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Adiabatic self-consistent collective path in nuclear fusion reactions
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Collective reaction paths for fusion reactions 16O + α → 20Ne and 16O + 16O → 32S are microscopically
determined on the basis of the adiabatic self-consistent collective coordinate (ASCC) method. The collective
path is maximally decoupled from other intrinsic degrees of freedom. The reaction paths turn out to deviate from
those obtained with standard mean-field calculations with constraints on quadrupole and octupole moments. The
potentials and inertial masses defined in the ASCC method are calculated along the reaction paths, which leads
to the collective Hamiltonian used for calculation of the subbarrier fusion cross sections. The inertial mass inside
the Coulomb barrier may have a significant influence on the fusion cross section at the deep subbarrier energy.
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I. INTRODUCTION

The microscopic description of the large-amplitude nuclear
collective motion is one of the major and long-standing prob-
lems in nuclear physics. For the collective motion in a complex
multinucleon system, it is useful to describe its dynamics in
terms of a small number of collective coordinates q. In most
cases, one “intuitively” adopts deformation parameters q, such
as the intrinsic quadrupole moment. In the energy density
functional (EDF) approaches [1], a collective subspace (path)
|ψ(q)〉 is constructed by performing the constrained min-
imization calculation with one-body constraining operators
associated with those deformation parameters. Even simpler
methods could be adopted by assuming a single-particle
potential, such as the Nilsson potential, as a function of
the deformation parameters [2]. It is certainly desirable to
microscopically extract a few collective variables, without
relying on our intuitive choice, which are maximally decoupled
from all the other intrinsic degrees of freedom.

The most well-known theory for this purpose to determine
such an optimal collective subspace is the adiabatic time-
dependent Hartree–Fock (ATDHF) theory [3–6]. The ATDHF
theory is derived by using the expansion with respect to
collective momenta p up to the first order. In practical
calculations, the ATDHF is formulated into the form of
differential equation with initial states. Starting from different
initial conditions, the ATDHF equation produces different
collective paths. Many trajectories must be produced to find
the “best” one [7,8]. This is known as a “nonuniqueness”
problem. A possible way to overcome this problem is to take
into account the second-order terms in momentum p [9,10].

The adiabatic self-consistent collective coordinate (ASCC)
method provides an alternative approach, free from the
nonuniqueness problem, to determine the optimal collective
path or a collective submanifold embedded in the large-
dimensional phase space of Slater determinants [11,12].
The ASCC method has been applied to nuclear structure
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problems [13–20]. In Ref. [21], we proposed a numerical
method to solve the ASCC equations for nuclear reaction,
combining the imaginary-time evolution [22] and the finite-
amplitude method [23–25]. The test calculation was done for
the simplest system of the reaction path of α + α → 8Be.
The present paper describes the continuation of this work. The
numerical methods proposed in Ref. [21] are applied to nuclear
fusion reactions of 16O + α → 20Ne and 16O + 16O → 32S.
They demonstrate unique features of the collective dynamics,
showing that the optimal collective path can be different from
the constrained Hartree–Fock (CHF) states with constraints on
the mass quadrupole and octupole moments.

The inertial mass is another important issue in nuclear
collective motion. The ASCC method is capable of providing
the masses for the collective motion in the decoupled subspace
including effects of time-odd mean fields. They are different
from other known inertial masses, such as those of the
Gaussian overlap approximation for the generator coordinate
method and the cranking formula [26]. We show the significant
difference between the ASCC and the cranking formulas,
especially inside the Coulomb barrier.

The paper is organized as follows: In Sec. II, we give the
formulation of the basic ASCC equations, to determine the
collective path and to calculate the mass parameter. In Sec. III,
we apply the method to extract the collective paths for the
reaction systems of 16O + α → 20Ne and 16O + 16O ↔ 32S.
The inertial mass with respect to the relative distance between
two nuclei are calculated. The subbarrier fusion cross section
is estimated from the results. A summary and concluding
remarks are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we recapitulate the basic formulation of
the ASCC method without the pairing correlation. Then, we
briefly describe a procedure to construct the one-dimensional
(1D) collective path and to calculate the inertial mass. The
details can be found in Ref. [21].
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A. Basic equations of the adiabatic self-consistent collective
coordinate method

In the present study, we assume that the reaction is
described by the 1D collective coordinate q(t) and its conjugate
momentum p(t). Parametrizing the time-dependent mean-field
states (Slater determinants) as |ψ(p,q)〉, the total energy of the
system in this parametrization reads

H (p,q) = 〈ψ(p,q)|Ĥ |ψ(p,q)〉, (1)

which defines a classical collective Hamiltonian. In the ASCC
method, the optimal collective path |ψ(p,q)〉 is obtained so as
to be maximally decoupled from the intrinsic degrees of free-
dom. Therefore, the evolution of q(t) and p(t) approximately
obeys the canonical equation of motion with the Hamiltonian
H (p,q).

