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ABSTRACT
Polytropic transonic solutions of spherically symmetric and steady galactic winds in the
gravitational potential of a dark matter halo (DMH) with a supermassive black hole (SMBH) are
studied. The solutions are classified in terms of their topological features, and the gravitational
potential of the SMBH adds a new branch to the transonic solutions generated by the gravity
of the DMH. The topological types of the transonic solutions depend on the mass distribution,
the amount of supplied energy, the polytropic index γ and the slope α of the DMH mass
distribution. When α becomes larger than a critical value αc, the transonic solution types
change dramatically. Further, our model predicts that it is possible for a slowly accelerating
outflow to exist, even in quiescent galaxies with small γ . This slowly accelerating outflow
differs from those considered in many of the previous studies focusing on supersonic outflows
in active star-forming galaxies. In addition, our model indicates that outflows in active star-
forming galaxies have only one transonic point in the inner region (∼0.01 kpc). The locus of this
transonic point does not strongly depend on γ . We apply the polytropic model incorporating
mass flux supplied by stellar components to the Sombrero galaxy, and conclude that it can
reproduce the observed gas density and the temperature distribution well. This result differs
significantly from the isothermal model, which requires an unrealistically large mass flux.
Thus, we conclude that the polytropic model is more realistic than the isothermal model, and
that the Sombrero galaxy can have a slowly accelerating outflow.

Key words: hydrodynamics – ISM: jets and outflows – galaxies: evolution – galaxies: individ-
ual: NGC4594 – intergalactic medium – galaxies: starburst.

1 IN T RO D U C T I O N

In modern theoretical cosmology, the cold dark matter (CDM) sce-
nario has been successfully applied to reproduce the observed large-
scale structure of the Universe; this indicates that CDM plays an
important role in galaxy formation (White & Rees 1978; Davis et al.
1985; Frenk 1991; Kauffmann, White & Guiderdoni 1993). Studies
of galaxy formation based on the CDM scenario have suggested that
the collapse of a CDM halo should lead to the capture of baryons
by the halo’s gravitational potential (Blumenthal et al. 1984; Cole
1991; White & Frenk 1991). Further, the baryonic gases that are
currently observable in such galaxies have been influenced by a va-
riety of physical processes in the past, such as star formation, galaxy
mergers and stripping by the intergalactic medium (IGM; Gunn &
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Gott 1972; Dekel & Silk 1986; Dekel & Rees 1987; Efstathiou
1992). In particular, the studies of galaxy formation conducted to
date have indicated that galactic winds have significantly influenced
the history of star formation and the metal enrichment of intergalac-
tic space (Larson 1974; Faber & Gallagher 1976; Mori et al. 1997;
Mori, Yoshii & Nomoto 1999; Mori, Ferrara & Madau 2002).

The earliest works on galactic outflows were motivated by obser-
vations of the star-forming galaxy M82 (Lynds & Sandage 1963;
Burbidge, Burbidge & Rubin 1964). Furthermore, it is well known
that the ratio of gas to stellar mass in elliptical galaxies is smaller
than that in spiral galaxies (Osterbrock 1960); this gas deficiency
in elliptical galaxies indicates that galactic outflows efficiently re-
move the interstellar gas from these systems (Burke 1968; Johnson
& Axford 1971; Mathews & Baker 1971). In addition, the presence
of metals in intergalactic space also suggests that galactic outflows
transport metal-containing interstellar media into these regions. Re-
cent observations have revealed that the low-density IGM at high
redshift contains a small amount of metals (Songaila 1997; Ellison
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et al. 2000; Aguirre et al. 2001). Thus, results of these observations
strongly indicate the importance of galactic outflows in galactic
evolution.

However, the mechanism driving these galactic outflows is still
unclear. Theoretically, a sufficient energy supply is required for
matter to escape from a galactic gravitational potential well (Larson
1974; Dekel & Silk 1986; Mori et al. 1997, 1999, 2002; Binney
2004; Cattaneo et al. 2006; Oppenheimer & Davé 2006; Puchwein
& Springel 2012), and the majority of the previous works on galactic
outflows have primarily assumed that supernovae (SNe) and stellar
winds function as thermal energy sources for this motion. From
a theoretical perspective, however, other possible energy sources
driving galactic outflows exist. For example, active galactic nuclei
(AGN) have been suggested as a possible energy source driving
galactic outflow (Silk & Rees 1998; Sharma & Nath 2013). Also,
radiation pressure may act as an additional driving force, if the
coupling between the dust grains and hot gas is sufficiently strong
(Sharma & Nath 2012). This mechanism is important for galactic
outflows in high-z massive star-forming galaxies (Hopkins, Quataert
& Murray 2012). Cosmic rays can also drive a large-scale outflow,
if the coupling between the high-energy particles and thermal gas
is sufficiently strong (Ipavich 1975; Breitschwerdt, McKenzie &
Vólk 1991; Zirakashvili et al. 1996; Ptuskin et al. 1997; Uhlig
et al. 2012). However, while many driving mechanism candidates
have been proposed, the majority of the previous theoretical studies
have maintained that SNe function as the primary source of thermal
energy in most star-forming galaxies (Veilleux, Cecil & Bland-
Hawthorn 2005).

In fact, recent observations have also indicated that a significant
number of local active star-forming galaxies form starburst-driven
outflows (Strickland 2002; Heckman 2003; Hessen et al. 2009).
Spectroscopic studies have shown that Lyman Break Galaxies at
z ∼ 3 also exhibit galactic outflows (Adelberger et al. 2003; Shapley
et al. 2003). Furthermore, it has been found that the outflow velocity
is proportional to the star formation rate and the galactic stellar mass
in high-z galaxies (Kennicutt 1998; Pettini et al. 2001; Shapley et al.
2003; Strickland et al. 2004; Weiner et al. 2009). These observations
indicate that the bulk of the energy driving outflows is due to SNe.

In this study, we intend to focus on transonic solutions as mod-
els of galactic outflows driven by thermal energy from SNe and
stellar winds. Parker (1958) first examined spherically symmetric
solar winds and clarified that they can pass through transonic points
smoothly; this finding demonstrates that both the energy supply and
gravity are essential to the transonic acceleration process. As re-
gards physical observation, transonic solar wind has been observed
in the solar outflow by Mariner II (Neugebauer & Snyder 1962),
and the transonic solution is well known as the entropy-maximum
solution connecting the starting point (the sun) to infinity (Lamers
& Cassinelli 1999). When the outflow is spherically symmetric,
we can prove that the transonic solution is entropy-maximum inde-
pendently of the structure of galactic mass density distribution. We
show this proof in the appendix.

Transonic solutions are also important for galactic outflows. Ow-
ing to the complexity of the acceleration processes of transonic
galactic outflows, the main stream of the theoretical studies was
concentrated towards numerical studies. However, in this paper,
we focus on the fundamental features of transonic solutions using
simple analytical models to obtain systemic comprehension. For
this approach, several studies have argued the existence of tran-
sonic galactic outflows by employing Parker’s steady solar wind
theory. Burke (1968) and Johnson & Axford (1971) have applied
the solar wind model to galactic outflows in the gravitational po-
tential of the stellar halo. Chevalier & Clegg (1985) have calculated

the nature of the supersonic region in M82 without considering
gravitational potential, but assuming that a transonic point is lo-
cated 200 pc from the centre. Because the dark matter halo (DMH)
is the dominant component of the gravity source in galaxies, Wang
(1995) has investigated galactic outflows with DMH mass distribu-
tions including radiative cooling. However, transonic solutions were
not successfully obtained in that case because an unrealistic single
power-law DMH mass distribution (∝ r−2) was assumed. Thus,
the validity of the theory of transonic solutions remains an open
question.

