑N

i=1

∑Ti
ti=1

∑J
j=1 {yijti − Pri(j|β)}xTijti

)
∂βT

= −
N∑
i=1

Ti∑
ti=1

J∑
j=1

∂Pri(j|β)

∂βT
xTijti , (A.6.6)

where from (A.6.4)

∂Pri(j|β)

∂βT
=

∂ exp(xijti
β)

∂βT

∑J
l=1 exp(xiltiβ)− exp(xijtiβ)

∂
∑J

l=1 exp(xilti
β)

∂βT

(
∑J

l=1 exp(xiltiβ))2
.

(A.6.7)

Since the term ∂ exp(xijtiβ)/∂βT becomes

∂ exp(xijtiβ)

∂βT
=

[
∂ exp(xijtiβ)

∂β1

, . . . ,
∂ exp(xijtiβ)

∂βR

]
= [exp(xijtiβ)xijti1, . . . , exp(xijtiβ)xijtiR]

= exp(xijtiβ)[xijti1, . . . , xijtiR] = exp(xijtiβ)xijti ,

and

∂
∑J

l=1 exp(xiltiβ)

∂βT
=

∂
∑J

l=1 exp(xiltiβ)

∂xijtiβ
· ∂xijtiβ
∂βT

= exp(xijtiβ) ·
[
∂xijtiβ

∂β1

, . . . ,
∂xijtiβ

∂βR

]
= exp(xijtiβ) · [xijti1, . . . , xijtiR]

= exp(xijtiβ) · xijti ,

the equation (A.6.7) becomes

∂Pri(j|β)

∂βT
=

exp(xijtiβ)xijti
∑J

l=1 exp(xiltiβ)− exp(xijtiβ) exp(xiltiβ)xijti

(
∑J

l=1 exp(xiltiβ))2

=
exp(xijtiβ)xijti∑J
l=1 exp(xiltiβ)

− exp(xijtiβ)∑J
l=1 exp(xiltiβ)

exp(xijtiβ)∑J
l=1 exp(xiltiβ)

xijti

= Pri(j|β)xijti − {Pri(j|β)}2xijti . (A.6.8)
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Substituting (A.6.8) back into (A.6.6) yields

∂2l(β)

∂β∂βT
= −

N∑
i=1

Ti∑
ti=1

J∑
j=1

∂Pri(j|β)

∂βT
xTijti

= −
N∑
i=1

Ti∑
ti=1

J∑
j=1

(
Pri(j|β)xijti − {Pri(j|β)}2xijti

)
xTijti

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

(
{Pri(j|β)}2xTijtixijti − Pri(j|β)xTijtixijti

)
=

N∑
i=1

Ti∑
ti=1

J∑
j=1

{Pri(j|β)}2xTijtixijti −
N∑
i=1

Ti∑
ti=1

J∑
j=1

Pri(j|β)xTijtixijti ,

which is R×R Hessian matrix.

A.6.2 BHHH Method

One of the alternative methods to Newton-Raphson method is BHHH method

which would be introduced in this subsection. The Newton-Raphson method

has two major drawbacks: calculating the Hessian is sometimes computation-

intensive and it does not guarantee an increase in the log-likelihood if the

log-likelihood is not globally concave.

The BHHH method uses a matrix of the outer products of the score as

the alternative to the negative Hessian in determining the next step. The

score of an observation for consumer i, indexed by si(βr), is defined as the

derivative of the observation’s log-likelihood with respect to the parameter

βr which is in the form of

si(βr) =
∂ ln(Pr(j|β))

∂βr
.

Since the the log likelihood function for a standard logit model is written as

l(β) =
J∑
j=1

yij

{
xijtiβ − ln

(
J∑
l=1

exp(xiltiβ)

)}
,
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differentiating it with respect to vector βr yields

si(βr) =
∂l(β)

∂βr
=

J∑
j=1

yij

xijtir −
(
∂
∑J

l=1 exp(xilti
β)

∂βr

)
∑J

l=1 exp(xiltiβ)

 , (A.6.9)

since

∂xijtiβ

∂βr
= xijtir.

