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SUMMARY

This paper presents a passive vertical quasi-zero-stiffness (QZS) vibration isolator intended for relatively
small objects. The present isolator have features of compactness, long stroke, and adjustability to various
load capabilities. To realize these features, we use constant-force springs, which sustain constant load
regardless of their elongation and propose a variable ellipse curve mechanism which is inspired by the
principle of ellipsographs. The variable ellipse curve mechanism can convert the restoring force of the
horizontally placed constant-force springs to the vertical restoring force of the vibration isolator. At the
same time as converting the direction, the vertical restoring force can be adjusted by changing the ratio of
the semi-minor axis to the semi-major one of the ellipse. In this study, a prototype of a class of QZS vibration
isolator with the proposed variable ellipse curve mechanism is created. Shaking table tests are performed to
demonstrate the efficacy of the present mechanism, where the prototype is subjected to various sinusoidal
and earthquake ground motions. It is demonstrated through the shaking table tests that the prototype can
reduce the response acceleration within the same specified tolerance even when the mass of the vibration
isolated object is changed. Copyright c⃝ 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, many earthquakes whose up-down (UD) component of acceleration is almost to 1g or
more have been recorded. To protect fragile objects such as precision instruments and fine arts from
these intense ground motions, needs for not only horizontal vibration isolators but also vertical ones
have been growing [1, 2]. Therefore this paper aims to propose a passive vertical vibration isolator
which can be combined with commercially available horizontal isolators or which can be used in
horizontally isolated buildings.

The practical use of horizontal isolators has been already achieved, while vertical ones have not
yet reached as a maturity level as horizontal ones have. This is because, in the design of passive
vertical vibration isolators, excessive deformation due to gravity force is one of the main obstacles.
To overcome the difficulty, considerable effort has been devoted to research on quasi-zero-stiffness
(QZS) vibration isolators [3, 4, 5, 6, 7, 8, 9, 10]. However, most vertical isolators in the past do not
realize long stroke, large loading capacity, and adjustability all at once with simple mechanism.

QZS vibration isolators are designed so that their restoring forces satisfy the following two
conditions: (1) initial stiffness, which resists self-weight, is large, and (2) the tangent stiffness,
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Figure 1. Vertical vibration isolator with the vertical amplification mechanism

which resists dynamic load, is close to zero around the static equilibrium position. So far, the
authors proposed simple QZS mechanisms satisfying these two conditions by using constant-force
springs, which sustain constant load regardless of their elongation [11]. Also the authors developed
a horizontal isolator with constant-force springs and by combining the vertical and horizontal
isolators, a 2-D (vertical and horizontal) isolator was proposed. Then through shaking table tests,
how horizontal vibration affects to a tall object was investigated [12]. The loading capacity of a
single constant-force spring is, however, limited to the order of tens to hundreds newton while
the size of a constant-force spring is relatively large. To achieve large loading capacity in QZS
mechanisms, e.g., several to tens kilonewton, a number of constant-force springs are necessary,
which makes the size of QZS mechanisms unnecessarily large. This limits the applicability of QZS
vibration isolators with constant-force springs to light weight applications.

To increase the limit of the load capability of the device, the authors proposed a device with an
amplification mechanism [13]. The basic idea of the device lies in converting the horizontal restoring
force of the constant-force springs to the vertical direction. A simple example of this mechanism
can be realized by vertically placed trapezoidal plates shown in Fig. 1. This device converts the
restoring force of the constant-force springs n to the restoring force of the isolator f . Suppose the
angle of the plate is θ as shown in the figure, then the ratio of f to n can be expressed as

f

n
= tan θ = α(θ) (1)

This equation indicates that the restoring force of the isolator is obtained by the restoring force of
the springs n times tan θ. Then the restoring force can be adjusted by changing the angle θ. Thus α
can be called amplification factor.

In this mechanism, the amplification factor α is a function of the angle of trapezoidal plate θ.
Hence, the restoring force of the isolator can be adjustable by changing θ. The authors realized
this variable mechanism by using cranks and a screw jack for the vertical vibration isolator and
verified its effectiveness through shaking table tests and numerical simulations [13]. Also, the
similar mechanism was realized by using superelastic Cu-Al-Mn shape memory alloy bars instead
of constant-force springs [14].

However, in these studies, the force directions are converted by the vertically placed trapezoidal
plates. Thus, physically, the device cannot be lower than the height of the trapezoidal plate. Hence
the height and stroke of the isolator are restricted. Especially, in isolators, the lack of stroke is a
serious problem because it induces a risk of collisions which cause excessive response accelerations.
To address this issue, this paper proposes a horizontal amplification mechanism which makes the
device more compact and ensures enough stroke. In addition, the mechanism proposed in this paper
enables the isolator to adjust to various weight without complicated procedures.

