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Spectroscopic properties of odd-mass nuclei are studied within the framework of the interacting boson-
fermion model (IBFM) with parameters based on the Hartree-Fock-Bogoliubov (HFB) approximation. The
parametrization D1M of the Gogny energy density functional (EDF) was used at the mean-field level to obtain the
deformation energy surfaces for the considered nuclei in terms of the quadrupole deformations (β,γ ). In addition
to the energy surfaces, both single-particle energies and occupation probabilities were used as a microscopic input
for building the IBFM Hamiltonian. Only three strength parameters for the particle-boson-core coupling are fitted
to experimental spectra. The IBFM Hamiltonian is then used to compute the energy spectra and electromagnetic
transition rates for selected odd-mass Eu and Sm nuclei as well as for 195Pt and 195Au. A reasonable agreement
with the available experimental data is obtained for the considered odd-mass nuclei.
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I. INTRODUCTION

The study of the nuclei with odd number of protons
Z and/or neutrons N has been a recurring theme of great
interest in low-energy nuclear physics. While a wealth of
new spectroscopic data have been produced experimentally for
odd nuclei, especially in medium- and heavy-mass regions, a
microscopic description of odd nuclei represents one of the
most challenging problems on the theoretical side. One of the
reasons is the treatment of pairing: this type of correlation
couples protons and neutrons in even-even nuclei to form
Cooper pairs similar to the ones of the phenomenon of
superfluidity in condensed matter physics. The presence of
such Cooper pairs influences in an important way nuclear
dynamics, determining basic parameters of vibrational and
rotational spectra [1]. The treatment of pairing correlations
in those cases relies on the Hartree-Fock-Bogoliubov (HFB)
mean field theory characteristic of even-even nuclei. On the
other hand, the description of odd-Z and/or odd-N nuclei
requires one to describe at the same time the Cooper pairs
and the unpaired nucleon, that is boson-like (Cooper pairs)
and fermionic (unpaired nucleon) degrees of freedom. The
treatment of both degrees of freedom requires extending
the HFB theory to include blocking, with the subsequent
complications arising by the explicit breaking of time reversal
invariance [1,2]. Another unwanted consequence is the need to
explicitly treat both the collective and single-particle degrees
of freedom on the same footing.

The above difficulties are not a problem for the shell
model (SM) [3], but the exceedingly large size of shell model
configuration spaces in medium-mass and heavy nuclei and/or
open shell nuclei makes it impractical for the purpose of
describing odd nuclei in those cases.

On the other hand, the theoretical approaches based on
the energy density functional (EDF) method [4] allow for a
global description of many low energy properties of nuclei

all over the nuclide chart, including medium-mass and heavy
ones. Although not as common as in the even-even case,
a number of calculations have been made within the EDF
framework at the mean-field level for odd-mass systems (see
[5–8] for some recent examples with the Gogny force). In
the EDF framework, a proper description of excited states
requires the inclusion of dynamical correlations associated
with the restoration of broken symmetries and fluctuations
via the symmetry-projected configuration mixing calculation
within the generator coordinate method (GCM). In Ref. [9],
the GCM framework was extended to the odd-mass systems
by explicitly taking into account the breaking of time-reversal
symmetry. Nevertheless, the practical applications of this ap-
proach to medium-heavy and heavy nuclei are computationally
demanding, and so far calculations have been limited to very
light-mass systems [9,10].

Given the difficulties encountered with the two major
theoretical approaches to nuclear structure mentioned earlier,
i.e., SM and EDF-GCM frameworks, it is worth to consider
alternative theoretical approaches to odd nuclei. Among
them we can mention the various extensions of the particle-
vibration coupling scheme [1,11–15] and also algebraic based
approaches [16–20], that provide a computationally more
economic as well as straightforward description of the odd
nuclei in all mass regions from light to heavy nuclei. Along
this direction, one of the present authors has recently developed
a method [21] to calculate the spectroscopic properties of
odd-mass nuclei, which is based on the EDF framework
combined with the particle-boson-core coupling scheme, i.e.,
the interacting boson-fermion model [17]. In this proposal
[21], the energy surface of an even-even nucleus given as
a function of the shape parameters describing quadrupole
deformation (β,γ ), along with single-particle energies and
occupation probabilities of the odd nucleons computed within
the self-consistent mean-field method (based on the relativistic
EDF with the parametrization DD-PC1 [22]), are used as a
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microscopic input to determine the parameters of an IBFM
Hamiltonian. Only the strength parameters of the boson-
fermion coupling term in the IBFM Hamiltonian have been
determined so as to fit the selected experimental data. The
validity of the method was confirmed in the axially deformed
odd-mass Eu isotopes [21] and further applied to study
shape phase transitions between nearly spherical and axially
deformed shapes in the odd-mass Eu and Sm isotopes [23],
and between nearly spherical and γ -soft shapes in the mass
A ≈ 130 region [24].

In this work, we apply the method of Ref. [21] to describe
spectroscopic properties of selected odd-mass nuclei based
on the Gogny EDF. Specifically, we consider the odd-mass
isotopes 149–155Eu and 149–155Sm as well as the 195Pt and
the 195Au nuclei. Their associated even-even core nuclei,
148–154Sm and 194Pt, are good examples of axially deformed
and γ -soft nuclei, respectively. By studying the same isotopes
(149–155Eu and 149–155Sm) as in Refs. [21,23], we demonstrate
that the IBFM Hamiltonian based on the Gogny EDF describes
the low-lying states in odd-mass nuclei at the same level of
accuracy as in the earlier studies of [21,23] based on the
relativistic EDF. The Gogny EDF is a successful member
of the class of nonrelativistic EDFs. It has been used in
many nuclear structure and reaction theory calculations all
over the nuclide chart with great success. Its accuracy in
describing experimental data is at the level of the one
obtained by performing modern relativistic EDF calculations.
By comparing the results within the two major classes of EDF,
i.e., nonrelativistic and relativistic EDFs, we demonstrate the
validity of the mapping procedure of Ref. [21]. Furthermore,
the addition of the γ -soft nuclei, 195Pt and 195Au, which were
not included in Refs. [21,23], further confirms the robustness
of the procedure.