The last term in (A.6.9) is

∂
∑J

l=1 exp(xiltiβ)

∂βr
=

J∑
l=1

∂ exp(xiltiβ)

∂βr
=

J∑
l=1

(exp(xiltiβ)xiltir) .

(A.6.10)

Substituting (A.6.10) back to (A.6.9) yields

si(βr) =
J∑
j=1

yij

{
xijtir −

∑J
l=1 (exp(xiltiβ)xiltir)∑J

l=1 exp(xiltiβ)

}

=
J∑
j=1

{
yijxijtir −

yij
∑J

l=1 (exp(xiltiβ)xiltir)∑J
l=1 exp(xiltiβ)

}

=
J∑
j=1

{
yijxijtir −

exp(xijtiβ)xijtir∑J
l=1 exp(xiltiβ)

}

=
J∑
j=1

{yijxijtir − Pri(j|β)xijtir} =
J∑
j=1

{yij − Pri(j|β)}xijtir.

We repeat the above procedure for r = 1, · · · , R and stack them as R×1 vec-

tor which we denote si(β). In the BHHH algorithm, the matrix si(β)si(β)T

is used instead of negative of Hessian in Newton-Raphson method.

A.6.3 Variance of Estimates

The asymptotic covariance for correctly specified model is calculated as

√
N(β̂ − β0)

d→ N(0,−H−1)
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where β̂ is the maximum likelihood estimator, β0 denotes the true value

of the parameter and H is the expected Hessian in the population. The

negative of this term −H is often called the information matrix (Train 2003).

The asymptotic covariance of is β̂ is −H−1/N . In practice, the asymptotic

covariance of β̂ is calculated as −H−1/N where H is the average Hessian in

the sample. In calculating the asymptotic covariance of is β̂, W−1/N and

B−1/N are used other than −H−1/N , where W is the sample covariance of

the scores and B is the sample average of outer product of the scores because

it is known that W → −H as N → ∞ and B → −H as N → ∞ at the

maximizing value of β by information identity (ibid).

For any model for which the expected score is zero at the true value is

calculated as

√
N(β̂ − β0)

d→ N(0,H−1V H−1)

where V is the variance of scores in the population (ibid). The asymptotic

covariance of β̂ is H−1V H−1/N in this case, and it is valued whether or not

model is correctly specified or not. This matrix is called robust covariance

matrix for this reason. In practice, V is substituted by W or B and the ma-

trix is calculated as H−1WH−1. If model is correctly specified, H−1V H−1

reduces to −H−1 since −H−1 = V by information identity.
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A.7 Asymptotic Efficiency of MLE

In our specification, the log likelihood for segment s can be written from

(2.4.15) and (2.4.3) as

ls(βs|H) =
N∑
i=1

hi(s) · ln Pr(Hi|Si = s;βs)

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

{hi(s) · yijti · ln Pr(Yiti = j|Si = s;βs)}

=
N∑
i=1

Ti∑
ti=1

J∑
j=1

{
hi(s) · yijti · ln

(
exp(xijtiβs)∑J
l=1 exp(xiltiβs)

)}

and let us denote the term
∑Ti

ti=1

∑J
j=1

{
hi(s) · yijti · ln

(
exp(xijtiβs)/

∑J
l=1 exp(xiltiβs)

)}
on the last equality as log f(yiti ;βs) or

ls(βs|H) =
N∑
i=1

log f(yiti ;βs).

It is known that one of the estimates which solves condition ∂l(β)/∂β = 0

achieves asymptotic efficiency with the variance covariance matrix being the

inverse of R × R Hessian matrix under some regularity conditions. We list

one of the standard regularity conditions below.

Let us assume that yiti defined in (2.4.2) is i.i.d. sample from the density

f(yiti ;βs) where βs are real-valued and further assume the followings condi-

tions hold.

(a) The parameter space of βs, denoted as B, is an open set.

(b) The set A = {yiti : f(yiti ;βs) > 0} is independent of βs.

(c) For every yiti ∈ A, the density f(yiti ;βs) is three times differentiable

with respect to βs and third derivative is continuous in βs.

(d) The integral
∫
f(yiti ;βs)dyiti can be twice differentiable under the inte-

gral sign.
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(e) The Fisher Information I(βs)

I(βs) = E

[
∂

∂βs
log f(yiti ;βs)

]2

=

∫ (
f (1)(yiti ;βs)

f(yiti ;βs)

)2

f(yiti ;βs)dyiti

satisfies 0 < I(βs) <∞.

(f) For any β
(0)
s ∈ B, there exists a vector of positive number ε and a function

M(yiti), both of which may depend on β0
s , such that∣∣∣∣∂3 log f(yiti ;βs)

∂3βs

∣∣∣∣ ≤M(yiti)

for all β0
s ∈ B, β0

rs − ε < βrs < β0
rs + ε for all r with Eβ0

s
[M(yiti)] <∞.

Then any consistent sequence β̂s(N) = β̂s(N)(y1t1 , . . . ,yNtN ) of roots44 of

the likelihood equation satisfies

N1/2
(
β̂s(N) − β0

s(N)

)
w
; N

(
0, I−1(βs)

)
.

In our case, the Fisher information is

I(βs) = E

[
∂

∂βs

N∑
i=1

Ti∑
ti=1

log f(yiti ;βs)

]2

= E

[(
∂ls(βs|H)

∂βs

)(
∂ls(βs|H)

∂βs

)T]
.

The rightmost term above is the expected value of outer product of scores,

which is known to converge to Hessian as sample size increases at true value

of β
(0)
s by Information Identity. The sequence β̂s(N) is called an efficient

likelihood estimator of β̂s(N), and it is typically provided by MLE.

44The root is the vector β̂s(N)(y1t1 , . . . ,yNtN ) which tends to the vector of true value

β0
s in probability under some assumptions.
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A.8 The FOC of Profit Functions

The FOC of retailer profit function

Partially differentiating (3.2.9) with respect to each retail price pj and setting

them zero, we have the set of equations as
(p1 − w1)∂S1

∂p1
+ · · ·+ (pJ − wJ)∂SJ

∂p1
=
∑J

k=1
∂wk

∂p1
S1 − S1

...

(p1 − w1)∂S1

∂pJ
+ · · ·+ (pJ − wJ)∂SJ

∂pJ
=
∑J

k=1
∂wk

∂pJ
SJ − SJ .

(A.8.1)

dropping subscript t for convenience. Writing (A.8.1) in the matrix and

rearranging, we have (3.2.13).

The FOC of manufacturer profit function

The FOC of the profit function for manufacturers is

∂π∀f
∂wl

=

[
Sl +

J∑
j=1

[
(wj −mcj)

J∑
k=1

∂Sj
∂pk
· ∂pk
∂wl

]]
M = 0 (A.8.2)

for l = 1, · · · , J . Then we have the set of equations with the constant M

removed as45

S1 + (w1 −mc1)
(
∂S1

∂p1
· ∂p1
∂w1

+ · · ·+ ∂S1

∂pJ
· ∂pJ
∂w1

)
+ · · ·

+(wJ −mcJ)
(
∂SJ

∂p1
· ∂p1
∂w1

+ · · ·+ ∂SJ

∂pJ
· ∂pJ
∂w1

)
= 0

...

SJ + (w1 −mc1)
(
∂S1

∂p1
· ∂p1
∂wJ

+ · · ·+ ∂S1

∂pJ
· ∂pJ
∂wJ

)
+ · · ·

+(wJ −mcJ)
(
∂SJ

∂p1
· ∂p1
∂wJ

+ · · ·+ ∂SJ

∂pJ
· ∂pJ
∂wJ

)
= 0.

(A.8.3)

45Note that it is assumed ∂mcj/∂wj = 0, as wholesale price would not affect the cost

structure of manufacturers in general.
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We rewrite this system in matrix form first as
S1

...

SJ

+ (w1 −mc1)


∂p1
∂w1

· · · ∂pJ
∂w1

...
. . .

...

∂p1
∂wJ

· · · ∂pJ
∂wJ

 ·


∂S1

∂p1
...

∂S1

∂pJ

+ · · ·

+(wJ −mcJ)


∂p1
∂w1

· · · ∂pJ
∂w1

...
. . .

...

∂p1
∂wJ

· · · ∂pJ
∂wJ

 ·


∂SJ

∂p1
...

∂SJ

∂pJ

 = 0

and we then rearrange this column-wise to have
S1

...

SJ

+


∂p1
∂w1

· · · ∂pJ
∂w1

...
. . .

...

∂p1
∂wJ

· · · ∂pJ
∂wJ

 ·


∂S1

∂p1
· · · ∂SJ

∂p1
...

. . .
...

∂S1

∂pJ
· · · ∂SJ

∂pJ

 ·


w1 −mc1

...

wJ −mcJ

 = 0.

Therefore we have
w1 −mc1

...

wJ −mcJ

 = −




∂p1
∂w1

· · · ∂pJ
∂w1

...
. . .

...

∂p1
∂wJ

· · · ∂pJ
∂wJ

 ·


∂S1

∂p1
· · · ∂SJ

∂p1
...

. . .
...

∂S1

∂pJ
· · · ∂SJ

∂pJ



−1

S1

...

SJ

 .

A.9 Estimation of Parameters of Similarity

Index Variable

To illustrate how to obtain γs0, γs and rl for l = 1, · · · , L, suppose that

L = 3, Q = 2 with Di1 being gender dummy variable (abbreviated as gen)

and Di2 being age variable. Then we have

SDs = γs0 + gen · γs1 + age · γs2

124



and

simkj · SDs =
γs0
R
· Ikj +

γs0 · r1

R
· Ikj1 +

γs0 · r2

R
· Ikj2 +

γs0 · r3

R
· Ikj3

+
γs1
R
· Ikj · gen+

γs1 · r1

R
· Ikj1 · gen+

γs1 · r2

R
· Ikj2 · gen

+
γs1 · r3

R
· Ikj3 · gen+

γs2
R
· Ikj · age+

γs2 · r1

R
· Ikj1 · age

+
γs2 · r2

R
· Ikj2 · age+

γs2 · r3

R
· Ikj3 · age.

For the notational convenience, let us rewrite the vector of parameters (γs0/R, γs0·

r1/R, . . . , γs2 · r3/R) as ψ = (ψ1, . . . , ψ12). Then we have

simkj · SDs = ψ1 · Ikj + ψ2 · Ikj1 + ψ3 · Ikj2 + ψ4 · Ikj3

+ψ5 · Ikj · gen+ ψ6 · Ikj1 · gen+ ψ7 · Ikj2 · gen+ ψ8 · Ikj3 · gen

+ψ9 · Ikj · age+ ψ10 · Ikj1 · age+ ψ11 · Ikj2 · age+ ψ12 · Ikj3 · age.

Notice that r1, r2 and r3 can be defined by three relative ratios among the

components of ψ and the system is inconsistent. For example, parameters

involving r1 are ψ̂2, ψ̂6 and ψ̂10 relative to ψ̂1, ψ̂5 and ψ̂9 respectively, param-

eters involving r2 are ψ̂3, ψ̂7 and ψ̂11 relative to ψ̂1, ψ̂5 and ψ̂9 respectively,