Similar to Chevalier & Clegg (1985), Sharma & Nath (2013)
have studied steady and spherically symmetric transonic galactic
outflows in active star-forming galaxies while assuming a fixed
transonic point at 200 pc. In contrast to Chevalier & Clegg (1985),
they also considered the influence of the gravitational potential of
a CDM halo. They assumed that the thermal energy was supplied
by SNe and AGN. As a result, they concluded that SNe can drive
outflows from dwarf galaxies and that AGN are important for driv-
ing high-velocity outflows in massive galaxies. In addition, they
advocated that outflows from intermediate galaxies in the quiescent
star formation mode cannot escape the halo. The transonic point
was fixed in that study; however, transonic points should be de-
termined naturally based on a balance between the thermal energy
supply and the gravitational potential. Further, Tsuchiya, Mori &
Nitta (2013) discussed the influence of the DMH mass distribution
gravitational potential on the nature of transonic galactic outflows
while assuming steady, isothermal and spherically symmetric con-
ditions, without the injection of mass along the outflow lines. They
did not fix the locus of the transonic point and performed more
precise analysis.

On the other hand, a consensus has not yet been reached regard-
ing the functional form of the DMH mass distribution, and several
different functions have been proposed by both simulation and ob-
servation. For example, on the basis of the CDM scenario, Navarro,
Frenk & White (1996) have concluded that the DMH mass density
distribution has a double power-law functional form, ρDMH ∝ r−1(r
+ rd)−2, where r is the distance from the galactic centre to the DMH
and rd is the scale radius of the DMH. This mass density distribu-
tion function is called the Navarro–Frenk–White (NFW) model.
Other simulations with higher resolution have also prompted the
proposal of double power-law mass density distributions in the
CDM scenario, although the power-law index at the centre has dif-
fered somewhat. For example, Fukushige & Makino (1997) and
Moore et al. (1999) have suggested ρDMH ∝ r−1.5(r1.5 + r1.5

d )−1.
These mass density distributions, which are based on numerical
models, commonly diverge at the centre, in a structure known as
a ‘cusp’. In contrast, observations of nearby dwarf galaxies have
indicated that the DMH mass distributions of these bodies have
constant density at their centres; these structures are referred to as
‘cores’. Hence, Burkert (1995) has suggested an empirical profile
with a core structure such that ρDMH ∝ (r + rd)−1(r2 + r2

d )−1. This
unsolved problem is known as the ‘cusp-core problem’ (Moore et al.
1999; Ogiya & Mori 2011, 2014; Ogiya et al. 2014).

Aiming to address this problem, Tsuchiya et al. (2013) adopted a
mass distribution functional form of ρDMH ∝ r−α(r + rd)−3 + α , with
a concentration parameter α intended to express the variety of the
distribution at the centre. This profile reproduces the NFW profile
with α = 1 well, and approximately reproduces the Moore profile
with α = 1.5 and the Burkert profile with α = 0, as discussed
in Section 2. Based on this DMH distribution model, Tsuchiya
et al. (2013) first reported transonic solutions incorporating the
gravitational potential of the DMH. Moreover, they showed the
possibility of a new type of transonic solution in which the transonic
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point forms in a very distant region (∼100 kpc). This transonic
solution is slowly accelerated across this wide region.

It is well known that the majority of galaxies have a supermas-
sive black hole (SMBH) at their centres (Marconi & Hunt 2003);
the gravitational potential of this SMBH must influence the galac-
tic outflow acceleration process, especially in the central region.
Therefore, Igarashi, Mori & Nitta (2014) added the gravitational
potential of the central SMBH to the Tsuchiya model because the
original Tsuchiya model considers the DMH gravitational potential
only. They summarized the variety of transonic solutions under re-
alistic mass distributions incorporating the gravitational potentials
of both the DMH and SMBH, and applied their model to the Som-
brero galaxy (NGC4594) to clarify the acceleration process of the
galactic outflows. This galaxy reveals conflicting features (Li et al.
2011). Specifically, although the trace of the galactic outflow can
be seen in X-ray observations, the gas density distribution in this
galaxy is well reproduced as a hydrostatic state. Further, Igarashi
et al. (2014) have indicated that the hot gas of this galaxy may
form a slowly accelerating transonic outflow. In the widely spread
subsonic region, it is difficult to distinguish the gas density from a
hydrostatic state.

However, the isothermal approximation adopted by Igarashi et al.
(2014) and Tsuchiya et al. (2013) is not universally applicable to
galaxies. For example, the isothermal model results in a larger
amount of outflowing gas than can be supplied by SNe and stellar
winds. We expect that this discrepancy is due to the breakdown of the
isothermal assumption, which causes infinite energy to be supplied
to the flow. Therefore, this indicates that a polytropic analysis with
a limited specific energy is required in order to estimate the mass
flux correctly. Moreover, it is widely accepted that the temperature
distribution structures of many galaxies are complex. In fact, it has
been confirmed that the observed temperature distributions of some
galaxies are not isothermal-like (Fukuzawa et al. 2006; Diehl &
Statler 2008), i.e. a temperature gradient exists.

In this paper, we assume a polytropic, steady and spherically
symmetric state for galactic outflows. The transonic solutions are
determined by the gravitational field, specific energy and polytropic
index. Although our model stands upon some ideal assumptions, it
does not only help quick interpretations of the observed data but also
provide us with a clear and deep understanding of the fundamental
nature of transonic galactic outflows.

The structure of this paper is as follows. We construct our model
in Section 2 and we summarize the results in Section 3. In Section 4,
the differences between the isothermal and polytropic models are
discussed, along with the parameter range for actual galaxies. The
conclusions are given in Section 5. In Appendix A, we show the
proof that the transonic solution is entropy-maximum independently
of the form of the gravitational potential.

2 A NA LY T I C A L M O D E L FO R P O LY T RO P I C
W I N D

In this section, we construct the theoretical basis of our model. As
stated above, we assume a polytropic, steady, spherically symmetric
outflow and ignore mass injection along the flow, except at the
starting point. We will discuss the availability of these assumptions
in Section 4.1. The polytropic relation is

P = Kργ , (1)

where P, ρ and γ are the pressure, density and polytropic index,
respectively. K indirectly represents the magnitude of the entropy.
When γ is specific heat ratio, the state of gas becomes adiabatic. In

the isothermal model, the allover flow is supposed to be in perfect
equilibrium with thermal reservoir. We consider γ as an effective
parameter approximating a possible thermal interaction with the
reservoir (heating and cooling). The sound speed cs is defined as

c2
s = γKργ−1. (2)

By differentiating equation (2), we obtain

0 = 1

c2
s

dc2
s

dr
− (γ − 1)

1

ρ

dρ

dr
, (3)

noting that K = const. along the streamline. The basic equations are
the mass conservation law and the equation of motion, which are
expressed as

Ṁ = ρvr2, (4)

ρv
dv

dr
= −dP

dr
− ρ

d�

dr
, (5)

where v, Ṁ and � are the velocity, mass flux and gravitational
potential, respectively. Integrating equation (5), we obtain equation
of energy

E = 1
2 v2 + c2

s
γ−1 + �(x), (6)

where E is specific energy. The differential equation for the Mach
number is derived from equations (3)–(6), such that

M2 − 1

M2{(γ − 1)M2 + 2}
dM2

dr

= 2

r
− γ + 1

2(γ − 1)

1

E − �

d�

dr
, (7)

where M(= v/cs) is the Mach number. Hence, by integrating the
above equation, we obtain the Mach number equation

M−1{(γ − 1)M2 + 2} γ+1
2(γ−1)

= {2(γ − 1)} γ+1
2(γ−1) (γK)−

1
γ−1 Ṁ−1r2(E − �)

γ+1
2(γ−1) . (8)

This equation contains γ , K, Ṁ , E and � as parameters. The con-
stant K represents an integral constant in equation (8). Further,

c2
s = (E − �)

2(γ − 1)

(γ − 1)M2 + 2
, (9)

ρ2 = Ṁ2

(E − �)M2r4

(M2

2
+ 1

γ − 1

)
. (10)

In addition, the right-hand side of equation (7) is used to identify
critical points and is defined as

N (r) = 4
r

− γ+1
γ−1

1
E−�

d�
dr

. (11)

When M = 1, the right-hand side of equation (7) should vanish
simultaneously at the loci of the critical points,

N (r) = 0. (12)

The critical points derived by this equation show both the X-points
(transonic points) and the O-points (Chakrabarti 1990).

We divide equations (7) and (8) by the unit length r0 to obtain
the non-dimensional equations

M2 − 1

M2{(γ − 1)M2 + 2}
dM2

dx

= 2

x
− γ + 1

2(γ − 1)

1

1 − �n

d�n

dx
, (13)
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(a) (b)

(c)

(d)

Figure 1. Various model solutions for γ = 1.1. The horizontal axis shows the DMH power-law index values and the vertical axis is the KDMH defined in
equation (19). Inset panels (A) and (B) represent transonic solutions, where (A) is the blue region and has only one X-point (transonic point) and (B) is the
orange region which has one X-point and one O-point. Panel (D) is the white region and has no critical points, while panel (C) is the boundary solution between
(B) and (D). The parameters of M − x diagrams are chosen to clarify the topological features of transonic solutions.

M−1{(γ − 1)M2 + 2} γ+1
2(γ−1)

= Cx2(1 − �n)
γ+1

2(γ−1) , (14)

N (x) = 4

x
− γ + 1

γ − 1

1

1 − �n

d�n

dx
, (15)

where x (=r/r0) and �n (=�/E) are the non-dimensional radius
and gravitational potential, respectively. The integral constant C is
expressed in terms of K, such that

log C = − γ

γ − 1
K + γ + 1

2(γ − 1)
log{2(γ − 1)}. (16)

We adopt a model of the mass density profile of the DMH
(Tsuchiya et al. 2013) where

ρDMH(r; α, rd, ρd) = ρdr
3
d

rα(r + rd)3−α
. (17)

Here, ρd represents the scale density and 0 < α < 3. In this model,
we define r0 = rd. In the limit x → 0, ρDMH ∝ r−α and ρDMH ∝ x−3 for
x → ∞. This polytropic model reproduces various models de-
veloped from both theoretical and observational perspectives with
varying degrees of accuracy. For example, the polytropic model
corresponds exactly with the NFW model (Navarro et al. 1996)
for α = 1 and approximately with the Moore model (Fukushige
& Makino 1997; Moore et al. 1999) for α = 1.5 and the Burkert
model (Burkert 1995) for α = 0. The plausible value of the index α

remains an open question. Thus, we treat α as a variable parameter
in this study.

Using equation (17), we obtain

�n(x; α, KDMH, KBH)

= KDMH

∫
2

x2

{∫ x

0
x2−α(x + 1)α−3dx

}
dx − KBH

2

x
, (18)

where

KDMH = 2πGρdr
2
d

E
, (19)

KBH = GMBH

2rdE
. (20)

Here, G and MBH are the Newtonian gravitational constant and the
mass of the SMBH, respectively. The parameter KDMH approxi-
mately corresponds to the ratio of the gravitational potential energy
2πGρdr

2
d to E. Similarly, the parameter KBH approximately corre-

sponds to the ratio of the gravitational potential energy GMBH/rd to
E. Note that, in the isothermal model, KDMH and KBH are defined by
constant cs in the denominator (Tsuchiya et al. 2013; Igarashi et al.
2014). Here, however, we define these parameters based on E, as
shown in equations (19) and (20).

3 R ESULTS

3.1 Transonic solutions incorporating DMH gravitational
potential

In Figs 1 and 2, we summarize the transonic solution patterns ob-
tained when the gravitational potential of the DMH is incorporated
in the model. We identify two types of transonic solutions: one hav-
ing only one X-point (the blue region labelled ‘A’ in Fig. 1) and the
other having one X-point with a single O-point (the orange region
labelled ‘B’ in Fig. 1). The transonic solution of type A originates
at the centre and extends to infinity, whereas that of type B also
extends to infinity but does not originate at the centre. These two
types of transonic solutions have also been found in the isothermal
model (see figs 2 and 4 of Tsuchiya et al. 2013 or fig. 1 of Igarashi
et al. 2014). In the type-B solutions, it is plausible to consider that
the outflow starts at the vicinity of the locus of the O-point (just
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Figure 2. Solution maps for model incorporating DMH gravitational potential. Various solutions with (a) γ = 4/3 and (b) γ = 1.5. The colours of the divided
regions correspond to those of the solution types shown in Fig. 1.

below the O-point of type B in Fig. 1). One may feel strange that
the solution does not originate at the centre. However, this situation
is quite similar to the solar wind that starts from the corona as the
material reservoir. In fact, the velocity is small at that point (see
discussion in Igarashi et al. 2014). Additionally, the estimated loci
of the O-points for actual galaxies are close to the edge of the stellar
distribution (∼ several tens kpc). This indicates that the type-B so-
lution corresponds to the slowly accelerating outflow. In this case,
the widely spread stellar components play a role of the reservoir of
the fluid material and the energy (see Discussions and 4.4.3).

When α is less than the critical value αc(γ ) and KDMH is small,
there is no transonic solution (the white region labelled ‘D’ in
Fig. 1). This αc(γ ) value can be determined analytically using γ

(see Section 3.3). When α > αc(γ ), type-A solutions are obtained,
while type-B solutions occur when α < αc(γ ) with large KDMH. The
relationship between γ , α, KDMH and the locus of the critical point
is discussed in Section 4.2.

When γ approaches 5/3 (the specific heat ratio of monatomic
molecule gas), the D region expands and the A and B regions
contract (see Fig. 2). Thus, for an adiabatic-like state (γ → 5/3) and
small α, outflows in large galaxies correspond to type-B transonic
solutions while those in small galaxies become supersonic (type
D) everywhere, i.e. from the starting point to infinity. When γ =
5/3, there is no transonic solution; this is similar to the findings of
previous studies (Parker 1965; Mathews & Baker 1971).

3.2 Transonic solutions incorporating gravitational potentials
of DMH and SMBH

In this section, we add the gravitational potential of the SMBH
to that of the DMH in the model. The DMH potential is widely
distributed and dominant over a large region within a given galaxy.
In contrast, the potential of the SMBH is dominant in the vicinity
of the centre only. Hence, the gravitational potential of the SMBH
is important as regards transonic solutions originating at the centre.
We summarize the subtypes of the transonic solutions obtained
while incorporating the gravitational potentials of both the DMH
and SMBH in the model in Figs 3 and 4. As in Igarashi et al.
(2014), the gravitational potential of the SMBH adds a new branch
to the transonic solutions yielded by the model discussed previously,
which incorporated the effects of the DMH gravitational potential

only. We determine two primary types of transonic solution: One
having only one X-point (type A) and the other having two X-points
with a single O-point (type B).

In the B case, the inner/outer X-points are due to the SMBH/DMH
potentials, respectively. The transonic solution through the in-
ner/outer X-point is referred to as type Xin/Xout, as in Igarashi
et al. (2014). We can topologically divide the B case into two sub-
types: B-1 and B-2. In the B-1 region (the orange region labelled
‘B-1’ in Fig. 3), the type-Xin solution originates at the centre, but the
type-Xout solution does not. Both solutions extend to infinity. In the
B-2 region (the green region labelled ‘B-2’ in Fig. 3), the type-Xout

solution extends to infinity, but the type-Xin solution does not. Both
solutions originate at the centre. On the boundary between regions
B-1 and B-2, a special transonic solution connecting two X-points
appears (the line labelled ‘C-3’ in Fig. 3).

In the isothermal model (Igarashi et al. 2014), the type-A solu-
tions are divided into three subtypes depending on the loci of the
extreme points of N(x). In this paper, we divide the type-A solutions
into two subtypes, A-1 and A-2, based on a comparison of the grav-
ity d�/dx of the DMH and SMBH. In the A-1 case (cyan region
labelled ‘A-1’ in Fig. 3), the gravity of the SMBH is greater than
that of the DMH at the transonic point, and in the A-2 case (blue
region labelled ‘A-2’ in Fig. 3) that of the DMH is greater than that
of the SMBH.

When KDMH and KBH are large and small, respectively, the outflow
solutions are of type B-1 and B-2. Specifically, with very large KDMH

(orange region in Figs 3 and 4), the outflow solutions become type
B-2. Further, because the type-Xin solution in the B-2 case does not
extend to infinity, only the type-Xout solution is available for the
transonic outflow. When both KBH and KDMH are large, the solution
becomes type A-2. Furthermore, when KBH is very large (cyan
region in Figs 3 and 4), the solution becomes type A-1. With small
KDMH, the solution is type A-1 because the gravity of the SMBH is
greater than that of the DMH in the vicinity of centre.

When γ is close to 5/3, the A-1 region extends while the A-2,
B-1 and B-2 regions contract (see Figs 3 and 4). This result indicates
that the transonic point of the transonic outflow in the adiabatic-like
state is located in the inner region. When α is large with small KBH,
the B-1 and B-2 regions are extended and the A-1 and A-2 regions
contract. In contrast, when α is large with large KBH, the A-1 and
A-2 regions extend and the B-1 and B-2 regions contract. When α
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Figure 3. Various model solutions incorporating DMH and SMBH gravitational potentials for (γ , α) = (1.1, 1.0). The horizontal axis is the KDMH defined in
equation (19) and roughly corresponds to the ratio of the gravitational potential energy of the DMH and E. The vertical axis is the KBH defined in equation
(20) and roughly corresponds to the ratio of the gravitational potential energy of the SMBH and E. The three solid lines represent the DMH mass for 107, 1010

and 1013 M� from the bottom. For the quiescent galaxies, the black dots represent η = 1.5, 2, 2.5 and 3, from the right. For the star-forming galaxies, the red
dots represent η′ = 1.5, 10, 50 and 250, from the right. See Section 4.3 for details. The parameters of M − x diagrams are chosen to clarify the topological
features of transonic solutions.

Figure 4. Solution maps for model incorporating DMH and SMBH gravitational potentials. Various solutions with (a) (γ , α) = (4/3, 1.0) and (b) (γ , α) =
(4/3, 1.5). The colours of the divided regions correspond to the solutions types given in Fig. 3. The red and black lines also correspond to the galaxy parameters
given in Fig. 3.
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is larger than the critical value αc(γ ), only solutions of type A-1
and A-2 occur, i.e. solutions of type B-1 and B-2 do not appear.
This αc(γ ) has the same value as in the case where only the DMH
potential is considered (see Section 3.3). Further, the dependence
of αc(γ ) on γ is examined in Section 3.3. Note that, when γ =
5/3, there is no transonic solution; this is also similar to the case in
which only the DMH potential is considered.

3.3 Critical value of α

In Section 3.1, we found that a single X-point with no O-point
(type-A region in Fig. 1) occurs when α is larger than αc(γ ). This
critical value depends on γ . In this section, we estimate αc(γ ) using
f(x) (=N(x)/2), which is defined by equation (15). In cases A, B
and D, the function f(x) diverges as x → 0, i.e. at the centre of the
dark matter distribution.

First, we integrate equation (15) and obtain

F (x) =
∫

f (x)dx,

= 2 log x + γ + 1

2(γ − 1)
log(1 − �n). (21)

When 2 < α < 3, we can expand the exponent of F(x) at the centre,
such that

exp{F (x)}
= x2(1 − �n)

γ+1
2(γ−1) ,

≈ x2

{
1 − 2KDMH

x2−α

(α − 2)(α − 3)
+ O[x3−α]

} γ+1
2(γ−1)

. (22)

Taking the limit x → 0 of the above expression, we find

exp{F (x)} ∝ x
2+ γ+1

2(γ−1) (2−α)
. (23)

When the exponent of x becomes 0, the transonic solution types
change from B and D to A. Thus, we obtain

αc = 2(3γ−1)
γ+1 , (24)

where αc depends on γ . This equation clearly indicates that γ and α

are essential to determine the type of galactic outflows. The solution
through the outer transonic point needs the specific balance of the
supplied thermal energy from stellar components and the structure
of gravitational potential. In the isothermal model, Tsuchiya et al.
(2013) indicated that αc = 2, and this result can be reproduced here
by substituting γ = 1 into equation (24). The results in Fig. 1 are
consistent with this analysis.

When the gravitational potential of the SMBH is incorporated
into the model, αc(γ ) can also be obtained through this analysis.
When α < αc, solutions of type A-1, A-2, B-1 and B-2 occur (see
Fig. 2). However, when α > αc, the solutions of type B-1 and B-2
are absent.

4 D ISCUSSION

4.1 Inquiry into assumptions

In this study, we assume steady, spherically symmetric and poly-
tropic galactic outflows ignoring mass and energy injections along
flow lines. We discuss the rationality of these assumptions in this
section.

The steady assumption is available for the case in which the
wind crossing time-scale is much shorter than the time-scale for
the temporal variation of the energy supply from the stellar system.
In addition, we must note that the steady assumption is also avail-
able for the case in which the wind crossing time-scale is much
longer than the averaged interval of the frequent energy supply.
For slowly accelerating galactic outflows, the crossing time-scale
is rd/v (∼10 kpc/100 km s−1 ∼ 100 Myr). The prime driving force
of the slowly accelerating outflows is probably thought to be Type
Ia SNe and stellar winds. In this case, the energy supply is regu-
lated by the stellar evolution and is a secular process with an almost
constant frequency and a feedback energy. Under these situations,
the steady state is a reasonable approximation. On the other hand,
for the galactic winds from star-forming galaxies, the source of the
energy supply is mainly massive stars. In this case, the typical time-
scale of the energy supply and the crossing time-scale have wide
variations, and the steady assumption may often be violated.