In this paper, firstly, an amplification mechanism using a horizontally placed ellipse curve plate is
introduced. Then the relationship between the shape of the ellipse curve and the produced restoring
force is investigated. Secondly, to adapt to various weight of the target objects, a simple mechanism
based on the principle of ellipsographs which can change the trajectory of the ellipse curve is
proposed. And the adjustable vertical vibration isolator with this mechanism is presented. Then
a prototype of the proposed adjustable vertical vibration isolator is made, which realizes almost
twice as long stroke as the isolator presented by the authors in the literature [13] under the condition
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Figure 2. Horizontal amplification mechanism

of the same height. Subsequently, shaking table tests and numerical simulations are conducted.
Conclusions obtained from this study then follow.

2. HORIZONTAL AMPLIFICATION MECHANISM USING AN ELLIPSE CURVE PLATE

In this section, we introduce a horizontal amplification mechanism using an ellipse curve and its
advantages over the vertical amplification mechanism proposed in the literature [13, 14]. Then the
restoring force produced by this mechanism is examined.

2.1. Horizontal amplification mechanism

The horizontal amplification mechanism using an ellipse curve is illustrated in Fig. 2 in two heights.
As shown, this mechanism is designed to interlock three parts, i.e., a movable plate, an ellipse curve
plate, and two pairs of X-shaped pantagraphs. The movable plate is connected to the constant-force
springs which are fixed to the base. The movable plate is constrained to slide only in the y-direction
by linear guides. The ellipse curve plate is allowed to move in the x-direction by linear guides as
well. One of the rollers attached to the movable plate contacts on the side surface of the ellipse curve
plate to transmit the restoring force from the springs to the plate. One of the slats of the pantagraphs
is connected at both ends by pins to the top table and the the ellipse curve plate. While one end of
the other slat of the pantagraphs is connected by a pin to the base and a roller is attached at the other
end and the top table is put on the roller. The center points of these two pairs of pantagraphs are
linked by pins as illustrated in Fig. 2.

When the device is in motion, the top table moves vertically and along with the table, the angle θ
in Fig. 2 varies. The ellipse curve plate pinned with the pantagraphs slides in the x-direction and the
movable plates slides in the y-direction through the attached rollers. At that moment, the restoring
force in the vertical direction is provided by the constant-force springs connected to the movable
plate.
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Figure 3. Advantages of the horizontal amplification mechanism

The advantages of the horizontally placed ellipse curve plate over the vertically placed trapezoidal
one can be found in Fig. 3. Assume that the height of the device is H . Then the device with the
vertically placed plate has an available stroke of ±H/4 as shown in Fig. 3 (a) while Fig. 3 (b)
illustrates that the stroke produced by the horizontally placed plate is ±H/2. Also, the horizontal
mechanism can make the height of the device ideally 0 when the top table reaches the bottom,
while that value is H/2 for the vertical mechanism due to the physical height of the vertically
placed plates. Therefore, the horizontal mechanism have a lower risk of lack of stroke and realize a
more compact isolator. These are advantages over other vertical isolators proposed in the literature
including the authors’ previous work [11, 12, 13, 14]. However, regardless of long stroke, impact
absorption mechanism should be installed for practical use.

2.2. Relationship between the restoring force and the shape of the horizontal amplification plate

As stated before, for the vertical mechanism proposed in the literatures [13, 14], trapezoidal plates
are used to amplify the restoring force of springs. Next, we justify that an ellipse curve plate is suited
for the horizontal amplification mechanism to produce QZS for the vertical vibration isolator.

Consider an ellipse curve illustrated in Fig. 4 (a). The direction of compression of the device
is defined as positive for the restoring force of the device and the relative displacement of the top
table. Define that the y-direction component of the force acted on the point where the ellipse curve
plate contacts with the roller attached to the movable plate as n and the x-direction component as
t. Define further that the length of the slat of the pantagraphs is L, the angle of the slat from the
vertical direction is θ, and the initial angle is θ0. It should be noted that n equals to the restoring
force of the springs, t transfers to the X-shaped pantagraphs, and θ is a function of u

As can be seen in Fig. 4 (b), the relationship between the restoring force of the device f and
horizontal force t which is transmitted from the ellipse curve plate to the X-shaped pantagraphs is
expressed as

f =
t

tan θ
(2)

Suppose that the ellipse curve is defined as x = v(y) then the slope of the tangent becomes dv/dy.
Thus the ratio of the vertical component to the horizontal one of the normal force acted on the plate
is given by the slope of the tangent, i.e.,

n

t
=

dv

dy
(3)