We employ the parametrization D1M [25] of the Gogny
EDF. A number of previous studies have demonstrated that
the D1M set, apart from being much more efficient in the
description of binding energies than the more traditional and
extensively tested D1S parametrization [26], keeps the same
predictive power as D1S in the description of other nuclear
properties such as excitation energies or transition strengths.
Nevertheless, we have also carried out part of the calculations
with D1S and confirmed the striking similarities between the
two sets of results. As a consequence, throughout the paper we
will only discuss the results obtained with the parametrization
D1M.

In Sec. II we give a brief account of the method used to
describe the considered odd-mass nuclei, and then present
the parameters for the boson-core Hamiltonian, single-particle
energies and occupation probabilities for the odd particle, and
the fitted strength parameters for the boson-fermion coupling
interaction. In Sec. III, we present the results for the even-even
core nuclei, including the Gogny-D1M and mapped energy
surfaces, and the calculated low-energy excitation spectra in
comparison to the experimental data. In Sec. IV, the results
for the spectroscopic calculation for the odd-mass Eu and
Sm isotopes, including evolution of energy levels, B(E2),
and spectroscopic quadrupole and magnetic moments, are
discussed. In Sec. V the energy spectra and decay patterns in
the γ -soft nuclei 195Pt and 195Au are discussed and compared

with the available experimental data. Finally, Sec. VI is
devoted to the summary of the paper and to discussing future
perspectives.

II. DESCRIPTION OF THE MODEL

In this section, we briefly describe the theoretical frame-
work proposed in Ref. [21] and used in this study. We also
discuss the parameters of the IBFM Hamiltonian employed
in the calculations. For more details on the philosophy of the
model as well as its main assumptions the reader is referred to
Ref. [21] for a thorough discussion.

A. Construction of IBFM Hamiltonian

The IBFM Hamiltonian, used to describe the studied odd-
mass nuclei, consists of three terms, namely, the even-even
boson core or interacting boson model (IBM) Hamiltonian ĤB ,
the single-particle Hamiltonian for unpaired fermions ĤF , and
the boson-fermion coupling term ĤBF :

Ĥ = ĤB + ĤF + ĤBF . (1)

The building blocks of the IBM are the traditional s and
d bosons, which represent the collective pairs of valence
nucleons [27] coupled to angular momenta Jπ = 0+ and 2+,
respectively. The numbers of bosons NB and fermions NF are
assumed to be conserved separately. Note also that we use the
traditional version of the IBM where there is no distinction
between neutron and proton bosons. Finally, we assume that,
because we only consider odd-mass nuclei, the number of
fermions equals one NF = 1. The IBM Hamiltonian ĤB reads

ĤB = εd n̂d + κQ̂B · Q̂B + κ ′L̂ · L̂, (2)

given in terms of the d-boson number operator n̂d = d† · d̃ ,
the quadrupole operator Q̂B = s†d̃ + d†s̃ + χ [d† × d̃](2), and
the angular momentum operator L̂ = √

10[d† × d̃](1). The
remaining quantities εd , κ , κ ′, and χ are parameters of the
Hamiltonian ĤB .

On the other hand, the single-fermion Hamiltonian takes
the form

ĤF =
∑

j

εj [a†
j × ãj ](0), (3)

where a
†
j and aj are the fermion creation and annihilation

operators while εj stands for the single-particle energy of the
orbital j .

For the boson-fermion coupling Hamiltonian ĤBF we
have employed the simplest possible form, as suggested in
Refs. [16,17]:

ĤBF =
∑
jj ′

�jj ′Q̂B · [a†
j × ãj ′ ](2)

+
∑
jj ′j ′′

	
j ′′
jj ′ : [[d† × ãj ](j ′′) × [a†

j ′ × d̃](j ′′)](0) :

+
∑

j

Aj [a† × ãj ](0)n̂d , (4)

where the first, second, and third terms are referred to
as the quadrupole, exchange, and monopole interactions,
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respectively. The strength parameters �jj ′ , 	
j ′′
jj ′ , and Aj can

be expressed, using the generalized seniority scheme, in the
following j -dependent forms [16]:

�jj ′ = �0γjj ′ , (5)

	
j ′′
jj ′ = −2	0

√
5

2j ′′ + 1
βjj ′′βj ′j ′′ , (6)

Aj = −A0

√
2j + 1, (7)

where γjj ′ = (ujuj ′ − vjvj ′ )Qjj ′ and βjj ′ = (ujvj ′ +
vjuj ′ )Qjj ′ , with the matrix element of the quadrupole
operator in the single-particle basis Qjj ′ = 〈j ||Y (2)||j ′〉.
Both uj and vj represent the occupation probabilities for the
orbital j and satisfy the well known relation u2

j + v2
j = 1.

Furthermore, �0, 	0, and A0 denote the corresponding
strength parameters. Note that an exhaustive presentation of
the physical contents of the formulas in Eqs. (4)–(7) as well
as the discussion of relevant applications to odd-A nuclei,
were already considered in Ref. [16].

The first step to build the IBFM Hamiltonian Ĥ in Eq. (1) is
to determine the IBM Hamiltonian ĤB by using the fermion-
to-boson mapping procedure developed in Refs. [28–30].
Here, the fermion (βγ )-deformation energy surface, obtained
within the constrained Gogny-D1M HFB framework, is
mapped onto the expectation value of ĤB in the boson
condensate state [31]. This procedure completely determines
the parameters εd , κ , and χ . The strength parameter κ ′ for
the L̂ · L̂ term is obtained separately by equating the cranking
moment of inertia, calculated in the boson coherent state at
the energy minimum, to the corresponding Thouless-Valatin
moment of inertia computed within the cranked HFB approach
[30]. It was shown in Ref. [30] that the L̂ · L̂ term is only
relevant in axially deformed systems and, for that reason,
we do not included it in the calculation for the γ -soft
nucleus 194Pt. For a more detailed account of constrained
Gogny-HFB calculations the reader is referred, for example,
to Refs. [32,33]. Details of the fermion-to-boson mapping
procedure are given in Refs. [28,29]. The parameters derived
for the isotopes 148–154Sm and 194Pt can be found in Table I.

For the fermion valence space, we have included all the
spherical single-particle orbitals in the proton major shell Z =
50–82 (i.e., 3s1/2, 2d3/2, 2d5/2, and 1g7/2 for positive-parity
states and 1h11/2 for the intruder negative-parity states) for the
odd-mass systems 149–155Eu and 195Au.

On the other hand, in the case of 149–155Sm and 195Pt, with
the Fermi level lying in the neutron major shell N = 82–126,

TABLE I. Parameters (εd , κ , κ ′, and χ ) of the boson Hamiltonian
ĤB . All entries, except the dimensionless parameter χ , are in MeV.

εd κ κ ′ χ

148Sm 1.185 −0.079 −0.027 −0.44
150Sm 0.615 −0.074 −0.014 −0.50
152Sm 0.336 −0.074 −0.018 −0.50
154Sm 0.106 −0.074 −0.018 −0.50
194Pt 0.011 −0.098 0.10

TABLE II. Spherical single-particle energies (in MeV) resulting
from Gogny-D1M HFB calculations for the considered odd-mass
nuclei. For details, see the main text.

3s1/2 2d3/2 2d5/2 1g7/2 1h11/2

149Eu 3.365 3.076 0.868 0.000 3.512
151Eu 3.378 3.063 0.850 0.000 3.544
153Eu 3.425 3.078 0.876 0.000 3.593
155Eu 3.494 3.114 0.936 0.000 3.653
195Au 0.000 0.907 2.624 5.164 0.840

3p1/2 3p3/2 2f5/2 2f7/2 1h9/2 1i13/2

149Sm 3.528 2.607 3.049 0.000 1.191 3.310
151Sm 3.491 2.573 3.052 0.000 1.141 3.268
153Sm 3.458 2.544 3.041 0.000 1.076 3.214
155Sm 3.430 2.521 3.021 0.000 1.005 3.154
195Pt 0.000 0.927 1.014 3.816 4.273 1.495

we have considered the positive parity intruder orbital 1i13/2

and the negative parity orbitals 3p1/2, 3p3/2, 2f5/2, 2f7/2,
and 1h9/2.

Following the prescription of Ref. [21], the single-particle
energies εj and the occupation probabilities v2

j are obtained
from self-consistent Gogny-D1M HFB calculations for the
spherical configuration. In those calculations, for a given
odd-mass nucleus with the odd neutron (proton) number N0

(Z0), the standard even number parity constrained Gogny-
HFB approach (i.e., without blocking) was used, but using
N0 (Z0) for the neutron (proton) number constraint. The
single-particle energies and occupation probabilities obtained
for the considered odd-A nuclei are shown in Tables II and III,
respectively.

The coupling constants of the boson-fermion interaction
term ĤBF (�0, 	0, and A0) are the only free parameters in
our study. They are fitted, for each nucleus, to reproduce the
lowest few experimental energy levels, separately for positive-
and negative-parity states [21]. We show in Table IV the fitted
strength parameters for the positive- (�+

0 , 	+
0 , and A+

0 ) and
negative-parity (�−

0 , 	−
0 , and A−

0 ) states.

TABLE III. Occupation probabilities of the single-particle or-
bitals resulting from Gogny-D1M HFB calculations for the consid-
ered odd-mass nuclei. For details, see the main text.

3s1/2 2d3/2 2d5/2 1g7/2 1h11/2

149Eu 0.112 0.158 0.700 0.843 0.102
151Eu 0.110 0.159 0.705 0.845 0.099
153Eu 0.107 0.159 0.706 0.851 0.095
155Eu 0.104 0.159 0.703 0.858 0.092
195Au 0.617 0.870 0.968 0.989 0.864

3p1/2 3p3/2 2f5/2 2f7/2 1h9/2 1i13/2

149Sm 0.013 0.023 0.027 0.413 0.126 0.022
151Sm 0.020 0.036 0.039 0.531 0.202 0.034
153Sm 0.028 0.053 0.053 0.623 0.291 0.049
155Sm 0.038 0.075 0.069 0.693 0.387 0.067
195Pt 0.303 0.603 0.634 0.956 0.961 0.763
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TABLE IV. Fitted parameters of the boson-fermion Hamiltonian
ĤBF (�±

0 , 	±
0 , and A±

0 ). All entries are in MeV.

�+
0 	+

0 A+
0 �−

0 	−
0 A−

0

149Eu 0.05 2.5 −0.13 0.3 3.5 −0.14
151Eu 0.06 1.0 0.0 0.6 6.5 −0.06
153Eu 0.17 7.0 −0.65 0.6 9.0 −0.30
155Eu 0.19 4.5 −0.44 0.5 8.0 −0.30
149Sm 0.2 36.0 −0.25 0.2 1.05 −0.15
151Sm 1.4 39.0 −0.30 0.3 0.15 −0.18
153Sm 1.9 35.0 −0.18 0.7 2.5 −0.50
155Sm 1.6 22.5 −0.28 0.58 1.25 −0.30
195Pt 0.5 0.6 −0.36 0.6 0.5 −0.85
195Au 0.6 1.45 −0.35 0.65 2.0 −0.33

Once all the parameters of the different building blocks of
the IBFM Hamiltonian Ĥ are fixed by the procedure described
above, the Hamiltonian is diagonalized in the spherical basis
|j,L,α,J 〉 [34], where α = (nd,ν,n�) represents a generic
notation for the quantum numbers of the U(5) symmetry in
the IBM [35], and L and J are the angular momentum of
the boson and the total angular momentum of the coupled
boson-fermion system, respectively. They satisfy the standard
triangular selection rule |L − j | � J � L + j . The wave
functions resulting from the diagonalization of Ĥ are used
to compute the B(E2) and B(M1) transition rates as well as
spectroscopic quadrupole and magnetic moments. The electric
E2 transition operator is taken as the sum of the boson and
fermion parts

T̂ (E2) = T̂
(E2)
B + T̂

(E2)
F (8)

with the boson operator given by

T
(E2)
B = eBQ̂B, (9)

where eB is the boson effective charge and Q̂B represents the
quadrupole operator defined in Eq. (2) with the same value of
the parameter χ . On the other hand, the fermion E2 operator
takes the form

T̂
(E2)
F = −eF

∑
jj ′

1√
5
γjj ′ [a† × ãj ′ ](2), (10)

with eF being the fermion effective charge. As in previous
studies [21,23], eB is fitted to reproduce the experimental
B(E2; 2+

1 → 0+
1 ) value of the corresponding even-even boson-

core nuclei while eF is taken as eF = eB for all the considered
odd-mass nuclei.

In the same fashion, the magnetic M1 transition operator is
given by

T̂ (M1) =
√

3

4π

(
T̂

(M1)
B + T̂

(M1)
F

)
(11)

where the M1 boson operator is proportional to the boson angu-
lar momentum operator T̂

(M1)
B = gBL̂ with the gyromagnetic

factor gB = μ2+
1
/2 given in terms of the magnetic moment μ2+

1

of the 2+
1 state of the even-even nucleus. The corresponding

experimental value is used for this quantity. The fermion part
is written as T̂

(M1)
F and takes the form [16]

T̂
(M1)
F = −

∑
jj ′

gjj ′

√
j (j + 1)(2j + 1)

3
[a†

j × ãj ′ ](1), (12)

with the coefficients gjj ′ given by

gjj ′ =

⎧⎪⎪⎨
⎪⎪⎩

(2j−1)gl+gs

2j

(
j = j ′ = l + 1

2

)
,

(2j+3)gl−gs

2(j+1)

(
j = j ′ = l − 1

2

)
,

(gl − gs)
√

c 2l(l+1)
j (j+1)(2j+1)(2l+1)

(
j ′ = j−1; l = l′

)
.

(13)

In this expression l represents the orbital angular momentum
of the single-particle state. Throughout this work, the fermion
gl and gs gyromagnetic factors take the usual Schmidt values
gl = 1.0μ2

N and gs = 5.58μ2
N for the proton and gl = 0 and

gs = −3.82 μ2
N for the neutron. The gs is quenched by 30 %

for both proton and neutron, as in Refs. [21,36].

B. Comparison of the parameters with the ones of the
relativistic EDF

At this point, it is worthwhile to point out some differences
found between the values of the parameters entering the IBFM
Hamiltonian, especially ĤF and ĤBF , obtained for the odd-A
Eu and Sm isotopes in the present work as compared to the
ones used in the previous studies of the same isotopes within
the relativistic EDF framework [21,23].

First, in Figs. 1 and 2, we plot the strength parameters
�±

0 , 	±
0 , and A±

0 obtained for the odd-A Eu and Sm isotopes,
respectively, from the Gogny-D1M and relativistic DD-PC1
EDFs. As one can observe in Figs. 1(a) and 1(b), significant
discrepancies between the present and previous [21,23] studies
are found in the fitted 	±

0 and A±
0 values, especially for lighter

isotopes 149,151Eu, both quantitatively and qualitatively. In
addition, in Ref. [21] the monopole term was introduced only
for the 2d5/2 orbit for the positive-parity states in the odd-mass
Eu isotopes. In this study, on the one hand, we have introduced
the monopole term for all the positive-parity orbitals in a given
isotope, with a common value A+

0 . On the other hand, the
values of the strength parameters (�±

0 , 	±
0 , and A±

0 ) obtained
here for the odd-A Sm isotopes (see Fig. 2) are quite similar to
those employed in Ref. [23], except perhaps for the A+

0 values
for 149Sm [see Fig. 2(c)].

The observed differences in the boson-fermion strength
parameters for the odd-A Eu between the present and previous
[21] studies could partly originate from the quantitative
differences, especially in the single-particle energies, between
the Gogny and relativistic EDF quantities entering the fit.
To illustrate this possibility, we plot in Fig. 3 the spherical
single-particle energies and occupation probabilities for the
odd-A Eu isotopes obtained in Ref. [21] and in the present
work. As seen in panels (a) and (b) of Fig. 3, the energy
gap between the 1g7/2 and 2d5/2 orbitals for the odd-mass Eu
isotopes is, in general, more than 3 MeV in Ref. [21] while it
is less than 1 MeV in the Gogny-D1M calculations (see also
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FIG. 1. The coupling constants of the boson-fermion interaction
term ĤBF for the odd-A Eu isotopes, used in the present study
(denoted by “D1M”) and in the previous calculation in Refs. [21,23].
They are shown separately for positive- (π = +1) and negative-parity
(π = −1) states.

Table II). The values of εj and v2
j obtained for the odd-A Sm

isotopes from the Gogny-D1M and the relativistic EDFs are
plotted in Fig. 4.

In addition, we observe in Fig. 2(b) as well as in Table IV
that the values of 	+

0 for 149–155Sm are rather large (≈20 − 40
MeV), about a factor of 10 larger than the 	±

0 parameters
obtained for other odd-mass nuclei. They are also larger
than the ones employed in earlier phenomenological IBFM
calculations for other isotopic chains [18]. The reason for
the large 	+

0 values in the odd-mass Sm nuclei is the nearly

vanishing βjj ′′βj ′j ′′ factors in the strength parameters 	
j ′′
jj ′ [see

Eq. (6)]; a consequence of the too small v2
i13/2

values used [see
Table III and Fig. 4(d)]. We note that even larger values of
	+

0 for the odd-A Sm isotopes than the present ones were
obtained in the case where the relativistic DD-PC1 EDF was
used [23] [see Fig. 2(b)]. In Ref. [23], too small v2

i13/2
values

for the odd-A Sm isotopes were also obtained, similarly to the
present work [see Fig. 4(d)].

FIG. 2. The same as in Fig. 1, but for the odd-A Sm isotopes.

III. RESULTS FOR THE EVEN-EVEN CORE NUCLEI

The Gogny-D1M and mapped IBM energy surfaces ob-
tained for the even-even boson-core nuclei 148–154Sm are
plotted in Fig. 5. Those surfaces illustrate the transition
between nearly spherical and axially deformed shapes [38].
In the case of 148Sm the HFB surface exhibits a weakly
deformed minimum around β = 0.15. The nucleus 150Sm
displays a sharper potential in both β and γ directions with a
minimum around β = 0.2. The minimum of the HFB surface
obtained for 152Sm is even sharper, especially along the γ
direction, but it looks softer in β than in 150Sm. This softening
of the potential in β agrees well with a key feature of a
transitional nucleus associated with the X(5) critical-point
symmetry [39,40]. Finally, the nucleus 154Sm exhibits the most
pronounced prolate deformation with β ≈ 0.35. The mapped
IBM surfaces, plotted in the lower row of the figure, reproduce
nicely the Gogny-HFB ones for each nucleus, except that, due
to the limited IBM configuration space used in this work, far
away from the minimum the IBM surfaces tend to be flatter
than the Gogny-HFB ones. In Fig. 6, we have plotted the
Gogny-D1M and IBM energy contour plots for 194Pt. Both
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FIG. 3. The spherical single-particle energies εj and occupation
probabilities v2

j for the odd-A Eu isotopes, resulting from the Gogny-
D1M HFB calculations, are compared with those obtained with the
relativistic DD-PC1 EDF in Ref. [23].

FIG. 4. The same as Fig. 3, but for the odd-A Sm isotopes.

surfaces exhibit a typical γ softness with a weakly deformed
oblate minimum at β ≈ 0.15

The low-energy levels, resulting from the diagonalization
of the IBM Hamiltonian, are plotted in Fig. 7 as functions
of the neutron number N for the isotopes 148–154Sm. They
are compared with the available experimental data [37].
The calculations reproduce reasonably well the experimental
trends of the low-lying energy levels and suggest the transition
from a vibrational-like spectrum at N = 86 to the typical
rotational-like spectrum at N = 92. The overestimation of the
energies of the 0+

2 and 2+
2 states was also found in earlier

calculations within the fermion-to-boson mapping procedure
[28,29]. A reason for that could be the restricted model space
of the IBM and/or to the fact that the shape of the Gogny-HFB
energy surfaces around the minimum have too large curvatures
in both the β and γ directions, which requires a large value of
the quadrupole-quadrupole interaction strength κ [see Eq. (2)]
in the IBM Hamiltonian. The large κ values push up the
non-yrast energy levels.

The low-energy spectrum obtained for 194Pt is shown in
Fig. 8. It exhibits several features of γ softness or the O(6) sym-
metry [35], i.e., the energy ratio R4/2 = E(4+

1 )/E(2+
1 ) = 2.57,

the multiplets (4+
1 ,2+

2 ) and (6+
1 ,4+

2 ,3+
1 ), the large B(E2; 2+

2 →
2+

1 ) transition strength of the same order of magnitude as
the B(E2; 4+

1 → 2+
1 ) one, and the selection rule of the E2

decay from the 0+
2 to 2+

1,2 state. When compared with the
experimental data, the spectrum looks rather stretched.

IV. SPECTROSCOPIC PROPERTIES OF ODD-A Eu AND
Sm NUCLEI

Having demonstrated that the mapped IBM Hamiltonian
gives a reasonable description of the even-even (boson-core)
nuclei, we now turn our attention to the considered odd-mass
nuclei. In Fig. 9 we have depicted the low-lying positive-
and negative-parity states obtained for the studied odd-A Eu
isotopes as functions of neutron number N . They are compared
with the available experimental data [37]. A reasonable
good agreement between the theoretical predictions and the
experimental values is observed. The compression of the
positive- and negative-parity levels, as functions of the neutron
number, correlates well with the lowering of the yrast levels
in the even-even nuclei (see Fig. 7). It can be regarded as a
signature of the structural evolution from the nearly spherical
to the well-deformed regime. Another signature of shape
transition, specific to the odd-mass nuclei, is the change in
the angular momentum of the ground state in the case of
negative-parity configurations from N = 88 to 90 [see panels
(c) and (d)]. Our results suggest that for 149,151Eu the 11/2−

1 is
the ground state for negative parity, which is weakly coupled
to the boson core (represented by 148,150Sm) that exhibits a
moderate deformation (see Fig. 5). At N = 90 and 92, the
coupling between the odd proton and boson-core nucleus
becomes stronger and the regular rotational band built on the
5/2−

1 state, that follows the �J = 1 systematics of the strong
coupling limit, emerges. In the case of the positive-parity states
[panels (a) and (b)], the 5/2+ one remains the ground state.
Nevertheless, both theoretically and experimentally, the 5/2+

1
and 7/2+

1 states are rather close in energy at N = 88. This
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FIG. 5. The Gogny-D1M (upper row) and mapped IBM (lower row) energy surfaces for the even-even nuclei 148–154Sm are plotted up to
3 MeV above the absolute minimum. The difference between neighboring contours is 100 keV.

feature can be regarded as a signature of the structural change
taking place around N = 88.

The theoretical and experimental spectra for the odd-mass
Sm isotopes are plotted in Fig. 10. As can be seen, our cal-
culations provide a reasonable description of the experimental
data. A change in the spin of the ground state is observed at
N = 91. On the other hand, the levels are more compressed
from N = 87 towards 89 or 91 [panels (a), (c), and (d)]
suggesting a structural change in those odd-mass systems.
The experimental data indicate that for the transitional isotope
153Sm many levels are found below ≈300 keV. They also reveal
[panels (b) and (d)] a more regular rotational-like band that
exhibits the �J = 1 systematics of the strong coupling regime.
Our results suggest that for both parities the rotational-like
band appears already at N = 91 [panels (a) and (c)]. However,
the predicted negative-parity levels for the N = 91 and 93
nuclei [see panel (c)], look rather irregular, with the stag-
gering pattern (3/2−

1 ,5/2−
1 ),(7/2−

1 ,9/2−
1 ),(11/2−

1 ,13/2−
1 ), . . ..

We notice here that the Gogny-D1M energy systematic
obtained for the odd-mass Eu and Sm nuclei is similar to the
results found within the relativistic EDF framework [21,23].

In addition to the energy spectra, the electromagnetic transi-
tion rates also provide signatures of the structural evolution in
the considered odd-mass nuclei. The B(E2; 9/2+

1 → 5/2+
1 ),

B(E2; 7/2+
1 → 5/2+

1 ), and B(E2; 5/2+
2 → 7/2+

1 ) transition

FIG. 6. Same as in Fig. 5, but for 194Pt.

probabilities obtained for the odd-mass Eu isotopes are shown
in Fig. 11 as functions of the neutron number. There is a sharp
increase in the B(E2; 9/2+

1 → 5/2+
1 ) and B(E2; 7/2+

1 →
5/2+

1 ) strengths in going from N = 88 to 90, suggesting a
sudden structural change from 151Eu to 153Eu, especially in the
case of the 7/2+

1 → 5/2+
1 transition. However, our calculations

underestimate the experimental B(E2; 5/2+
2 → 7/2+

1 ) value
although they still exhibit a small peak at N = 90, where the
shape transition occurs.