and parameters involving r3 are ψ̂4, ψ̂5 and ψ̂12 relative to ψ̂1, ψ̂5 and ψ̂9

respectively or

ψ̂1 · r1 = ψ̂2

ψ̂5 · r1 = ψ̂6

ψ̂9 · r1 = ψ̂10

,

ψ̂1 · r2 = ψ̂3

ψ̂5 · r2 = ψ̂7

ψ̂9 · r2 = ψ̂11

,

ψ̂1 · r3 = ψ̂4

ψ̂5 · r3 = ψ̂8

ψ̂9 · r3 = ψ̂12

or
ψ̂1

ψ̂5

ψ̂9

 · r1 =


ψ̂2

ψ̂6

ψ̂10

 ,

ψ̂1

ψ̂5

ψ̂9

 · r2 =


ψ̂3

ψ̂7

ψ̂11

 ,

ψ̂1

ψ̂5

ψ̂9

 · r3 =


ψ̂4

ψ̂8

ψ̂12

 .
These equations will be solvable only if each of these ratios are the same

which is not likely to be the case. However, we can estimate r1, r2 and r3 by
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the method of least squares as

r̂1 = ψ̂1·ψ̂2+ψ̂5·ψ̂6+ψ̂9·ψ̂10

ψ̂1
2
+ψ̂5

2
+ψ̂9

2 ,

r̂2 = ψ̂1·ψ̂3+ψ̂5·ψ̂7+ψ̂9·ψ̂11

ψ̂1
2
+ψ̂5

2
+ψ̂9

2 ,

r̂3 = ψ̂1·ψ̂4+ψ̂5·ψ̂8+ψ̂9·ψ̂12

ψ̂1
2
+ψ̂5

2
+ψ̂9

2 .

After estimating r̂1 through r̂3, R̂ can be obtained. Then γs0 through γsQ can

be estimated accordingly by the same manner in estimating rl, l = 1, . . . , L

as
1

r1

r2

r3

 · γs0 =


ψ̂1

ψ̂2

ψ̂3

ψ̂4

 R̂,


1

r1

r2

r3

 · γs1 =


ψ̂5

ψ̂6

ψ̂7

ψ̂8

 R̂,


1

r1

r2

r3

 · γs1 =


ψ̂9

ψ̂10

ψ̂11

ψ̂12

 R̂.

A.10 Nash Bargaining Solution

Bargaining theory addresses the question of how the surplus generated by co-

operation will be divided or distributed among the participants. We consider

the case of two participants or agents. For example, one agent has goods to

sell and another has the opportunity to buy that good; the potential value

of the good to the buyer is more than that of the seller, so the difference in

the valuation motivates these agents to trade.

Suppose that there are player 1 and 2 whose utilities are denoted by u1

and u2. Let us denote the set of possible agreements in terms of utilities

of player 1 and 2 by U = (u1, u2), which is a convex set and denote the

disagreement point which are the utilities obtained if the negotiation fails

as d = (d1, d2). In such situation, we review the fact that there exists a

unique function which satisfies five axioms (Pareto efficiency, symmetry, in-

dependence of utility origins, independence of utility units, and independent
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of irrelevant alternatives). Then we show that finding such a function is

equivalent to maximize so-called “Nash product,” (u1 − d1)(u2 − d2).

For the disagreement point d = (v, h) and a constant k > 0, we have the

following proposition:

Proposition: If we draw the tangent line to the hyperbola of (u1 − v)(u2 −

h) = k at any point on the boundary of U , the length of the two segments

on the tangent, from the tangency point to the vertical asymptote, and from

the tangency point to the horizontal asymptote is the same.

Proof Let us consider the plane spanned by u1 (horizontal axis) and u2

(vertical axis). Then (u1− v)(u2− h) = k has the vertical asymptote u1 = v

and the horizontal asymptote u2 = h. Further we consider a tangency point

(u′1, u
′
2) on the boundary of U . Let us denote the horizontal location of the

intersection point of the tangent and u2 = h as x. Then to prove above

Proposition, it suffices to show that the distance between x and u1 is equal

to the distance between u1 and v.

