
TSUKUBA J. MATH.
Vol. 35 No. 1 (2011), 143–151

RANDOM GRAPHS WITH A RANDOM BIJECTION

By

Yuki Anbo

Abstract. We show that the theory of random graphs with a

bijection between the binary Cartesian product of the universe and

the universe has a model companion which is complete, simple, and

unsupersimple.

1. Introduction

Let T be an L-theory and s a new unary function symbol. The theory

T U fs is an automorphismg, which is usually written as Ts, is of particular

interest in model theory. In particular, it is an interesting problem to determine

whether or not Ts has a model companion.

If T is the theory of algebraically closed field, it is known that Ts has

a model companion, usually called ACFA. The theory ACFA was used in

Hrushovski’s proof of the Manin-Mumford conjecture (see [5]). In contrast to

this, Kikyo [6] showed that if T is the theory of random graphs then Ts has no

model companion.

In this paper, we discuss a somewhat related problem when f is a binary

function symbol. Let

Tf ¼ T U f f is a bijection between M 2 and Mg;

where M is the universe of the structure. In this paper, we treat the case when T

is the theory of random graphs, and show that Tf has a model companion. We

also show that the model companion is complete and simple (in the sense of

Shelah). Further we will show that the model companion is not supersimple.

The present work is related to other authors’ works including [3], [7], and [2].

In [3], Chatzidakis and Piliay proved the following: Suppose that L is a language
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containing a unary predicate symbol S and T is an L-theory which has quantifier

elimination. For a new unary predicate symbol P, let TP be the theory

T U fExðPðxÞ ! SðxÞÞg. Then if T eliminates the quantifier by, then TP has a

model companion. To get a new theory, they added a new predicate symbol to a

simple theory and we add a new function symbol to the theory of random graphs.

In [7], Tsuboi proved under certain assumptions that for two simple theories

T1 and T2 (in disjoint languages), one can find a simple theory extending T1 UT2.

If we know there is a simple (model complete) theory T1 extending the theory

f f is a bijection between M 2 and Mg, then by taking T2 as the theory of

random graphs, we can apply [7] to get a simple theory extending Tf . So the main

task is to show the existence of T1 described above. But, for self-containedness

of the present paper, without applying [7], we directly show the existence of a

model companion of Tf .

In [2], Casanovas and Kim showed an example of a supersimple nonlow

theory. Their structure is divided into two sorts, the sort for points and the sort

for sets. One of the motivation of the present paper is to know how structure is

obtained by combining two sorts of their structure into one sort.

Basic definitions and facts are reviewed in Section 2.

In Section 3, we start our construction. For simplicity, we discuss only the

case f is a binary function symbol in this paper. Without significant changes,

everything in this paper can be generalized to the case f is an n-ary function

symbol. For a technical reason, we do not consider the function f itself, but will

consider the graph of f . For this purpose we add a ternary relation symbol Rf to

the graph language. In this section, we also introduce the notion of good pairs.

Using this notion, we give the exact set T of axioms for model companions.

In Section 4, we prove that T is simple, but not supersimple.

Notation. For sets A and B, we often write AB to denote the union AUB.

2. Preliminaries

In this paper, L is a countable language and T is an L-theory. We do not

assume T to be complete, unless otherwise stated. We use x; y; . . . for denoting

variables. Finite tuples of variables are denoted by x; y; . . . . Formulas are

denoted by j;c; . . . .

Definition 2.1. Let T be an L-theory. A model M of T is said to be an

existentially closed model of T if for any quantifier-free L-formula jðx; yÞ, and
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finite tuple a of M, if N � bxjðx; aÞ for some NIM which is a model of T ,

then M � bxjðx; aÞ.

For example, an algebraically closed field is an existentially closed model of

the theory of fields.

Fact 2.2 ([4] Theorem 8.2.1). Suppose that T is an Eb-theory. