Electronic Supplementary Information

Formation of supramolecular hetero-triads by controlling hydrogen bonding of conjugate bases with a diprotonated porphyrin based on electrostatic interaction

Wataru Suzuki,^a Hiroaki Kotani,^a Tomoya Ishizuka,^a Yoshihito Shiota,^b

Kazunari Yoshizawa,^b and Takahiko Kojima*,^a

^a Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan

^b Institute for Materials Chemistry and Engineering, Kyushu University and CREST (JST), Motooka, Nishi-Ku, Fukuoka 819-0395, Japan

Experimental Section

Materials.

General. Acetonitrile (MeCN) and *N*,*N*-dimethylformamide (DMF) were distilled over CaH₂ and NaOH, respectively, before use. Spectroscopic-grade acetone and methanol used for spectroscopic measurements were purchased from commercial sources and used without further purification. Chloroform (CHCl₃) was distilled over CaH₂ and CDCl₃ was purified by passing through alumina before ¹H NMR measurements. *p*-Toluene sulfonic acid (TsOH), trifluoroacetic acid (TFA), dichloroacetic acid (DCA), and *m*-nitrobenzoic acid (NBA, NO₂PhCOOH) were purchased from commercial sources and used without further purification. H₂DPP was synthesized according to the reported procedure.^{1,2}

Synthesis.

N-Benzyl-4-carboxypyridinium bromide (BnPy⁺-COOH(Br⁻)). BnPy⁺-COOH(Br⁻) was synthesized according to the modified procedure in the previous report.³ To a suspension of Py-COOH (615 mg, 5.00 mmol) in DMF (40 mL), benzylbromide (Bn-Br, 855 mg, 5.00 mmol) in DMF (5 mL) was added dropwise and stirred at 60 °C for 14 h under Ar. When the color of the suspension turned to yellow, the solvent was evaporated to dryness under vacuum at 50 °C. Obtained colorless solids were dissolved in MeOH, then ethyl acetate was added as a poor solvent to precipitate a colorless solid. The solid was filtered and dried to give the desired compound as a colorless solid (1.24 g, 4.23 mmol) in 85% yield. ¹H NMR (acetone-*d*₆ with one drop of methanol-*d*₄, 400 MHz): δ 6.18 (s, 2H, CH₂), 7.48-7.50 (m, 3H, H2, H4 of Ph), 7.65 (m, 2H, H3 of Ph), 8.63 (d, *J* = 6.4 Hz, 2H, H3 of Py-COOH), 9.47 (d, *J* = 6.4 Hz, 2H, H2 of Py-COOH). ESI-MS (MeOH): *m/z* = 235.98 (M–Br⁻–H⁺+Na⁺).

N-Benzyl-4-carboxypyridinium perchlorate (BnPy⁺-COOH(ClO₄⁻)). BnPy⁺-COOH(Br⁻) (246 mg, 0.839 mmol) was dissolved in H₂O (5 mL), then an aqueous solution of NaClO₄ (2.2 g, 18 mmol in 2 mL) was added dropwise to form a colorless solid. Then, the colorless solid was filtered to afford the title compound as colorless needle-shaped crystals (55 mg, 0.18 mmol) in 21% yield. ¹H NMR (acetone- d_6 , 400 MHz): δ 6.30 (s, 2H, CH₂), 7.50-7.52 (m, 3H,

H2, H4 of Ph), 7.67 (m, 2H, H3 of Ph), 8.68 (d, J = 6.4 Hz, 2H, H3 of Py-COOH), 9.47 (d, J = 6.4 Hz, 2H, H2 of Py-COOH). ¹³C NMR (acetone- d_6 , 100 MHz): δ 65.0, 128.2, 129.5, 129.9, 133.2, 145.8, 146.4, 162.4. ESI-MS (MeOH): m/z = 235.98 (M–ClO₄⁻–H⁺+Na⁺). Elemental analysis (%): Calcd for C₁₃H₁₀NO₂•ClO₄•0.75C₄H₈O₂: C 48.90, H 4.48, N: 4.15; Found: C 48.86, H 4.52, N 4.46. m.p. (°C): 151-153 °C.

4-Methoxycarbonylphenylpyridine hydrochloride (Py-PhCOOMe•HCl). Py-PhCOOMe•HCl was synthesized according with the previous report.⁴ 4-Bromopyridine hydrochloride salt (Py-Br•HCl, 661 mg, 3.36 mmol), 4-methoxycarbonylphenylboronic acid (603 mg, 3.35 mmol), Na₂CO₃ (662 mg, 6.24 mmol), and Pd(PPh₃)₄ (260 mg, 0.225 mmol) was suspended in degassed MeCN (15 mL). Then, argon purged H₂O (15 mL) was added and heated at 90 °C for 20 h. The yellow hot suspension was filtered to obtain a yellow filtrate. When 1 M HCl_{aq} was added to the yellow solution until pH = 1 and the solution was concentrated, yellow solid appeared and the solid was removed by filtration. The colorless filtrate was evaporated to form colorless solids, which were recrystallized with MeOH/ether to obtain Py-PhCOOMe•HCl (518 mg, 2.08 mmol) in 62% yield. ¹H NMR (acetone-*d*₆, 400 MHz): δ 3.96 (s, 3H, COOMe), 8.18 (d, *J* = 8.8 Hz, 2H, H2 of Ph), 8.25 (d, *J* = 8.8 Hz, 2H, H3 of Ph), 8.49 (d, *J* = 6.8 Hz, 2H, H3 of Py), 8.96 (d, *J* = 6.8 Hz, 2H, H2 of Py).

N-Benzyl-4-methoxycarboxyphenylpyridinium hexafluorophosphate (BnPy⁺– PhCOOMe(PF₆⁻)). BnPy⁺-PhCOOMe(PF₆⁻) was synthesized according with the previous report.³ Py-PhCOOMe•HCl (170 mg, 0.682 mmol) and Na₂CO₃ (115 mg, 1.08 mmol) was suspended in MeCN (10 mL), Bn–Br (116 mg, 0.678 mmol) in MeCN (5 mL) was added

dropwise and stirred at 50 °C for 20 h under Ar. After removing MeCN, the obtained solid was dissolved in water with small portion of acetone. By adding sat. KPF₆aq to the solution, a colorless solid was formed and filtered to obtain BnPy⁺-PhCOOMe(PF₆⁻) (191 mg, 0.439 mmol) in 62% yield. ¹H NMR (acetone- d_6 , 400 MHz): δ 3.95 (s, 3H, COOMe), 6.13 (s, 2H, CH₂), 7.44-7.54 (m, 3H, H2, H4 of Bn), 7.67 (m, 2H, H3 of Bn), 8.19-8.27 (m, 4H, H2, H3 of Ph), 8.69 (d, J = 7.2 Hz, 2H, H3 of Py), 9.36 (d, J = 7.2 Hz, 2H, H2 of Py).¹³C NMR (acetone- d_6 , 100 MHz): δ 51.9, 64.0, 126.1, 128.2, 129.1, 129.5, 129.8, 130.4, 133.2, 133.7, 138.1, 145.1, 155.7, 165.5. m.p. (°C): 184-187 °C.