From Eqs. (2) and (3), the amplification factor α would be

α =
f

n
=

1
dv
dy tan θ

(4)
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Figure 4. Forces acted on (a) Ellipse curve plate, (b) X-shaped pantagraphs.
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Figure 5. Properties of the restoring forces produced by horizontally placed plates

This equation implies that the amplification factor α depends on the slope of the tangent dv/dy
and the angle of pantagraphs θ. Thus the amplification factor is determined by the shape of the
horizontally placed plate. As illustrated in Fig. 5, when dv/dy is constant, i.e., the shape of the
horizontally placed plate is a linear, α becomes a function of tan θ. Thus α becomes a function
of u because θ is a function of u. Therefore the restoring force of the device depends on u. With
this restoring force, it would be difficult to realize reliable isolators with long stroke. Also, without
the horizontally placed plates, the same restoring force property could be produced by rotating the
constant-force springs 90 degrees and connecting them directly to the X-shaped pantagraphs as in
[15, 16].

Next, consider constant α independent of u. In this case, the slope of the tangent is expressed as

dv

dy
=

1

α tan θ
(5)

To verify that Eq. (5) represents the slope of the tangent of an ellipse curve, we show that
(x = v(y), y) satisfies the equation of the ellipse. The displacement of the top table u is given by

u = L(cos θ0 − cos θ) (6)
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And the displacement of the ellipse curve plate corresponds to v(y) because of the linear guides,
thus the equation given by

v(y) = L(sin θ − sin θ0) (7)

holds. Because sin2 θ + cos2 θ = 1, Eqs. (6) and (7) yield(
u− L cos θ0

L

)2

+

(
v(y) + L sin θ0

L

)2

= 1 (8)

Also, from the conservation law of energy between the top table and the constant-force springs, we
have

fu = ny (9)

Thus Eq. (8) becomes ( n
f y − L cos θ0

L

)2

+

(
v(y) + L sin θ0

L

)2

= 1 (10)

or (
y − αL cos θ0

αL

)2

+

(
v(y) + L sin θ0

L

)2

= 1 (11)

Therefore (x = v(y), y) satisfies the equation of the ellipse. Thus Eq. (5) is the slope of the tangent of
the ellipse. From this derivation, once the initial angle θ0 and amplification factor α are determined,
the shape of the ellipse curve v(y) is determined. In this paper, π/4 is used for θ0 and the semi
axes of the ellipse becomes L and αL. This idea is applied to the variable ellipse curve mechanism
according to the value of α for the adjustable vertical vibration introduced in the next section.

3. ADJUSTABLE VERTICAL VIBRATION ISOLATOR WITH A VARIABLE ELLIPSE
CURVE MECHANISM

In this section, the horizontal amplification mechanism using the ellipse curve is realized by a
variable mechanism which can change the semi axes according to the value of α. Then an adjustable
vertical vibration isolator is proposed and formulation of the restoring force of the proposed device
follows.

3.1. Variable ellipse curve mechanism

As derived in the previous section, the shape of the horizontally placed plate for the QZS vibration
isolators is ellipse curve whose semi axes have length of L and αL. This result tells us that the
amplification factor α (i.e., the restoring force of the device is f = αn) can be variable if the length
αL is adjustable. Here we propose a mechanism which can change the length αL continuously by
applying the idea of ellipsographs.

Fig. 6 depicts the trajectory of an ellipsograph, which consists of a straight bar and two linearly
movable parts (points A and B) in a cross slider. As can be seen in the figure, an ellipse curve
can be drawn by sliding these two parts crosswise. To install this mechanism on the isolator,
because constant-force springs stretch only in one direction, the end point of the straight bar of
the ellipsograph (point C) is connected to the spring by a pin and the cross slider part is designed
to be movable in the direction perpendicular to the stretch direction of the constant-force springs as
shown in Fig. 7 (a). Fig. 7 (b) shows the decomposed force at the pin (Point C) connected to the
spring. By comparing with Fig. 4 (a), this mechanism can convert the same force from the springs as
the ellipse curve plate introduced in the previous section. Thus the equations derived for the ellipse
curve plate still hold. Fig. 7 (c) shows that the relative motion of the movable cross slider as seen
from Point C draws as ellipse trajectory as well.

