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The shape transitions and shape coexistence in the Ge and Se isotopes are studied within the interacting boson
model (IBM) with the microscopic input from a self-consistent mean-field calculation based on the Gogny-D1M
energy density functional. The mean-field energy surface as a function of the quadrupole shape variables β and
γ , obtained from the constrained Hartree-Fock-Bogoliubov method, is mapped onto the expectation value of the
IBM Hamiltonian with configuration mixing in the boson condensate state. The resultant Hamiltonian is used
to compute excitation energies and electromagnetic properties of the selected nuclei 66–94Ge and 68–96Se. Our
calculation suggests that many nuclei exhibit γ softness. Coexistence between prolate and oblate shapes, as well
as between spherical and γ -soft shapes, is also observed. The method provides a reasonable description of the
observed systematics of the excitation energy of the low-lying energy levels and transition strengths for nuclei
below the neutron shell closure N = 50, and provides predictions on the spectroscopy of neutron-rich Ge and Se
isotopes with 52 � N � 62, where data are scarce or not available.
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I. INTRODUCTION

The evolution of nuclear shapes has attracted considerable
interest in nuclear structure studies [1–3]. In particular, the
precise description of the structural evolution along different
isotopic and/or isotonic chains as well as the associated shell
effects require an accurate modeling of the nuclear many-body
problem. Within this context, the germanium and selenium
nuclei belong to one of the most challenging regions of the
nuclear chart. Their structure and decay patterns have been ex-
tensively studied in recent years both experimentally [4–7] and
theoretically [8–16]. Among the theoretical approximations
used to study those nuclei are the shell model (SM) [8–10],
the energy density functional (EDF) framework [11–14], and
the algebraic approach [15,16]. The shape transitions in the
neighborhood of the neutron subshell closure N = 40 have
also received considerable attention [6,7,12,13]. Moreover, the
Ge and Se nuclei have been shown to exhibit a pronounced
competition between different configurations associated with
a variety of intrinsic shapes, i.e., shape coexistence [17]. The
corresponding spectra display low-lying excited 0+ energy
levels which could be linked to proton intruder excitations
across the Z = 28 shell gap.

The EDF framework is among the most popular tools
employed in microscopic nuclear structure studies. It allows
a description of the properties of the bulk nuclear matter
and the ground states of finite nuclei all over the nuclear
chart [18]. Calculations are usually carried out in terms of
the nonrelativistic Skyrme [18,19] and Gogny [20] EDFs but
also within the relativistic mean-field (RMF) approximation
[21,22]. On the one hand, the mean-field approximation has
already been successfully applied to nuclei with mass number
A ≈ 70–100 [7,11–14,23,24]. On the other hand, the quanti-
tative analysis of the collective excitations in those systems

requires the inclusion of correlations not explicitly taken
into account within the mean-field picture. Those correlations
stem from the restoration of the symmetries (spontaneously)
broken at the mean-field level and/or the fluctuations in the
collective coordinates. They are usually taken into account
within the symmetry-projected generator coordinate method
(GCM) [18,22,25,26]. The symmetry projected GCM offers
a reasonable starting point to account for the dynamical
interplay between the single-particle and collective degrees of
freedom in atomic nuclei. However, the calculations are highly
demanding from a computational point of view, especially in
those cases where several collective coordinates should be
included in the GCM ansatz. Therefore, an expansion in the
nonlocality of the norm and Hamiltonian kernels is used to
build a collective Hamiltonian approach [27] that alleviates
the computational burden. At this point the few-determinant
(FED) excited VAMPIR approach of the Tubingen group, used
to describe shape coexistence in some Ge and Se isotopes in
[28–32], has to be mentioned.

In this study, we have resorted to the fermion-to-boson
mapping procedure introduced in Ref. [33] as an alternative
approach to describe the considered Ge and Se nuclei. The
method maps the (fermionic) energy surfaces obtained with
constrained mean-field calculations onto the bosonic ones
computed as the expectation value of the interacting boson
model (IBM) [34] Hamiltonian in the boson coherent state.
By the mapping procedure, the parameters of the IBM Hamil-
tonian for each individual nucleus are completely determined,
i.e., no phenomenological adjustment of the parameters to the
experimental data is required. The IBM Hamiltonian is then
diagonalized and the resulting wave functions are used to com-
pute the spectroscopic properties of 66–94Ge and 68–96Se. The
fermion-to-boson mapping procedure has allowed an accurate,
computationally economic and systematic description of the

2469-9985/2017/95(6)/064310(15) 064310-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.064310


NOMURA, RODRÍGUEZ-GUZMÁN, AND ROBLEDO PHYSICAL REVIEW C 95, 064310 (2017)

shape coexistence [35], the structural evolution in A ≈ 100
nuclei [36], and the quadrupole and octupole transitions in
the light actinide and rare-earth regions [37,38] as well as
odd-mass nuclei [39]. In this work, we demonstrate the ability
of the mapping scheme to account for the properties of the
nuclei on the neutron-deficient side (N � 50), where there are
enough experimental data to compare with. So far, the IBM has
been used in phenomenological studies of Ge and Se nuclei
[15,40,41]. However, one of the advantages of our approach
is that it is able to provide predictions for unexplored regions.
We then extrapolate the method to neutron-rich nuclei with
N = 52–62, for which experimental data are not available.
The microscopic input is provided by constrained Hartree-
Fock-Bogoliubov (HFB) calculations based on the finite range
and density-dependent Gogny EDF [20]. In particular, we have
employed the parametrization D1M [42]. Previous studies
have shown that the parametrization D1M essentially keeps
the same predictive power as the well tested Gogny-D1S [43]
EDF to describe a wealth of low-energy nuclear structure
phenomena.

The paper is organized as follows. The theoretical frame-
work used in our calculations is outlined in Sec. II. The mean-
field and mapped energy surfaces are discussed in Sec. III
while the derived IBM parameters are presented in Sec. IV.
We then discuss in Sec. V the evolution of the low-lying levels
in the considered nuclei, as well as the systematics of the
B(E2) transition rates, spectroscopic quadrupole moments,
and monopole transition rates. We also discuss the individual
level schemes for the N = 38, 40, 42, and 60 isotones,
which are representative cases of the γ softness and/or shape
coexistence. In Sec. VI, we address the sensitivity of our
predictions with respect to the particular version of the Gogny
EDF employed in the calculations. Finally, Sec. VII is devoted
to the conclusions and work prospects.

II. DESCRIPTION OF THE MODEL

A. Self-consistent mean-field calculations

As a first step, we have performed (constrained) HFB
calculations based on the Gogny EDF. They provide the
deformation energy surfaces for the considered Ge and Se
nuclei as functions of the corresponding quadrupole deforma-
tion parameters. We have used constrains on the multipole
operators Q̂20 and Q̂22 [44,45], which are associated with
the deformation parameters β and γ [1] in such a way
that β = √

4π/5Q/〈r2〉 and γ = tan−1 Q22/Q20. Note that

Q =
√

Q2
20 + Q2

22 is the intrinsic quadrupole moment while

〈r2〉 represents the mean-square radius obtained from the HFB
state. For a more detailed account, the reader is referred to
Ref. [45]. In what follows we will refer to the set of HFB
energies, as functions of the deformation parameters β and γ ,
as the (mean-field) energy surface.