The B(E2; 5/2−
1 → 3/2−

1 ), B(E2; 7/2−
1 → 3/2−

1 ), and
B(E2; 7/2−

1 → 5/2−
1 ) transition strengths obtained for the

odd-mass isotopes 149–155Sm are plotted in Fig. 12 as functions
of N . Our Gogny-D1M calculations reproduce reasonably well
the available data for both the B(E2; 5/2−

1 → 3/2−
1 ) [panel

(a)] and B(E2; 7/2−
1 → 3/2−

1 ) [panel (b)] strengths in 149Sm
and 151Sm. Experimental data are not available for the heavier
N = 91 and N = 93 isotopes.

FIG. 7. The low-lying states in 148–154Sm are plotted as functions
of the neutron number N . Experimental data were taken from
Ref. [37].
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FIG. 8. Energy spectra of 194Pt. The numbers along arrows are
B(E2) transition strengths in Weisskopf units. Experimental data
have were from Ref. [37].

A sharp rise of the B(E2; 5/2−
1 → 3/2−

1 ) and
B(E2; 7/2−

1 → 3/2−
1 ) values is predicted from N = 89 to

91. Such a behavior, as in the case of the odd-mass Eu
isotopes (see, Fig. 11), points to a spherical-to-deformed
shape transition in the corresponding even-even Sm nuclei.
However, the predicted B(E2; 7/2−

1 → 5/2−
1 ) transition rate

[panel (c)] does not exhibit a clear signature of the rapid
structural change as in the other two cases [panels (a) and (b)].
In particular, our calculations underestimate the experimental
B(E2; 7/2−

1 → 5/2−
1 ) value for 151Sm. The reason for the

disagreement is that the computed wave functions for the
5/2−

1 and 7/2−
1 states are very different in nature, i.e., the

former is mainly composed of f5/2 (29 %) and h9/2 (45 %)
configurations, whereas the latter is mostly made of the f7/2

configuration (79 %).

FIG. 9. The low-lying positive- (π = +1) and negative-parity
(π = −1) states in the odd-mass isotopes 149–155Eu are plotted as
functions of the neutron number N . Experimental data were taken
from Ref. [37].

FIG. 10. Same as in Fig. 9, but for the odd-mass Sm isotopes.

Another signature of the shape transition already mentioned
can be found in Fig. 13, where the spectroscopic quadrupole
QJ and magnetic μJ moments of the 3/2+

1 , 5/2+
1 , 7/2+

1 , 5/2−
1 ,

and 11/2−
1 states are shown for 149–155Eu. Similar to the B(E2)

transition rates, the QJ values in panels (a) to (e) of the figure
exhibit a dramatic change around N = 88 and N = 90. The
agreement between the theoretical and experimental [37,41]
QJ values is also very reasonable. On the other hand, the μJ

values, plotted in panels (f) to (j), seem to be less sensitive to
N than the QJ ones. One observes a fair agreement between
the calculated and experimental μJ values, except for the

FIG. 11. The B(E2; 9/2+
1 → 5/2+

1 ), B(E2; 7/2+
1 → 5/2+

1 ), and
B(E2; 5/2+

2 → 7/2+
1 ) transition strengths obtained for the odd-mass

isotopes 149–155Eu are depicted as functions of the neutron number N .
Experimental data were taken from Ref. [37].
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FIG. 12. The B(E2; 5/2−
1 → 3/2−

1 ), B(E2; 7/2−
1 → 3/2−

1 ), and
B(E2; 7/2−

1 → 5/2−
1 ) transition strengths obtained for the odd-mass

isotopes 149–155Sm are depicted as functions of the neutron number
N . Experimental data were taken from Ref. [37].

FIG. 13. The spectroscopic quadrupole QJ (in eb units) and
magnetic μJ (in μ2

N units) moments obtained for the odd-mass
isotopes 149–155Eu are plotted as functions of the neutron number N .
Experimental data, represented by dots, were taken from Ref. [41].

FIG. 14. Same as in Fig. 13, but for the odd-mass
isotopes 149–155Sm.

substantial disagreement of the μ5/2+
1

values at N = 86 and
N = 88.

In Fig. 14, we have depicted the QJ and μJ moments for
the 3/2±

1 , 5/2±
1 , and 7/2±

1 states in the case of the odd-mass
isotopes 149–155Sm. As in Fig. 13, the predicted QJ values
[panels (a) to (f)] exhibit a rapid change around N = 89 or N =
91, where the shape transition occurs. Notice, that the sign of
Q3/2−

1
for 155Sm is not known experimentally [37,41], though

it is assumed to be negative for consistency with the calculated
one. On the other hand, many of the predicted μJ values
[panels (g) to (l)] also exhibit a significant change around the
transitional system with N = 89 or N = 91. In many cases,
however, the sign of the corresponding μJ moments is opposite
to the experimental one.
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FIG. 15. The three lowest positive- and negative-parity bands in
195Pt. Experimental data were taken from Ref. [37].
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V. SPECTROSCOPIC PROPERTIES OF 195Pt AND 195Au

In this section we turn our attention to the γ -soft cases.
In Figs. 15 and 16 we have plotted the three lowest positive-
and negative-parity bands obtained for both 195Pt and 195Au.
They are compared with the experimental ones taken from
Ref. [37]. To understand the structure of those states, we show
in Tables V and VI the amplitudes of their decomposition in
the spherical single particle basis. The two tables correspond
to the results for 195Pt and 195Au, respectively. It should be
noted that, in Figs. 15 and 16, the theoretical levels have been
classified into bands according to the dominant E2 decays and
also that the relative location of the ground states for positive
and negative parity in the theoretical energy spectrum has been
adjusted to that of the experimental data.

As can be seen from Fig. 15, our calculations reproduce
fairly well the experimental energies of the negative-parity
states in 195Pt, whereas many of the non-yrast states are

TABLE V. Amplitudes (in percent) of the negative-parity states
of 195Pt shown in Fig. 15 when expressed in the single-particle basis
of the 3p1/2, 3p3/2, 2f5/2, 2f7/2, and 1h9/2 orbitals.