Because the spatial distribution of galactic outflows observed
in star-forming galaxies is known to be multidimensional (Martin
2006; Mori & Umemura 2006), an analytical approach is tough for
such complicated structure. Recent theoretical analyses take advan-
tage of numerical studies for this reason. However, the systemic and
fundamental comprehension on the transonic galactic outflows in
the actual gravitational potential model has not been accomplished
yet. Thus, we assume here steady spherically symmetric outflows as
the simplest model to clarify the fundamental nature of the transonic
galactic outflows in this paper. Since the non-spherical component
such as a stellar disc will affect the topology of the transonic so-
lutions, it is interesting to classify and summarize the variety of
transonic solutions with the non-spherical components.

The mass and the energy injections from stellar winds and SNe
will act as braking or accelerating process in actual galactic out-
flows. We note that since these injections are relevant only in the
stellar distribution region, we can ignore them for the widely spread
acceleration region if the transonic point forms in outside the stel-
lar distribution region. On the other hand, the mass and the energy
injections may influence the loci of the transonic points of the high-
velocity galactic outflows because the transonic points for such
flows are located in the stellar distribution region. Thus, we leave
the details of this discussion including the stability of transonic
solutions to our future study.

In addition, we ignore the stellar component as a gravitational
source. In our previous paper (see section 4.4.2 of Igarashi et al.
2014), we applied the isothermal model to the Sombrero galaxy and
found that the stellar gravity does not strongly influence the accel-
eration process of the slowly accelerating galactic outflow which
will be relevant for this galaxy. This result clearly shows that the
effect of the DMH gravity is dominant comparing to the effect of
the stellar gravity for normal galaxies (�1010M�). Thus, it seems
reasonable to ignore the effect of the stellar gravity for the normal
galaxies in this study. In our future work, we plan to investigate
the transonic outflows in the gravitational potential with the stellar
mass component for the normal galaxies.

4.2 Relation between parameters and critical point loci

In Fig. 5, we show the loci of critical points obtained when the
gravitational potential of the DMH is incorporated into the model.
XX and XO in Fig. 5 denote the loci of the X-point and the O-
point, respectively. Each colour bar shows the loci of these critical
points in the logarithmic scale. When either the α of the DMH
or the KDMH increases, the positions of the X- and O-points move
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Figure 5. Loci of critical points for the model incorporating DMH gravitational potential. The labels above the graphs represent the values of the γ parameter
and the critical point types. For example, the graphs labelled (33-O) and (45-X) show the loci of an O-point with γ = 1.1 and an X-point with γ = 1.5,
respectively. XX and XO denote the loci of the X-point and the O-point, respectively. Colour bars correspond to the loci of these critical points in the logarithmic
scale.

outward and inward, respectively. In contrast, when γ increases,
the position of the X-point moves inward and that of the O-point
moves outward. This change in the behaviour of the critical points
indicates that the value of γ is critical to the acceleration process of
galactic outflows. Because the observed thermal distribution varies
with heating by stars and radiative cooling (Fukuzawa et al. 2006;
Diehl & Statler 2008) and γ is dependent on these processes, γ

is variable in actual galaxies. Therefore, heating and cooling in
the interstellar gas influences the acceleration process of the actual
galactic outflows.

In Fig. 6, we show the loci of the critical points when the grav-
itational potentials of both the DMH and SMBH are incorporated
in the model. XX,B,in, XX,B,out and XO in Fig. 6 denote the loci of the
inner X-point, the outer X-point and the O-point, respectively. In
the A-1 region, the position of the X-point moves outward when
γ decreases or KBH increases. This position also weakly depends
on KDMH. In the A-2 case, the X-point moves outward when γ de-
creases or KDMH increases. This position weakly depends on KBH.
In the cases B-1 and B-2, the position of the inner X-point depends

on γ , KDMH and KBH, while the position of the outer X-point de-
pends on γ and KDMH (not on KBH, see Fig. 6). The position of the
O-point of these solutions primarily depends on γ , KDMH and α,
but the dependence on KDMH and α is very weak. Because the posi-
tions of the O-point and the outer X-point are almost independent
of KBH, those positions in Fig. 6 (the case with the SMBH gravity)
and Fig. 5 (the case without the SMBH gravity) become the same.
As in the case where the gravitational potential of the DMH only is
considered, these results indicate that γ influences the acceleration
process of the outflows significantly, when the gravitational effects
of both the DMH and SMBH are incorporated in the model.

4.3 Parameter ranges of actual galaxies

In this section, we estimate the parameter ranges of actual galaxies.
Similar to Igarashi et al. (2014), we focus on the parameter ranges
of slowly accelerating cases in quiescent galaxies. Additionally,
because many of the previous studies of galactic outflows primarily
focused on high-velocity outflows driven by starbursts, we also
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Figure 6. Loci of critical points for the model incorporating DMH and SMBH gravitational potentials. The labels above the graphs represent the values of the
parameters (γ , α) and the critical point types. For example, the graphs labelled (33-1-Xin) and (40-1.5-Xout) show the loci of the inner X-point with (γ , α) =
(1.1, 1.0) and the outer X-point with (γ , α) = (4/3, 1.5). The loci of the X-points in the A-1 and A-2 regions are shown in the Xin and Xout graphs. XX,B,in,
XX,B,out and XO denote the loci of the inner X-point, the outer X-point and the O-point, respectively. Colour bars correspond to the loci of these critical points
in the logarithmic scale.

estimate the parameter ranges of high-velocity outflows in active
star-forming galaxies.

For the slowly accelerating outflows in quiescent galaxies, we
adopt the same assumption as Igarashi et al. (2014) in order to esti-
mate the parameter ranges: the physical state of the subsonic region
is similar to the equilibrium state, and the subsonic region spreads
up to near the virial radius rvir in slowly accelerating outflows.
Therefore, we can expect that the thermal and kinetic energies of
the slowly accelerating outflows near rvir are slightly larger than
the gravitational potential energy, and we adopt a new correction
parameter, η. Under this assumption, equation (6) becomes

E =
(

c2
s

γ − 1
+ v2

2

)∣∣∣∣
r=rvir

+ �(rvir), (25)

= η |�(rvir)| + �(rvir), (26)

≈ (η − 1)

∣∣∣∣∣
(∫

GMDMH(rvir)

r2
dr

∣∣∣∣
r=rvir

)∣∣∣∣∣ . (27)

In addition, η is slightly larger than unity because the sum of the
thermal and kinetic energies is slightly larger than the gravitational
potential energy in the slowly accelerating outflows. In equation
(27), we ignore the influence of the SMBH because commonly it is
smaller than that of the DMH at rvir. From cosmological simulations,
the relation between the DMH mass and the concentration parameter

rvir/rd is modelled as

rvir

rd
= κ

(
MDMH(rvir)

1012 M�

)ξ

. (28)

We adopt the parameters proposed by Prada et al. (2012), (κ , ξ ) =
(9.7, −0.074) (see also, Navarro et al. 1996; Macciò, Dutton & van
den Bosch 2008; Klypin, Trujillo-Gomez & Primack 2011; Ogiya
& Mori 2014). For rvir, we use the formula given by Bullock et al.
(2001). We also adopt the observational relation between the masses
of the SMBH and DMH, where

MBH

108 M�
= μ

(
MDMH(rvir)

1012 M�

)ν

. (29)

In addition, we adopt the parameters proposed by Baes et al. (2003),
(μ, ν) = (0.11, 1.27) (see also, Ferrarese 2002). Finally, three driving
parameters (γ , MDMH(rvir), η) for the slowly accelerating outflows
remain.