Next, the relationship between the trajectory of ellipse and the amplification factor α is
investigated. Fig. 8 shows trajectories of ellipses as the values of α increases from 0. As can
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Figure 7. Constrained ellipsograph with a movable cross slider. (a) Schematic illustration, (b) Acted force,
(c) Comparisons of the trajectories

be observed in the figure, the semi-minor and semi-major axes are switched when α reaches 1.
The trajectories and behaviors of the ellipsograph with the movable cross slider for the cases of
0 < α ≤ 1 and 1 ≤ α are shown in Fig. 8 (b) and (c). The figure shows by red dotted boxes that the
ranges in which points A and B moves differ for the cases of 0 < α ≤ 1 and 1 ≤ α. Also, the length
of BC and AC correspond to αL for the cases of 0 < α ≤ 1 and 1 ≤ α, respectively. Therefore it is
not easy to design a prototype which can realize any α. Thus in this paper, a prototype for the case
of 0 < α ≤ 1, i.e., AC = L and BC = αL, as shown in Fig. 8 (b) is examined.
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3.2. Design of the adjustable vertical vibration isolator

Fig. 9 depicts an axonometric drawing of the proposed vertical vibration isolator, and Fig. 10 shows
the plan and elevation of the device with different height states. As can be seen in Fig. 9 (b), the
proposed device can be broken down into three parts, i.e., upper, middle, and lower parts. The upper
part is a top table on which target objects are placed. The middle part consists of two pairs of X-
shaped pantagraphs which transfers the restoring force between the upper and lower parts. These
two pairs installed on the front and back sides of the device are connected by plates. By adjusting
the stiffness and flexibility of this part, rocking vibration can be minimized. The lower part plays
a key role to realize the restoring force using the variable ellipse curve mechanism. The restoring
force produced by the constant-force springs are transferred and scaled via the variable ellipse curve
mechanism to a sliding bar, then transferred to the X-shaped pantagraphs which are connected to
the sliding bar.

The detail of the variable ellipse curve mechanism is explained. The red-colored part corresponds
to the straight bar of the ellipsograph. The variable ellipse curve mechanism has three pinned joints,
A, B, and C which correspond to the points, A, B, and C in Fig. 8 (c). The pin A is connected to
the linear guide on the sliding bar and the pin A can move in a straight line on the sliding bar in
the y-direction in Fig. 10. The sliding bar moves on the two linear guides installed on the base of
the device in the x-direction. Thus the pin A can move in the directions of both x and y axes. The
pin B is hooked to the liner guide on the center line of the base plate and the pin B slides in the
x−direction along with the sliding bar. The pin C is linked to the movable plate which is connected
to the constant-force springs and the plate is movable in the y-direction.

When the device is in motion, the variable ellipse curve mechanism slides on the linear guides
and rotates accordingly. The part in the dotted box in Fig. 10 works as the cross slider part of
ellipsographs. Therefore the ellipsograph mechanism is realized by the proposed variable ellipse
curve mechanism. The device in this paper has two vertically overlapped variable ellipse curve
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Figure 10. Schematic illustration of the proposed device. (a) Elevation, (b) Plan.

mechanisms as shown in Fig. 10. These two mechanisms makes the device symmetry and prevent
from rocking. In addition, the weight limit of the target object is increased.
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To change the ellipse curve for the amplification factor satisfying 0 < α ≤ 1, the location of the
pin B is designed to be adjustable between the points A and C. The length of BC corresponds to the
semi-minor axis BC in Fig. 8. Let r be the length of BC, then the relationship with α is expressed,
from Fig. 8, as

r = αL (12)

The amplification factor α is decided by the weight of the target object. Thus the appropriate length
of BC can be calculated by Eq. (12).

Finally, as can be seen in Fig. 9, any dampers are not installed in the proposed device. This
is because as discussed in the next section, considerable friction force is measured and enough
damping is already obtained to absorb input energy. Therefore installing additional dampers might
create risks of losing the self-centering capacity and increasing response acceleration. Also due to
the nonlinear restoring force property, resonance is not a serious issue in the proposed mechanism.
Thus the prototype designed for this research does not need to have any dampers. However,
depending on circumstances, adding dampers is worth considering to improve the vibration
reduction capability of the proposed mechanism. In this case, friction dampers or shock absorbers
can be accommodated horizontally in parallel with the constant-force springs, which maintains the
height advantage.

3.3. Flag-shaped restoring force

The proposed device is designed to produce flag-shaped restoring force. In this subsection, the
mechanism and its properties are described. Fig. 11 illustrates the states of the constant-force
springs for the upper limit, static equilibrium, and lower limit positions. To produce flag-shaped
restoring force, springs with large and small constant-forces are used. The large and small ones are
called constant-force springs 1 and 2, respectively in this paper. The constant-force springs 2 are
connected through wires as shown in Fig. 11. By doing this, the springs 2 do not work until the
springs 1 deform to some extent, then flag-shaped restoring force is realized. Hereafter, the stretch
of the constant-force springs 1 is defined as w and the tensile direction is defined as positive. The
relative displacement of the top table are defined as u and its positive direction is downward. Fig. 11
(a) depicts the upper limit position where the top table is at the highest position. This is determined
by the location of a stopper for the sliding bar. At this position, u and w are set to 0. The static
equilibrium position when the target object is placed on the top table is shown in Fig. 11 (b). At
the equilibrium position, u and w are defined as use and wse, and m is the mass of the target object
including the top table and g is gravitational acceleration. Lastly, Fig. 11 (c) shows the state where
the top table is at the bottom, and u and w at this state are defined as umax and wmax.