J π 3p1/2 3p3/2 2f5/2 2f7/2 1h9/2

1/2−
1 67 12 12 5 4

1/2−
2 0 46 39 8 7

3/2−
1 51 31 5 11 2

3/2−
2 0 28 57 7 8

3/2−
3 16 40 31 7 6

5/2−
1 53 6 30 3 8

5/2−
2 15 22 50 6 7

5/2−
3 3 51 30 11 5

7/2−
1 44 34 7 13 2

7/2−
2 4 16 66 4 10

7/2−
3 19 44 23 10 4

9/2−
1 47 5 35 2 11

9/2−
2 19 19 48 4 9

9/2−
3 2 49 32 12 4

11/2−
1 42 34 8 14 2

11/2−
2 3 14 68 3 12

13/2−
1 45 5 37 2 11

TABLE VI. Amplitudes (in percent) of the positive-parity states
of 195Au shown in Fig. 16 when expressed in the single-particle basis
of the 3s1/2, 2d3/2, 2d5/2, and 1g7/2 orbitals.

J π 3s1/2 2d3/2 2d5/2 1g7/2

1/2+
1 59 27 12 2

1/2+
2 14 61 15 10

3/2+
1 3 84 2 11

5/2+
1 1 83 6 10

5/2+
2 67 11 21 1

7/2+
1 2 83 1 14

9/2+
1 8 73 9 10

9/2+
2 60 19 20 1

11/2+
1 1 83 2 14

13/2+
1 14 68 9 9

overestimated. Both theoretically and experimentally, the
lowest negative-parity band appears to show the �J = 1
systematics of the strong coupling limit, though there is a
staggering pattern (3/2−,5/2−), (7/2−,9/2−), etc. Consistent
with the experiment, the first and second excited negative-
parity bands also display a �J = 1 feature. Nevertheless,
their bandhead energies are rather high in comparison with
the experimental ones. Furthermore, we have classified the
calculated 3/2−

1 and 5/2−
1 levels, which are nearly degenerate,

into the lowest band, whereas the experimental 3/2−
1 and 5/2−

1
levels are suggested to be the bandheads of the first and second
excited bands, respectively. As seen from Table V. the features
already mentioned can be understood from the fact that, in our
calculations, the states in the lowest negative-parity band are
predominantly composed of the p1/2 configuration while those
in the first and second excited negative-parity bands are mainly
composed of the f5/2 and p3/2 configurations, respectively.
From Table II we note that the 3p3/2 and 2f5/2 single-particle
levels lie much higher than the 3p1/2 orbital. This could partly
account for the discrepancy observed in 195Pt where the first
and second excited negative-parity bands are predicted to lie
too high in excitation energy as compared to the experiment.
On the other hand, the pattern of the positive-parity levels in
195Pt, also shown in Fig. 15, is much simpler than for the
negative-parity ones. The ground state for positive parity, the
13/2+

1 state, is weakly coupled to the boson core nucleus
194Pt. Consistent with the experiment, the three theoretical
positive-parity bands, shown in the left-hand side of Fig. 15,
look rather harmonic. They exhibit the weak coupling �J = 2
systematics.

The results obtained for 195Au are shown in Fig. 16. In
this case, our calculations provide a slightly better agreement
with the experimental data than for 195Pt. The three lowest
positive-parity bands display the �J = 2 systematics of the
weak coupling limit. This is consistent with the experimental
data. Nevertheless, the calculated first excited positive-parity
band looks more stretched than the experimental one. Also, the
second excited positive-parity band, built on the 1/2+

2 state,
is much lower in energy in the present calculation than in
experiment. In our calculation, the low-lying positive-parity
states of the 195Au nucleus are mainly composed of the s1/2 and
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TABLE VII. B(E2) and B(M1) transition probabilities (in
Weisskopf units) for 195Pt.

B(E2) (W.u.) B(M1) (W.u.)

Th. Expt. Th. Expt.

3/2−
1 → 1/2−

1 36 11.5(15) 3.9×10−5 0.0168(19)
3/2−

2 → 1/2−
1 0.086 4.5(13) 0.00032 0.00033(11)

3/2−
3 → 1/2−

1 6.1 30(7) 0.023 0.024(4)
3/2−

4 → 1/2−
1 2.9 0.22(7) 0.011 0.0036(7)

3/2−
4 → 1/2−

2 4.2 <37 0.016 >0.00054
5/2−

1 → 1/2−
1 35 8.9(7)

5/2−
2 → 1/2−

1 7.5 49(7)
5/2−

3 → 1/2−
1 0.0093 1.3(9)

3/2−
2 → 3/2−

1 4.0 0.05+106
−5 0.0043 0.0030(8)

3/2−
4 → 3/2−

1 6.8 0.07(6) 4.3×10−5 0.0013(3)
5/2−

1 → 3/2−
1 9.9 4.8(19) 0.017 0.0269(21)

5/2−
2 → 3/2−

1 0.076 11(6) 9.9×10−5 0.019(3)
5/2−

3 → 3/2−
1 7.2 38(20) 0.027 0.038(17)

5/2−
4 → 3/2−

1 0.0097 <0.013
5/2−

4 → 3/2−
3 0.0030 <0.017

7/2−
2 → 3/2−

1 0.84 29(10)
7/2−

2 → 3/2−
3 4.0 7(3)

7/2−
3 → 3/2−

3 34 26(17)
5/2−

3 → 5/2−
1 1.9 0.015+88

−15 0.0044 0.026(12)
7/2−

2 → 5/2−
1 0.033 0.014(5)

9/2−
1 → 5/2−

1 57 35(8)
5/2−

3 → 5/2−
2 0.027 0.030(15)

5/2−
4 → 5/2−

2 6.3 <60
7/2−

3 → 5/2−
2 1.7 <210 0.0064 <0.077

9/2−
2 → 5/2−

2 47 30(8)
7/2−

2 → 5/2−
3 2.1 <3.9 × 103 0.0080 <0.14

d3/2 configurations. For example, 84% of the ground state 3/2+
1

is made of the d3/2 configuration, while 59% of the first excited
state 1/2+

1 is comprised of the s1/2 configuration (see Table VI).
Similarly to the positive-parity bands in 195Pt nucleus, the
theoretical negative-parity bands in 195Au all exhibit the weak-
coupling �J = 2 systematics and look harmonic.