The state |ψ(p,q)〉 is written in powers of p about p = 0
as

|ψ(p,q)〉 = eipQ̂(q)|ψ(0,q)〉 = eipQ̂(q)|ψ(q)〉, (2)

where Q̂(q) is defined as Q̂(q)|ψ(q)〉 = −i∂p|ψ(q)〉. The
conjugate operator P̂ (q) is introduced as an infinitesimal
generator for translating the system with respect to q,
P̂ (q)|ψ(q)〉 = i∂q |ψ(q)〉. P̂ (q) and Q̂(q) can be expressed
in the form of a one-body operator as

P̂ (q) = i
∑

n∈p,j∈h

Pnj (q)a†
n(q)aj (q) + H.c., (3)

Q̂(q) =
∑

n∈p,j∈h

Qnj (q)a†
n(q)aj (q) + H.c. (4)

They are locally defined at each q and change their structure
along the collective path. The particle (n ∈ p) and hole (j ∈
h) states are also defined with respect to |ψ(q)〉. The weak
canonicity condition

〈ψ(q)|[iP̂ (q),Q̂(q)]|ψ(q)〉 = 1 (5)

is imposed to make q and p a pair of canonical variables.
The self-consistent collective coordinate (SCC) method is

based on the invariance principle of the time-dependent mean-
field theory [27]. The adiabatic approximation in ASCC refers
to the assumption that the collective momentum p is small, so
that we can expand equations in terms of p up to the order of
p2. The invariance principle of SCC leads to the following set
of ASCC equations [11,12]:

δ〈ψ(q)|Ĥmv(q)|ψ(q)〉 = 0, (6)

δ〈ψ(q)|
[
Ĥmv(q),

1

i
P̂ (q)

]
− ∂2V

∂q2
Q̂(q)|ψ(q)〉 = 0, (7)

δ〈ψ(q)|[Ĥmv(q),iQ̂(q)] − 1

M(q)
P̂ (q)|ψ(q)〉 = 0, (8)

where Ĥmv(q) ≡ Ĥ − (∂V/∂q)Q̂(q) is the “moving” Hamil-
tonian. Here, the curvature term, associated with dQ̂/dq, is
neglected for simplicity [12]. The collective potential V (q) is
defined as

V (q) = 〈ψ(q)|Ĥ |ψ(q)〉, (9)

and M(q) is the inertial mass of the collective motion.
Equation (6) is called the “moving mean-field equation”
(“moving Hartree–Fock equation”), and Eqs. (7) and (8) are
the “moving random-phase approximation” (RPA). This set of
equations determines the reaction path |ψ(q)〉 as well as the
local generators, P̂ (q) and Q̂(q), self-consistently.

To fix the scale of P̂ (q) and Q̂(q), for the present study, we
set the mass M(q) in Eq. (8) to be a constant value, M(q) =
Mq = 1h̄2 MeV−1 fm−2. This determines the scale and the
dimension of the coordinate q. The second-order derivative
of the potential energy with respect to q corresponds to the
squared frequency of the moving RPA:

ω2(q) = 1

Mq

∂2V

∂q2
. (10)

To solve the moving RPA equations (7) and (8), we
make use of the the finite-amplitude method (FAM) [23,24],
especially the matrix FAM prescription [25]. In the FAM, only
the calculations of the single-particle Hamiltonian constructed
with independent bra and ket states are required [23], providing
us a high numerical efficiency to solve Eqs. (7) and (8).
The moving mean-field equation (6) is solved by using the
imaginary-time method. In practical calculations, we adopt
the coordinate-space representation for the mean-field states
and the mixed representation for the RPA matrix [21].

B. Construction of collective reaction path

We may start the construction of the collective path, in
principle, from any state |ψ(q)〉 that satisfies Eqs. (6)–(8).
There are a kind of “trivial” states; the ground state of the
whole system (after fusion) and the state with well-separated
projectile and target (before fusion). We start the construction
procedure from one of these trivial initial states. At the initial
state |ψ(q = 0)〉 on the collective path, the solutions of the
moving RPA equations (7) and (8) provide many kinds of
modes, among which we need to select the one associated
with the reaction path. Here, we choose the lowest mode
of excitation except for the Nambu–Goldstone (NG) modes
associated with the translation and rotation of the total system.

To identify character of the modes, we calculate the
transition strength of multipole operators.