BnPy⁺-PhCOOMe(PF₆⁻)

BnPy⁺–PhCOOH(PF₆⁻)

N-Benzyl-4-carboxyphenylpyridinium hexafluorophosphate (BnPy⁺–PhCOOH(PF₆⁻)): BnPy⁺–PhCOOMe(PF₆⁻) (101 mg, 0.232 mmol) was dissolved in a MeOH/H₂O (1:2, v/v) mixed solvent (15 mL), then KOH (531 mg) in MeOH (5 mL) was added slowly and stirred at room temperature for 8 h. The pale yellow solution was neutralized with 2M HCl_{aq} and concentrated. Sat. KPF₆aq was added to form solids, which were filtered to give a pale yellow solid of BnPy⁺-PhCOOH(PF₆⁻) (73 mg, 0.17 mmol) in 75% yield. ¹H NMR (acetone-*d*₆, 400 MHz): δ 6.13 (s, 2H, CH₂), 7.52-7.54 (m, 3H, H2, H4 of Bn), 7.66 (m, 2H, H3 of Bn), 8.20 (d, *J* = 8.6 Hz, 2H, H2 of Ph), 8.27 (d, *J* = 8.6 Hz, 2H, H3 of Ph), 8.69 (d, *J* = 7.2 Hz, 2H, H3 of Py), 9.37 (d, *J* = 7.2 Hz, 2H, H2 of Py). ¹³C NMR (acetone-*d*₆, 100 MHz): δ 64.8, 126.8, 129.3, 130.0, 130.4, 130.6, 131.5, 134.5, 138.9, 145.8, 156.5, 166.9. ESI-MS (MeOH): *m/z* = 290.06 (M–PF₆⁻). Elemental analysis (%): Calcd for C₁₉H₁₆NO₂•PF₆•0.5H₂O: C 51.36, H 3.86, N: 3.15. Found: C 51.27, H 3.66, N 2.96. m.p. (°C): 208-210°C.

Measurements.

X-ray Crystallography on [H_4DPP^{2+}(C\Gamma)(BnPy^+-PhCOO^-)](PF_6^-). $Single crystals of <math>[H_4DPP^{2+}(C\Gamma)(BnPy^+-PhCOO^-)](PF_6^-)$ were grown by vapor diffusion of 2-propanol in acetone solution of H₂DPP in the presence of 2 eq of BnPy⁺-PhCOOH(PF₆⁻) under diluted CHCl₃ and CH₂Cl₂ atmosphere. All measurements were performed at 120 K on a Bruker APEXII Ultra diffractometer. The structure was solved by a direct method (SIR-97) and expanded with differential Fourier techniques. All non-hydrogen atoms were refined anisotropically and the refinements were carried out with full matrix least squares on F. All calculations were performed using the Yadokari-XG crystallographic software package.⁵ In the structure refinements, contribution of the solvent molecules (5 molecules of 2-propanol and 3 molecules of acetone) of crystallization were subtracted from the diffraction pattern by the "Squeeze" program.⁶

Spectroscopic Measurements. ¹H NMR and ¹³C NMR spectra were measured on Bruker AVANCE400, AVANCEHD400, and DPX400 spectrometers at 268-318 K. For the NMR measurements on protonated species of H₂DPP, a certain amount of HX was added to a solution of H₂DPP (0.15-0.40 mM) in acetone- d_6 or CDCl₃ with 1,4-dioxane as an internal standard. The formation yield of H₄DPP²⁺(X⁻)₂ (%H₄DPP) was calculated using eqn (S1) on the basis of initial concentration of H₂DPP ([H₂DPP]₀) and concentration of H₄DPP²⁺(X⁻)₂ ([H₄DPP²⁺]) determined by the relative intensity of the ¹H NMR signal of *ortho*-protons of the *meso*-phenyl groups to that of 1,4-dioxane as an internal standard:

$$\%H_4 DPP = \frac{[H_4 DPP^{2+}]}{[H_2 DPP]_0} \times 100\%$$
(S1)

Electrochemical Measurements. Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements were carried out in acetone containing 0.1 M TBAPF₆ as an electrolyte at room temperature under Ar. All measurements were made using a BAS ALS-710D electrochemical analyzer with a glassy carbon as a working electrode, a platinum wire as a counter electrode, and Ag/AgNO₃ as a reference electrode. All redox potentials were determined relative to that of Fc/Fc^+ as 0 V.

Cold Spray Ionization Mass Spectrometry (CSI-TOF-MS). CSI-TOF-MS spectra were measured on a JEOL JMS-T100CS spectrometer at 223 K. The sample was prepared by

mixing H₂DPP (0.01 mM) with 2 eq of BnPy⁺-COOH(ClO₄⁻) and H₄DPP²⁺(Cl⁻)₂ (0.01 mM) with 1:1 ratio in acetone.

Computational Methods. Geometry optimizations were performed using the hybrid (Hartree-Fock/DFT) B3LYP functional^{7,8} combined with the 6-31G** basis set.⁹ The RB3LYP functional was used for the closed-shell molecules. The Gaussian 09 program¹⁰ was used for all calculations.

Fig. S1 ¹H NMR spectra of solutions of (a) H_2DPP (0.20 mM) containing 2 eq of NBA and (b) H_2DPP in acetone- d_6 at 298 K.

НХ	pK _a in H ₂ O	$E_{\rm red}$ / V ^a	%H ₄ DPP ^b
ТѕОН	-1.3	-0.76	34
TFA	-0.25	-0.85	43
DCA	1.3	-0.89	46
NBA	3.4	-0.98	50
BnPy⁺-COOH	2.3	-0.86	36
BnPy ⁺ -PhCOOH	3.5	-0.98	45

Table S1 Summary of reduction potential (E_{red}), and %H₄DPP

^a Reduction potential of $H_4DPP^{2+}(X^-)_2$, V vs. Fc/Fc⁺ in acetone containing 0.1 M TBAPF₆ as an electrolyte at 298 K, ^b Determined using eqn (S1).

Fig. S2 Cyclic voltammogram (CV) and differential pulse voltammogram (DPV) of $H_4DPP^{2+}(X^-)_2$ (0.2 mM) in acetone containing 0.1 M TBAPF₆ as an electrolyte at 298 K; $X^- = (a) m$ -NO₂PhCOO⁻ (NBA), (b) Cl₂CHCOO⁻ (DCA), (c) CF₃COO⁻ (TFA), (d) TsO⁻, (e) BnPy⁺-COO⁻, and (f) BnPy⁺-PhCOO⁻.

Fig. S3 A plot of %H₄DPP values relative to reduction potentials (E_{red}) of H₄DPP²⁺(X⁻)₂ (0.2 mM) determined in acetone containing 0.1 M TBAPF₆ as an electrolyte at room temperature.

Fig. S4 (a) ¹H NMR spectrum of BnPy⁺-COOH(ClO₄⁻) in acetone- d_6 at 298K. (b) ESI-TOF-MS spectrum (bottom) of BnPy⁺-COOH(ClO₄⁻) in MeOH at room temperature and the computer-simulated isotropic pattern (upper).

Fig. S5 (a) ¹H NMR spectrum of BnPy⁺-PhCOOMe(PF₆⁻) in acetone- d_6 at 298K. (b) ¹H NMR spectrum of BnPy⁺-PhCOOH(PF₆⁻) in acetone- d_6 at 298K. (c) ESI-TOF-MS spectrum (bottom) of BnPy⁺-PhCOOH(PF₆⁻) in MeOH at room temperature and the computer-simulated isotropic pattern (upper).