For high-velocity outflows in star-forming galaxies, we assume
that the sum of the thermal and kinetic energies in the inner region is
significantly larger than the gravitational potential energy because
efficient star formation supplies an extremely large amount of ther-
mal energy to the inner star-forming region. Thus, we can estimate
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the supplied E from equation (6) as

E =
(

c2
s

γ − 1
+ v2

2

)∣∣∣∣
r=r0

+ �(r0), (30)

= η′
∣∣∣∣∣
(∫

GMDMH(rvir)

r2
dr

∣∣∣∣
r=r0

− GMBH

r0

)∣∣∣∣∣ ,

+
∫

GMDMH(rvir)

r2
dr

∣∣∣∣
r=r0

− GMBH

r0
, (31)

= (η′ − 1)

∣∣∣∣∣
(∫

GMDMH(rvir)

r2
dr

∣∣∣∣
r=r0

− GMBH

r0

)∣∣∣∣∣ , (32)

where r0 and η′ are the specific inner radius and correction parame-
ter, respectively. Note that r0 represents the typical radius of the star
formation region. We assume that the star-forming region extends
within the scalelength of the DMH, and we set r0 = 0.1rd. The
coefficient 0.1 is close to the observed value; the ratio of half-light
radius and rd in the Sombrero galaxy is 6.1/36.1 ≈ 0.17 and that of
the Milky Way is 6.0/38.6 ≈ 0.16 (Sakamoto, Chiba & Beers 2003;
Bendo et al. 2006). Further, η′ represents the difference between
the gravitational potential energy and the sum of the thermal and
kinetic energies. Because the sum of the thermal energy and the
kinetic energy is dominant over the gravitational potential energy
in high-velocity outflows, η′ is sufficiently larger than unity. Thus,
there are also three parameters (γ , MDMH(rvir), η′) for high-velocity
outflows.

We show the actual parameter ranges in Figs 3 and 4. The pa-
rameter ranges of the quiescent galaxies indicated by equation (27)
are distributed within a narrow region (the black hatched region in
Figs 3 and 4). For small γ close to unity (quasi-isothermal state),
the solutions become B-1 type. An outer transonic point is located
in the outer region (within ∼ several hundred kiloparsec) in these
types of solutions. Thus, in the quasi-isothermal case (small γ ),
it is possible for the slowly accelerating outflows to have a wide
subsonic region. Also, type-B-1 solutions have an Xin solution. As
these two transonic solutions have different mass fluxes and starting
points, the transonic solutions have different effects on galactic evo-
lution and the release of metals into the IGM. For example, when
η is large with small γ , the driving energy E becomes large and
the outer transonic point moves to the inner region (see Fig. 6). For
small η, which indicates a small energy supply, the solutions change
from A-1 to B-1 type. For large γ , the outflow solutions become A-1
type, with a single transonic point in the inner region (∼0.01 kpc).
Thus, slowly accelerating outflows do not exist in cases with large
γ . Finally, when η becomes large with large γ , the locus of the
single transonic point in the type-A-1 solutions does not change
dramatically (see Fig. 6).

We also find that the solution types are not strongly dependent
on the DMH mass. This result is the same as that given by the
isothermal model proposed by Igarashi et al. (2014). The Sombrero
galaxy (the trace of the subsonic outflow has been observed by Li
et al. 2011) has parameters indicating that it is of type B-1. The
observed gas density distribution in this galaxy is similar to the
behaviour of subsonic outflows having a transonic point at a region
distant from the stellar distribution. This result is also the same as
the conclusion given in Igarashi et al. (2014).

While the parameter range of active star-forming galaxies indi-
cated by equation (32) is widely distributed (the red hatched region
in Figs 3 and 4), the majority of the solutions are categorized as type
A-1. Thus, high-velocity outflows in the star-forming galaxies have
a single transonic point in the inner region, where the gravitational

potential of the SMBH is dominant over that of the DMH. The locus
of this transonic point moves to the inner region for large η′, indi-
cating a large energy supply. This result is supported by previous
observations of supersonic outflows from star-forming galaxies to
which a large amount of energy is supplied (Strickland 2002). In
addition, this property is independent of γ , and the transonic points
are not strongly dependent on the DMH mass. These results indicate
that outflows in active star-forming galaxies become supersonic in
the inner region because the supplied energy strongly dominates the
gravitational potential energy.

4.4 Differences between polytropic and isothermal models

4.4.1 Terminal velocity

In the isothermal model, the outflow velocity increases without
limit. However, the outflow velocity in actual galaxies is believed to
converge to a finite terminal velocity v∞ that is dependent on E. We
estimate this v∞ in the polytropic model as follows. From equation
(8), we can obtain the velocity equation

(γ − 1)−
2

γ−1 v−2

{
(E − �) − v2

2

}− 2
γ−1

= (γK)−
2

γ−1 Ṁ−2r4. (33)

When r → ∞ and �(∞) = 0, v∞ = √
2E and the terminal sound

speed cs∞ = 0, or v∞ = 0 and cs∞ = √
(γ − 1)E. This indicates

that v∞ is determined by E and is independent of Ṁ , γ , K and �.
The value of cs∞ is determined by E and γ . When E is negative,
v∞ (or cs∞) becomes imaginary. This indicates that the gas cannot
spread out to infinity. The range filled by the gas is dependent on E
and the gravitational potential.

4.4.2 Mass flux from Sombrero Galaxy

Igarashi et al. (2014) applied the isothermal model to the Sombrero
galaxy and estimated the mass flux. However, the fitted mass flux
of 1.7–8.7 M� yr−1 proposed in that study is unrealistically large
compared to the expected supplied gas mass of 0.4–0.5 M� yr−1,
from SNe and stellar winds. This result obviously conflicts with the
assumption of stationarity in that model as, if steady galactic winds
exist in this galaxy, the mass flux must be balanced with the supplied
gas mass from stars. Here, we adopt the proposed polytropic model
to resolve this problem. We intend to fit the mass flux to the observed
gas density (Li et al. 2011) with a fixed mass flux of 0.45 M� yr−1.
We use the gravitational potential of the DMH, SMBH and the
stars, similar to the approach used to obtain fig. 7 of Igarashi et al.
(2014). Because the observed temperature distribution is close to
that of the isothermal state, we focus on γ ∼ 1 (corresponding to
an assumption of isothermality), but we estimate transonic outflows
also for large γ .