Q̂LK ≡
∑

q=n,p

∑
s=±1/2

∫
rlYLK (r̂)ψ̂†

sq (�r )ψ̂sq (�r )d�r. (11)

The magnetic quantum number K is defined with respect to the
axis of deformation. Each RPA mode has the eigenfrequency ω
and the generators P̂ (q = 0) and Q̂(q = 0). Taking a suitable
linear combination of Q̂LK and Q̂L−K , we can make Q̂LK

Hermitian with real matrix elements. The transition strengths
between the RPA ground state |0〉 and excited state |ω〉 are
calculated as

〈ω|Q̂LK |0〉 =
√

1

2ω

∑
n∈p,j∈h

(QLK )njPnj , (12)

where (QLK )nj are the ph matrix elements of Q̂LK . The NG
modes are characterized by the zero energy (ω = 0) and by
large matrix elements of QLK with L = 1 (translation) and

014610-2



ADIABATIC SELF-CONSISTENT COLLECTIVE PATH IN . . . PHYSICAL REVIEW C 96, 014610 (2017)

the (L,K) = (2, ± 1) (rotation). In contrast, the reaction path
is associated with large transition strength for Q̂20 and/or
Q̂30. Moving away from the initial state, we choose a set of
generators (Q̂(q),P̂ (q)), using a condition that the generators
must continuously change.

Next we show how to construct the collective path [21].
Although fully self-consistent solution of the moving HF
equation (6) is possible, it is significantly facilitated by
adopting an approximation, Q̂(q + δq) ≈ Q̂(q). Since Q̂(q)
is a smooth function of q, this is reasonable for a small step
size δq. Thus, the moving Hamiltonian at q + δq is now given
by Ĥmv(q + δq) = Ĥ − λQ̂(q). The Lagrange multiplier λ is
determined by the constraint on the step size,

〈ψ(q + δq)|Q̂(q)|ψ(q + δq)〉 = δq. (13)

In this way, the system moves from |ψ(q)〉 to |ψ(q + δq)〉,
obtaining a new state |ψ(q + δq)〉 on the collective path.

Solving Eqs. (7) and (8) at |ψ(q + δq)〉, the generators are
updated from Q̂(q) to Q̂(q + δq). Then, we can construct
the next state, |ψ(q + 2δq)〉. Continuing this iteration, we
will obtain a series of states, |ψ(q = 0)〉, |ψ(δq)〉, |ψ(2δq)〉,
|ψ(3δq)〉, . . . , forming a collective path. In this work, we set
δq within the magnitude of 0.1 fm in Eq. (13). To check the
validity of the approximation Q̂(q + δq) = Q̂(q) at any q, we
perform the imaginary-time evolution for the obtained |ψ(q)〉
with Ĥmv(q) = Ĥ − λQ̂(q) and confirm that the state is almost
invariant under the iteration.

We should remark a practical treatment of the NG modes.
In principle, the ASCC guarantees the separation of the NG
modes from other normal modes [11,12]. However, in this
study, we neglect the curvature term in Eq. (8). Thus, at a
nonequilibrium point |ψ(q)〉 away from the ground state, they
can mix with other physical modes of excitation. Furthermore,
in practice, because of the finite mesh size for the grid
representation of the coordinate space (Sec. III), the exact
translational and rotational symmetries are violated. This is
not a problem, if the system has certain symmetries which
prohibit a mixture of the NG modes with physical modes of
interest. For instance, the collision of two 16O nuclei is free
from the problem, because the system keeps the parity and
the axial symmetry; thus, the Kπ quantum numbers clearly
separate the NG modes from the colliding motion of two
nuclei. In contrast, for the asymmetric reaction of α + 16O,
the NG mode corresponding to the translation of the center of
mass along the symmetric axis can be mixed with the Kπ = 0−
excitation. In this case we need to remove the NG components
(Q̂NG(q),P̂ NG(q)) from the ASCC generators, Q̂cal(q) and
P̂ cal(q). Since the NG generators (Q̂NG,P̂ NG) are trivially
obtained in the translational motion, the ASCC generators for
the reaction are easily corrected as

Q̂(q) = Q̂cal(q) − λQ
q Q̂NG − λQ

p P̂ NG, (14)

P̂ (q) = P̂ cal(q) − λP
q Q̂NG − λP

p P̂ NG, (15)

with

λQ
q = −i〈ψ(q)|[Q̂cal,P̂ NG]|ψ(q)〉, (16)

λQ
p = i〈ψ(q)|[Q̂cal,Q̂NG]|ψ(q)〉, (17)

λP
q = −i〈ψ(q)|[P̂ cal,P̂ NG]|ψ(q)〉, (18)

λP
p = i〈ψ(q)|[P̂ cal,Q̂NG]|ψ(q)〉, (19)

which can be derived from the condition, [Q̂(q),Q̂NG] =
[Q̂(q),P̂ NG] = [P̂ (q),Q̂NG] = [P̂ (q),P̂ NG] = 0.

C. Inertial mass for nuclear reaction

As mentioned in Sec. II A, to fix the arbitrary scale of q,
the inertial mass M(q) with respect to q in Eq. (8) is set to be
1h̄2 MeV−1 fm−2. To obtain a physical picture of the collective
dynamics, it is convenient to label the collective path by other
coordinates intuitively chosen by ourselves. For instance, in
the asymptotic region where the two colliding nuclei are well
apart, it is natural to adopt the relative distance R between
projectile and target. As far as the one-to-one correspondence
between q and R is guaranteed, we may use the mapping
function R(q) to modify the scale of the coordinate, without
losing anything. For the coordinate R, the inertial mass should
be transformed as

M(R) = Mq

(
dq

dR

)2

= Mq

(
dR

dq

)−2

. (20)

Thus, the mass M(R) requires the calculation of the derivative
dR/dq, which can be obtained as

dR

dq
= d

dq
〈ψ(q)|R̂|ψ(q)〉 = 〈ψ(q)|

[
R̂,

1

i
P̂ (q)

]
|ψ(q)〉

= 2
∑

n∈p,j∈h

Rnj (q)Pnj (q), (21)

with the local generator P̂ (q). Rnj (q) are the ph matrix
elements of R̂.

In this paper, the one-body operator R̂ for the relative
distance between projectile and target is defined as follows:
Assuming the relative motion along z axis with projectile on
the right and target on the left, we introduce a separation plane
at z = zs so that∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ +∞

zs

dzρ(�r ) = Apro, (22)

where ρ(�r ) is the total density, Apro (Atar) is the mass number
of the projectile (target). The operator form of R reads

R̂ ≡
∑
s,q

∫
d�r ψ̂†

sq(�r )ψ̂sq(�r )z

[
θ (z − zs)

Apro
− θ (zs − z)

Atar

]
,

(23)

where θ is the step function. For the symmetric reaction
system, the section plane is at zs = 0. R̂ reduces to

R̂ = 2

A

∑
s,q

∫
d�rzψ̂†

sq(�r )ψ̂sq(�r )[θ (z) − θ (−z)]. (24)

III. APPLICATIONS

In this section we present results of numerical application
to the fusion reaction. We employ the Bonche–Koonin–Negele
(BKN) EDF [28], which assumes the spin-isospin symmetry
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−
octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−
octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K �= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 3. Potential energy for the fusion path 16O + α → 20Ne as
a function of relative distance R. The solid (red) line corresponds
to V (R) on the ASCC collective path, while the dashed (green) line
shows 16e2/R + Eg.s.(α) + Eg.s.(16O) for reference. The horizontal
dashed (gray) line indicates the asymptotic energy of Eg.s.(16O) +
Eg.s.(α).

particular, for the CHF calculation with quadrupole constraint
of Q̂20, the collective path is not continuous due to the sudden
change of the state at around R = 4 fm.

2. Inertial mass

At the Hartree–Fock ground state, the ASCC inertial mass
coincides with the RPA inertial mass, which is able to take
into account the effect of the time-odd mean fields [12].
Performing the transformation of Eq. (20), we may obtain
those with respect to the relative distance R. In the asymptotic
region of large values of R, we expect that the inertial mass
becomes identical to the reduced mass of projectile and target,

 0
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FIG. 4. Octupole Q30 moment as a function of relative distance
R. The solid (red) line indicates the result of ASCC collective fusion
path of 16O + α → 20Ne, the dotted (green) and dashed (blue) lines
indicate the results of CHF calculation with constraint on Q20 and
Q30, respectively.

μred = AproAtarm/(Apro + Atar), where m is the nucleon mass.
In most phenomenological models, in fact, the mass parameter
with respect to R is assumed to be a constant value of μred.
In the present microscopic treatment, we may study how the
inertial mass changes during the collision.

One of the most common approaches to the nuclear
collective motion is “CHF + cranking” approach [29]: The
collective path is produced by the CHF calculation with a given
constraining operator Ô, and the inertial mass is calculated
with the cranking formula. Since the quadrupole operator
cannot produce a continuous path, we here use the octupole
operator, Ô = Q̂30, to construct the path. For the cranking
mass, we adopt two types of widely used formulas. The original
formula is derived by the adiabatic perturbation [26]. For the
one-dimensional (1D) collective path constructed by the CHF
calculation with a given constraining operator Ô, it reads

MNP
cr (R) = 2

∑
n∈p,j∈h

|〈ϕn(R)|∂/∂R|ϕj (R)〉|2
en(R) − ej (R)

, (25)

where the single-particle states and energies are defined with
respect to hCHF(R) = hHF[ρ] − λ(R)Ô as

hCHF(R)|ϕμ(R)〉 = eμ(R)|ϕμ(R)〉, μ ∈ p,h. (26)

hHF[ρ] is the single-particle mean-field Hamiltonian reduced
from H .

Another cranking formula, which is more frequently used
in many applications, is derived by assuming the separable
interaction and taking the adiabatic limit of the RPA inertial
mass,

MP
cr(R) = 1

2 {S(1)(R)}−1S(3)(R){S(1)(R)}−1, (27)

with

S(k)(R) =
∑

n∈p,j∈h

|〈ϕn(R)|R̂|ϕj (R)〉|2
{en(R) − ej (R)}k . (28)

According to Ref. [29], we call the former one in Eq. (25)
“nonperturbative” cranking inertia and the latter in Eq. (27)
“perturbative”. In contrast to the ASCC or RPA mass, the
cranking masses of Eqs. (25) and (27) both neglect the residual
effect. The cranking formulas produce the wrong total mass
for the translation, when the time-odd mean fields are present.

Figure 5 shows the ASCC inertial mass and the cranking
masses for 16O + α → 20Ne as a function of R. When the
two nuclei are far away, the ASCC inertial mass as well
as the cranking masses asymptotically produce the correct
reduced mass of μred = 3.2m. The success of the cranking
formulas at large R is due to the simplicity of the BKN density
functional that does not contain time-odd mean densities. Thus,
this should not be generalized to more realistic EDFs. As the
projectile and the target approach to each other, the ASCC
inertial mass monotonically increases, while the cranking
masses show different behavior. Particularly, the perturbative
cranking mass MP

cr(R) completely differs from the ASCC and
nonperturbative cranking masses. It is much smaller than the
ASCC values and even smaller than μred. The nonperturbative
cranking mass based on the Q̂30-constrained path is similar to
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FIG. 5. The ASCC inertial mass (red solid curve) in units of the
nucleon mass as a function of R for the fusion path of 16O + α →
20Ne, compared with the cranking inertial masses based on the CHF
states with constraint on Q̂30. The nonperturbative and perturbative
cranking inertial masses are shown with dotted and dashed lines,
respectively.

the ASCC mass. However, it shows a bump behavior at about
R = 6.3 fm.

In the cranking formulas, it is not easy to understand why
the single-particle energies eμ(R) in Eqs. (25) and (27) are
defined with respect to hCHF instead of hHF. In contrast, the
moving RPA equations (7) and (8) of the ASCC method are
invariant with respect to the replacement of Ĥmv with Ĥ . This
is due to the consistency between the constraining operator in
Hmv and the generators Q̂(q). The residual fields induced by
the density fluctuation is properly taken into account in the
ASCC mass.

B. 16O + 16O → 32S

1. Collective path: 16O + 16O → superdeformed 32S

We perform the iterative procedure of Sec. II B to construct
the reaction path for 16O + 16O. The initial state of two
well-separated 16O nuclei is produced by the CHF calculation
with a constraint on the quadrupole moment. This state
corresponds to the separation of R = 9.2 fm. The snap shot of
the density distribution is shown in Fig. 6(a). Figure 7 shows
the value of ω2(q) of the Kπ = 0+ quadrupole state and the
Kπ = 0− octupole state on the ASCC fusion path as a function
of the relative distance R. The local generators (P̂ (q),Q̂(q))
of the Kπ = 0+ state is adopted to construct the collective
path. Except for the three translational and two rotational NG
modes, the eigenfrequency of this Kπ = 0+ mode is the lowest
for the region R > 4.9 fm. As the two 16O approach each
other at R < 6 fm, the ω2(q) of the Kπ = 0+ mode quickly
increases and becomes less collective. At R < 4.9 fm, the
eigenfrequency of Kπ = 0− octupole mode becomes lower
than that of the Kπ = 0+ quadrupole mode. Energetically
favoring the Kπ = 0− mode can be understood as a tendency
to develop an asymmetric shape, transferring nucleons from
one to another.