B. The IBM Hamiltonian

To describe the spectroscopic properties of the studied
nuclei, we have resorted to the fermion-to-boson mapping
procedure introduced in Ref. [33]. Within such a scheme, the

(fermionic) energy surface obtained at the Gogny-HFB level
for a given nucleus is mapped onto the expectation value of
the IBM Hamiltonian in the boson coherent state [46]. The
parameters of the IBM Hamiltonian are then determined by
this procedure and the excitation energies as well as the IBM
wave functions are determined via the diagonalization of the
mapped Hamiltonian. The transition rates are computed using
such IBM wave functions.

Our IBM model comprises the collective nucleon pairs in
the valence space with spin and parity Jπ = 0+ (monopole S
pair) and 2+ (quadrupole D pair). They are associated with the
Jπ = 0+ (s) and 2+ (d) bosons, respectively [47]. The total
number of bosons, denoted by NB , amounts to half the number
of valence nucleons. In this study, the IBM configuration space
comprises the proton Z = 28–50 major shell as well as the two
neutron major shells N = 28–50 and N = 50–82. Therefore,
2 � NB � 7 (3 � NB � 8) and 3 � NB � 8 (4 � NB � 9)
for 66−82Ge (84–94Ge) and 68–84Se (86–96Se), respectively. In
this study, for the sake of simplicity, no distinction has been
made between the proton and neutron degrees of freedom.

As will be shown later, the Gogny-HFB energy surfaces,
for many of the considered nuclei, exhibit two minima close
in energy. Within the mean-field picture, such minima can
be associated with the normal 0p-0h and intruder 2p-2h
excitations across the shell gap. In the present case, we assume
that the intruder configuration corresponds to the proton 2p-2h
excitation across the shell closure Z = 28. To account for
the intruder configuration, the boson model space has to be
extended. Duval and Barrett [48] proposed a method that
incorporates the intruder configurations by introducing several
independent IBM Hamiltonians. As particles and holes are
usually not distinguished, the 2p-2h excitation increases the
boson number by 2. The different shell-model-like spaces of
2np-2nh (n = 0,1) configurations can be then associated with
the corresponding boson spaces comprising NB + 2n bosons.
The different boson configuration spaces are allowed to mix
via certain mixing interaction.

The Hilbert space of the configuration mixing IBM model
is then defined as the direct sum of each unperturbed
Hamiltonian, i.e., [NB] ⊕ [NB + 2], where [NB + 2n] denotes
the unperturbed space corresponding to the 2np-2nh config-
urations comprising NB + 2n bosons. In what follows, we
will simply denote the configuration [NB + 2n] (n = 0,1) as
[n]. Our criterion to include the configuration mixing for
a given nucleus is that the second-lowest minimum in the
mean-field energy surface is clear enough so as to constrain the
corresponding unperturbed Hamiltonian for the intruder con-
figuration. According to this criterion the configuration-mixing
has been taken into account for the nuclei 66,70–74,90–94Ge and
68–76,90–96Se in this paper.

We have resorted to the configuration-mixing IBM Hamil-
tonian [48]

Ĥ = Ĥ0 + (Ĥ1 + �) + Ĥmix, (1)

where Ĥn (n = 0,1) is the Hamiltonian for the unperturbed
configuration [n] while Ĥmix stands for the interaction mixing
both spaces. In Eq. (1), � represents the energy needed to
excite one boson from one major shell to the next.
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FIG. 1. Mean-field energy surfaces for the nuclei 66–94Ge. Results have been obtained with the Gogny-D1M EDF. The energy difference
between neighboring contours is 100 keV.

For each configuration space, we have employed the
simplest form of the IBM-1 Hamiltonian that still simulates the
essential ingredients of the low-energy quadrupole dynamics,
i.e.,

Ĥn = εnn̂d + κnQ̂ · Q̂ + κ ′
nV̂ddd . (2)

The first term n̂d = d† · d̃ in Eq. (2) is the d-boson number op-
erator, and εn is the single d-boson energy in the [n] space. The
second term represents the quadrupole-quadrupole interaction
with strength parameter κn. The quadrupole operator Q̂ in
boson space reads Q̂ = s†d̃ + d†s + χn[d† × d̃](2), where χn

is a parameter. The third term stands for a specific three-body
interaction among d bosons, with strength κ ′

n, which is required
to describe γ -soft systems [49]. It takes the form

V̂ddd = [[d† × d† × d†](L) × [d̃ × d̃ × d̃](L)](0), (3)

where the symbol × represents a tensor coupling and L is
the total angular momentum of the boson system. In our
calculations, we have only included the term with L = 3 as
it gives rise to a stable minimum at γ ≈ 30◦. The mixing

interaction term Ĥmix reads

Ĥmix = ωss
†s† + ωdd

† · d† + (H.c.), (4)

where ωs and ωd are strength parameters. For simplicity, we
have assumed ωs = ωd ≡ ω.

To associate a Gogny-HFB energy surface with the corre-
sponding configuration-mixing IBM Hamiltonian Eq. (1), an
extended boson coherent state

|
(β,γ )〉 = |
(N0,β,γ )〉 ⊕ |
(N1,β,γ )〉, (5)

has been introduced with Nn = NB + 2n (n = 0,1). For each
unperturbed configuration space |
(Nn,β,γ )〉 (n = 0,1), the
coherent state is taken in the form

|
(Nn,β,γ )〉 = 1√
Nn!

(λ†)Nn |0〉, (6)

where |0〉 denotes the inert core and

λ† = s† + βB cos γBd
†
0 + 1√

2
βB sin γB(d†

+2 + d
†
−2). (7)
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FIG. 2. The same as in Fig. 1, but for the nuclei 68–96Se.

On the other hand, βB and γB are the boson analogs of
the quadrupole deformation parameters β and γ within the
geometrical collective model [1].

The expectation value of the total Hamiltonian Ĥ in the
coherent state |
(β,γ )〉 leads to a 2 × 2 matrix [50]:

E =
(

E0(β,γ ) �(β)
�(β) E1(β,γ ) + �

)
, (8)

with diagonal and off-diagonal elements accounting for the
expectation values of the unperturbed and mixing terms,
respectively. The two eigenvalues of E correspond to specific
energy surfaces. It is customary to take the lower-energy one
[50] as the IBM (β,γ ) energy.

The diagonal matrix element En(β,γ ) is given by

En(β,γ ) = k1 + k2β
2
n

1 + β2
n

+ k3β
2
n + k4β

3
n cos 3γ + k5β

4
n(

1 + β2
n

)2

+k6β
6
n sin2 3γ(

1 + β2
n

)3 , (9)

where k1 = 5κnNn,k2 = [εn+κn(1+χ2
n )]Nn,k3 = 4κnNn(Nn−1),

k4=−4κn

√
2/7Nn(Nn−1)χn,k5 = (2/7)κnNn(Nn − 1)χ2

n ,

and k6 = (1/30)κ ′
nNn(Nn − 1)(Nn − 2). Moreover, the

nondiagonal matrix element reads

�(β) = ω
√

(NB + 1)(NB + 2)

⎡
⎣ 1 + β0β1√(

1 + β2
0

)(
1 + β2

1

)
⎤
⎦

NB

.

