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Organic hydrogen peroxide-driven low charge
potentials for high-performance lithium-oxygen
batteries with carbon cathodes
Shichao Wu1,2, Yu Qiao1,2, Sixie Yang3, Masayoshi Ishida2, Ping He3 & Haoshen Zhou1,2,3

Reducing the high charge potential is a crucial concern in advancing the performance of

lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium

hydroxide products, we find that a hydrogen peroxide aqueous solution added in the

electrolyte can effectively promote the decomposition of lithium hydroxide compounds at

the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore,

for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea

hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an

electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the

realization of the low charge potential of B3.26 V, which is among the best levels reported.

In addition, the undesired water generally accompanying hydrogen peroxide solutions is

circumvented to protect the lithium metal anode and ensure good battery cycling stability.

Our results should provide illuminating insights into approaches to enhancing lithium-oxygen

batteries.
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R
echargeable Li-air batteries with the high energy density of
B3,500 Wh kg� 1 demonstrate great promise for building
capacious energy storage devices and developing electric

vehicles with long driving range1. A typical Li-air battery is
composed of a Li metal anode, a separator, an electrolyte and
an air cathode2. The general net electrochemical reactions of
non-aqueous Li-O2 batteries during discharge and charge are
based on the formation and oxidative decomposition of lithium
peroxide (2 LiþO2 $ Li2O2, E0¼ 2.96 V versus Li/Liþ )3–5. The
insulating nature of Li2O2 depositing on the surface of the air
cathode may result in sudden battery death or limited discharge
capacity during discharge6–9. Upon charge, the potential will be
too high to decompose Li2O2 (44.2 V)10. This may trigger
the severe oxidative deterioration of the electrolyte and shorten
the cycle life of the battery11,12. Such problems have blocked the
realization of practical Li-air batteries. Carbon-based materials
have been considered to be optimal selections for air cathodes,
because their superior conductivity can buffer the poor electron
conductivity of Li2O2 and thereby improve the discharge–charge
performance13,14. They also show other advantages such as low
cost and high specific area and light weight, which ensure the
high specific capacity and energy density of Li-O2 batteries15.
However, their poor catalysis ability towards the oxygen evolution
reaction restrains the charge potential from realizing low values14.
Substantial efforts have been devoted to lowering the charge
potential16–21. Noble metals and oxides (Pt, Au, Pd, Ru and RuO2

and so on)22–27 and transition metals and compounds (MnO2,
TiC, Ti4O7, Cu2O, FeOOH, NiOOH, Ni2CoO4 and so on) have
been tentatively introduced to construct carbon-based composite
cathodes28–30. In this way, charge potentials of B3.5 V can be
anticipated, but it is difficult to break through this limit. Also of
note, the employment of inappropriate catalysts that strongly
bind O2 or the discharge intermediate LiO2 may result in the
undesired shift from Li2O2 to Li2O as discharge products and
further lead to the poor reversibility of the Li-O2 battery31,32.

Recently, Li et al.33 in our group demonstrated a novel route to
achieve the ultralow charge potential of B3.2 V in a dimethyl
sulfoxide-based electrolyte containing 100 p.p.m. of H2O by
constructing a composite cathode (MnO2 and Ru particles
supported on Super P carbon). The primary electrochemical
reactions (the formation of Li2O2) during discharge were
converted to the formation of lithium hydroxide (LiOH) via the
catalysis effect of MnO2 in the cathode towards the reactions
between Li2O2 and H2O. The discharge process was proposed to
involve a 2e� electrochemical reaction and a following chemical
reaction. During charge, Ru in the cathode decomposes the LiOH
at the low charge potential. Following this idea, in a tetraglyme
(G4)-based electrolyte, 4,600 p.p.m. of H2O was introduced to
reduce the charge potential to B3.3 V34 and, by integrating a
hydrophobic ionic liquid-based electrolytes, Wu et al.35 realized a
synergistic system for Li-O2 batteries in a humid atmosphere
(relative humidity of 51%) and a charge potential of B3.34 V was
attained. Although the transformed net electrochemical reactions
based on the reversible formation and decomposition of LiOH
compounds efficiently improve the charge ability and cycling
performance, the introduction of MnO2 and Ru or RuO2, with
their heavy molecular weight and high cost, such as the
abovementioned carbon-based composite cathodes, is inevitably
subject to significantly decreased energy density and increased
cost. Moreover, the overly strong catalytic activity of these
additional catalysts may lead to parasitic reactions of the
electrolyte. In the cases with carbon cathodes containing no
catalysts, the charge potentials have been very high, generally
above 4.2 V, although H2O was reported to largely enhance the
discharge capacity7,36,37. Another work by Liu et al.38, also based
on the assumed LiOH-related discharge–charge mechanism,