Fig. S6 (a) UV-Vis spectroscopic titration of $BnPy^+$ -COOH(ClO₄⁻) (0.3 mM) in Briton-Robinson buffer (0.1 M) with use of 8 M NaOH_{aq} at 298 K. (b) A plot of the absorbance at 280 nm *vs.* pH.

Fig. S7 (a) UV-Vis spectroscopic titration of $BnPy^+$ -PhCOOH(PF₆⁻) (0.2 mM) in Briton-Robinson buffer (0.1 M) with use of 8 M NaOH_{aq} at 298 K. (b) A plot of the absorbance at 280 nm *vs.* pH.

Fig. S8 ¹H NMR spectrum of H₂DPP (0.2 mM) containing 2 eq of BnPy⁺-PhCOOH in acetone- d_6 at 298 K.

Fig. S9 ¹H NMR spectra of H₂DPP (0.15 mM) in acetone- d_6 at 298 K with 1 eq of (a) BnPy⁺-COOH, and (b) BnPy⁺-PhCOOH.

Fig. S10 DFT optimized structures of (a) $H_4DPP^{2+}(BnPy^+-COO^-)_2$ and (b) $H_4DPP^{2+}(BnPy^+-PhCOO^-)_2$ at the 6-31G** level of theory. Green arrows indicate the distances between positively charged nitrogen atoms in conjugate bases and the mean planes (red) of H_4DPP^{2+} .

Fig. S11. ¹H NMR spectrum of a 1:1 mixture of $H_4DPP^{2+}(TsO^{-})_2$ solution (0.4 mM) and the solution of $H_4DPP^{2+}(Cl^{-})_2$ (0.4 mM) in CDCl₃ at 298 K.

Fig. S12 Temperature dependence of ¹H NMR spectra of a 1:1 mixture of $H_4DPP^{2+}(TsO^{-})_2$ solution (0.4 mM) and the solution of $H_4DPP^{2+}(Cl^{-})_2$ (0.4 mM) in CDCl₃ at (a) 318 K, (b) 308 K, (c) 288 K, (d) 278 K, (e) 268 K. ¹H NMR spectrum of (f) $H_4DPP^{2+}(TsO^{-})_2$ (0.4 mM), and (g) ¹H NMR spectrum of $H_4DPP^{2+}(Cl^{-})_2$ (0.4 mM) in CDCl₃ at 268 K. Red dotted line: ¹H NMR signals derived from *ortho*-protons of the *meso*-phenyl groups of $H_4DPP^{2+}(TsO^{-})(Cl^{-})$; Blue dotted line: ¹H NMR signals derived from *ortho*-protons of the *meso*-phenyl groups of $H_4DPP^{2+}(TsO^{-})(Cl^{-})$; Blue dotted line: ¹H NMR signals derived from *ortho*-protons of the *meso*-phenyl groups of $H_4DPP^{2+}(TsO^{-})(Cl^{-})$;

Temp / K	$K \{\mathrm{H}_{4}\mathrm{DPP}^{2+}(\mathrm{TsO}^{-})(\mathrm{Cl}^{-})\}$	$K \{H_4 DPP^{2+}(NO_2 PhCOO^{-})(Cl^{-})\}$
268	1.6×10^{2}	1.0
273	_	1.2
278	1.2×10^{2}	1.6
288	54	1.8
298	39	3.5
308	28	_
318	16	_

Table S2 Summary of equilibrium constants (*K*) in formation of $H_4DPP^{2+}(TsO^{-})(Cl^{-})$ and $H_4DPP^{2+}(NO_2PhCOO^{-})(Cl^{-})$ in chloroform at various temperatures.

Fig. S14 van't Hoff plots for the formation of (a) $H_4DPP^{2+}(TsO^{-})(Cl^{-})$ and (b) $H_4DPP^{2+}(NO_2PhCOO^{-})(Cl^{-})$ in chloroform.

Table S3 Summary of thermodynamic parameters in formation of $H_4DPP^{2+}(TsO^-)(Cl^-)$ and $H_4DPP^{2+}(NO_2PhCOO^-)(Cl^-)$ in chloroform.

	$H_4DPP^{2+}(TsO^-)(Cl^-)$	$H_4DPP^{2+}(NO_2PhCOO^{-})(Cl^{-})$
$\Delta H / \text{kcal mol}^{-1}$	-7.8	+ 6.1
$\Delta S / \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$	-19	+ 23
ΔG^{a} / kcal mol ⁻¹	-2.1	-0.67

a: at 298 K

Fig. S15 ¹H NMR spectra of (a) mixture of H₂DPP solution with 2 eq of BnPy⁺-COOH (HZ⁺) and the solution of H₄DPP²⁺(Cl⁻)₂ with the ratio of 1:1, (b) H₄DPP²⁺(BnPy⁺-COO⁻)₂, (c) H₄DPP²⁺(Cl⁻)₂ in CDCl₃ at 298 K. (d) CSI-TOF-MS spectrum (bottom) of a mixture of H₂DPP (0.01 mM) with 2 eq of BnPy⁺-COOH and H₄DPP²⁺(Cl⁻)₂ (0.01 mM) with the 1:1 ratio in acetone at 223K and the computer-simulated isotropic pattern (upper).

compound	$[H_4DPP^{2+}(Cl^-)(BnPy^+-PhCOO^-)](PF_6^-)$
crystal system	Monoclinic
space group	P21
T / K	120
formula	$[C_{92}H_{64}N_4 \bullet Cl \bullet (C_{20}H_{30}NO_2)] \bullet PF_6$
FW	1722.34
<i>a</i> / Å	16.246(3)
<i>b</i> / Å	30.559(5)
<i>c</i> / Å	20.510(3)
eta / deg	89.973(3)
$V/\text{\AA}^3$	10182(3)
Ζ	4
λ/Å	0.71073 (Mo Ka)
$D_{\rm c}$ / g cm ⁻³	1.124
reflns measured	45645
reflns unique	21344
$R_1 (\mathbf{I} > 2\mathbf{s}(\mathbf{I}))$	0.0785
w R_2 (all)	0.2182
GOF	1.035

Table S4 X-ray crystallographic data for [H₄DPP²⁺(Cl⁻)(BnPy⁺-PhCOO⁻)](PF₆⁻)

	Coordinates	(Å)
-2.577089	1.253477	0.746882
-2.674716	-0.947407	0.172125
-3.147077	0.149505	0.560543
2.825350	-0.129970	0.630993
2.438810	0.461564	-1.533632
3.154677	0.174105	-0.542392
0.045755	2.223108	0.587862
-0.863648	1.725338	0.595989
0.412842	-0.432273	2.026786
1.215352	-0.281387	1.387970
-0.146024	-1.913218	-0.572008
-1.007435	-1.422431	-0.270301
-0.307376	0.743611	-2.045832
0.663289	0.596953	-1.713608
0.414830	3.092235	-0.410775
1.516887	3.878736	0.084416
1.737778	3.495985	1.409026
0.770915	2.474899	1.726983
0.493518	1.826982	2.960700
0.023082	0.486764	2.971566
-0.832125	-0.194442	3.911492
-0.875802	-1.538453	3.534530
-0.051374	-1.681153	2.361068
0.322403	-2.846978	1.639578
0.551088	-2.775820	0.239985
1.426499	-3.551799	-0.603261
1.175445	-3.172325	-1.923316
0.149004	-2.161111	-1.890317
-0.537247	-1.516054	-2.954233
-0.990022	-0.178805	-2.802290
-2.118330	0.496463	-3.394438
	-2.577089 -2.674716 -3.147077 2.825350 2.438810 3.154677 0.045755 -0.863648 0.412842 1.215352 -0.146024 -1.007435 -0.307376 0.663289 0.414830 1.516887 1.737778 0.770915 0.493518 0.023082 -0.832125 -0.875802 -0.832125 -0.875802 -0.051374 0.322403 0.551088 1.426499 1.175445 0.149004 -0.537247 -0.990022 -2.118330	Coordinates-2.5770891.253477-2.674716-0.947407-3.1470770.1495052.825350-0.1299702.4388100.4615643.1546770.1741050.0457552.223108-0.8636481.7253380.412842-0.4322731.215352-0.281387-0.146024-1.913218-1.007435-1.422431-0.3073760.7436110.6632890.5969530.4148303.0922351.5168873.8787361.7377783.4959850.7709152.4748990.4935181.8269820.0230820.486764-0.832125-0.194442-0.875802-1.538453-0.051374-1.6811530.322403-2.8469780.551088-2.7758201.426499-3.5517991.175445-3.1723250.149004-2.161111-0.537247-1.516054-0.990022-0.178805-2.1183300.496463

Table S5 Cartesian	coordinates	of H ₄ DPP ⁺	(BnPy ⁺ -COO ⁻)2
--------------------	-------------	------------------------------------	--------------------------------------	----

С	-2.039030	1.840166	-3.024156
С	-0.865179	1.989282	-2.201197
С	-0.278024	3.158699	-1.648226
С	2.411526	4.699311	-0.767096
С	3.064366	4.089424	-1.852068
Н	2.889591	3.035336	-2.048069
С	3.936057	4.822255	-2.655876
Н	4.432657	4.339118	-3.492928
С	4.169377	6.173389	-2.393643
Н	4.845865	6.744356	-3.022280
С	3.520338	6.789107	-1.323177
Н	3.686391	7.842310	-1.118528
С	2.648111	6.058306	-0.517306
Н	2.125441	6.554198	0.292934
С	2.913732	3.824795	2.249703
С	3.199212	5.132654	2.666069
Н	2.518685	5.937538	2.412643
С	4.330302	5.403856	3.435176
Н	4.531608	6.421714	3.754719
С	5.193547	4.371366	3.802543
Н	6.071332	4.583369	4.405401
С	4.916377	3.064387	3.397916
Н	5.581161	2.255028	3.687361
С	3.787330	2.790590	2.627948
Н	3.576774	1.776813	2.299657
С	0.696708	2.549552	4.230344
С	0.321928	3.900621	4.355828
Н	-0.142328	4.403074	3.513387
С	0.509882	4.581640	5.554203
Н	0.202963	5.619499	5.639198
С	1.083527	3.930148	6.648485
Н	1.232896	4.463242	7.582297
С	1.464299	2.590773	6.538032

Η	1.919844	2.083720	7.382987
С	1.269507	1.905462	5.343209
Н	1.584271	0.870805	5.253716
С	-1.713194	0.487142	4.889305
С	-2.612156	1.465252	4.429739
Η	-2.634198	1.705371	3.370542
С	-3.475121	2.105992	5.317114
Η	-4.162797	2.862536	4.949114
С	-3.455965	1.784206	6.675411
Η	-4.126048	2.286298	7.366585
С	-2.563379	0.818739	7.141707
Η	-2.533275	0.569880	8.198048
С	-1.698848	0.176343	6.256300
Η	-0.988696	-0.550355	6.634015
С	-1.813462	-2.576115	4.028054
С	-1.777440	-3.058790	5.343677
Н	-1.011570	-2.705091	6.024806
С	-2.692863	-4.018078	5.775222
Η	-2.645743	-4.385425	6.795771
С	-3.658360	-4.511874	4.897612
Η	-4.368055	-5.261614	5.233912
С	-3.700082	-4.042353	3.583647
Н	-4.445003	-4.428978	2.893436
С	-2.786575	-3.083053	3.149803
Η	-2.823592	-2.707037	2.131376
С	0.470014	-4.131607	2.348584
С	1.093791	-4.187579	3.609221
Н	1.488288	-3.276213	4.046869
С	1.237976	-5.399144	4.277516
Η	1.734014	-5.427622	5.242791
С	0.753711	-6.577539	3.705062
Η	0.862877	-7.522122	4.228869
С	0.128602	-6.537342	2.456489

Η	-0.258046	-7.449515	2.012622
С	-0.007941	-5.328203	1.782046
Η	-0.511217	-5.296560	0.821117
С	2.565379	-4.361731	-0.108935
С	3.529046	-3.750693	0.711891
Η	3.413784	-2.701998	0.970581
С	4.627152	-4.474575	1.173187
Η	5.363829	-3.990120	1.808107
С	4.781766	-5.817925	0.826431
Η	5.635218	-6.382360	1.189653
С	3.827902	-6.434418	0.016307
Н	3.933986	-7.481630	-0.249842
С	2.728719	-5.712506	-0.447119
Η	1.977974	-6.209541	-1.050940
С	1.995982	-3.490545	-3.116855
С	2.112254	-4.791276	-3.626220
Η	1.549309	-5.598543	-3.171393
С	2.915171	-5.051629	-4.736222
Η	2.988018	-6.064113	-5.121281
С	3.613099	-4.015164	-5.356619
Η	4.234709	-4.218797	-6.223218
С	3.499897	-2.714895	-4.861420
Η	4.035074	-1.902278	-5.345130
С	2.698391	-2.451959	-3.751788
Η	2.617250	-1.443367	-3.356557
С	-0.777671	-2.238479	-4.217178
С	-1.169555	-3.590459	-4.206820
Η	-1.315407	-4.092923	-3.256019
С	-1.402021	-4.271888	-5.397102
Η	-1.717510	-5.310368	-5.372037
С	-1.239043	-3.619799	-6.621547
Η	-1.417367	-4.153021	-7.550203
С	-0.845836	-2.279744	-6.647987

Η	-0.707975	-1.772469	-7.597847
С	-0.620990	-1.593954	-5.458682
Η	-0.296044	-0.558817	-5.482059
С	-3.277557	-0.190306	-4.012719
С	-3.967522	-1.163603	-3.269561
Η	-3.631784	-1.395287	-2.262780
С	-5.079034	-1.808955	-3.808855
Η	-5.602300	-2.560507	-3.224133
С	-5.519451	-1.496818	-5.096240
Η	-6.382874	-2.003033	-5.517119
С	-4.837858	-0.535897	-5.843409
Η	-5.166276	-0.294484	-6.849693
С	-3.725865	0.111520	-5.306310
Η	-3.185643	0.834723	-5.906695
С	-3.096644	2.870183	-3.165231
С	-3.515462	3.353365	-4.412598
Η	-3.025964	3.005092	-5.315215
С	-4.529636	4.306245	-4.502369
Η	-4.836201	4.674955	-5.476423
С	-5.140516	4.792413	-3.346228
Η	-5.927305	5.537234	-3.417572
С	-4.728045	4.321550	-2.098456
Η	-5.195689	4.701609	-1.194246
С	-3.714887	3.368688	-2.005678
Η	-3.400308	2.990263	-1.037131
С	-0.393363	4.444295	-2.361981
С	-0.229744	4.507380	-3.758547
Η	0.004823	3.600539	-4.306683
С	-0.332634	5.720639	-4.431570
Η	-0.189750	5.755162	-5.507208
С	-0.610770	6.893014	-3.725055
Η	-0.694621	7.838743	-4.251430
С	-0.781154	6.845249	-2.339479

C -0.669027 5.634690 -1.663265 H -0.820799 5.597021 -0.589350 C 4.669598 0.204380 -0.804899 C 5.172165 0.503360 -2.075735 C 5.582824 -0.062203 0.220039 C 6.537062 0.532324 -2.284988 H 4.483364 0.708856 -2.885609 C 6.940639 -0.022790 -0.035385 H 5.214349 -0.299594 1.2101149 H 6.980254 0.761254 -3.246622 H 7.694782 -0.229090 0.7134192 C -4.656346 0.140512 0.8556592 C -5.414719 -1.024020 0.69845522 C -5.308319 1.299106 1.29091322 C -6.769621 -1.009350 $0.97141722202000200000000000000000000000000$	Η	-1.008054	7.752528	-1.788173
H -0.820799 5.597021 -0.589350 C 4.669598 0.204380 -0.804892 C 5.172165 0.503360 -2.075733 C 5.582824 -0.062203 0.220039 C 6.537062 0.532324 -2.284980 H 4.483364 0.708856 -2.88560 C 6.940639 -0.022790 -0.035385 H 5.214349 -0.299594 1.21011 H 6.980254 0.761254 -3.24662 H 7.694782 -0.229090 0.71341 C -4.656346 0.140512 0.855659 C -5.414719 -1.024020 0.698455 C -5.308319 1.299106 1.290913 C -6.663818 1.266762 1.554420 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.897013 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205	С	-0.669027	5.634690	-1.663265
C 4.669598 0.204380 -0.804892 C 5.172165 0.503360 -2.075732 C 5.582824 -0.062203 0.220032 C 6.537062 0.532324 -2.284986 H 4.483364 0.708856 -2.885606 C 6.940639 -0.022790 -0.035385 H 5.214349 -0.299594 1.210114 H 6.980254 0.761254 -3.24662 H 7.694782 -0.229090 0.713414 C -4.656346 0.140512 0.855659 C -5.414719 -1.024020 0.698455 C -5.308319 1.299106 1.290913 C -6.663818 1.266762 1.554429 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857183 H -7.217520 2.132557 1.897013 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527724 H 9.007627 0.285119 <td>Н</td> <td>-0.820799</td> <td>5.597021</td> <td>-0.589350</td>	Н	-0.820799	5.597021	-0.589350
C 5.172165 0.503360 -2.075733 C 5.582824 -0.062203 0.220033 C 6.537062 0.532324 -2.284984 H 4.483364 0.708856 -2.885600 C 6.940639 -0.022790 -0.035385 H 5.214349 -0.299594 1.210114 H 6.980254 0.761254 -3.24662 H 7.694782 -0.229090 0.713414 C -4.656346 0.140512 0.855659 C -5.414719 -1.024020 0.698455 C -5.308319 1.299106 1.290913 C -6.663818 1.266762 1.554420 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.8970117 N 7.376790 0.125229 1.394514 N 7.402041 0.272966 -1.27408 C 8.88339 0.382205 -1.527724 H 9.007627 0.285119	С	4.669598	0.204380	-0.804895
C 5.582824 -0.062203 0.220039 C 6.537062 0.532324 -2.284986 H 4.483364 0.708856 -2.88560 C 6.940639 -0.022790 -0.035385 H 5.214349 -0.299594 1.21011 H 6.980254 0.761254 -3.24662 H 7.694782 -0.229090 0.71341 C -4.656346 0.140512 0.855659 C -5.414719 -1.024020 0.698455 C -5.308319 1.299106 1.290913 C -6.663818 1.266762 1.554420 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.376790 0.125229 1.39451 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527720 H 9.007627 0.285119 -2.60857 H 9.177084 1.397804 -1.24362 C -8.844655 0.112981	С	5.172165	0.503360	-2.075733
C 6.537062 0.532324 -2.284984 H 4.483364 0.708856 -2.88560 C 6.940639 -0.022790 -0.035385 H 5.214349 -0.299594 1.21011 H 6.980254 0.761254 -3.24662 H 7.694782 -0.229090 0.71341 C -4.656346 0.140512 0.855659 C -5.414719 -1.024020 0.698455 C -5.308319 1.299106 1.290913 C -6.769621 -1.009350 0.971417 H -4.930463 -1.931706 0.360611 C -6.663818 1.266762 1.554420 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.897013 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527724 H 9.007627 0.285119 -2.60857 H 9.177084 1.397804 -1.243622 C -8.844655 0.112981 <td>С</td> <td>5.582824</td> <td>-0.062203</td> <td>0.220039</td>	С	5.582824	-0.062203	0.220039
H4.4833640.708856-2.88560C6.940639-0.022790-0.035385H5.214349-0.2995941.21011H6.9802540.761254-3.24662H7.694782-0.2290900.71341C-4.6563460.1405120.855659C-5.414719-1.0240200.698455C-5.3083191.2991061.290913C-6.769621-1.0093500.971417H-4.930463-1.9317060.360611C-6.6638181.2667621.554420H-4.7417102.2133761.41584H-7.2175202.1325571.897013N7.3767900.1252291.394513N7.4020410.272966-1.27408C8.8883390.382205-1.527720H9.0076270.285119-2.608573H9.1770841.397804-1.243622C-8.8446550.1129811.754773H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.707061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	С	6.537062	0.532324	-2.284980
C 6.940639 -0.022790 -0.035385 H 5.214349 -0.299594 1.210114 H 6.980254 0.761254 -3.24662 H 7.694782 -0.229090 0.713414 C -4.656346 0.140512 0.855659 C -5.414719 -1.024020 0.698455 C -5.308319 1.299106 1.290913 C -6.769621 -1.009350 0.971417 H -4.930463 -1.931706 0.3606119 C -6.663818 1.266762 1.554429 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.897017 N 7.376790 0.125229 1.394517 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527729 H 9.007627 0.285119 -2.60857729 H 9.007627 0.285119 -2.60857729 H 9.007627 0.285119 -2.60857729 H -9.156241 1.159278 1.745822 C 9.708404 -0.642900 $-0.7899292929292929292929292929292929292929$	Η	4.483364	0.708856	-2.885604
H5.214349-0.2995941.21011H6.9802540.761254-3.24662H7.694782-0.2290900.71341C-4.6563460.1405120.855659C-5.414719-1.0240200.698455C-5.3083191.2991061.290913C-6.769621-1.0093500.971417H-4.930463-1.9317060.3606113C-6.6638181.2667621.554420H-4.7417102.2133761.41584H-7.410641-1.8742700.857187H-7.2175202.1325571.897013N7.3767900.1252291.394513N7.4020410.272966-1.27408C8.8883390.382205-1.527720H9.0076270.285119-2.608573H9.1770841.397804-1.243622C-8.8446550.1129811.754773H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308614C10.491016-2.921846-0.534363	С	6.940639	-0.022790	-0.035385
H6.9802540.761254-3.24662H7.694782-0.2290900.71341C-4.6563460.1405120.855659C-5.414719-1.0240200.698455C-5.3083191.2991061.290913C-6.769621-1.0093500.971417H-4.930463-1.9317060.360611C-6.6638181.2667621.554420H-4.7417102.2133761.41584H-7.410641-1.8742700.857187H-7.2175202.1325571.897013N7.3767900.1252291.394513N7.4020410.272966-1.27408C8.8883390.382205-1.527720H9.0076270.285119-2.608573H9.1770841.397804-1.243623C-8.8446550.1129811.754773H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308614C10.491016-2.921846-0.534363	Η	5.214349	-0.299594	1.210118