Now we investigate how n changes as w increases from 0 to wmax. When w = 0, the restoring
force n changes from 0 to N1, which is the total force of the constant-force springs 1. When
0 < w < wmax, the springs 1 contribute N1 to the restoring force. While the springs 2 which are
connected through the wires apply force ranging from 0 to N2, which is the total force of the
constant-force springs 2, as the part of the restoring force. If w is relatively small, the wires sagged
and the springs 2 are not contributed to the restoring force at all and we have n = N1. While the
top table moves downward, the wires starts to perform tensile force and contribute N2 load to the
restoring force. At that moment, n = N1 +N2.

Fig. 12 shows the relationships between f and u, and n and w. Henceforth another shifted
coordinate systems in terms of the static equilibrium position defined as

∆f = f −mg, ∆u = u− use, ∆n = n− mg

α
, ∆w = w − wse (13)

are used. These coordinate systems are shown in Fig. 12 as well. Also, the relationship between u
and w given by

u =
n

f
w =

1

α
w (14)

holds from the conservation law of energy as Eq. (9),
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The numerical models for the restoring force and the friction are depicted in Fig. 13. Fig. 13
(a) shows the numerical model for the relationship between the shifted restoring force ∆n and the
shifted relative displacement ∆w where no friction is considered. Practically, constant-force springs
have certain stiffness k until the tension force becomes constant. Thus the restoring force can be
modeled as

∆n = n− mg

α
=


N1 −mg/α if − wse < ∆w < ∆wL

k∆w if ∆wL ≤ ∆w ≤ ∆wU

N1 +N2 −mg/α if ∆wU < ∆w < wmax − wse

(15)

where

∆wU =
N1 +N2 −mg/α

k
, ∆wL =

N1 −mg/α

k
(16)
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We assume that the device have unavoidable Coulomb’s friction q modeled as

q =


−Q if ∆ẇ < 0

0 if ∆ẇ = 0

Q if ∆ẇ > 0

(17)

where Q > 0 and the overdot indicates the differentiation with respect to time. This is illustrated in
Fig. 13 (b).

Summing up these forces, the restoring force including the friction can be expressed as

∆nf (∆w,∆ẇ) = ∆n(∆w) + q(∆ẇ) (18)

and this is shown in Fig. 14 graphically. From the look of the shape, this is called flag-shape restoring
force. Let ∆ff be the restoring force of the device including the friction force. Then the relationship
between ∆ff and ∆nf is given by

∆ff = α∆nf (19)

thus ∆ff is obtained as

∆ff (∆u,∆u̇) =


α(N1 + q(α∆u̇))−mg if − use < ∆u < wL/α

α2k∆u+ αq(α∆u̇) if wL/α ≤ ∆u ≤ wU/α

α(N1 +N2 + q(α∆u̇))−mg if wU/α < ∆u < umax − use

(20)

It should be noted that by adjusting α within the range of

αN1 < mg < α(N1 +N2) or
mg

N1 +N2
< α <

mg

N1
(21)

even when mg changes, the proposed device can be self-centered, i.e., the upper table returns to the
static equilibrium position after the external disturbance stops.
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The properties of the vertical vibration isolator with the variable ellipse curve mechanism and its
flag-shaped restoring force are summarized as follows:

1. The capacity of the isolator can be adjustable continuously by the simple variable ellipse curve
mechanism.

2. The flat part of the restoring force curve limits the response acceleration within a specified
tolerance regardless of the amplitude and frequency of input motions.

3. The flag-shaped restoring force provides the isolator with the self-centering capability. This is
because static equilibrium can be achieved only at the origin of the restoring force curve. The
self-centering capability prevents the device from accumulating deformation in one direction
in vibration, which may be seen when friction damping is applied [17, 18, 19].

4. Resonance can be avoided by flag-shaped restoring force. The proposed isolator responses
linearly in the neighborhood of the static equilibrium point. In this linear range, the isolator
has a potential of resonance. Nevertheless, this does not lead to serious problems because
the displacement amplitude of interest in this paper is well beyond the linear range. Even if
resonance takes place in the linear range, the equivalent natural frequency (computed either
by the secant stiffness or by the tangent stiffness) decreases significantly as the displacement
amplitude increases beyond the linear range. The change of the equivalent natural frequency
with respect to the displacement amplitude avoids resonance.