reported a charge potential of B3.1 V on an reduced graphene
oxide (rGO)-based cathode in a dimethyl ether-based electrolyte
in the presence of LiI and H2O. However, these features were not
observed for Li-O2 batteries with common carbon material-based
cathodes such as Super P carbon. Furthermore, some discussion
challenged the detailed function of LiI and the reversibility of the
Li-O2 battery with LiOH as the discharge product and suggested
that the uncertain mechanism should be further explored39–42.

In this work, for an H2O-containing Li-O2 battery with LiOH
products, we reveal the critical role of an H2O2 aqueous solution
added into the electrolyte in assisting the decomposition of LiOH
compounds at the ultralow charge potential when using a
common Ketjen Black carbon (KB)-based cathode. Most
importantly, for non-aqueous Li-O2 batteries with Li2O2

products, a novel electrolyte additive urea hydrogen peroxide
that traps H2O2 in the H2O-free organic is, to the best of our
knowledge, first introduced to reduce the charge potential to as
low as B3.26 V and simultaneously avoid Li metal anode
corrosion by H2O.

Results
Low charge potential for decomposing LiOH compounds. As
H2O2 generally exists in aqueous solution (30 wt%), to study the
charge behaviour for decomposing LiOH compounds with or
without the presence of H2O2 aqueous solution in the electrolyte,
a Li metal anode-protected pouch cell is fabricated to prevent
side reactions between the Li metal anode and H2O in the
electrolyte43. On the anode side, the Li metal is protected
by utilizing a Li ion-conducting glass-ceramic film (LiSICON,
Li2O-Al2O3-SiO2-P2O5-TiO2-GeO2, Ohara Corporation, Japan),
only allowing the transport of Liþ and preventing the
penetration of other ions. On the cathode side, a KB-based
cathode and a glass fibre infiltrating electrolyte are constructed.
Figure 1a presents the charge profiles for decomposing solid
LiOH compounds on the KB-based cathode in the electrolytes
with and without H2O2 solution. The KB-based cathodes in situ
loaded with solid LiOH compounds were obtained by first
discharging Li-O2 pouch cells in the dry electrolyte to 1.50 mAh
(corresponding to B4,000 mAh g� 1

