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ON BOUNDARIES OF COXETER GROUPS AND

TOPOLOGICAL FRACTAL STRUCTURES

By

Tetsuya Hosaka

Abstract. In this paper, based on research on rank-one isometries

by W. Ballmann and M. Brin and recent research on rank-one

isometries of Coxeter groups by P. Caprace and K. Fujiwara, we

study a topological fractal structure of boundaries of Coxeter groups.

We also show that the limit-point set is dense in a boundary of a

Coxeter group and introduce some observations on boundaries of

CAT(0) groups with rank-one isometries.

1. Introduction

In this paper, we study boundaries of Coxeter groups, where we suppose that

Coxeter groups are finitely generated and infinite. A Coxeter group acts geo-

metrically (i.e. properly and cocompactly by isometries) on a Davis complex

which is a CAT(0) space [28] and every Coxeter group is a CAT(0) group. Details

of Coxeter groups and Coxeter systems are found in [5], [7], [13], [23] and [31],

and details of CAT(0) spaces, CAT(0) groups and their boundaries are found in

[6], [9] and [16].

Now we suppose that an infinite group G acts geometrically on a proper

CAT(0) space X and G is non-elementary (hence jqX j > 2).

A hyperbolic isometry g of a proper CAT(0) space X is said to be rank-one,

if some (any) axis for g does not bound a flat half-plane. In [1, Theorem A], W.

Ballmann and M. Brin have proved that if there exists a rank-one isometry g A G

of X then for any two non-empty open subsets U and V of qX , there exists
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an element g A G such that gðqX �UÞHV and g�1ðqX � VÞHU where it is

possible to choose g to be rank-one (cf. [8], [18]).

This statement implies that if there exists a rank-one isometry g A G of X

then we can say that the boundary qX has a topological fractal structure; that is,

for any proper closed subset F of qX and any non-empty open subset U of qX ,

there exists g A G such that gF HU .

We first note that if G is hyperbolic then G contains a rank-one isometry

(because X does not contain a flat-half plane) and the boundary qX has a

topological fractal structure.

In particular, if G is hyperbolic and the boundary qX is an n-sphere then

the boundary qXASn has a topological fractal structure. This case is the most

simple case of boundaries of CAT(0) groups with rank-one isometries. In general,

the boundary qX with a topological fractal structure is very complex.

In [15], H. Fischer has investigated the boundary qS of the Davis complex

of a right-angled Coxeter group whose nerve is a connected closed orientable

PL-manifold. These boundaries are typical examples of boundaries with topo-

logical fractal structures.

In such a case that G contains a rank-one isometry and qX is not an

n-sphere, then the boundary qX seems to be a topological fractal.

This fractal structure seems to be suggested in some research on boundaries

of CAT(0) groups by M. Bestvina (cf. [4]) and some research on cohomology of

boundaries of Coxeter groups (cf. [3], [11], [14], [19]).

If the boundary qX has a topological fractal structure, then (the action of G

on) qX is minimal; that is, every orbit Ga is dense in the boundary qX . Indeed if

we take F ¼ fag then for any open subset U of qX , gF HU for some g A G.

Also then (the action of G on) qX is scrambled; that is, for any two points

a; b A qX with a0 b,

lim supfdqX ðga; gbÞ j g A Gg > 0 and

lim inffdqX ðga; gbÞ j g A Gg ¼ 0

(cf. [21]). Indeed lim supfdqX ðga; gbÞ j g A Gg > 0 always holds ([21, Theorem 3.1])

and if we take F ¼ fa; bg then for any small open subset U of qX , gF HU for

some g A G, hence lim inffdqX ðga; gbÞ j g A Gg ¼ 0.

Thus if the boundary qX is a topological fractal, then qX is minimal and

scrambled.

We can find recent research on minimality and scrambled sets of boundaries

of Coxeter groups in [20] and [21].
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From recent research on rank-one isometries of Coxeter groups by P. Caprace

and K. Fujiwara [8, Proposition 4.5], we obtain that for a Coxeter system ðW ;SÞ
such that S is finite and W is infinite and non-elementary, if ðW ;SÞ is irreducible
and non-a‰ne then the Coxeter group W contains a rank-one isometry of the

Davis complex S defined by ðW ;SÞ. Hence a finitely generated, infinite and non-

elementary Coxeter group W contains a rank-one isometry if and only if W does

not contain a finite-index subgroup which splits as a product W1 �W2 where W1

and W2 are infinite.

By the observation above, we obtain the following theorem.

Theorem 1.1. Let ðW ;SÞ be a Coxeter system such that W is infinite and

non-elementary and S is finite. For the Davis complex S of ðW ;SÞ and any proper

CATð0Þ space X on which W acts geometrically, the following statements are

equivalent.

(1) ðW ~SS;
~SSÞ is irreducible and non-a‰ne.