The second property mentioned above can be explained in the following way. The equation of
motion of the target object placed on the proposed device would be

m(∆ü+ üg) + c∆u̇+∆ff (∆u,∆u̇) = 0 (22)

where üg is ground acceleration. Suppose that the damping coefficient c is small enough, then from
Eqs. (17), (20), and (22), the maximum value of the response absolute acceleration |∆ü+ üg| would
be constrained by

|∆ü+ üg| ≤ h(α) (23)

where
h(α) = max

(
g − α

m
(N1 −Q),

α

m
(N1 +N2 +Q)− g

)
(24)

Eqs. (23) and (24) imply that the maximum response absolute acceleration can be determined by the
value of α/m. Therefore for various m, the response absolute acceleration can be ideally restrained
less than the particular value by adjusting α.

Consider the range of h(α) for α satisfying Eq. (21). Both elements in Eq. (24) are linear functions
of α, thus h(α) is a piecewise linear function of α. Hence the range of h(α) is obtained from Fig.
15, as

N2/2 +Q

N1 +N2/2
g ≤ h(α) <

N2 +Q

N1
g (25)

From this derivation, we can conclude that if c is ignorable, the response absolute acceleration can
be constrained by (N2 +Q)g/N1 regardless of m.

4. EXPERIMENTAL VERIFICATION

The effectiveness of the vertical vibration isolator with the proposed variable ellipse curve
mechanism is verified through shaking table tests in this section. A prototype of the device is made
and its parameters are determined by quasi-static loading tests. Then a variety of sine waves and
scaled earthquake records are input to the prototype in the only vertical direction because the device
is assumed to be used in combination with horizontal isolators.

4.1. Prototype of the proposed device

Fig. 16 shows photographs of the prototype of the proposed device. The length of the X-shaped
pantagraphs L is 424 mm and the initial angle θ0 is π/4, thus the hight of the device is 300 mm at a
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Figure 15. Relationship between h(α) and α

Figure 16. Photographs of the prototype of the proposed device

Table I. Reference parameters for the restoring force

r (mm) α N1(α) (N) N2(α) (N) Q(α) (N)
170 0.40 156.8 26.7 14.21
255 0.60 235.2 40.1 21.31
339 0.80 313.6 53.4 28.41

static equilibrium position. To minimize overturning effect acting on the isolated object on the table,
the stiffness and flexibility of the X-shaped panagraphs are fine-tuned by adjusting the screws on
the prototype used in this study. The moderate state is decided after conducting preliminary shaking
table tests by trial and error. However further examination is needed for the device to provide an
explicit tuning method. The minimum and maximum heights of the device are 120 mm and 480
mm, respectively, i.e., the device ensures ±180 mm stroke from the equilibrium position.

The restoring forces of the constant-force springs 1 and 2 used for the device are N1 = 392.0 N
(49.0 N each × 8 springs) and N2 = 68.8 N (16.7 N each × 4 springs). The standard friction force
Q, which is determined from the quasi-static test described next, is obtained as 35.52 N. For each
amplification factor α, the parameter values are calculated by

N1(α) = αN1, N2(α) = αN2, Q(α) = αQ (26)

These values are summarized in Table I.
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Figure 17. Restoring forces obtained from quasi-static tests (black) and their mathematical model (red)

Table II. Experimental parameters for the restoring force

r (mm) α N1(α) (N) N2(α) (N) Q(α) (N)
170 0.40 146.1 19.4 13.83
255 0.60 226.5 31.0 21.63
339 0.80 282.2 20.9 24.4

4.2. Quasi-static loading tests

To obtain the parameter values for the mathematical model of the prototype, quasi-static loading
tests are conducted. Vertical uniaxial quasi-static force is applied on the upper table manually. The
tests are implemented for three amplification factors, 0.4, 0.6, and 0.8. These amplification factors
correspond to 170 mm, 255 mm, and 339 mm of the semi-minor axis r (i.e., the length of BC in
Fig. 10). The displacement of the top table is defined as the average of two displacement sensors
measuring two opposing points on the table. The restoring force is measured by summing up three
load cells installed between the ground and the base of the device.

Fig. 17 shows the friction-included restoring force ff obtained from the tests and the calculated
parameters are given in Table II. As can be seen in Fig. 17, the device does not provide complete
self-centering restoring force for all cases due to the large friction force. However, according to [20],
in which self-centering capacities for various kinds of restoring force are reported, the condition
to ensure self-centering capacity for the proposed device to most earthquake disturbances can be
derived as

N2

2
+Q > 2

∣∣∣∣N2

2
−Q

∣∣∣∣ (27)

under the assumption that N1 +N2/2 = mg/α. We can confirm from Table II that the prototype
satisfies Eq. (27), thus sufficient self-centering capacity can be expected from the device.