KB and 3.5 mAh cm� 2,
Fig. 1a,i), with Li2O2 as the product being evidenced by the
X-ray diffraction (XRD) pattern in Fig. 1c. Then, the discharged
cathodes were extracted in an Ar glove box and left in an Ar
atmosphere with a relative humidity of 75% for 7 days. The XRD
pattern in Fig. 1d confirms that all the Li2O2 on the discharged
cathode was converted to a mixture of LiOH and LiOH �H2O.
New Li-O2 pouch cells (Fig. 1a,ii) were assembled with these
cathodes and H2O2-containing/free electrolytes to investigate the
effect of H2O2 on the charge performance. In the G4-H2O
electrolyte, the charge potential increased rapidly to a plateau at
B4.16 V, corresponding to the overpotential of 1.20 V. This high
value indicates the difficulty of decomposing LiOH compounds at
the KB-based cathode without an efficient catalyst. At the end
of the charge process (Fig. 1a,iii), the charge capacity is
only B0.6 mAh, much lower than the discharged capacity
(B1.50 mAh). The XRD pattern of the recharged cathode in
Fig. 1e,iii illustrates that there are undecomposed LiOH
compounds. We rationalize these observations by the poor
catalytic activity of KB and the weakening contacts between KB
particles and LiOH compound particles during the charging
process33. In contrast, when H2O2 aqueous solution is introduced
into the electrolyte, the charge plateau is greatly decreased to
B3.50 V and the charge capacity is increased to above 1.40 mAh.
It should be noted that 3.50 V is quite low, considering the large
electrochemical impedance of the employed LiSICON film.
The low charge overpotential of B0.54 V and the high recharge
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Coulombic efficiency of above 93% indicate the exceptional
benefit of H2O2 in the electrolyte for decomposing LiOH
compounds. The disappearance of LiOH compound peaks after
recharge (Fig. 1e,iv) confirms their full decomposition and good
charge reversibility. After charge, the electrolyte exhibits no
obvious decomposition and no formation of soluble species,
as evidenced by Fourier transform infrared (FTIR) spectra
(Supplementary Fig. 1).

To quantitatively examine the charge process corresponding to
the LiOH oxidation in the H2O2-containing electrolyte, we
conducted a titration experiment to determine the consumed
amount of LiOH at various charge states. The amount of these
LiOH compounds (nLiOHii) was quantified by titration following

the method of McCloskey et al.44 When the newly assembled cells
were charged to certain capacities (0.2, 0.5, 0.75, 0.85, 1.22 or
1.356 mAh), the residual amount of LiOH compounds was
titrated and the consumed amount of LiOH compounds could be
obtained by subtracting the LiOH compounds at each point from
nLiOHii. As shown in Fig. 1b, at each point during the charge
process, the calculated amount of LiOH compounds consumed
was almost equal to the theoretical value and the relationship
of the consumed amount and the charge capacity is linearly
dependent. In situ differential quantitative mass spectrometry
(DEMS) was performed to examine whether O2 could be
generated from LiOH decomposition at the low charge
potential in the presence of H2O2. As shown in Fig. 1f,g, clear
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Figure 1 | The reduced charge potentials for decomposing LiOH compounds formed in situ. (a) The discharge and charge profiles at 100 mA g� 1
KB.

During charging, solid LiOH compounds can be oxidatively decomposed at a low potential of 3.50 V (corresponding to the overpotential of 0.54 V) in the

presence of H2O2 solution in the electrolyte. This is much lower than the value (1.20 V) without H2O2. (b) The quantity of LiOH compounds consumed,

nLiOH,c, during charge determined by titration. (c–e) XRD patterns of cathodes corresponding to the different states (i, ii, iii and iv) in a. The Li-O2 pouch

cell is first discharged to 1.5 mAh (corresponding to B4,000 mAh g� 1
KB and 3.5 mAh cm� 2) in the dry electrolyte to produce Li2O2 at the cathode (c).

The Li2O2 is converted to a mixture of LiOH and LiOH �H2O (d) by keeping the cathode (i) in an Ar atmosphere with a relative humidity of 75% for 7 days.

After charging, the LiOH and LiOH �H2O are reversibly oxidized at low charge potential in the presence of H2O2 in the electrolyte, evidenced by the

disappearance of their diffraction peaks in e,iv, whereas LiOH �H2O remains undecomposed in the absence of H2O2 in the electrolyte (e,iii).

(f) Charge profiles of Li-O2 pouch cell with in situ formed solid LiOH/KB cathode and G4-H2O-H2O2 electrolyte during the in situ DEMS measurement.