(10)

Note that, in Eqs. (9) and (10), βn represents the bosonic
deformation parameter for each unperturbed space [n]. It is
related to the Gogny-HFB one as βn = Cnβ. The constant
Cn is also determined by fitting the (fermionic) Gogny-HFB
energy surface to the (bosonic) IBM one. To this end, one
requires that the position of the minimum, for each unperturbed
configuration, be reproduced. Both Eqs. (9) and (10) are similar
to the ones employed in our previous studies [36,51,52] within
the IBM-2 framework.

C. Derivation of the IBM parameters: The fitting procedure

The Hamiltonian in Eq. (1) contains ten parameters. They
have been determined along the following lines:
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FIG. 3. The same as in Fig. 1, but for the mapped IBM energy surfaces.

Step 1: Each unperturbed Hamiltonian is determined by
using the procedure of Refs. [33,36,53]. Here, each
diagonal matrix element En in Eq. (8) is fitted to the
corresponding mean-field minimum. The normal
[n = 0] configuration is assigned to the mean-field
minimum with the smallest deformation while
the [n = 1] configuration is assigned to the HFB
minimum with the larger deformation. In this
way, each unperturbed Hamiltonian is determined
independently.

Step 2: The energy offset � is determined so that the
energy difference between the two minima (Step 1)
of the Gogny-HFB energy surface is reproduced.

Step 3: Finally, the strength parameter ω of the mixing
interaction term Ĥmix is determined so as to
reproduce the shapes of the barriers between the
minima [51,52].

In Step 1, note that the link of the 0p-0h and 2p-
2h configurations with the small and large deformation
minima, respectively, is based on the assumption that the
well-established interpretation of shape coexistence in the
neutron-deficient lead region [54–56] also holds here. In these

references, the 0+
1 ground state is associated with a weakly

deformed oblate shape and the intruder 0+
2 state with a prolate

shape with larger deformation.
Once the IBM parameters for each of the considered nuclei

are determined, the Hamiltonian Ĥ is diagonalized in the
[0] ⊕ [1] space by using the code IBM-1 [57]. The IBM wave
functions resulting from the diagonalization are then used to
compute electromagnetic properties that could be considered
as signatures of shape coexistence and/or shape transitions,
such as the B(E2) transition probabilities, the spectroscopic
quadrupole moments Qsp, and the ρ2(E0) values between 0+
states. The B(E2) transition probabilities read

B(E2; Ji → Jf ) = 1

2Ji + 1
|〈Jf ||T̂ (E2)||Ji〉|2, (11)

where Ji and Jf are the spins of initial and final states,
respectively. On the other hand, the spectroscopic quadrupole
moments and the ρ2(E0) values are computed as

Qsp =
√

16π

5

(
J 2 J

−J 0 J

)
〈J ||T̂ (E2)||J 〉 (12)
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and

ρ2(E0; 0+
i → 0+

f ) = Z2

R4
0

|〈0+
f ||T̂ (E0)||0+

i 〉|2, (13)

where R0 = 1.2 A1/3 fm. The E0 and E2 operators take
the form T̂ (E0) = ∑

n=0,1 e0,nn̂d and T̂ (E2) = ∑
n=0,1 e2,nQ̂,

respectively. For the effective charges we have assumed e0,0 =
e0,1 ≡ e0 and e2,0 = e2,1 ≡ e2. Their numerical values have
been fitted so as to reproduce the experimental B(E2; 2+

1 →
0+

1 ) [58] and ρ2(E0; 0+
2 → 0+

1 ) [59] values for the N = 42
and N = 40 nuclei, respectively.

III. ENERGY SURFACES

A. Gogny-D1M energy surfaces

The Gogny-D1M energy surfaces, obtained for the nuclei
66–94Ge and 68–96Se, are shown in Figs. 1 and 2. Similar
results have been obtained with the parametrization D1S of
the Gogny-EDF and therefore they will not be discussed
in detail in this section. As can be seen from Fig. 1, the
nucleus 66Ge exhibits coexisting prolate and oblate minima
with β ≈ 0.2. The prolate minimum becomes less pronounced
in both 68,70Ge. A shape transition is observed between the
ground-state shapes of 70Ge and 72Ge. For the latter, a spherical
minimum emerges and becomes the ground state at the mean-
field level. Such a spherical ground state could be associated
with the N = 40 neutron subshell closure. Furthermore, a
close-lying oblate minimum is also observed in the energy
surface of 72Ge. In the case of 74Ge, one observes a coexistence
between the spherical ground state and a triaxial minimum
with γ ≈ 30◦. A single prolate minimum, which is notably
γ -soft, is found for 76Ge. For higher neutron numbers, the
minimum moves gradually from prolate to spherical, reflecting
the proximity of the N = 50 neutron shell closure. A prolate
minimum develops from 82Ge to 88Ge and becomes γ -softer
as a function of the neutron number. On the other hand, a
shallow oblate minimum is found for 90Ge. An oblate and
γ -soft ground state is predicted for the isotopes 92,94Ge. As can
be seen from Fig. 2, a similar structural evolution is predicted
for the studied Se nuclei. Our Gogny-D1M HFB trends agree
well with previous results obtained within the relativistic
mean-field (RMF) approximation [12]. A coexistence between
spherical and oblate configurations has also been found
for 70,72Se [60] and 74Se within the five-dimensional (5D)
collective Hamiltonian approach based on the Gogny-D1S
EDF [11].

B. Mapped IBM energy surfaces

In Figs. 3 and 4 we have plotted the IBM energy surfaces
obtained by mapping the Gogny-D1M ones already shown
in Figs. 1 and 2. First we realize that, compared with the
mean-field energy surfaces, the IBM ones are generally more
flat in those regions of the β-γ plane away from the ground
state minimum. This behavior arises as a consequence of
the limited number of nucleon pairs (bosons) comprising the
IBM valence space but also because the Hamiltonian used for
each configuration space Eq. (2) is too simple to reproduce
every detail of the fermionic energy surfaces [33,53]. In

order to determine the IBM Hamiltonian we have reproduced
the location and depth of the energy minimum as well
as the curvatures along both the β and γ directions around the
minimum. Furthermore, we have also reproduced the topology
of the barriers separating the different minima. With this in
mind, ones observes from Figs. 3 and 4 that the trends observed
as functions of the neutron number N in the mapped energy
surfaces mimic quite well the ones found in the Gogny-D1M
case.