H7.694782-0.2290900.71341C-4.6563460.1405120.855659C-5.414719-1.0240200.698455C-5.3083191.2991061.290913C-6.769621-1.0093500.971417H-4.930463-1.9317060.3606113C-6.6638181.2667621.554420H-4.7417102.2133761.41584H-7.410641-1.8742700.857187H-7.2175202.1325571.897013N-7.3767900.1252291.394513N7.4020410.272966-1.27408C8.8883390.382205-1.527720H9.0076270.285119-2.608573H9.1770841.397804-1.243623C-8.8446550.1129811.754773H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308613C10.491016-2.921846-0.534363	Н	6.980254	0.761254	-3.246625
C -4.656346 0.140512 0.855659 C -5.414719 -1.024020 0.6984559 C -5.308319 1.299106 1.2909139 C -6.769621 -1.009350 0.97141799 H -4.930463 -1.931706 0.36061199999 C -6.663818 1.266762 $1.554429999999999999999999999999999999999$	Н	7.694782	-0.229090	0.713418
C -5.414719 -1.024020 0.698455 C -5.308319 1.299106 1.290913 C -6.769621 -1.009350 0.971417 H -4.930463 -1.931706 0.3606113 C -6.663818 1.266762 1.554420 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.8970137 N 7.376790 0.125229 1.3945147720 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527720 H 9.007627 0.285119 -2.60857720 H 9.177084 1.397804 -1.243627720 H -9.156241 1.159278 1.745822 C 9.708404 -0.642900 -0.78992292720 C 9.717061 -1.981366 -1.20986520 C 10.488822 -0.260061 0.30861720 C 10.491016 -2.921846 -0.53436230	С	-4.656346	0.140512	0.855659
C -5.308319 1.299106 1.290913 C -6.769621 -1.009350 0.971417 H -4.930463 -1.931706 0.360613 C -6.663818 1.266762 1.554420 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.897013 N -7.376790 0.125229 1.394514 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527720 H 9.007627 0.285119 -2.6085734 H 9.177084 1.397804 -1.243622 C -8.844655 0.112981 1.75477344 H -9.156241 1.159278 1.745822 C 9.708404 -0.642900 -0.7899292424 C 9.717061 -1.981366 -1.209865464 C 10.491016 -2.9218466 -0.53436644	С	-5.414719	-1.024020	0.698455
C -6.769621 -1.009350 0.971417 H -4.930463 -1.931706 0.360611 C -6.663818 1.266762 1.554420 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.897017 N -7.376790 0.125229 1.394517 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527720 H 9.007627 0.285119 $-2.6085777677677677777777777777777777777777$	С	-5.308319	1.299106	1.290915
H-4.930463-1.9317060.360611C-6.6638181.2667621.554420H-4.7417102.2133761.41584H-7.410641-1.8742700.857187H-7.2175202.1325571.897017N-7.3767900.1252291.39451N7.4020410.272966-1.27408C8.8883390.382205-1.527720H9.0076270.285119-2.608577H9.1770841.397804-1.243627H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	С	-6.769621	-1.009350	0.971417
C -6.663818 1.266762 1.554424 H -4.741710 2.213376 1.41584 H -7.410641 -1.874270 0.857187 H -7.217520 2.132557 1.897017 N -7.376790 0.125229 1.39451 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527724 H 9.007627 0.285119 -2.608577 H 9.177084 1.397804 -1.243627 C -8.844655 0.112981 1.754773 H -9.156241 1.159278 1.74582 C 9.708404 -0.642900 -0.789929 C 9.717061 -1.981366 -1.209865 C 10.488822 -0.260061 0.308617 C 10.491016 -2.921846 -0.534363	Η	-4.930463	-1.931706	0.360611
H-4.7417102.2133761.41584H-7.410641-1.8742700.857187H-7.2175202.1325571.897017N-7.3767900.1252291.394517N7.4020410.272966-1.27408C8.8883390.382205-1.527724H9.0076270.285119-2.60857H9.1770841.397804-1.243627H9.1770841.397804-1.243627H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	С	-6.663818	1.266762	1.554426
H-7.410641-1.8742700.857187H-7.2175202.1325571.897017N-7.3767900.1252291.394517N7.4020410.272966-1.27408C8.8883390.382205-1.527720H9.0076270.285119-2.608577H9.1770841.397804-1.243627C-8.8446550.1129811.754777H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	Η	-4.741710	2.213376	1.415845
H-7.2175202.1325571.897012N-7.3767900.1252291.394512N7.4020410.272966-1.27408C8.8883390.382205-1.527724H9.0076270.285119-2.608572H9.1770841.397804-1.243622C-8.8446550.1129811.754773H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308612C10.491016-2.921846-0.534363	Н	-7.410641	-1.874270	0.857187
N -7.376790 0.125229 1.394514 N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527724 H 9.007627 0.285119 -2.608574 H 9.177084 1.397804 -1.243624 C -8.844655 0.112981 1.754774 H -9.156241 1.159278 1.745824 C 9.708404 -0.642900 -0.7899294 C 9.717061 -1.981366 -1.209865 C 10.488822 -0.260061 0.308614	Н	-7.217520	2.132557	1.897012
N 7.402041 0.272966 -1.27408 C 8.888339 0.382205 -1.527720 H 9.007627 0.285119 -2.60857 H 9.177084 1.397804 -1.24362 C -8.844655 0.112981 1.754773 H -8.908646 -0.251689 2.783573 H -9.156241 1.159278 1.74582 C 9.708404 -0.642900 -0.789929 C 9.717061 -1.981366 -1.209865 C 10.488822 -0.260061 0.308617 C 10.491016 -2.921846 -0.534363	Ν	-7.376790	0.125229	1.394518
C 8.888339 0.382205 -1.527724 H 9.007627 0.285119 -2.608574 H 9.177084 1.397804 -1.243624 C -8.844655 0.112981 1.754775 H -8.908646 -0.251689 2.783575 H -9.156241 1.159278 1.74582 C 9.708404 -0.642900 -0.789929 C 9.717061 -1.981366 -1.209865 C 10.488822 -0.260061 0.308617 C 10.491016 -2.921846 -0.534363	Ν	7.402041	0.272966	-1.274088
H9.0076270.285119-2.60857H9.1770841.397804-1.24362C-8.8446550.1129811.75477H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	С	8.888339	0.382205	-1.527720
H9.1770841.397804-1.24362C-8.8446550.1129811.754773H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308613C10.491016-2.921846-0.534363	Н	9.007627	0.285119	-2.608572
C -8.844655 0.112981 1.754773 H -8.908646 -0.251689 2.783573 H -9.156241 1.159278 1.74582 C 9.708404 -0.642900 -0.789929 C 9.717061 -1.981366 -1.209865 C 10.488822 -0.260061 0.308617 C 10.491016 -2.921846 -0.534363	Η	9.177084	1.397804	-1.243629
H-8.908646-0.2516892.783573H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	С	-8.844655	0.112981	1.754778
H-9.1562411.1592781.74582C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	Η	-8.908646	-0.251689	2.783573
C9.708404-0.642900-0.789929C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	Η	-9.156241	1.159278	1.745825
C9.717061-1.981366-1.209865C10.488822-0.2600610.308617C10.491016-2.921846-0.534363	С	9.708404	-0.642900	-0.789929
C 10.488822 -0.260061 0.30861 C 10.491016 -2.921846 -0.534363	С	9.717061	-1.981366	-1.209865
C 10.491016 -2.921846 -0.534363	С	10.488822	-0.260061	0.308617
	С	10.491016	-2.921846	-0.534363