(g) Corresponding O2 and CO2 evolution rates during charge. Current density: 100 mA g� 1
KB. A LiSICON film preventing H2O penetration was employed to

fabricate the Li-O2 pouch cells.
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O2 evolution can be detected at B3.50 V during the charge
process and there is no evolution of CO2. Accordingly, these
quantitative results indicate that the oxidation of LiOH
compounds dominates in the charge process.

We also examined the charge performance of commercial
LiOH-preloaded KB-based cathodes in the H2O2-containing/free
electrolytes. The results are shown in Fig. 2a and Supplementary
Fig. 2. With the aid of H2O2 in the electrolyte, the preloaded
LiOH in the KB-based cathode is much easier to fully decompose
at a low charge potential (B3.61 V, Fig. 2a) than in the absence
of H2O2 (4 4.40 V). In Fig. 2b, we present the charge profiles of
Li-O2 pouch cells with dissolved LiOH aqueous solution and
dissolved LiOH-H2O2 aqueous solution in the electrolytes.
The presence of H2O2 allows a large reduction of charge
overpotentials to 0.55 V from 1.50 V in the absence of H2O2.
After charge at high potential in G4-H2O-LiOH(l) electrolyte, the
LiOH peak at B3,680 cm� 1 in FTIR spectra (Supplementary
Fig. 3,iii) remains, indicating the uncomplete decomposition of
liquid LiOH in the electrolyte. In contrast, the LiOH can be fully
decomposed after charge at low potential in the H2O2-containing
electrolyte, as evidenced by the peak having disappeared
(Supplementary Fig. 3,iv). This phenomenon may provide some
insights into the improvement of the aqueous Li-O2 battery by
adding H2O2 into the aqueous electrolyte; further work will
continue to explore this phenomenon. All of these results
emphasize that the introduction of H2O2 in the electrolyte can
greatly enhance the decomposition ability of either solid LiOH
compounds at common carbon cathodes or liquid LiOH in the
electrolyte at low potentials during the charge process.

In view of the superiority of H2O2 in improving the charge
performance in Li-O2 batteries, the cycling stability is expected to
be promoted. Supplementary Fig. 4 shows the discharge–charge
profiles of Li-O2 pouch cells with H2O2 aqueous solution in the
electrolyte. Pure KB is used as the active material for the cathode
and LiSICON film is used to protect the Li metal anode from
corrosion by H2O. The pouch cells were discharged and charged
with a limited specific capacity of 1,000 mAh g� 1

KB at
100 mA g� 1

KB and a voltage range of 2.00–4.50 V. In the ten
cycles, the discharge plateaus are at B2.70 V and remain nearly
unchanged. For the charge profiles, the first plateau is at B3.45 V
and the charge-specific capacity can reach 1,000 mAh g� 1

KB with
a terminal charge potential of o4.00 V at the end of charge
process, indicating the strong charge ability and reversibility.
In the initial five cycles, the low charge plateaus remain and the
terminal charge potentials show no notable increase. Until
the sixth cycle, the charge plateau increases to B3.65 V and the
terminal potential reaches the limitation of 4.50 V in addition
to the charge-specific capacity decreasing to 950 mAh g� 1

KB.
After ten cycles, the charge profile shows a large increment
(to B4.00 V) of the plateau and poor reversibility (charge
capacity of only 800 mAh g� 1

KB). Electrochemical impedance
analysis was performed before and after the cycles to determine
the cause of the fading cycling stability (Supplementary Fig. 5).
The first arcs in the high-frequency region corresponding to the
interphase impedance are almost constant before and after ten
cycles. However, the second arc in the middle-frequency region
corresponding to the charge transfer notably changes45,46. The
large increase from 2.5 kO in the first cycle to 3.6 kO after the ten
cycles is responsible for the difficulty of the Liþ transfer through
the LiSICON film and the resulting poor cycling performance.
These results imply that adopting the LiSICON film to overcome
the H2O addition accompanying the H2O2 aqueous solution in
the Li-O2 pouch cell is inadvisable in terms of realizing long cycle
life and alternative strategies should be sought to exploit the
merits of H2O2 for enhancing the performance of Li-O2 batteries.