As γ increases from 1, the E indicated by the fitting decreases
and the transonic points move outward. The transonic solutions
with small γ become B-2 type and the Xout solution originates
at the centre, while the solutions with large γ become B-1 type
and the Xout solution does not originate at the centre. The fitted
gas density with γ < 1.10 has a steeper slope than the observed
density, while that with γ > 1.10 has a shallower slope than the
observed result. Hence, we find that the polytropic transonic solu-
tion with (γ, Ṁ [M� yr−1],

√
E [km s−1]) = (1.10, 0.45, 251) can

reproduce the observed gas density well. Therefore, we can con-
clude that the polytropic model improves upon the result provided
by the isothermal model well. Additionally, although we do not
use the observed temperature data to determine E, the temperature
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Figure 7. Transonic solutions for various γ in the Sombrero galaxy. For the isothermal model, we use the result from Igarashi et al. (2014) at a temperature
of 0.5 keV. For the polytropic model, to determine the E in equation (6), the gas density is fitted to the data observed by Li et al. (2011) with a fixed
Ṁ = 0.45 M� yr−1. The black and red lines indicate the isothermal hydrostatic and isothermal models, respectively. The purple, blue, dark green, cyan, pink and
light green lines indicate the polytropic model with (γ,

√
E [km s−1]) = (1.05, 549), (γ,

√
E) = (1.10, 251), (γ,

√
E) = (1.15, 117), (γ,

√
E) = (1.20, 50.1),

(γ,
√

E) = (1.25, 19.4) and (γ,
√

E) = (1.30, 6.60), respectively. The solid parts of the coloured lines in the right-hand panels denote the outside of the
O-point, while the dotted parts of them denote the inside of the O-point. The white dots correspond to the positions of the transonic points. The crosses denote
observed data reported by Li et al. (2011).

distribution shown in Fig. 7 indicates that the polytropic model can
roughly reproduce the observed temperature data with γ = 1.10.
This result also indicates that the polytropic model can reproduce
observations well. Although the Sombrero galaxy is a quiescent
galaxy, the possible existence of a slowly accelerating outflow in
this galaxy is also shown, as in Igarashi et al. (2014). Thus, the out-
flow from this quiescent galaxy differs from that considered in the
majority of the previous studies focusing on outflows from active
star-forming galaxies.

The velocity distribution values of the polytropic model are lower
than those of the isothermal model because of the limited energy
considered in the former in contrast to the unlimited energy in the
latter. We propose that this low velocity in the inner region (within
∼10 kpc) is due to the absence of energy and mass injection along
the flow lines from the stellar components. Thus, we expect that
the slowly accelerating outflow increases the speed at the outside of
the visible scale of the galaxy because the flow velocity efficiently
increases after the locus of the O-point that is close to the edge
of the stellar distribution (the half-light radius ∼6.1 kpc). Because
mass and energy injection decelerate and accelerate outflows, re-
spectively, the balance between energy and mass injection along

the flow lines is important if a plausible velocity distribution in
the stellar region (within several kpc from the centre) is to be re-
produced. Therefore, we will investigate outflows with energy and
mass injection along the flow lines in future work. In addition, we
will estimate the velocity distributions of other galaxies using the
novel polytropic model proposed in this paper.

4.4.3 Velocity distributions in actual galaxies

Next, we focus on velocity distributions in actual galaxies and clar-
ify the influence of γ . We assume that the DMH mass is 1012 M�
and use the gravitational potential indicated in Section 4.3. As a
result, the SMBH mass, rvir and rd become approximately 107 M�,
258 kpc and 25 kpc, respectively.

To determine the E in equation (6), we assume that the sum
of the thermal and kinetic energies at the starting point can be
approximated to the supplied energy per unit mass from SNe. The
supplied energy per unit mass is the ratio of the energy injection per
unit time ė to the mass injection per unit time Ṁ (the mass flux).
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Figure 8. Various model solutions incorporating DMH and SMBH gravi-
tational potentials in an actual galaxy with MDMH(rvirial) = 1012 M�. The
horizontal and vertical axes represent λ and γ , respectively. The colours of
the various regions correspond to the solution types shown in Fig. 3. Tran-
sonic solutions do not exist in the grey region because the specific energy is
negative.

Under these assumptions, E becomes

E = ė

Ṁ
+ �(rs), (34)

where rs is the radius of the starting point of the outflow. If the
mass and energy supply are determined by the stellar distribution,
the starting point is approximately several times the scale radius of
the stellar distribution (typically several kpc in a 1012M� galaxy).
Hence, we assume rs = 5 kpc.

We also define

ė = λfSN

(
Ṁ∗
M�

)
× 1051erg, (35)

Ṁ = RfṀ∗, (36)

where Ṁ∗, λ and fSN are the star formation rate, the fraction of
energy retained after the radiative energy losses and the energy
injection rate from the SNe, respectively. The factor Rf is the return
fraction to the interstellar medium. In the Kroupa–Chevalier initial
mass function, Rf = 0.257 and fSN = 1.86 × 10−2. Additionally, we
assume Ṁ∗ = 10 M� yr−1 since the star formation rate in starburst
galaxies is typically several tens of solar mass per year.

As a result, the E per unit mass in equation (34) and Ṁ become

E = 7.23 × 1049 (erg M−1� ) × λ

(
fSN

1.86 × 10−2

) (
Rf

0.257

)−1

,

+�(rs), (37)

Ṁ = 2.57 [M� yr−1] ×
(

Rf

0.257

) (
Ṁ∗
10

)
. (38)

We show the various transonic solutions in Fig. 8. When γ and λ

are large, there is only one transonic solution (type A-1). Thus, in
this parameter region, the transonic outflows originate at the centre
and the transonic point is in the inner region (∼ 0.01 kpc). For small
γ and large λ, there are two transonic solutions. The outer transonic
point is at the far distance (within several hundreds of kiloparsec)
and the transonic solution through this point has a wide subsonic
region. This widely spread subsonic region is similarly indicated
by the isothermal model (Igarashi et al. 2014). When λ is small, E
becomes negative and there is no transonic solution.

To clarify the influence of γ on the polytropic model, we alter γ

arbitrarily and estimate λ by fitting starting points for the assumed
starting point of rs = 5 kpc. The results are shown in Fig. 9. When
γ is close to 1 (corresponding to an isothermal state), the fitted λ is
large and the transonic point is within several hundreds of kilopar-
sec. Small γ indicates that a large amount of energy is contained in
the interstellar medium. This is consistent with the fact that large
λ indicates that a large amount of energy is retained after radiative
cooling. When γ is large, the fitted λ becomes small and the tran-
sonic point moves outward. Finally, small γ with small λ indicates
that a small amount of energy is retained in the interstellar medium.
Thus, it is difficult to accelerate outflows and the outer transonic
point is at the far distance.

Because previous studies have focused on supersonic solutions,
we show these solutions in Fig. 9. Chevalier & Clegg (1985)
and Sharma & Nath (2013) fixed starting points at (r[pc],M) =
(200, 1) for supersonic solutions. Therefore, we also fix starting
points in the same position. The velocities of both the transonic and
supersonic solutions converge to the same v∞ in the far distance,
but the slopes of the velocity distributions differ considerably. The
transonic solution is accelerated beyond the O-point (≥100 kpc),
while the supersonic solution is decelerated in this region. The den-
sity and the temperature of both solutions decrease, but those of the
transonic solution are higher than those of the supersonic solution.
In the subsonic region, because supersonic outflows can lead to re-
duced density and temperature through rapid expansion with high
velocity, and because the transonic solution becomes supersonic in
the far distance, the density and the temperature of the transonic
solution are also higher than those of the supersonic solution.