Fig. 18 compares the reference and experimental values for N1(α) and N1(α) +N2(α). As can
be seen, the experimental values become smaller than the reference values. However, these values
are matched well when α is small, while the differences becomes larger as α increases. One of the
possible causes is the design flaw of the prototype for the case of large α. To reduce the discrepancy,
further improvement of the design is required.

In Fig. 19, the relationship between experimental values of N1(α) and Q(α) is plotted by x. The
linear approximation, which is shown by red line in Fig. 19, is expressed by

Q(α) = βN1(α) (28)
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where β is determined as 0.0906 by the method of least squares fitting. Q(α) in Table I is defined as
the product of β and N1(α). Then the value of the standard friction Q used in Eq. (26) is determined.
This figure shows that the friction force increases in proportion to the weight of the target object.

4.3. Shaking table tests

To verify the validity of the proposed device for various weights, shaking table tests are carried
out. The experimental setup is illustrated in Fig. 20. Input ground motions have only vertical or
up-down (UD) component. The amplification factor α is adjusted to 0.4, 0.6, and 0.8. For these
three cases, 15.82 kg, 24.85 kg, and 29.87 kg masses of the target object are employed. These
masses include the upper table (12.85 kg). Acceleration sensors are installed on the upper table of
the vibration isolator to measure response acceleration (RA), and on the shaking table for ground
acceleration (GA). Non-contact laser displacement sensors are fixed to a measurement frame to
measure response absolute displacement (RAD) and ground displacement (GD). Response relative
displacement (RRD) is obtained by subtracting GD from RAD.

Table III summarizes the input excitations. 3 Hz and 5 Hz size waves and the UD component of the
earthquake ground motion recorded at K-NET Ojiya station in Japan during the 2004 Mid Niigata
Prefecture earthquake. These excitations are normalized so that the peak ground accelerations
(PGAs) become 0.50g and 1.00g, whereas the PGA of the original Ojiya record is 0.83g.
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Figure 20. Experimental setup for shaking table tests

Table III. List of input excitations

Input Target PGA (g)
S3-1 3Hz sine wave 0.50
S3-2 3Hz sine wave 1.00
S5-1 5Hz sine wave 0.50
S5-2 5Hz sine wave 1.00
O-1 K-NET Ojiya UD 0.50
O-2 K-NET Ojiya UD 1.00

Table IV. Comparisons between PGA and PRA

α 0.4 0.6 0.8
Input PGA (g) PRA (g) PGA (g) PRA (g) PGA (g) PRA (g)
S3-1 0.552 0.240 0.563 0.205 0.642 0.243
S3-2 1.126 0.300 1.098 0.235 1.142 0.275
S5-1 0.574 0.233 0.578 0.171 0.571 0.189
S5-2 1.095 0.288 1.063 0.223 1.098 0.255
O-1 0.620 0.189 0.638 0.152 0.642 0.192
O-2 1.054 0.242 1.055 0.230 1.076 0.261

The measured PGAs and peak response accelerations (PRAs) from the shaking tables tests are
summarized in Table IV and compared in Fig. 21. The results obtained from the shaking table tests
show that the PRAs are reduced to 0.25g or less.

The measured peak ground displacements (PGDs) and peak response absolute displacements
(PRADs) can be found in Table V. Compared to the PGDs, reduction of the PRADs can be observed
in most of the sin wave input cases. However, to some sine wave inputs, the PRADs become larger
than the PGDs. This is caused by shifting the center point of vibration due to the friction force. For
the earthquake records, improvement cannot be found from the viewpoint of PRAD. Adding some
dampers might be helpful to reduce PRADs.
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Table V. Comparisons between PGD and PRAD

α 0.4 0.6 0.8
Input PGD (mm) PRAD (mm) PGD (mm) PRAD (mm) PGD (mm) PRAD (mm)
S3-1 12.85 8.80 12.75 4.15 12.90 6.40
S3-2 24.85 9.70 24.75 6.05 24.70 8.75
S5-1 4.85 13.3 4.80 1.55 4.85 10.00
S5-2 9.05 2.85 8.95 1.70 9.00 2.40
O-1 12.45 15.3 12.55 17.80 12.55 19.25
O-2 20.70 26.05 20.75 24.90 20.80 22.55

Time histories of the GA, RA, GD, RAD, and RRD to S5-2 and O-2 inputs for α = 0.6 are shown
in Fig. 22. The figure shows that the RAs are reduced sufficiently during the entire excitation for
both cases. The reduction of the RAD to S5-2 excitation and the amplification to O-2 excitation
are observed in the plots of the time histories. And we can observe that due to the friction force,
the response decays quickly after the excitation stops without installing additional dampers. Also,
self-centering capacity of the prototype can be confirmed because the residue is not observed in
both cases.