(c)

-10 -5  0  5  10
 z [fm]

-4
-2
 0
 2
 4

 x
 [f

m
]

(a)

-10 -5  0  5  10

-4
-2
 0
 2
 4

 x
 [f

m
]

(d)

-10 -5  0  5  10
 z [fm]

-4
-2
 0
 2
 4

(b)

-10 -5  0  5  10

-4
-2
 0
 2
 4

FIG. 6. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + 16O → 32S: (a) R = 9.8 fm,
(b) R = 7.9 fm corresponding to the barrier top, (c) R = 4.9 fm
corresponding to the superdeformed 32S, and (d) R = 3.7 fm
corresponding to the ground state of 32S.

The obtained potential for 16O + 16O is shown as a function
of R in Fig. 8. For reference, the dotted line shows the
asymptotic Coulomb energy of 64e2/R + 2Eg.s.(16O), where
Eg.s.(16O) is the ground-state energy of 16O. The Coulomb
barrier height is about 12.5 MeV which is located at R =
7.9 fm. Around the barrier top, the curvature of the potential
curve is negative which is consistent with the negative ω2(q)
in Fig. 7. Then, the potential reaches a local minimum at
R = 4.9 fm, which corresponds to the superdeformed (SD)
state in 32S with β2 = 0.94. A snap shot of this state is
shown in Fig. 6(c). Beyond the SD state toward even more
compact shapes, the potential shows a significant increase. In
this region, the Kπ = 0+ mode becomes noncollective and
higher in energy; thus, it is difficult to construct the collective
path following this mode preserving the parity and the axial
symmetry. The ground state of 32S is located at R = 3.7 fm.

 0

 50

 100
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 200

 4  5  6  7  8  9

ω
2  [M
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2 ]

 R [fm]

Kπ = 0+

Kπ = 0−

FIG. 7. Square of the RPA eigenfrequency ω2(q) of the Kπ = 0+

(solid line) and Kπ = 0− (dashed line) modes on the ASCC fusion
path of 16O + 16O → 32S as a function of relative distance R. Near
the ground state of 32S, their K quantum numbers are approximate.
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FIG. 8. Potential energy of the fusion path 16O + 16O → 32S as
a function of relative distance R. The solid (red) line indicates the
result of ASCC method. The dashed (blue) line indicates the result
of CHF calculation. The thin dotted (green) line shows 64e2/R +
2Eg.s.(16O) for reference. The horizontal dashed (gray) line indicates
the asymptotic energy of 2Eg.s.(16O).

We cannot find a self-consistent 1D ASCC path connecting
the SD and the ground states in 32S.

The ASCC result is compared with that of the conventional
CHF calculation with constraint on Q̂20 (dashed line in Fig. 8).
In the region of R > 4.9 fm, the ASCC collective potential is
close to that of the CHF calculation. At R < 4.9 fm, the CHF
result deviates from the ASCC potential. This CHF calculation
also produces the local minimum state at R = 4.9 fm, which
confirms that the state reached by the ASCC path is really the
SD minimum.

Figure 9 shows the single-particle energies of the occupied
states of the ASCC path, compared with those of the CHF
path. The CHF single-particle energy is defined in Eq. (26).
Similarly, the ASCC single-particle energies are defined as the
eigenvalues of hmv(q) = hHF[ρ(q)] − λ(q)Q̂(q) with λ(q) =
∂V/∂q. From Fig. 9, we can see the difference between
the two set of single-particle energies. They are identical at
the local equilibrium states; namely, at the ground state of
32S, at the SD state at R = 4.9 fm, and at a large distance
R > 9.0 fm where the two 16O are well separated. For the
CHF calculation, a level crossing at the Fermi level occurred at
R = 4.3 fm. The crossing causes a sudden shape change from
the axially symmetric shapes at large R into the triaxial shapes
at R < 4.3 fm. This discontinuous configuration change may
produce a “multivalued” potential as a function of R in Fig. 8.
Around the peak of the potential at R = 4.3 fm, the one-to-one
correspondence between Q20 and R no longer exists. In
the case of ASCC, the single-particle energies show more
moderate behavior. The axial symmetry is kept in the region
of R > 4.5 fm, but beyond this region, we cannot find the
ASCC collective path toward a more compact shape. It is not
clear yet whether this is due to the level crossing effect seen
in the CHF calculation. Nevertheless, we may speculate that
the ASCC collective path tries to avoids this level crossing,
which leads to the coordinate q almost orthogonal to R. See
also discussion on the inertial mass in Sec. III B 2.
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FIG. 9. Single-particle energies for the fusion path 16O + 16O →
32S as a function of relative distance R. The upper panel shows
the result of CHF calculation with constraint on Q̂20. The lower
panel shows the single-particle energies of the ASCC collective path.
Because of the spin-isospin symmetry in the BKN functional, each
orbit has fourfold degeneracy. The thick lines indicate those with
eightfold degeneracy. The lowest eight orbits (red) are occupied. The
positive- and negative-parity states are shown by solid and dashed
lines, respectively.