IV. EVOLUTION OF THE DERIVED IBM PARAMETERS

In Fig. 5 we have depicted the parameters of the IBM Hamil-
tonian, obtained via the fermion-to-boson mapping procedure,
as functions of the neutron number. The decrease of the single
d-boson energy ε [panels (a) and (b)] when moving towards the
open-shell region, reflects the emergence of collectivity. For
both the normal and intruder configurations, the parameter ε
increases when approaching the neutron subshell N ≈ 40 and
the magic number N = 50. On the other hand, the ε values for
neutron-rich Ge and Se nuclei with N � 52 are rather small.
The strength κ of the quadrupole-quadrupole interaction is
shown in panels (c) and (d). It exhibits a gradual decrease when
moving away from the shell closure, a trend already found in
previous IBM studies [47,53]. Note that around N = 40 the
strength κ is much less sensitive to the neutron number than the
parameter ε. The parameter χ determines whether a nucleus is
prolate (χ < 0), oblate (χ > 0), or γ -soft (χ ≈ 0). As can be
seen from panels (e) and (f), for the normal configuration in Ge
nuclei, it changes sign from N = 38 to 44, which is consistent
with the oblate-to-prolate transition observed for the minimum
of the Gogny-D1M and mapped energy surfaces.

The strength of the three-body boson term also reflects
γ -softness. In particular, a negative value of κ ′ creates a stable
triaxial minimum at γ = 30◦ whereas a positive value leads
to stiffness along the γ direction [see Eq. (9)]. From panels
(g) and (h) one realizes that, for several of the considered
Ge isotopes, the κ ′ values for the normal configurations are
negative and notably large in magnitude. This reflects that the
Gogny-D1M energy surfaces are generally γ -softer for Ge than
for Se nuclei. The mixing strength ω [panels (i) and (j)] and
the energy offset � [panels (k) and (l)] are of the same order
of magnitude as those obtained in previous IBM configuration
mixing calculations [15]. Note that the ω values are particularly
large for N = 38 in both the Ge and Se isotopic chains. In this
case, the two minima observed in the Gogny-D1M energy
surface are rather well separated from each other along the γ
direction and therefore large ω values are required.

V. RESULTS FOR SPECTROSCOPIC PROPERTIES

A. Systematics of the excitation energies

The excitation energies of the 2+
1 , 4+

1 , 0+
2 and 2+

2 states
obtained in this work are displayed in Fig. 6 as functions of
the neutron number. They are compared with the available ex-
perimental data [58]. As can be seen, our calculations provide
a reasonable agreement with the experimental systematics,
especially for the yrast states. The E(2+

1 ) energy [panels
(a) and (e)] can be regarded as one of the best signatures
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FIG. 4. The same as in Fig. 2, but for the mapped IBM energy surfaces.

for a shape/phase transition [3]. For both Ge and Se nuclei,
the computed E(2+

1 ) energies decrease as one approaches
N = 40. In the case of Ge isotopes, this is at variance
with the experiment. This discrepancy could be attributed
to the N = 40 neutron subshell closure not explicitly taken
into account in our calculations. Moreover, the E(2+

1 ) values
exhibit a pronounced peak at N = 50. In the case of the E(4+

1 )
excitation energies [panels (b) and (f)], our results overestimate
the experimental ones around N = 50. This could be linked
to the limited IBM configuration space comprising only s and
d bosons. The inclusion of the J = 4+ (G) pair in the IBM
model could improve the agreement with the experiment but
lies out of the scope of this study. Work along these lines is in
progress and will be reported elsewhere.

The appearance of low-lying 0+
2 states is often attributed

to intruder excitations and regarded as a signature of shape
coexistence [17]. The predicted E(0+

2 ) energies are plotted in
panels (c) and (g). They display a pronounced decrease towards
N ≈ 40. This correlates well with the shape coexistence
observed in the underlying Gogny-D1M energy surfaces
around this neutron number. The overestimation of the E(0+

2 )
energy in the case of 68Ge is due to the fact that a configuration
mixing calculation has not been carried out in this case. The

fraction of the intruder configuration in the IBM 0+
1 and 0+

2
wave functions for Ge and Se nuclei is plotted in panels (a)
and (b) of Fig. 7 as a function of the neutron number N . From
the plots, one realizes that, for both Ge and Se, the 0+

1 and 0+
2

states at N = 38 mainly arise from the normal and intruder
configuration, respectively. At N = 40 and 42, in contrast, the
0+

1 state is dominated by the intruder configuration, while the
0+

2 state is almost purely made of the normal configuration.
Coming back to Fig. 6 [panels (c) and (g)], for the considered
neutron-rich nuclei, several examples of low-lying 0+

2 states
are found beyond the N = 50 shell closure. Finally, from the
plots in panels (d) and (h), we conclude that our calculations
lead to a reasonable description of the energies of the 2+

2 states
which are either interpreted as bandheads of the quasi-γ bands
or as members of the 0+

2 bands.
We note, in both Ge and Se isotopes, that the predicted

excitation energies of the non-yrast states E(0+
2 ) and E(2+

2 )
are generally higher than the experimental values especially for
46 � N � 50. This discrepancy has been commonly observed
in our previous calculations for other mass regions using the
HFB-to-IBM mapping procedure (see, e.g., Ref. [36]) and
could be, in most cases, attributed to the restricted model space
of the IBM when the shell closure is approached.
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FIG. 5. The IBM parameters ε, κ , χ , κ ′, ω, and � are depicted
as functions of the neutron number, for the [n = 0] and [n = 1]
configurations. For more details, see the main text.

B. Electromagnetic properties

1. B(E2) transition rates

The transition probabilities B(E2; 2+
1 → 0+

1 ), B(E2; 4+
1→ 2+

1 ), B(E2; 0+
2 → 2+

1 ) and B(E2; 2+
2 → 2+

1 ) are depicted
in Figs. 8 and 9 for Ge and Se nuclei, respectively. The
maximum B(E2; 2+

1 → 0+
1 ) value is reached around N = 40,

where the deformation is the largest [panel (a) of Figs. 8 and
9]. The agreement between our results and the experimental
data for Ge and Se nuclei is fairly good. A similar trend is
also found for the B(E2; 4+

1 → 2+
1 ) transition rates [panel

(b) of Figs. 8 and 9]. The quantity B(E2; 0+
2 → 2+

1 ), shown
in panel (c) of Figs. 8 and 9, can be regarded as a measure
of the mixing between different intrinsic configurations. The
experimental B(E2; 0+

2 → 2+
1 ) value is very large around

N = 38 or 40, where a pronounced configuration mixing
could be expected. Such a large value is not reproduced in
our calculations. In this case, the origin of the discrepancy
between our predictions and the experimental results could
be associated with a weak mixing between the 2+

1 and 0+
2

states in our model. For both the Ge and Se chains, there are
some discrepancies between the predicted and experimental
B(E2; 2+

2 → 2+
1 ) values at the quantitative level [panel (d)

of Figs. 8 and 9]. Nevertheless, the experimental trend—i.e.,
the B(E2; 2+

2 → 2+
1 ) transition probability reaching its largest

value at around N = 40, and being almost of the same order
of magnitude as B(E2; 2+

1 → 0+
1 )—is reproduced rather well

by the present calculation. Furthermore, the neutron number

FIG. 6. The 2+
1 , 4+

1 , 0+
2 , and 2+

2 excitation energies obtained in
the diagonalization of the mapped IBM Hamiltonian are plotted as
functions of the neutron number, for the Ge and Se nuclei, along with
the available experimental data [58].

N = 40 is precisely the region where the Gogny-D1M energy
surfaces display a pronounced γ -softness.