The calculated B(E2) and B(M1) transition rates of the
195Pt nucleus are shown in Table VII and compared with the
experimental data of Ref. [37,41]. As is apparent from the
table, the agreement between our calculation and experiment
is not necessarily satisfactory in some of the B(E2) transition
rates. For instance, the theoretical B(E2; 5/2−

2 → 3/2−
1 ) value

of 0.076 W.u. is roughly a factor 102 smaller than the
experimental value of 11 ± 6 W.u. A possible reason for the
disagreement could be attributed to the choice of both the
boson and fermion effective charges. A more likely reason
would be the fact that the structures of the 5/2−

2 and 3/2−
1 wave

functions are somewhat different in the present calculation
(see Table V). The 3/2−

1 state is mostly composed of the
p1/2 (51%) and p3/2 (31%) configurations. On the other hand,
the main component of the 5/2−

2 wave function is the f5/2

configuration (50%), while the p1/2 and p3/2 configurations
account for 15% and 22% of the wave function, respectively.
All in all, the predicted B(M1) values compare well with
the experimental data. We also compare in Table VIII the

TABLE VIII. Spectroscopic quadrupole (in eb) and magnetic
moments (in μ2

N ) in 195Pt.

QJ (eb) μJ

(
μ2

N

)
Th. Expt. Th. Expt.

13/2+
1 +1.619 +1.4(6) −1.246 − 0.606(105)

1/2−
1 +0.467 +0.60952(6)

3/2−
1 +0.683 −0.206 −0.62(6)

3/2−
3 +0.288 −0.411 +0.16(3)

5/2−
1 +0.973 +0.924 +0.90(6)

5/2−
2 +0.306 +1.219 +0.52(5)

5/2−
3 +0.536 +0.201 +0.39(10)

5/2−
4 − 0.729 +0.925 +1.6(6)

7/2−
2 +0.637 +1.079 +0.55(8)

7/2−
3 +0.566 +0.270 +1.4(4)

7/2−
5 +0.179 +0.212 +1.2(3)

9/2−
2 +0.731 +1.735 +1.55(12)

9/2−
3 +0.744 +0.785 +1.52(16)

predicted and experimental [37,41] spectroscopic quadrupole
QJ and magnetic μJ moments of the 195Pt nucleus. In this
table, the calculated Q13/2+

1
value is in good agreement with

the experimental one. We also show in Table VIII the predicted
QJ values for other states, where data are not available. The
sign of the predicted μJ values is, in most cases, consistent
with the data, apart from μ3/2−

3
.

In Table IX we compare the calculated B(E2), B(M1), QJ

and μJ values of the 195Au nucleus with the experimental data.
Overall, the calculation reproduces experimental data rather
well. As mentioned above, some disagreement between the
calculated and experimental B(E2) values could partly arise
from the chosen effective charges for the fermion and boson
quadrupole operators, although it is more likely to be due to the
differences in the nature of the wave functions of the initial and
final states. In the case of the B(E2; 5/2+

1 → 3/2+
2 ) transition

rate, for instance, the wave function of the 5/2+
1 state in 195Au

is made predominantly of the d3/2 single-particle configuration
(83%), while the 3/2+

2 wave function is mainly composed of
the s1/2 configuration (66%). For more details, see Table VI.

TABLE IX. B(E2) and B(M1) transition strengths, and spectro-
scopic quadrupole and magnetic moments in 195Au.

B(E2) (W.u.) B(M1) (W.u.)

Th. Expt. Th. Expt.

1/2+
1 → 3/2+

1 31 41(4) 0.102 0.00199(15)
3/2+

2 → 1/2+
1 31 >15 0.114 >0.051

3/2+
2 → 3/2+

1 1.4 >4.3 0.0062 >0.00013
5/2+

1 → 3/2+
2 0.62 8.7(20)

5/2+
1 → 3/2+

1 39 18(4) 9.3×10−5 0.0124(25)
25/2+

1 → 21/2+
1 41 10.9(25)

QJ (eb) μJ

(
μ2

N

)
Th. Expt. Th. Expt.

3/2+
1 +0.781 +0.607(18) +0.633 +0.145(5)

11/2−
1 +1.708 +1.87(6) +6.70 +6.17(9)

014314-11



NOMURA, RODRÍGUEZ-GUZMÁN, AND ROBLEDO PHYSICAL REVIEW C 96, 014314 (2017)

One realizes in Table IX that the calculated QJ and μJ values
for the lowest positive- (3/2+

1 ) and negative-parity (11/2−
1 )

states of the 195Au nucleus are in an excellent agreement with
the available experimental data [37,41].

VI. SUMMARY AND CONCLUDING REMARKS

In this work we studied the spectroscopic properties of
several odd-mass nuclei within the IBFM framework based
on the Gogny-D1M EDF. Following the procedure developed
in Ref. [21], the (β,γ )-deformation energy surface for the
even-even core nuclei, as well as the single-particle energies
and occupation probabilities of the odd nucleon, were provided
by the self-consistent HFB method based on the Gogny-D1M
EDF, and were used as a microscopic input for the construction
of the Hamiltonian of the IBFM. As was done in the original
work of Ref. [21], the three strength parameters of the particle-
core coupling Hamiltonian were fitted in each of the odd-mass
nucleus considered, to reproduce selected experimental data
for the low-energy excitation spectra. The method was applied
to the axially deformed odd-mass 149–155Eu and 149–155Sm
nuclei, and to the γ -soft odd-mass 195Pt and 195Au nuclei.

The present calculation describes fairly well the experi-
mental systematics of excitation spectra and electromagnetic
properties of the odd-mass Eu and Sm nuclei as signatures
of structural evolution from the nearly spherical to axially
deformed shapes. Our calculation on the odd-mass Eu and Sm
nuclei reveals the same level of accuracy in describing the odd-

mass isotopes as the previous calculations on the same nuclei
[21,23] based on a relativistic EDF. The method also provides
a reasonable description of the low-energy excitation spectra
in the γ -soft 195Pt and 195Au nuclei, whereas the agreement
between the calculated and experimental electromagnetic
properties is not entirely satisfactory. Nevertheless, consid-
ering the fact the model involves only three phenomenological
parameters, all these results for the γ -soft systems seem to be
rather promising.

Our next step would be to apply the method to study
more systematically the structural evolution in other γ -soft
odd-mass systems, either because they are supposed to have
a rich spectrum and/or are of experimental interest. A more
ambitious perspective is the determination of the boson-
fermion coupling Hamiltonian parameters from quantities
obtained solely from the mean field calculations with the
Gogny EDF. This possibility will give us the key to make
true predictions for odd-A systems where no experimental
data exist. Work along these lines is in progress and will be
reported elsewhere.
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