With the BKN functional, the calculated ground state of
32S is triaxially deformed with β2 = 0.38 and γ = 36◦. In
the triaxial state, the K mixing takes place for the RPA normal
modes. The lowest physical collective mode at the ground state
is the positive-parity mode with nonzero transition strength of
the operator Q̂22. The RPA mode with a Kπ = 0+ character is
located at much higher in energy. Following this “quasi-axial”
mode, we try to construct the collective path from the ground
state (R = 3.7 fm); however, we do not succeed to find the
ASCC path to connect the SD state from the ground state.
The path in the region of 4 < R < 4.5 fm is still missing in
Figs. 8 and 9. In this region, the triaxial and octupole degrees of
freedom may play an important role, because their frequencies
are lower than that of the quasi-axial “Kπ = 0+”-like mode.
This may suggest the limitation of the 1D collective path
and the necessity to extend to a multidimensional collective
subspace. In addition, the pairing effect may change the
situation. It should be also noted that the mixture of the
rotational NG modes due to the missing curvature terms may
affect the result in the triaxial case.

014610-7



KAI WEN AND TAKASHI NAKATSUKASA PHYSICAL REVIEW C 96, 014610 (2017)

 5

 10

 15

 20

 25

 30

 35

 4  5  6  7  8  9

M
(R

)/m

R [fm]

16O + 16O ASCC
MP

cr
MNP

cr

FIG. 10. The ASCC inertial mass (red solid curve) in units of the
nucleon mass as a function of R for the fusion path of 16O + 16O →
32S, compared with the cranking mass based on the CHF states. The
nonperturbative and perturbative cranking inertial masses are shown
with dotted and dashed lines, respectively.

2. Inertial mass

Figure 10 shows the inertial mass M(R) for the system
16O + 16O → 32S as a function of R. For comparison, the
perturbative and nonperturbative cranking masses are also
calculated based on the CHF state with the Q̂20 constraint. The
reduced mass, μred = 8m, is well reproduced asymptotically
at large R in both the ASCC and the cranking calculations.
Because of the configuration change of the CHF states, the
cranking masses [MP

cr(R) and MNP
cr (R)] is discontinuous and

jump up to very large values at R < 4.25 fm. They are more
than 100m, beyond the scale of the vertical axis; thus, not
shown in Fig. 10. On the other hand, in the region of 4 fm
< R < 5 fm, the ASCC inertial mass M(R) shows a drastic
increase as decreasing R. According to Eq. (20), the large
M(R) comes from the large value of (dR/dq)−1, which means
the ASCC reaction path generated by the Kπ = 0+ mode
becomes almost orthogonal to R in the region between the
SD and the ground states in 32S.

Except for the asymptotic region, the cranking inertial
masses are significantly different from that of the ASCC. Fur-
thermore, the perturbative and the nonperturbative cranking
masses provide different values. The nonperturbative formula
produces oscillating behavior in Fig. 10, which is seen but
strongly hindered in the ASCC calculation. Since we adopt
the BKN density functional which does not contain time-odd
densities, the different inertial masses are mainly due to
difference in the assumed reaction paths: In the cranking
formula, it is assumed to be the relative distance R between the
two 16O, while it is the decoupled coordinate q in the ASCC.

3. Comparison with former adiabatic time-dependent
Hartree–Fock calculation

For the symmetric reaction of 16O + 16O, the result of the
ATDHF was reported by Reinhard et al. [30]. The result of
Ref. [30] shows the potential V (R) at R � 5 fm, which look

similar to our present result. Since in their calculation the po-
tential is defined as an envelope of many ATDHF trajectories,
it is not clear whether the obtained path reaches the SD local
minimum. Our calculation clearly produces the reaction path
connecting two 16O nuclei and the superdeformed state in 32S.

A prominent difference is observed in the calculated
inertial masses. The inertial mass of Ref. [30] resembles the
nonperturbative cranking inertia mass in our calculation, but
differs from the ASCC inertial mass, especially near the SD
state. Our result shows a peculiar increase in the inertial mass
near the SD local minimum (R = 4.9 fm). On the contrary,
the ATDHF result of Ref. [30] even shows a decrease near
the ending point at R ≈ 5 fm. In our previous study on
α + α → 8Be, we have also found that the ATDHF potential
is relatively similar to that of the ASCC, while the inertial
masses are different.

C. Subbarrier fusion cross section

The ASCC calculation provides us the collective Hamilto-
nian on the optimal reaction path. Using this, we demonstrate
the calculation of subbarrier fusion cross section for 16O +
α → 20Ne and 16O + 16O → 32S. We follow the procedure in
Ref. [30].