2. Spectroscopic quadrupole moments

The spectroscopic quadrupole moments Qsp corresponding
to the 2+

1 and 2+
2 states in Ge and Se nuclei, are shown in Fig. 10

where, they are also compared with the available experimental

FIG. 7. Fraction of the intruder configuration in the IBM 0+
1 and

0+
2 wave functions. For more details, see the main text.
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FIG. 8. The B(E2; 2+
1 → 0+

1 ), B(E2; 4+
1 → 2+

1 ), B(E2; 0+
2 →

2+
1 ), and B(E2; 2+

2 → 2+
1 ) transition probabilities obtained for Ge

isotopes are plotted as functions of the neutron number. Experimental
data have been taken from Ref. [58].

data [58,61]. The predicted postive spectroscopic quadrupole
moments Qsp(2+

1 ) for 34 � N � 38 [panel (a)] indicate that
the corresponding states are oblate. In our calculations, the
2+

1 wave functions for 72,74Ge are dominated by the intruder
oblate and triaxial configurations, respectively. Consequently,
their Qsp(2+

1 ) moments are positive and nearly zero, whereas
experimentally Qsp(2+

1 ) < 0 at both N = 40 and 42. Similarly,
at variance with the data, the predicted Qsp(2+

2 ) are negative
and approximately 0 for 72Ge and 74Ge, respectively. With
the exception of 82Ge for which Qsp(2+

1 ) ≈ 0, the predicted
spectroscopic quadrupole moments Qsp(2+

1 ) are negative for
most of the heavier Ge isotopes. The sign of the Qsp(2+

2 )

FIG. 9. The same as in Fig. 8, but for the Se isotopes. Experi-
mental data have been taken from Ref. [58].

FIG. 10. Spectroscopic quadrupole moments Qsp for the 2+
1

and 2+
2 states in eb units. The experimental values are taken from

Refs. [58,61].

values [panel (b)] is the opposite to the one of the Qsp(2+
1 )

moments. As can be seen from the figure [panels (a) and
(b)] our calculations qualitatively follow the experimental
trends for both Qsp(2+

1 ) and Qsp(2+
2 ) in Ge isotopes, i.e., the

decrease [increase] in Qsp(2+
1 ) [Qsp(2+

2 )] as a function of N
from N = 38 to 44. Similar conclusions can be drawn for the
predicted Qsp moments in the case of Se isotopes [panels (c)
and (d)]. In particular, our results for Qsp(2+

1 ) agree well with
the experimental ones at N = 44, 46, and 48 as well as with
the only available data on Qsp(2+

2 ) at N = 44. Nevertheless, at
variance with the experiment, in our calculations Qsp(2+

1 ) > 0
for 74,76Se, similarly to their isotones 72,74Ge.

3. E0 properties

The E0 transition strength values between 0+ states can
be regarded as a signature of both shape/phase transitions
and shape coexistence. The ρ2(E0; 0+

2 → 0+
1 ) values, obtained

within the mapped IBM framework, for Ge and Se nuclei are
compared with the available experimental data [59] in Fig. 11.
The peaks observed in the predicted ρ2(E0; 0+

2 → 0+
1 ) values,

shown in panels (a) and (b) of the figure, characterize the
structural evolution along both isotopic chains. In the case
of the Ge isotopes, for example, the peak at N ≈ 38 can
be associated with the emergence of shape coexistence while
the increase in the predicted ρ2(E0; 0+

2 → 0+
1 ) values towards

N = 44 suggests the development of quadrupole collectivity in
the considered nuclei. For both chains ρ2(E0; 0+

2 → 0+
1 ) ≈ 0

at N = 42, considerably underestimating the experimental
value. This implies that the mixing between the 0+

1 and 0+
2

states is too weak in this case. As already shown in Fig. 7,
for 74Ge and 76Se, the 0+

1 state in the present analysis is
made almost entirely of the intruder (γ -soft) configuration
while the intruder component is negligible in the 0+

2 state. As
can be seen from panel (b), ρ2(E0; 0+

2 → 0+
1 ) becomes larger
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FIG. 11. The ρ2(E0; 0+
2 → 0+

1 ) values, obtained within the
mapped IBM framework for Ge and Se nuclei, are compared with
the available experimental data taken from Ref. [59].

for neutron-rich Se isotopes with N � 60. This indicates the
strong mixing between the normal and intruder configurations
in their 0+

1 and 0+
2 wave functions [see panel (b) of Fig. 7].

C. Level schemes of selected isotopes

In this section, we further demonstrate the ability of our
fermion-to-boson mapping procedure to describe not only
the overall systematics of the spectroscopic properties in the
studied Ge and Se chains but also to account for the detailed
band structures and decay patterns of individual nuclei in
comparison with the experiment. In particular, we consider the
nuclei 70,72,74Ge and 72,74,76Se which correspond to an abrupt
shape transition and the emergence of shape coexistence in
their isotopic chains. We will also discuss the level schemes
obtained for the N = 60 isotones 92Ge and 94Se. The level
schemes presented in what follows have been classified into
bands according to their dominant E2 decays.

1. N = 38 isotones

The low-energy level schemes obtained for the N = 38
isotones 70Ge and 72Se are depicted in Figs. 12 and 13. The
experimental ground-state band exhibits an almost equal spac-
ing between its members. On the other hand, the theoretical
ground-state band, mainly coming from the oblate normal
configuration (see Fig. 7), rather looks like a regular collective
band approximately following the J (J + 1) systematics in the
rotational limit, and is more stretched for higher spins. This
could be due to the fact that the Gogny-D1M energy surfaces
for these nuclei exhibit a rather pronounced oblate minimum
(see Figs. 1 and 2), and the resultant mapped Hamiltonian gives
a more collective feature than is suggested experimentally. In
the case of 70Ge, our calculations provide the band built on
the 0+

2 state (almost 50% of the wave function is made of the
intruder prolate configuration) as well as the quasi-γ band with
the sequence of states 2+,3+,4+,5+,6+, . . .. The bandheads of
these bands are rather overestimated. Similar excited bands are
found for 72Se, but the one built on the 0+

2 state is lower than
the quasi-γ band.
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FIG. 12. Low-energy level scheme for 70Ge. The numbers (in
blue) near the arrows stand for the B(E2) transition strengths in
Weisskopf units. Experimental data have been taken from Ref. [58].
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FIG. 14. The same as in Fig. 12, but for 72Ge.

2. N = 40 isotones

The low-energy level schemes, obtained for the nuclei 72Ge
and 74Se, are compared in Figs. 14 and 15 with the exper-
imental data. For those N = 40 isotones, the corresponding
Gogny-D1M energy surfaces exhibit a coexistence between
spherical and oblate shapes. From the experimental point
of view, the energy of the 0+

2 state is the lowest precisely
at N = 40. This, together with the strong B(E2; 0+

2 → 2+
1 )

transition and the Qsp(2+) values shown in Fig. 10, suggest a
pronounced mixing between oblate and prolate configurations
in those nuclear systems. As can be seen from Figs. 14 and
15, our calculations describe well the experimental spectra
(including the energy of the 0+

2 states) and B(E2) transition
probabilities. However, as already discussed in Sec. V B, the
B(E2; 0+

2 → 2+
1 ) value is underestimated within our model

because the mixing between the two configurations is not
strong enough. Previous calculations, within the 5D collective
Hamiltonian approach [13], have also provided a reasonable
description of the low-energy spectra and decay patterns for
the same nuclei while overestimating the 0+

2 energy in 72Ge.