(2) W contains a rank-one isometry of S.

(3) W contains a rank-one isometry of X.

(4) qS has a topological fractal structure.

(5) qS is minimal.

(6) qS is scrambled.

(7) qX has a topological fractal structure.

(8) qX is minimal.

(9) qX is scrambled.

(10) S does not contain a quasi-dense subspace which splits as a product

S1 � S2 of two unbounded subspaces.

(11) X does not contain a quasi-dense subspace which splits as a product

X1 � X2 of two unbounded subspaces.

(12) W does not contain a finite-index subgroup which splits as a product

W1 �W2 of two infinite subgroups.

Here W ~SS is the minimum finite-index parabolic subgroup of ðW ;SÞ ([13],

cf. [20], [21]).

Thus if ðW ;SÞ is an irreducible Coxeter system, then W is finite, W is a‰ne

or W contains a rank-one isometry.

Hence for any Coxeter system ðW ;SÞ and the irreducible decomposition of

ðW ;SÞ as

W ¼ WS1
� � � � �WSk

�WSkþ1
� � � � �WSn

;

each WSi
is finite, a‰ne or contains a rank-one isometry.
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It is known that the following problem is open.

Question. Suppose that a group G acts geometrically on a proper CAT(0)

space X . Then is it the case that the limit-point set fgy j g A G; oðgÞ ¼ yg is

dense in the boundary qX ?

Here gy is the limit-point of the boundary qX to which the sequence

fgix0 j i A NgHX converges in X U qX , where x0 is a point of X and the limit-

point gy is not depend on x0. We note that any element g of a CAT(0) group G

with the order oðgÞ ¼ y is a hyperbolic isometry.

We obtain a positive answer to this question for Coxeter groups.

Theorem 1.2. Suppose that a finitely generated infinite Coxeter group W acts

geometrically on a proper CATð0Þ space X. Then the limit-point set fwy jw A W ;

oðwÞ ¼ yg is dense in the boundary qX.

Finally, we introduce some observations on boundaries of CAT(0) groups

with rank-one isometries in Section 4, which relates to local properties of bound-

aries of CAT(0) groups.

2. Rank-one Isometries of Coxeter Groups and Topological Fractal

Structures of Their Boundaries

We prove Theorem 1.1.

Proof of Theorem 1.1. We first obtain the equivalence ð1Þ , ð2Þ , ð12Þ
from [8, Proposition 4.5] and the observation in Section 1. Also ð2Þ , ð3Þ holds

by [1, Theorem B].

From the observation in Section 1 on rank-one isometries and topological

fractal structures of boundaries, we obtain ð2Þ ) ð4Þ, ð4Þ ) ð5Þ and ð4Þ ) ð6Þ,
also, ð3Þ ) ð7Þ, ð7Þ ) ð8Þ and ð7Þ ) ð9Þ.

Concerning scrambled sets of boundaries, [21, Theorem 5.5] implies

ð6Þ ) ð10Þ and ð9Þ ) ð11Þ.
Also concerning minimality of boundaries, [20, Theorem 6.4] implies

ð5Þ ) ð12Þ and ð8Þ ) ð12Þ.
By splitting theorems (cf. [22], [27]), we obtain ð10Þ ) ð12Þ and ð11Þ ) ð12Þ

(cf. [20, Proposition 6.3]).

Therefore the statements ð1Þ–ð12Þ are equivalent. r
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3. On Limit-Point Sets of Boundaries of Coxeter Groups

We prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that a finitely generated infinite Coxeter

group W acts geometrically on a proper CAT(0) space X .

Here there exists SHW such that ðW ;SÞ is a Coxeter system. Now we

consider the irreducible decomposition of ðW ;SÞ as

W ¼ WS1
� � � � �WSk

�WSkþ1
� � � � �WSn

where each ðWi;SiÞ is irreducible and we may suppose that WSi
is infinite for any

i ¼ 1; . . . ; k and WSi
is finite for any i ¼ k þ 1; . . . ; n. Let W 0 ¼ WS1

� � � � �WSk
.

Then W 0 is a finite-index subgroup of W and acts geometrically on the CAT(0)

space X (where W 0 is the minimum finite-index parabolic subgroup of ðW ;SÞ).
Here we note that every Coxeter group has finite center. Hence by the

splitting theorem [22, Theorem 2] and [27, Corollary 10], X contains a closed

convex W 0-invariant quasi-dense subspace X 0 which splits as a product X 0 ¼
X1 � � � � � Xk where the action of W 0 ¼ WS1

� � � � �WSk
on X 0 ¼ X1 � � � � � Xk

splits and WSi
acts geometrically on Xi for each i ¼ 1; . . . ; k.

Then every irreducible infinite Coxeter group WSi
is either a‰ne or contains

a rank-one isometry by [8, Proposition 6.5] and the observation in Section 1.