Using the collective potential V (R) and the inertial mass
M(R) obtained in the ASCC calculation, the subbarrier fusion
cross section is evaluated with the Wentzel–Kramers–Brillouin
approximation. The transmission coefficient for the partial
wave L at incident energy Ec.m. is given by

TL(Ec.m.) = [1 + exp(2IL)]−1, (29)

with

IL(Ec.m.)=
∫ b

a

dR

{
2M(R)

(
V (R)+ L(L + 1)

2μredR2
−Ec.m.

)}1/2

,

(30)

where a and b are the classical turning points on the inner
and outer sides of the barrier, respectively. The centrifugal
potential is approximated as L(L + 1)/(2μredR

2). The fusion
cross section is given by

σ (Ec.m.) = π

2μredEc.m.

∑
L

(2L + 1)TL(Ec.m.). (31)

For identical incident nuclei, Eq. (31) must be modified
according to the proper symmetrization. Only the partial wave
with even L contribute to the cross section as

σ (Ec.m.) = π

2μredEc.m.

∑
L

[1 + (−)L](2L + 1)TL(Ec.m.).

(32)

Instead of σ (Ec.m.), one usually refers to the astrophysical
S factor defined by

S(Ec.m.) = Ec.m.σ (Ec.m.) exp[2πZ1Z2e
2/h̄v], (33)

where v is the relative velocity at R → ∞. The astrophysical
S factor is preferred for subbarrier fusion because it removes
the change by tens of orders of magnitude present in the cross
section due to the trivial penetration through the Coulomb
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barrier. The S factor may reveal in a more transparent way the
influence of the nuclear structure and dynamics.

Figure 11 shows the calculated S factor for the scattering
of 16O + α and 16O + 16O, respectively. For 16O + 16O, the
values of the S factor are plotted on a log scale. The dashed
line is calculated with the same potential V (R) but with the
reduced mass, replacing M(R) by the constant value of μred

in Eq. (30). The effect of the inertial mass is significant in the
deep subbarrier-energy region, especially for the reaction of
16O + 16O at Ec.m. < 4 MeV. Because of a schematic nature of
the BKN density functional, we should regard this result as a
qualitative one. Nevertheless, it suggests the significant effect
of the inertial mass and roughly reproduces basic features
of experimental S factor for the 16O-16O scattering. This
demonstrates the usefulness of the requantization approach
using the ASCC collective Hamiltonian.

IV. SUMMARY

Based on the ASCC method we developed a numerical
method to determine the collective path for the large-amplitude
nuclear collective motion. We applied this method to the
nuclear fusion reactions; 16O + α → 20Ne and 16O + 16O →
32S. In the grid representation of the 3D coordinate space, the
reaction paths, collective potentials, and the inertial masses are
calculated.

The ASCC collective path smoothly connects the initial
state of 16O + α to the ground state of the fused nucleus 20Ne.
It is found the self-consistent collective path is different from
that of the conventional CHF calculation with the quadrupole
or octupole moment as the constraint. For the reaction of 16O +
16O → 32S, we succeed to obtain the 1D reaction path between
16O + 16O and a superdeformed state in 32S. The calculated
inertial mass asymptotically coincides with the reduced mass;
however, it shows a peculiar increase near equilibrium states,
such as the ground state of 20Ne and the superdeformed state
of 32S.

In the present work, we continue to choose the generators
of the same symmetry type to construct the collective path. In
principle we may lift this restriction. For instance, inside the
superdeformed state of 32S, the Kπ = 0+ quadrupole mode is
no longer favored in energy, which may suggest the necessity
to change the generator Q̂ of quadrupole type to octupole type.
The importance of the octupole shape in this region was also
suggested in Ref. [31]. The bifurcation of the collective path
is possible in the ASCC and will be a future issue.

From the ASCC results, it is straightforward to construct
and quantize the collective Hamiltonian to study the collective
dynamics microscopically. The calculated fusion cross section
suggests that the behavior of the inertial mass may have a
significant impact on the fusion probability at deep subbarrier
energies.

Between the superdeformed and triaxial ground states in
32S, we cannot find a 1D collective path to connect them.
Since we made an approximation neglecting the curvature
terms, the mixture of the rotational NG modes takes place in
the triaxial states. The multidimensional collective subspace
may be necessary, which is beyond the scope of the present
work. In the present study, the schematic EDF of the BKN is
adopted. To make more quantitative discussion and apply the
method to heavier nuclei, it is necessary to use realistic EDFs
and include the pairing correlation. These are our future tasks.
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