Η	9.126325	-2.286248	-2.070128
С	11.266613	-1.203541	0.982278
Η	10.503449	0.779112	0.627976
С	11.266242	-2.533619	0.562201
Η	10.499361	-3.954330	-0.868479
Η	11.876090	-0.897306	1.826275
Η	11.875460	-3.266558	1.081430
С	-9.690507	-0.720725	0.828681
С	-10.206928	-1.948199	1.263306
С	-9.988019	-0.265577	-0.464456
С	-11.009529	-2.713917	0.415616
Η	-9.997215	-2.298669	2.270909
С	-10.785970	-1.032558	-1.309913
Η	-9.603547	0.691941	-0.806890
С	-11.297325	-2.257170	-0.870458
Η	-11.414191	-3.658939	0.763100
Η	-11.018860	-0.671779	-2.306572
Η	-11.926362	-2.848635	-1.528060

Atom	Coordinates (Å)		
0	2.719801	0.799748	-0.332361
0	2.480844	-1.293674	0.512261
С	3.147994	-0.303988	0.103677
0	-2.621189	-0.162185	-1.044481
0	-2.569689	0.702764	1.053122
С	-3.143440	0.328466	-0.006507
Ν	0.276291	1.983441	-0.753958
Н	1.123714	1.409868	-0.541547
Ν	-0.098566	-0.790305	-1.951635
Н	-0.983377	-0.503576	-1.477034
Ν	-0.157879	-1.985386	0.843344
Н	0.790217	-1.586020	0.661913
Ν	-0.011982	0.809368	2.036052
Н	-0.920145	0.704394	1.529360
С	-0.173898	2.989757	0.063039
С	-1.091933	3.797301	-0.702749
С	-1.120512	3.276738	-1.995798
С	-0.218078	2.151554	-2.022931
С	0.197357	1.340696	-3.111640
С	0.530992	-0.022416	-2.899012
С	1.469783	-0.868422	-3.594150
С	1.329930	-2.154704	-3.074771
С	0.303981	-2.097354	-2.062240
С	-0.293195	-3.140154	-1.306650
С	-0.767530	-2.886012	0.006710
С	-1.854368	-3.493444	0.735463
С	-1.823275	-2.976675	2.029725
С	-0.719652	-2.050036	2.093595
С	-0.192809	-1.333102	3.199384
С	0.412916	-0.064541	3.004478
С	1.473059	0.579771	3.741206

С	1.610781	1.867534	3.224970
С	0.636282	2.011146	2.170264
С	0.288894	3.148805	1.395574
С	-2.036239	4.778500	-0.116626
С	-2.928006	4.348326	0.880587
Η	-2.902567	3.310026	1.198929
С	-3.847769	5.236830	1.435101
Н	-4.532343	4.890523	2.204520
С	-3.892383	6.564760	1.007067
Η	-4.606853	7.256933	1.442863
С	-3.008897	7.000787	0.019230
Н	-3.030246	8.034167	-0.313646
С	-2.088060	6.114390	-0.538010
Η	-1.386288	6.468565	-1.285061
С	-2.102714	3.588577	-3.061523
С	-2.171438	4.846642	-3.675988
Н	-1.455973	5.615441	-3.406007
С	-3.127648	5.107875	-4.656647
Н	-3.161355	6.085679	-5.127754
С	-4.031215	4.115550	-5.037596
Н	-4.773863	4.319739	-5.803212
С	-3.970807	2.858934	-4.432689
Н	-4.671342	2.081239	-4.723954
С	-3.014926	2.593917	-3.453431
Н	-2.977302	1.622230	-2.969268
С	0.278994	1.916216	-4.467825
С	0.807070	3.204498	-4.672773
Η	1.177803	3.766641	-3.821795
С	0.885040	3.745193	-5.952414
Η	1.306720	4.735555	-6.094826
С	0.430703	3.013786	-7.052055
Η	0.489100	3.437774	-8.049881
С	-0.099296	1.735396	-6.863915

Η	-0.463066	1.166953	-7.714464
С	-0.170858	1.189873	-5.586097
Н	-0.601377	0.204617	-5.439370
С	2.569497	-0.370500	-4.454927
С	3.491662	0.540879	-3.913096
Н	3.373855	0.860520	-2.881498
С	4.555962	1.008122	-4.682467
Н	5.263582	1.710383	-4.250571
С	4.715741	0.577923	-6.000792
Η	5.543425	0.945728	-6.600027
С	3.802223	-0.323618	-6.547770
Н	3.913300	-0.656451	-7.575396
С	2.737407	-0.794368	-5.780371
Η	2.016221	-1.473783	-6.221483
С	2.248580	-3.300921	-3.272991
С	2.418558	-3.921066	-4.518545
Η	1.829460	-3.591124	-5.367009
С	3.312311	-4.980672	-4.669339
Η	3.425677	-5.454494	-5.639800
С	4.050786	-5.436525	-3.576977
Η	4.743631	-6.264436	-3.695204
С	3.888387	-4.826523	-2.331910
Η	4.458997	-5.177000	-1.476273
С	2.994979	-3.767912	-2.177552
Η	2.878602	-3.280689	-1.213714
С	-0.420645	-4.490373	-1.888075
С	-0.807517	-4.663166	-3.230096
Η	-1.037544	-3.789992	-3.832015
С	-0.929074	-5.936861	-3.776633
Η	-1.241198	-6.052727	-4.810111
С	-0.659355	-7.063701	-2.996949
Η	-0.751103	-8.057166	-3.425237
С	-0.271795	-6.908141	-1.664251

Η	-0.051628	-7.780530	-1.056487
С	-0.157155	-5.635526	-1.113746
Н	0.163966	-5.516605	-0.083995
С	-2.955164	-4.263526	0.108904
С	-3.694993	-3.664765	-0.925091
Н	-3.442504	-2.655815	-1.238748
С	-4.753496	-4.347588	-1.521877
Н	-5.317384	-3.872619	-2.320006
С	-5.090002	-5.634847	-1.099659
Н	-5.912287	-6.167504	-1.568283
С	-4.359649	-6.237308	-0.074985
Н	-4.608650	-7.241726	0.254086
С	-3.300549	-5.556806	0.524775
Н	-2.721397	-6.042706	1.302194
С	-2.883322	-3.091490	3.059974
С	-3.202162	-4.309080	3.676902
Н	-2.629304	-5.198145	3.436968
С	-4.224302	-4.380748	4.622630
Η	-4.452864	-5.330597	5.096649
С	-4.944744	-3.236031	4.964659
Н	-5.739502	-3.292720	5.702590
С	-4.634161	-2.018195	4.357225
Н	-5.190835	-1.122681	4.619106
С	-3.611486	-1.942689	3.413092
Н	-3.377672	-0.999416	2.927689
С	-0.274250	-1.908704	4.555900
С	-0.000634	-3.271241	4.776412
Н	0.292961	-3.894914	3.938262
С	-0.069570	-3.812150	6.056513
Η	0.158626	-4.862315	6.211436
С	-0.421974	-3.005498	7.140737
Н	-0.478402	-3.428713	8.138993
С	-0.701357	-1.652361	6.936605