If WSi
is a‰ne, then WSi

contains a finite-index subgroup which isomorphic

to Zni and Xi contains a quasi-dense subspace which isometric to Rni . Hence the

limit-point set fwy
i jwi A Wi; oðwiÞ ¼ yg is dense in the boundary qXi.

Also if WSi
contains a rank-one isometry, then the action of WSi

on the

boundary qXi is minimal. Then for some (any) w A WSi
with oðwÞ ¼ y,

WSi
wy ¼ fawy j a A WSi

g ¼ fðawa�1Þy j a A WSi
g

is dense in the boundary qXi (cf. [20, Proposition 6.2]). Hence the limit-point set

fwy
i jwi A Wi; oðwiÞ ¼ yg is dense in the boundary qXi.

Therefore, by a similar argument to the proof of [20, Proposition 6.5], we

obtain that the limit-point set fwy jw A W ; oðwÞ ¼ yg is dense in the boundary

qX . r

4. Observations on Boundaries of CAT(0) Groups with Rank-One

Isometries

We introduce some observations on boundaries of CAT(0) groups with rank-

one isometries.
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Now we suppose that a group G acts geometrically on a proper CAT(0)

space X and suppose that G contains a rank-one isometry (hence the boundary

qX has a topological fractal structure).

Let V be a non-empty open subset of qX whose closure cl V is a proper

subset of qX . Then there exists a rank-one isometry g A G as gy A V , because the

limit-point set of rank-one isometries in G is dense in qX . Indeed qX is minimal

and

Ggy ¼ fagy j a A Gg ¼ fðaga�1Þy j a A Gg

is dense in the boundary qX .

Every rank-one isometry acts with north-south dynamics on the boundary qX

(cf. [18, p. 7]). Hence, since g is a rank-one isometry of X and gy A V , the set

fgiV j i A Ng is a neighborhood basis for gy in qX . Here all giV are homeo-

morphic to V .

Thus if there exists a non-empty open subset V of qX whose closure cl V is a

proper subset of qX such that V has some topological property ðPÞ, then qX has

the locally topological property ðPÞ at the limit-point gy.

Also for any rank-one isometry h A G, we can consider the limit-point

hy A qX . Then Ghy is dense in qX , since qX is minimal. Hence ahy A V for

some a A G. Then hy A a�1V and a�1V is homeomorphic to V . Thus the bound-

ary qX has the locally topological property ðPÞ at the limit-point hy of all rank-

one isometries h A G.

As one example, if there exists a non-empty connected open subset V of qX

whose closure cl V is a proper subset of qX , then qX is locally connected at the

limit-points gy of all rank-one isometries g A G.

Moreover if qX is non-locally connected at some point a A qX , then qX is

non-locally connected at ga for all g A G. Here Ga is also dense in qX .

It seems that these arguments relate to research on local connectivity of

boundaries of CAT(0) groups by M. Mihalik, K. Ruane and S. Tschantz ([25],

[26]) and research on cut-points and limit-points of boundaries of CAT(0) groups

by P. Papasoglu and E. L. Swenson ([29], [30]).

Also as one application, we obtain the following theoreom by a similar

argument to the proof of [24, Theorem 4.4].

Theorem 4.1. If a CATð0Þ group G with a rank-one isometry acts geo-

metrically on a proper CATð0Þ space X , then the following statements are

equivalent:
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(i) the boundary qX is an n-manifold,

(ii) the boundary qX of X contains some closed neighborhood U which is

homeomorphic to an n-ball,

(iii) the boundary qX is homeomorphic to an n-sphere.

Proof. We first note that the implications (iii) ) (i) ) (ii) are obvious.

Hence now we show the implication (ii) ) (iii).

Suppose that (iii) holds; that is, the boundary qX of X contains some closed

neighborhood U which is homeomorphic to an n-ball. For a point a A qX �U ,

there exists g A G such that ga A Int U , since the action of G on qX is minimal.

Then V :¼ g�1U is a neighborhood of a which is homeomorphic to an n-ball.

Let U 0 and V 0 be a proper subsets of Int U and Int V respectively such that U 0

and V 0 are homeomorphic to an n-ball and U 0 VV 0 ¼ q. Let F ¼ qX � Int U 0.

Then there exists g 0 A G such that g 0F HV 0, because the boundary qX has a

topological fractal structure. Then g 0U 0 UV 0 ¼ qX and g 0U 0 and V 0 are homeo-

morphic to an n-ball. (Moreover, g 0U UV ¼ qX and g 0U and V are homeo-

morphic to an n-ball.) Using some argument on bicollars of n-disks by the gen-

eralized Schoenflies theorem, we obtain that qX is homeomorphic to an n-sphere

(cf. [24, Theorem 4.4]). r
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