5 C O N C L U S I O N

We have revealed polytropic transonic solutions of spherically sym-
metric and steady galactic winds considering the gravitational po-
tentials of a DMH and SMBH. These solutions have been classified
in terms of their topological features in the diagrams shown in
Figs 1 and 2. Further, we have classified the transonic solutions as
shown in Figs 3 and 4. Similar to Igarashi et al. (2014), we conclude
that the gravitational potential of the SMBH adds a new branch to
the transonic solutions generated by considering the gravity of the
DMH. The inner transonic point is formed by the gravity of the
SMBH, whereas the outer transonic point is due to that of DMH.
The transonic solution types depend on the mass distribution, the
amount of supplied energy, the polytropic index γ and the slope
α of the DMH mass distribution. When α becomes larger than a
critical value αc, the transonic solution types change dramatically.
We have also found the analytical relation between αc and γ .

We have estimated the parameter ranges for actual galaxies using
the results of prior studies. The most interesting feature revealed by
this model is the possibility that two transonic points may occur in
the quasi-isothermal state (small γ ). These two transonic solutions
have different mass fluxes and different starting points. Thus, the
transonic solution type influences the galactic evolution and the re-
lease of metals from galaxies. The transonic solution through the
outer transonic point generated by the gravitational potential of the
DMH indicates the possibility of a slowly accelerating outflow. We
have found that it is possible for this slowly accelerating outflow to
exist even in quiescent galaxies with small γ . Further, this slowly
accelerating outflow differs from the results of many previous stud-
ies focusing on supersonic outflows in active star-forming galax-
ies. Also, with regard to active star-forming galaxies, our model

MNRAS 470, 2225–2239 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/470/2/2225/3861105/Polytropic-transonic-galactic-outflows-in-a-dark
by UNIV OF TSUKUBA user
on 06 September 2017



Polytropic transonic galactic outflows 2237

Figure 9. Transonic solutions for various γ in an actual galaxy with MDMH(rvirial) = 1012M�. To determine the λ in equation (37), the starting point is fit
to rstart = 5 kpc. The purple, blue, dark green, cyan, pink and light green lines indicate polytropic model results with (γ , λ) = (1.05, 0.0650), (γ , λ) = (1.10,
0.0399), (γ , λ) = (1.15, 0.0325), (γ , λ) = (1.20, 0.0297), (γ , λ) = (1.25, 0.0285) and (γ , λ) = (1.30, 0.0281), respectively. Solutions having starting points at
200 pc are supersonic solutions with the same parameters as the transonic solutions. The solid parts of the coloured lines in the right-hand panels denote the
outside of the O-point, while the dotted parts of them denote the inside of the O-point. The white dots correspond to the positions of the transonic points.

indicates that outflows have only one transonic point in the inner
region (∼0.01 kpc). This result is not strongly dependent on γ .

We have predicted that the polytropic model has a different mass
flux from that of the isothermal model because the isothermal wind
can be supplied with an unlimited amount of energy, whereas the
energy supplied to the polytropic wind is limited. For example,
we have applied the polytropic model with mass flux supplied by
stellar components to the Sombrero galaxy, and concluded that this
approach can reproduce the observed gas density and temperature
distributions well. This result differs significantly from the isother-
mal model, which has unrealistically large mass flux (Igarashi et al.
2014). Thus, we have concluded that the polytropic model is more
realistic than the isothermal model, and that the Sombrero galaxy
has a slowly accelerating outflow. It is difficult to observe this
slowly accelerating outflow via X-ray monitoring because the out-
flow velocity in this galaxy is expected to be low. We expect that
next-generation X-ray observation satellites will have the ability to
detect the detailed structure of these outflows with higher resolution.
In future research, we will construct an outflow model incorporat-
ing energy and mass injection along the flow lines in order to more
accurately reproduce the observed velocity distributions.

Finally, we have focused on the influence of γ on the transonic
solutions and have investigated the gas density, temperature and ve-

locity distributions of an actual galaxy with DMH mass ∼1012M�.
We have concluded that the slopes of the transonic solution distri-
butions are strongly dependent on γ and the amount of energy in the
system. We have also compared the transonic and supersonic solu-
tions, and found that the transonic solutions accelerate in the region
beyond the O-point while the supersonic solutions decelerate.

In addition, we prove that the transonic solution is entropy-
maximum independently of the structure of the mass density distri-
butions. In actual galaxies, the mass density distributions including
DMH, SMBH and stellar mass are complicated but this proof in-
dicates that the complexity of these gravitational sources does not
influence the availability of the transonic solution. The gravitational
potentials influence only the topological feature of the transonic
solution.
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APPENDI X A : FEASI BI LI TY OF THE
TRANSONI C FLOW

In this appendix, we prove that the entropy of the transonic solution
is maximum independent of concrete functional form of the spatial
distribution of the mass density. Assuming a polytropic, steady and
spherically symmetric flow, it can be proved using the equation (8).
We define the left-hand side of equation (8) as

f (M) = M−1{(γ − 1)M2 + 2} γ+1
2(γ−1) , (A1)

and the right-hand side as

g(r,K, Ṁ, E)

= {2(γ − 1)} γ+1
2(γ−1) (γK)−

1
γ−1 Ṁ−1r2{E − �(r)} γ+1

2(γ−1) . (A2)

By differentiating equation (A1) with respect to M, we obtain

∂f (M)

∂M = 2

(
1 − 1

M2

)
{(γ − 1)M2 + 2} 3−γ

2(γ−1) . (A3)

Equation (A3) has a singularity at M = 1. This derivative is neg-
ative for M < 1 and positive for M > 1.

At the locus of the X-point, equation (A2) becomes

g(rX, K, Ṁ, E)

= {2(γ − 1)} γ+1
2(γ−1) (γK)−

1
γ−1 Ṁ−1r2

X{E − �(rX)} γ+1
2(γ−1) , (A4)

noting that rX is the locus of the X-point. If we ignore the energy and
the mass injection along the stream line (E and Ṁ are constant), the
entropy K becomes maximum at M = 1 because f (M)(= g(K))
becomes minimum at M = 1. We can conclude that the entropy
of the subsonic solution (M < 1 everywhere) and the supersonic
solution (M > 1 everywhere) is smaller than that of the transonic
solution. This result makes it clear that the entropy of the transonic
flow is maximum among the solutions connecting the starting point
of the flow and the infinity. We must note that this result is uni-
versal and independent of the functional form of the gravitational

MNRAS 470, 2225–2239 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/470/2/2225/3861105/Polytropic-transonic-galactic-outflows-in-a-dark
by UNIV OF TSUKUBA user
on 06 September 2017



Polytropic transonic galactic outflows 2239

potential. In actual galaxies, the galactic mass density distribution
is complicated but the galactic outflow should become the transonic
solution with the maximum entropy.

Similarly to this discussion, we can also prove that the mass-
flux/the energy of the transonic solution are maximum/minimum
as follows. If we ignore the energy injection and the entropy pro-
duction along the stream line (E and K are constant), the massflux
Ṁ becomes maximum at M = 1. Therefore, the massflux of the
transonic flow is maximum among the solutions connecting the
starting point of the flow and the infinity. Moreover, if we ignore
the mass injection and the entropy production along the stream line
(Ṁ and K are constant), the energy E becomes minimum at M = 1.

Therefore, the energy flux of the transonic flow is minimum among
the solutions connecting the starting point of the flow and the in-
finity. All these results clearly show that the transonic solution is
the unique and natural solution for realistic astrophysical outflows
not only as the model for the galactic winds but as the model for
general polytropic, steady and spherically symmetric flows. In ad-
dition, these results are independent of the sign of the energy E.
Therefore, the entropy of the transonic solution is maximum if the
solutions do not extend to the infinity.
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