Η	-0.986065	-1.023517	7.774723
С	-0.624850	-1.107808	5.658418
Η	-0.861486	-0.060795	5.498632
С	2.417388	-0.127940	4.638839
С	3.151351	-1.211481	4.126945
Η	3.006015	-1.504627	3.091109
С	4.069529	-1.884738	4.931020
Η	4.632002	-2.719097	4.521320
С	4.268571	-1.491324	6.255478
Η	4.981529	-2.018844	6.882221
С	3.541715	-0.418680	6.772650
Η	3.683328	-0.111424	7.804493
С	2.623646	0.258050	5.970405
Η	2.042732	1.072560	6.388830
С	2.725445	2.812991	3.470065
С	2.956967	3.390076	4.726439
Η	2.276859	3.182830	5.545163
С	4.032003	4.255723	4.924409
Η	4.192244	4.699369	5.902482
С	4.892006	4.558518	3.868443
Η	5.726937	5.235651	4.022818
С	4.669269	3.990773	2.612780
Η	5.334453	4.223041	1.785659
С	3.595386	3.125421	2.411508
Η	3.429556	2.668971	1.439877
С	0.406459	4.499779	1.977326
С	0.001145	4.750850	3.301263
Η	-0.421612	3.942056	3.888417
С	0.107313	6.026062	3.847545
Η	-0.222417	6.205577	4.866357
С	0.628276	7.074513	3.085965
Н	0.713649	8.068652	3.514013
С	1.039308	6.839553	1.772109

Η	1.454304	7.648920	1.179131
С	0.926396	5.566757	1.221411
Η	1.263693	5.382223	0.206603
С	-4.663189	0.491613	-0.035238
С	-5.340275	1.031788	1.065711
С	-5.398918	0.104478	-1.162630
С	-6.718405	1.195020	1.039156
Η	-4.760697	1.313008	1.937187
С	-6.779475	0.247119	-1.191026
Η	-4.861500	-0.302864	-2.010900
Η	-7.222424	1.587758	1.916901
Η	-7.322496	-0.030915	-2.089127
С	4.667924	-0.462948	0.140293
С	5.245657	-1.666138	0.565350
С	5.503051	0.591152	-0.251592
С	6.624901	-1.819788	0.589420
Η	4.587903	-2.468314	0.878669
С	6.883854	0.453819	-0.210751
Η	5.042475	1.511274	-0.591607
Η	7.048283	-2.751850	0.951141
Η	7.508577	1.275135	-0.548156
С	-7.465893	0.802212	-0.090769
С	7.471687	-0.758667	0.206329
С	-8.919726	0.969344	-0.121839
С	-9.756830	0.138339	-0.902396
С	-9.576302	1.972139	0.628886
С	-11.121876	0.313829	-0.914519
Η	-9.341348	-0.676199	-1.481978
С	-10.944643	2.109903	0.580569
Η	-9.012180	2.669904	1.234746
Η	-11.790181	-0.321831	-1.481539
Η	-11.468081	2.879787	1.134589
С	8.926690	-0.913636	0.243489

С	9.550735	-2.173850	0.090561
С	9.796785	0.184637	0.433369
С	10.920492	-2.294464	0.135249
Н	8.963094	-3.063656	-0.096812
С	11.162380	0.013054	0.467074
Н	9.403233	1.181729	0.585675
Н	11.421771	-3.247316	0.014612
Н	11.853412	0.833936	0.610809
N	11.720551	-1.214369	0.321162
N	-11.712038	1.290687	-0.181195
С	-13.201867	1.510761	-0.257527
Н	-13.454287	2.117456	0.614570
Н	-13.387832	2.110617	-1.152821
С	13.213316	-1.401612	0.436655
Н	13.428419	-2.350746	-0.058821
Η	13.434301	-1.517298	1.501506
С	14.013376	-0.275264	-0.163246
С	14.663597	0.645618	0.668326
С	14.129104	-0.149223	-1.555554
С	15.417685	1.682590	0.116010
Η	14.595031	0.543494	1.748581
С	14.879570	0.887600	-2.104987
Η	13.640326	-0.867302	-2.209366
С	15.523882	1.804536	-1.269442
Н	15.925767	2.386661	0.766940
Н	14.971466	0.975580	-3.182746
Н	16.114468	2.607097	-1.699602
С	-13.997456	0.231438	-0.286823
С	-14.133334	-0.546306	0.872622
С	-14.621592	-0.181764	-1.470668
С	-14.877205	-1.723310	0.843049
Η	-13.664739	-0.227293	1.800349
С	-15.369957	-1.360217	-1.497665

Η	-14.537480	0.425382	-2.368664
С	-15.495676	-2.131395	-0.342379
Η	-14.984207	-2.317466	1.744876
Η	-15.857677	-1.668991	-2.416550
Η	-16.081120	-3.045082	-0.360950

References.

- 1 C. J. Medforth, M. O. Senge, K. M. Smith, L. D. Sparks and J. A. Shelnutt, J. Am. Chem. Soc., 1992, 114, 9859-9869.
- 2 C.-J. Liu, W.-Y. Yu, S.-M. Peng, C. W. Mak and C.-M. Che, J. Chem. Soc. Dalton Trans., 1998, 11, 1805-1812.
- 3 M. Chen, M.-Z. Chen, C.-Q. Zhou, W.-E. Lin, J.-X. Chen, W.-H. Chen and Z.-H. Jiang, *Inorg. Chim. Acta*, 2013, 405, 461-469.
- 4 (a) T. K. Ronson, C. Carruthers, J. Fisher, T. Brotin, L. P. Harding, P. J. Rizkallah and M. J. Hardie, *Inorg. Chem.*, 2010, *49*, 675-685. (b) J. Wu, D. Zhang, L. Chen, J. Li, J. Wang, C. Ning, N. Yu, F. Zhao, D. Chen, X. Chen, K. Chen, H. Jiang, H. Liu and D. Liu, *J. Med. Chem.*, 2013, *56*, 761-780.
- (a) K. Wakita, Yadokari-XG, Software for Crystal Structure Analyses 2001; (b) C.
 Kabuto, S. Akine, T. Nemoto, E. Kwon, Release of Software (Yadokari-XG 2009) for
 Crystal Structure Analyses. J. Cryst. Soc. Jpn., 2009, 51, 218-224.
- 6 P. V. D. Sluis and A. L. Spek, *Acta Crystallogr.*, 1990, A46, 194-201.
- 7 D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 8 W. Lee, and R. G. Yang, *Parr, Phys. Rev. B*, 1988, 37, 785-789.
- 9 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.