Organic H2O2 compound introduction. In the general battery
configuration with a KB-based cathode/glass fibre separator
infiltrating electrolyte/Li metal anode structure, if the normal
H2O2 aqueous solution is introduced in the electrolyte (Fig. 3a),
the concomitant H2O will inevitably attack the Li metal anode,
causing battery death and possible safety issues. As shown in
Fig. 3d, even only 5,000 p.p.m. of H2O in the electrolyte can lead
to serious corrosion of the Li metal anode after cycling. Large
amounts of LiOH (determined by the XRD, Fig. 3c) cover the
surface of the Li metal anode and cut off the Liþ generation and
transfer. This would probably result in the decreased discharge-
specific capacity and battery failure within only a few cycles
(Fig. 3b).

To exploit the merits of H2O2 for reducing the charge
overpotential and extending cycle life, introducing H2O2 in
the electrolyte while eliminating H2O contamination should
be a quick fix. Herein, we pilot an organic H2O2 compound
(urea hydrogen peroxide, UH2O2) as the electrolyte additive to
lower the charge potential and more importantly, to prohibit
H2O-related side reactions (Fig. 4a). Urea has been reported to
form deep eutectic electrolytes with LiTFSI, have pronounced
effects on the transport and structural properties of LiTFSI and
induce faster Liþ diffusion and improved ion transport47. The
ion conductivity of the G4-UH2O2 electrolyte is determined to
1.8� 10� 3 S cm� 1 through the Nyquist plot in Supplementary
Fig. 6. This value is comparable to the levels of commercial
electrolytes for Li ion batteries and indicates the high Liþ

conductivity. In the electrolyte containing UH2O2, the rate

G4-H2O

1.54 V

1

2

3

4

5

G4-H2O-H2O2

E
 (

V
 v

s 
Li

/L
i+

)

Q / mAh

0.65 V

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00 0.05 0.10 0.15 0.20
1

2

3

4

5

1.50 V

G4-H2O-LiOH(l)E
 (

V
 v

s 
Li

/L
i+

)

Q / mAh

0.55 V

G4-H2O-LiOH(l)-H2O2

b

a

Figure 2 | The reduced charge potentials for decomposing preloaded

LiOH. (a) Preloaded commercial LiOH on a KB-based cathode at

100 mA g� 1
KB and (b) liquid LiOH in the G4-based electrolyte by the action

of H2O2 (current density: 100 mA g� 1
KB). During charging, the preloaded

LiOH can be decomposed at a low potential of B3.61 V (corresponding to

the overpotential of 0.65 V) in the presence of H2O2 solution in the

electrolyte. This is much lower than the value (1.54 V) without H2O2.

For the liquid LiOH, the charge overpotential is reduced from 1.50 V in the

absence of H2O2 to 0.55 V in the presence of H2O2 in the electrolyte.

The battery configuration is that of the Li-O2 pouch cell.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15607

4 NATURE COMMUNICATIONS | 8:15607 | DOI: 10.1038/ncomms15607 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


performances of Li-O2 cells were evaluated at current densities of
100, 250, 500 and 1,000 mA g� 1

KB; the results are given in
Fig. 4b. At 100 mA g� 1

KB, the charge plateau is at B3.26 V,
corresponding to the much lower overpotential of 0.30 V, which
is among the lowest values reported. Even at the high current
density of 1,000 mA g� 1

KB, the charge plateau is only B3.44 V,
suggesting the excellent rate capability. With regard to the Li
metal anode, no LiOH was detected on the surface of the Li metal
anode after cycling, as expected (Fig. 4c). The silvery grey colour
in the photo in Fig. 4d confirms the Li metal anode to be intact,
in sharp contrast with the almost damaged Li metal anode
(photo in Fig. 3d). In addition, from the storage experiments
(Supplementary Fig. 7), the steady open circuit voltage trends
after a discharge process or one discharge–charge cycle indicate
the solid stability of the Li-O2 cells with the G4-UH2O2

electrolyte. The results verify that employing the organic
UH2O2 as an electrolyte additive is an accessible way to ensure
the attractive charge performance of the Li-O2 cell and achieve
high stability of the Li metal anode, along with maintaining
reliable safety.

The discharge products on the cathode of the Li-O2 cell in the
G4-UH2O2 electrolyte were analysed by XRD and scanning
electron microscopy (SEM). Figure 5a summarizes the XRD
patterns of pristine, discharged and recharged cathodes. The
discharge products are determined to be Li2O2. After recharge,
the diffraction peaks of Li2O2 disappear, implying its full
decomposition. The typical toroid morphology of Li2O2 after
discharge can be directly observed from Fig. 5c. After the cell is
recharged, the particles are completely decomposed (Fig. 5d).
This is in good agreement with the XRD results.

As the reactions during discharge and charge in the Li-O2 cell
are complex multiphase processes, it is necessary to confirm
whether the low charge potential in the Li-O2 cell with the
G4-UH2O2 electrolyte resulted from the improved charge ability
or the unexpected side reactions. Therefore, we conducted in situ
DEMS measurement to monitor the O2 evolution during charge
and titration experiments, to quantitatively analyse the Li2O2

formation and consumption during discharge and charge in the
Li-O2 cell with the G4-UH2O2 electrolyte. The corresponding
data are provided in Fig. 6. After discharging the cell to 0.1, 0.2,
0.3, 0.4 or 0.5 mAh at 0.05 mA, the Li2O2 formation was
quantified by a titration method (Fig. 6c). The yields of the
formed Li2O2 (the amount of Li2O2 titrated divided by the
amount of Li2O2 expected given the coulometry) held at B91%.
This value is similar to the yield reported by McCloskey et al.44

and indicates some slight side reactions, possibly corresponding
to inevitable electrolyte decomposition. The value of e-/Li2O2 can
be estimated to be 2.15, close to the theoretical value of 2. The gas
evolution rates of O2 and CO2 upon charge are presented in
Fig. 6b. O2 evolution was detected from the beginning and
continued along the charge potential of B3.3 V during the
whole charge process. No evolution of CO2 was detected. The
amounts of Li2O2 consumed during charge were analysed
by titration measurement (Fig. 6d). Li2O2 oxidation follows an
B2.14e� /Li2O2 process during the whole charge process. This
value approaches the ideal value of 2 and clearly demonstrates
that the significant reduction of charge overpotential due to the
UH2O2 additive in the electrolyte can prohibit the high charge
potential-induced side reaction and that the introduction of
UH2O2 can improve the charge performance. The DEMS and
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In the presence of H2O2 aqueous solution, the Li metal anode was significantly corroded, resulting in LiOH on the surface, and the battery performance

faded rapidly.
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titration results suggest that the charge reactions are dominated
by the evolution of O2 and the consumption of Li2O2. Therefore,
the high rechargeability of the Li-O2 cell with the G4-UH2O2

electrolyte can be affirmed.
A comparison of the discharge–charge profiles of Li-O2 cells in

the electrolytes with and without UH2O2 in Fig. 7a,b, respectively,

confirms the critical role of UH2O2 in ameliorating the
insufficient oxygen evolution reaction catalysis ability when
adopting pure KB carbon as the air cathode. At 500 mA g� 1

KB,
the Li-O2 cell based on the KB cathode in the UH2O2-free
electrolyte shows a charge potential as high as B4.30 V. This high
value can result in the decomposition of electrolyte and the short
cycle life of the Li-O2 cell. After B20 cycles, the charge-specific
capacity cannot recover to 1,000 mAh g� 1