The slope of the tangent at this point is obtained by taking the derivative

of (u1−v)(u2−h) = k with respect to u1. Then by (u2−h)+(u1−v)∂u2/∂u1 =

0, the slope ∂u2/∂u1 is −(u2−h)/(u1− v). Then the tangent line at (u′1, u
′
2)

is

u2 = −u
′
2 − h
u′1 − v

(u1 − u′1) + u′2

or

u1 = −u
′
1 − v
u′2 − h

(u2 − u′2) + u′1. (A.10.1)

Plugging u2 = h into the linear function (A.10.1), we obtain the correspond-

ing point of horizontal axis as u1 = 2u′1−v which is x. Then x−u′1 = u′1−v.
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Thus u′1 divides the distance between x and v, forming the two identical

triangles with upper-left to (u′1, u
′
2) and lower-right to (u′1, u

′
2). Thus Propo-

sition is proved. �

As the hyperbola would move further away from the origin (or disagree-

ment point) as k increases, we can find a unique point which is furthest away

from the origin (or disagreement point) yet still touches the boundary of U

at one point. This point is unique (by the independence of irrelevant alterna-

tives) and satisfies axioms. To find such point is equivalent to a constrained

maximization problem

max
u1,u2

(u1 − d1)(u2 − d2)

s.t. (u1, u2) ∈ U .

The objective function of (u1 − d1)(u2 − d2) is called Nash product.

A.10.1 Generalized Nash Bargaining Solution

Axiom

Instead of Axiom of Symmetry, the axiom of Reservation of Proportion is

suggested here. It says that we can find a tangent line to a boundary of U

which has a property that the length of two segments, from the tangency

point to the vertical line through d and from the tangency point to the

horizontal line through d have a proportion λ : (1− λ), where 0 < λ < 1.

Finding f with the new axiom

Consider a hyperbola (u1−v)λ(u2−h)1−λ = k with k > 0 constant. If we draw

the tangent to the hyperbola at any point, the length of the two segments

of the tangent, from the tangency point to the vertical line through d and
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from the tangency point to the horizontal line through d has a proportion

λ : (1 − λ). Then we should find the furthest hyperbola from the origin

(or d). This will give a hyperbola that is tangent to U . It follows that

the solution point must be the point of tangency between U and hyperbola.

Finding furthest hyperbola still touches U is the constrained maximization

problem, namely

max
u1,u2

(u1 − d1)λ(u2 − d2)1−λ

s.t. (u1, u2) ∈ U

as hyperbola moves away from the origin as k increases.

Proof Let us consider the plane spanned by u1 (horizontal axis) and u2

(vertical axis). Then (u1 − v)1−λ(u2 − h)λ = k has the vertical asymptote

u1 = v and the horizontal asymptote u2 = h. Further we consider a tangency

point (u′1, u
′
2) on the boundary of U . Let us denote the horizontal location

of the intersection point of the tangent and u2 = h as x. Then to prove

above theory, it suffices to show that the distance between x and u1 is equal

to (1− λ)/λ(u′1 − v).

The slope of the tangent at this point is obtained by taking the derivative

of (u1 − v)1−λ(u2 − h)λ = k with respect to u1. Then by λ(u1 − v)λ−1(u2 −

h)1−λ + (u1 − v)λ(1− λ)(u2 − h)1−λ−1∂u2/∂u1 = 0, the slope ∂u2/∂u1 is

− λ

1− λ
u2 − h
u1 − v

.

Then the tangent line at (u′1, u
′
2) is

u2 = − λ

1− λ
u′2 − h
u′1 − v

(u1 − u′1) + u′2

or

u1 = −1− λ
λ

u′1 − v
u′2 − h

(u2 − u′2) + u′1. (A.10.2)
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To obtain x, we plug u2 = h into (A.10.2) which yield

x = (h− u′2)− 1− λ
λ

u′1 − v
u′2 − h

(h− u′2) + u′1 =
1− λ
λ

(u′1 − v) + u′1

which proves the theorem. �
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