4.4. Equivalent viscous damping

To explore the damping effect caused by the friction force acting on the prototype in more detail,
the equivalent viscous damping values for the cases of α = 0.4, 0.6, and 0.8 are calculated as below.
Let the loading and unloading forces be

F1(α) = N1(α) +N2(α) +
Q(α)

2
−mg (29)

and
F2(α) = N1(α) +N2(α) −

Q(α)

2
−mg (30)

Then the equivalent viscous damping for the prototype can be defined as

ζeq,(α) =
1

4π

2(F1(α) − F2(α))

F1(α)/2
=

Q(α)

π(N1(α) +N2(α) +Q(α)/2−mg)
(31)

It is worth noting that Eq. (31) shows that the equivalent viscous damping for the proposed device
is independent of the displacement. Substituting the figures given in Table II and the mass for each
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Figure 22. Time histories obtained from shaking table tests for α = 0.6. (a) S5-2, (b) O-2

case into Eq. (31) provides the equivalent damping for each case as 25.3%, 27.8%, and 34.4%,
respectively. These numbers are relatively high compared to ordinary isolators. Thus it is shown
that the prototype has enough damping capacity by the friction without additional dampers. Also
the prototype satisfies the condition for self-centering function given by Eq. (27). Although the
friction force is not easily controlled in an accurate way, considering these results, we can conclude
that the prototype has appropriate damping values for isolators.
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5. NUMERICAL SIMULATIONS

In this section, numerical simulation studies are implemented to compare with the experimental
results. For the numerical simulations, the values of N1(α), N2(α), and Q(α) obtained from the
quasi-static loading tests given in Table II are used. And the mass m is set to 15.82 kg for α = 0.4,
24.85 kg for α = 0.6, and 29.87 kg for α = 0.8, respectively, which are the same values as the
experimental studies. The damping factor c is assumed to be 0.01 N s/mm in all cases. This value is
determined by trial and error to fit the simulation results to the experimental data. To avoid singular
points in the numerical simulations, the friction force q is approximated by q∗ defined as

q∗ =


−Q if ∆ẇ < −Q/b

b∆ẇ if −Q/b ≤ ∆ẇ ≤ Q/b

Q if Q/b < ∆ẇ

(32)

where the slope b is determined as 1 N s/mm in all cases by trial and error as well. The Runge-Kutta
method embedded within MATLAB is used for the numerical simulations.

The time histories of the response accelerations obtained from the shaking table test and
numerical simulation are compared. Fig. 23 shows the results when the S5-2 and O-2 excitations
are input for the case of α = 0.6. We can observe that the simulation results are matched well with
the experimental ones.

The PRAs obtained from the experiments and simulations are compared in Fig. 24. The red lines
in the figures indicate the expected upper limits of the PRAs calculated by Eq. (25). As can be
seen, most of the simulation values satisfy the expected upper limits. However, a few cases violate
the expectation values. One of the possible causes is the damping effect. While most of the results
obtained from the experiments exceed this limit values. Impacts occurred at the pins and shafts and
the lack of the stiffness inside the device can be considered as possible causes.
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6. CONCLUSIONS

This paper proposed the adjustable vertical vibration with the variable ellipse curve mechanism, in
which the trajectories of the ellipse curve can be changed continuously without using complicated
mechanisms. The features of the proposed device are as follows:

1. The amplification mechanism is realized through a horizontally placed plate. By doing this,
the isolator can secure about twice as long stroke as the device with the mechanism in
which vertically placed plates are used. In addition, the height of the device can be reduced
significantly. Also, the horizontal mechanism using ellipse curve amplifies the restoring force
of the constant-force springs at a constant rate.

2. Applying the principle of ellipsographs, the variable ellipse curve mechanism is realized. This
mechanism can change the amplification factor of the device continuously and the device can
adapt to various weight of target objects.

To verify the effectiveness of the proposed device for an object with a mass of several tens
of kilograms, a prototype was made and shaking table tests and numerical simulations were
implemented. We confirmed that the restoring force was scaled basically as expected by the ellipse
curve mechanism through the quasi-static tests. In the shaking table tests, the measured PRAs
were larger than the theoretically expected value, however, the errors were within about 15% to
the various sine waves and scaled earthquake records. Thus we can conclude that the isolator with
the proposed mechanism worked very well and the numerical simulations provided reliable values.
In addition, by improving the device further, the experimental values can be expected to reduce
close to the theoretically predicted value.

Finally, although the prototype used in this research was for relatively light objects, considering
the loading capacity of commercially available constant-force springs and the proposed amplifying
mechanism, the capacity of the proposed isolator could be increased up to several hundred kilograms
for practical purposes.
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