3. N = 42 isotones

The spectra obtained for 74Ge and 76Se are compared, in
Figs. 16 and 17, with the experimental ones. At N = 42, our
Gogny-D1M energy surfaces display a coexistence between
spherical and γ -soft minima. From the experimental point of
view, the lower energy of the 2+

2 bandhead of the quasi-γ
band and the strong B(E2; 2+

2 → 2+
1 ) transition suggest that

those N = 42 isotones could be considered as examples of
γ -softness. Our calculations describe reasonably well the
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FIG. 15. The same as in Fig. 12, but for 74Se.

quasi-γ band with the sequence of states 2+
γ ,3+

γ ,4+
γ ,5+

γ , . . .

as well as the B(E2; 2+
2 → 2+

1 ) transition probability, which
is comparatively as large as the B(E2; 2+

1 → 0+
1 ) value. In

the case of 76Se, both the computed and empirical quasi-γ
bands consist of 3+

γ and 4+
γ levels close in energy following

the systematics of the γ -unstable-rotor model of Wilets and
Jean [62]. Furthermore, the ground-state bands build on the 0+

1
states obtained for 74Ge and 76Se are largely made of the in-
truder configurations corresponding to triaxial (γ ≈ 30◦) and
oblate (γ = 60◦) minima in the Gogny-D1M energy surfaces,
respectively. On the other hand, the 0+

2 energy for 76Se is
underestimated in the present calculation. Another deviation of
the predicted level scheme from the experimental one for 76Se
is the fact that the B(E2; J → J − 2) (J = 2+,4+,6+,8+)
transition strength in the predicted yrast band increases with
spin but drops suddenly at J = 8+, while experimentally
no such sudden decrease is observed, even considering the
experimental uncertainty. This reflects a general feature of
the IBM [34]: due to the finite boson number the in-band
E2 transition strength increases with spin, then reaches its
maximum value at certain spin, and finally decreases. For both
74Ge and 76Se, the B(E2; 0+

2 → 2+
1 ) transition probability is

largely underestimated in the calculation. We remind the reader
also that the predicted ρ2(E0; 0+

2 → 0+
1 ) values for these

N = 42 isotones are too small compared to the experimental
values [see Figs. 11(a) and 11(b)]. Both of these discrepancies
have the same origin as the ones in the case of the N = 40
isotones.
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4. N = 60 isotones

The spectra obtained for the neutron-rich nuclei 92Ge
and 94Se are shown in Fig. 18. Within the Gogny-D1M
HFB framework, a γ -soft oblate minimum has been found
for the former while for the latter our calculations predict
prolate-oblate shape coexistence. The first excited band for
92Ge is predicted to be a quasi-γ band. The large B(E2; 2+

2 →
2+

1 ) value obtained for this nucleus (of the same order of
magnitude as the in-band B(E2; 2+

1 → 0+
1 ) strength) indicates

a pronounced γ -softness. Furthermore, the 2+ and 3+ as well
as the 4+ and 5+ levels of the quasi-γ band are close to each
other, which is rather consistent with the rigid-triaxial-rotor
picture of Davydov and Filippov [63]. In the case of 94Se, the
level scheme suggests two coexisting 0+ bands (the 0+

1 ground-
state band coming from the oblate normal configuration and
the 0+

2 band coming from the prolate intruder configuration).
The small B(E2; 0+

2 → 2+
1 ) transition probability confirms the

weak mixing between oblate and prolate configurations in this
nucleus. Our calculations also provide a quasi-γ band that
exhibits the rigid-triaxial-rotor feature, being much higher in
energy than in 92Ge.

VI. SENSITIVITY ANALYSIS

As already pointed out in previous sections, there are
several model assumptions that could affect our results for the
spectroscopic properties of the studied nuclei. In this section,
we turn our attention to the sensitivity of our results with
respect to the underlying Gogny EDF that provides the starting
point for our fermion-to-boson mapping scheme. To this end,
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2 levels of
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1 ) = 7.7, B(E2; 2+
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B(E2; 4+

2 → 2+
2 ) = 47 W.u.
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FIG. 19. The Gogny-HFB energy curves for the N = 40 isotones
72Ge and 74Se are depicted (upper panels) as functions of the axial
deformation parameter β (γ = 0◦). In the lower panels the HFB
energies are shown as functions of γ . For each γ value the parameter
β is chosen so as to minimize the energy. Results are shown for both
the Gogny-D1S and Gogny-D1M EDFs.

in the upper panels of Fig. 19 we have plotted the Gogny-HFB
energy curves for the N = 40 isotones 72Ge and 74Se as
functions of the axial deformation parameter β (γ = 0◦). In
the lower panels of the same figure, we have depicted the
HFB energies as functions of γ taking for the parameter β
the value that minimizes the energy for each value of γ . At
the quantitative level there are certain differences between the
results provided by the two functionals. For example, the D1M
energy curve for 72Ge exhibits a global spherical minimum
while an oblate one is obtained with the D1S parametrization.
On the other hand, for 74Se, both parameter sets lead to an
oblate global minimum but we obtain a softer behavior along
the γ direction with the Gogny-D1M than with the Gogny-D1S
EDF (see lower panels).

The spectra obtained for 72Ge and 74Se with the two Gogny
EDFs are compared in Fig. 20. The experimental data are
also included in the plots to facilitate the comparison. It is
satisfying to observe that there is no major difference between
the spectra provided by both parametrizations of the Gogny-
EDF, except for the 0+

2 energy level. Such a difference could be
attributed to the different topology of the corresponding HFB
energy surfaces. We have also checked that the spectroscopic
properties obtained for all the considered nuclei 66–94Ge and
68–96Se with the D1S parametrization are almost identical to
the ones obtained with the D1M set. This is the reason why
we have not discussed them in detail in the present paper.

VII. CONCLUSION

In this study, we have considered both the shape/phase
transitions and shape coexistence in the Ge and Se isotopic
chains. To this end, calculations have been carried out for the
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FIG. 20. Low-energy spectra obtained for 72Ge and 74Se within
the fermion-to-boson mapping procedure based on the Gogny-D1S
and Gogny-D1M EDFs. The experimental spectra are also included
to facilitate the comparison.

nuclei 66–94Ge and 68–96Se within the Gogny-HFB framework
and, subsequently, within the mapped IBM approximation.
The IBM configuration mixing Hamiltonian, with parameters
determined through the mapping procedure, has been diago-
nalized, and the resulting wave functions have been used to
compute the spectroscopic properties of the considered nuclei.
Though a restricted form of the IBM-1 Hamiltonian has been
employed, our calculations provide a reasonable description of
the systematics for the low-lying energy spectra and transition
strengths.