KB with a decreased
Coulombic efficiency of B70%. With respect to the G4-UH2O2

electrolyte, the cycling performance of Li-O2 cell is shown in
Fig. 7a,c. The electrolyte stability was evaluated through FTIR
analysis (Supplementary Fig. 8). Compared with the pristine
G4-UH2O2 electrolyte (iii), there is nearly no change in the FTIR
spectra of the G4-UH2O2 electrolytes after discharge (iv) and
charge (v), indicating no obvious decomposition of the electro-
lyte. After 50 cycles, the discharge profiles with plateaus at
B2.68 V show almost no change, indicating good stability. The
charge profiles present low plateaus at B3.33 V in the initial
cycles, with a slight increment after 50 cycles. All of the 50
charge-specific capacities can achieve 1,000 mAh g� 1

KB with a
Coulombic efficiency of 100%, implying excellent reversibility.
The terminal charge potentials are restricted below B4.20 V. The
improved cycling stability is attributed to this developed
electrolyte additive UH2O2.

Considering the efficient assistance of H2O2 for decomposing
the preloaded LiOH in the KB-based cathode (Fig. 2), UH2O2 is
also expected to solve the high charge potential for decomposing
the preloaded commercial Li2O2. It is an essential prerequisite for
constructing Li metal-free Li ion-O2 batteries48. Supplementary
Fig. 9 presents the first charge profiles of Li-O2 cells with
commercial Li2O2-preloaded cathodes. In the electrolyte without
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any additive, a high potential peak slope at B4.32 V, possibly
arising from a thin surface coating of sparse LiOH or other
impurities on the commercial Li2O2 particles, must first be
overcome49. After that, the remaining part of the charge of Li2O2

is performed at the high potential of B3.95 V. In the G4-UH2O2

electrolyte; however, the charge barrier is circumvented well
and the charge potential shifts to the low value of B3.48 V.
After full charge, there is no Li2O2 remaining in the cathode,
evidenced from the disappearance of the Li2O2 diffraction peaks

(Supplementary Fig. 10) and the disappearance of the Li2O2

particles on the cathode as observed by SEM (Supplementary
Fig. 11). Accordingly, the important role of UH2O2 in assisting
the preloaded Li2O2 decomposition is verified.

Discussion
For an H2O-containing Li-O2 battery based on LiOH compounds
as products, we developed an accessible route of introducing
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H2O2 solution in the electrolyte to realize a large reduction of
charge potential (from B4.16 V to B3.50 V). The crucial role of
H2O2 was confirmed to greatly assist the decomposition of either
solid LiOH compounds at the cathode or liquid LiOH in the
electrolyte. Certain factors may be implicated in improving the
charge ability in the aqueous Li-O2 battery. Most importantly, for
a non-aqueous Li-O2 battery with Li2O2 products, we first
proposed an organic H2O2 compound (urea hydrogen peroxide)
without any H2O as the electrolyte additive to significantly
decrease the charge potential (to B3.26 V, among the best
reported) and moreover to circumvent the problem of undesired
H2O corrosion of the Li metal anode. Avoiding the damage to the
Li metal anode ensured the enhancement of the cycling
performance and the safety of the Li-O2 battery. With the aid
of the novel additive, the preloaded Li2O2 becomes easier to
decompose, which aids the potential development of Li metal-free
Li ion O2 batteries. It should be emphasized that high
performance is realized at the carbon-based cathode without
any additional catalysts. Although much additional work should
be conducted to understand the detailed mechanisms, these
results are believed to contribute to the development of pure
carbon-based cathodes for Li-O2 batteries, enabling the benefits of
superior electron conductivity, high energy density and low cost,
and should trigger further efforts to exploring other possible
peroxides in addition to pointing to broader design principles for
electrolytes.

Methods
Cathode preparation. KB carbon was used as the cathode material.
Polytetrafluoroethylene (PTFE) was used as the binder. The weight ratio between
KB and PTFE was 85:15. The cathodes were prepared by rolling the KB and PTFE
paste in ethanol and then pressing the paste onto hydrophobic carbon papers
(diameter of 7 mm). The mass loading of KB was B1.0 mg cm� 2. For the pre-
paration of LiOH-preloaded cathodes, commercial LiOH particles were first ball-
milled in an Ar atmosphere and then mixed with KB to obtain the LiOH-preloaded
KB. The weight ratio between LiOH and KB was 1:1. For the preparation of Li2O2-
preloaded cathodes, commercial Li2O2 particles and KB were mixed through ball-
milling in an Ar atmosphere. The weight ratio between Li2O2 and KB was 1:1.
Following a method similar to the KB cathode preparation, the LiOH-preloaded
KB cathodes and the Li2O2-preloaded KB cathodes were completed. Before battery
assembly, all the cathodes were dried in a vacuum oven at 80 �C for 12 h.

Electrolyte. Tetraglyme (G4) was used as the electrolyte solvent. Before utilization,
the G4 was dried by molecular sieves for 7 days. After drying in a vacuum over at
120 �C for 24 h, LiTFSI was used as the lithium salt. The molar concentration of the
G4 electrolyte was 1 M. The G4-H2O or G4-H2O-H2O2 electrolyte was prepared by
adding H2O or H2O2 aqueous solution (30 wt%) into the G4 electrolyte. The weight
percentage of the H2O or H2O2 aqueous solution in each electrolyte was 30 wt%.
For the preparation of the G4-UH2O2 electrolyte, the urea hydrogen peroxide was
dissolved in the dried G4 electrolyte at a weight percentage of 5 wt%.

Cell assembly. The Li-O2 pouch cell with LiSICON film to prohibit H2O crossover
towards the Li metal anode was fabricated following the process described in
previous work43. The coin-type Li-O2 cell was formed in an Ar-filled glove box
(o1.0 p.p.m. of H2O and 1.0 p.p.m. of O2) using a 2032 coin cell with 6 holes on
the top. A glassy fibre filter paper was adopted as the separator. The Li metal anode
was the anode. The electrolyte volume was 30 ml for the LiSICON-based pouch cell
and 50 ml for the coin cell. The assembled cells were stored in sealed glass chambers
with volume capacities of 650 ml. Before electrochemical tests, the chambers were
purged with O2 (99.999%) for at least 2 h. The relative humidity was controlled at
B75% by a saturated NaCl solution.

Characterization and measurements. The galvanostatic discharge/charge
was conducted on a Hokuto discharging/charging system at 25 �C. The specific
capacities and current densities are calculated based on the mass of KB in the
cathodes. The in situ DEMS system used a custom-built cell connected to
equipment from Perkin-Elmer (Clarus 680 and SQ 8S)50. The electrochemical
impedance spectroscopy was performed on a Solartron (SI 1260) workstation at
25 �C. The frequency range was 106–10� 2 Hz. The amplitude was ±5 mV. For
ex situ XRD measurements, SEM measurement and the titration experiment of the
discharged/recharged cathodes, the cells were disassembled in an Ar-filled glove
box and the cathodes were extracted. The cathodes were further thoroughly washed
by dimethyl ether three times to remove residual solvent and lithium salt and

finally dried in a vacuum chamber connected to the glove box. XRD measurements
were performed on a Bruker D8 Advance diffractometer by sealing the cathodes
with a Kapton polyimide film. SEM images were taken using a JSM-6700F
instrument. The titration experiments were conducted following the method of
McCloskey et al.44 FTIR measurements were performed on an FT/IR-6200
spectrometer (JASCO Corp.).

Data availability. The authors declare that all the relevant data are available
within the paper and its Supplementary Information file or from the corresponding
author upon reasonable request.
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