The Gogny-D1M energy surfaces predict the coexistence
between the prolate and oblate shapes in the lightest nuclei in
both isotopic chains. For shapes around N = 40 coexistence
between spherical and γ -soft shapes is observed. When
neutron number increases towards the N = 50 shell closure,
weakly deformed prolate shapes are obtained. On the other
hand, for 52 � N � 62 a number of nuclei exhibiting γ -soft
shapes and coexistence between prolate and oblate shapes
are observed. The behaviors of the derived IBM parameters,
resulting low-lying energy levels, B(E2) transition strengths,
spectroscopic quadrupole moments, and ρ2(E0; 0+

2 → 0+
1 )

values correlate well with the systematic of the Gogny-D1M
energy surface. Through the analysis of the IBM wave func-
tions, the low-lying 0+

2 state around N = 40 has been shown to
arise either from the intruder configuration associated with the
γ -soft minimum or the normal configuration associated with
the closely lying spherical ground state minimum. Around
this neutron number, our calculation also identifies signatures
of γ softness. On the neutron-rich side with N ≈ 60, our
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calculation further predicts many examples of the γ -soft
spectra and low-lying 0+

2 band.
On the other hand, we have also pointed out several discrep-

ancies between our results and experimental data. In particular,
our calculation underestimates the B(E2; 0+

2 → 2+
1 ) transition

strength for N � 42, indicating that the mixing between the
different configurations is too small. This is obviously due to
the chosen parameters for the IBM Hamiltonian, particularly
the too small strength parameter of the mixing interaction
which could be a consequence of the topology of the Gogny
EDF energy surfaces and/or the assumptions made at the
IBM level. In this respect, the form of the IBM Hamiltonian
employed in this study may be too simple, and some additional
terms could be included in the Hamiltonian. As is well
known, the use of the IBM-1 is particularly justified for
heavy nuclei, where protons and neutrons occupy different
major shells [47]. However, the lightest isotopes considered

in this work have nearly equal Z and N values and, therefore,
the presence of proton-neutron pairing effects might not be
negligible. More realistic calculation should employ versions
of the IBM that explicitly include isospin degrees of freedom
[64,65]. Nevertheless, these refinements would require major
extensions of the method and thus present a topic of future
work.
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[27] Z. P. Li, T. Nikšić, and D. Vretenar, J. Phys. G: Nucl. Part. Phys.

43, 024005 (2016).
[28] A. Petrovici, K. Schmid, F. Grmmer, A. Faessler, and T.

Horibata, Nucl. Phys. A 483, 317 (1988).
[29] A. Petrovici, K. Schmid, F. Grmmer, and A. Faessler, Nucl.

Phys. A 504, 277 (1989).
[30] A. Petrovici, K. Schmid, F. Grmmer, and A. Faessler, Nucl.

Phys. A 517, 108 (1990).
[31] A. Petrovici, E. Hammarn, K. Schmid, F. Grmmer, and A.

Faessler, Nucl. Phys. A 549, 352 (1992).
[32] A. Petrovici, K. Schmid, and A. Faessler, Nucl. Phys. A 710,

246 (2002).
[33] K. Nomura, N. Shimizu, and T. Otsuka, Phys. Rev. Lett. 101,

142501 (2008).
[34] F. Iachello and A. Arima, The Interacting Boson Model

(Cambridge University Press, Cambridge, 1987).

064310-14

https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/PhysRevC.88.014301
https://doi.org/10.1103/PhysRevC.88.014301
https://doi.org/10.1103/PhysRevC.88.014301
https://doi.org/10.1103/PhysRevC.88.014301
https://doi.org/10.1103/PhysRevC.88.044311
https://doi.org/10.1103/PhysRevC.88.044311
https://doi.org/10.1103/PhysRevC.88.044311
https://doi.org/10.1103/PhysRevC.88.044311
https://doi.org/10.1103/PhysRevC.87.041304
https://doi.org/10.1103/PhysRevC.87.041304
https://doi.org/10.1103/PhysRevC.87.041304
https://doi.org/10.1103/PhysRevC.87.041304
https://doi.org/10.1016/j.physletb.2014.05.069
https://doi.org/10.1016/j.physletb.2014.05.069
https://doi.org/10.1016/j.physletb.2014.05.069
https://doi.org/10.1016/j.physletb.2014.05.069
https://doi.org/10.1103/PhysRevC.78.044320
https://doi.org/10.1103/PhysRevC.78.044320
https://doi.org/10.1103/PhysRevC.78.044320
https://doi.org/10.1103/PhysRevC.78.044320
https://doi.org/10.1103/PhysRevC.80.064323
https://doi.org/10.1103/PhysRevC.80.064323
https://doi.org/10.1103/PhysRevC.80.064323
https://doi.org/10.1103/PhysRevC.80.064323
https://doi.org/10.1103/PhysRevC.92.044331
https://doi.org/10.1103/PhysRevC.92.044331
https://doi.org/10.1103/PhysRevC.92.044331
https://doi.org/10.1103/PhysRevC.92.044331
https://doi.org/10.1103/PhysRevC.80.064313
https://doi.org/10.1103/PhysRevC.80.064313
https://doi.org/10.1103/PhysRevC.80.064313
https://doi.org/10.1103/PhysRevC.80.064313
https://doi.org/10.1103/PhysRevC.89.044325
https://doi.org/10.1103/PhysRevC.89.044325
https://doi.org/10.1103/PhysRevC.89.044325
https://doi.org/10.1103/PhysRevC.89.044325
https://doi.org/10.1088/0954-3899/42/4/045108
https://doi.org/10.1088/0954-3899/42/4/045108
https://doi.org/10.1088/0954-3899/42/4/045108
https://doi.org/10.1088/0954-3899/42/4/045108
https://doi.org/10.1103/PhysRevC.91.044304
https://doi.org/10.1103/PhysRevC.91.044304
https://doi.org/10.1103/PhysRevC.91.044304
https://doi.org/10.1103/PhysRevC.91.044304
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/RevModPhys.83.1467
https://doi.org/10.1103/RevModPhys.83.1467
https://doi.org/10.1103/RevModPhys.83.1467
https://doi.org/10.1103/RevModPhys.83.1467
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1016/0029-5582(58)90345-6
https://doi.org/10.1016/0029-5582(58)90345-6
https://doi.org/10.1016/0029-5582(58)90345-6
https://doi.org/10.1016/0029-5582(58)90345-6
https://doi.org/10.1016/0370-2693(75)90359-7
https://doi.org/10.1016/0370-2693(75)90359-7
https://doi.org/10.1016/0370-2693(75)90359-7
https://doi.org/10.1016/0370-2693(75)90359-7
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1103/PhysRevC.85.034321
https://doi.org/10.1103/PhysRevC.85.034321
https://doi.org/10.1103/PhysRevC.85.034321
https://doi.org/10.1103/PhysRevC.85.034321
https://doi.org/10.1103/PhysRevC.90.034306
https://doi.org/10.1103/PhysRevC.90.034306
https://doi.org/10.1103/PhysRevC.90.034306
https://doi.org/10.1103/PhysRevC.90.034306
https://doi.org/10.1016/S0375-9474(02)01019-9
https://doi.org/10.1016/S0375-9474(02)01019-9
https://doi.org/10.1016/S0375-9474(02)01019-9
https://doi.org/10.1016/S0375-9474(02)01019-9
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1016/0375-9474(88)90539-8
https://doi.org/10.1016/0375-9474(88)90539-8
https://doi.org/10.1016/0375-9474(88)90539-8
https://doi.org/10.1016/0375-9474(88)90539-8
https://doi.org/10.1016/0375-9474(89)90346-1
https://doi.org/10.1016/0375-9474(89)90346-1
https://doi.org/10.1016/0375-9474(89)90346-1
https://doi.org/10.1016/0375-9474(89)90346-1
https://doi.org/10.1016/0375-9474(90)90263-L
https://doi.org/10.1016/0375-9474(90)90263-L
https://doi.org/10.1016/0375-9474(90)90263-L
https://doi.org/10.1016/0375-9474(90)90263-L
https://doi.org/10.1016/0375-9474(92)90084-W
https://doi.org/10.1016/0375-9474(92)90084-W
https://doi.org/10.1016/0375-9474(92)90084-W
https://doi.org/10.1016/0375-9474(92)90084-W
https://doi.org/10.1016/S0375-9474(02)01089-8
https://doi.org/10.1016/S0375-9474(02)01089-8
https://doi.org/10.1016/S0375-9474(02)01089-8
https://doi.org/10.1016/S0375-9474(02)01089-8
https://doi.org/10.1103/PhysRevLett.101.142501
https://doi.org/10.1103/PhysRevLett.101.142501
https://doi.org/10.1103/PhysRevLett.101.142501
https://doi.org/10.1103/PhysRevLett.101.142501


STRUCTURAL EVOLUTION IN GERMANIUM AND . . . PHYSICAL REVIEW C 95, 064310 (2017)

[35] K. Nomura, T. Otsuka, and P. Van Isacker, J. Phys. G: Nucl.
Part. Phys. 43, 024008 (2016).

[36] K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys.
Rev. C 94, 044314 (2016).

[37] K. Nomura, D. Vretenar, T. Nikšić, and B.-N. Lu, Phys. Rev. C
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and M. Zielińska, Phys. Rev. Lett. 100, 102502 (2008).

[61] N. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
[62] L. Wilets and M. Jean, Phys. Rev. 102, 788 (1956).
[63] A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
[64] J. Elliot and A. White, Phys. Lett. B 97, 169 (1980).
[65] J. Elliot and J. Evans, Phys. Lett. B 101, 216 (1981).

064310-15

https://doi.org/10.1088/0954-3899/43/2/024008
https://doi.org/10.1088/0954-3899/43/2/024008
https://doi.org/10.1088/0954-3899/43/2/024008
https://doi.org/10.1088/0954-3899/43/2/024008
https://doi.org/10.1103/PhysRevC.94.044314
https://doi.org/10.1103/PhysRevC.94.044314
https://doi.org/10.1103/PhysRevC.94.044314
https://doi.org/10.1103/PhysRevC.94.044314
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.93.054305
https://doi.org/10.1103/PhysRevC.93.054305
https://doi.org/10.1103/PhysRevC.93.054305
https://doi.org/10.1103/PhysRevC.93.054305
https://doi.org/10.1016/0370-2693(83)91457-0
https://doi.org/10.1016/0370-2693(83)91457-0
https://doi.org/10.1016/0370-2693(83)91457-0
https://doi.org/10.1016/0370-2693(83)91457-0
https://doi.org/10.1007/BF01433622
https://doi.org/10.1007/BF01433622
https://doi.org/10.1007/BF01433622
https://doi.org/10.1007/BF01433622
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.1103/PhysRevC.78.034314
https://doi.org/10.1103/PhysRevC.78.034314
https://doi.org/10.1103/PhysRevC.78.034314
https://doi.org/10.1103/PhysRevC.78.034314
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(78)90532-8
https://doi.org/10.1016/0375-9474(78)90532-8
https://doi.org/10.1016/0375-9474(78)90532-8
https://doi.org/10.1016/0375-9474(78)90532-8
https://doi.org/10.1016/0370-2693(81)90321-X
https://doi.org/10.1016/0370-2693(81)90321-X
https://doi.org/10.1016/0370-2693(81)90321-X
https://doi.org/10.1016/0370-2693(81)90321-X
https://doi.org/10.1103/PhysRevLett.108.132501
https://doi.org/10.1103/PhysRevLett.108.132501
https://doi.org/10.1103/PhysRevLett.108.132501
https://doi.org/10.1103/PhysRevLett.108.132501
https://doi.org/10.1103/PhysRevC.69.034323
https://doi.org/10.1103/PhysRevC.69.034323
https://doi.org/10.1103/PhysRevC.69.034323
https://doi.org/10.1103/PhysRevC.69.034323
https://doi.org/10.1103/PhysRevC.86.034322
https://doi.org/10.1103/PhysRevC.86.034322
https://doi.org/10.1103/PhysRevC.86.034322
https://doi.org/10.1103/PhysRevC.86.034322
https://doi.org/10.1103/PhysRevC.87.064313
https://doi.org/10.1103/PhysRevC.87.064313
https://doi.org/10.1103/PhysRevC.87.064313
https://doi.org/10.1103/PhysRevC.87.064313
https://doi.org/10.1103/PhysRevC.81.044307
https://doi.org/10.1103/PhysRevC.81.044307
https://doi.org/10.1103/PhysRevC.81.044307
https://doi.org/10.1103/PhysRevC.81.044307
https://doi.org/10.1016/0370-2693(87)91406-7
https://doi.org/10.1016/0370-2693(87)91406-7
https://doi.org/10.1016/0370-2693(87)91406-7
https://doi.org/10.1016/0370-2693(87)91406-7
https://doi.org/10.1007/BF01284554
https://doi.org/10.1007/BF01284554
https://doi.org/10.1007/BF01284554
https://doi.org/10.1007/BF01284554
https://doi.org/10.1016/0370-2693(93)90107-S
https://doi.org/10.1016/0370-2693(93)90107-S
https://doi.org/10.1016/0370-2693(93)90107-S
https://doi.org/10.1016/0370-2693(93)90107-S
http://www.nndc.bnl.gov
https://doi.org/10.1016/j.adt.2004.11.002
https://doi.org/10.1016/j.adt.2004.11.002
https://doi.org/10.1016/j.adt.2004.11.002
https://doi.org/10.1016/j.adt.2004.11.002
https://doi.org/10.1103/PhysRevLett.100.102502
https://doi.org/10.1103/PhysRevLett.100.102502
https://doi.org/10.1103/PhysRevLett.100.102502
https://doi.org/10.1103/PhysRevLett.100.102502
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1016/0029-5582(58)90153-6
https://doi.org/10.1016/0370-2693(80)90573-0
https://doi.org/10.1016/0370-2693(80)90573-0
https://doi.org/10.1016/0370-2693(80)90573-0
https://doi.org/10.1016/0370-2693(80)90573-0
https://doi.org/10.1016/0370-2693(81)90297-5
https://doi.org/10.1016/0370-2693(81)90297-5
https://doi.org/10.1016/0370-2693(81)90297-5
https://doi.org/10.1016/0370-2693(81)90297-5



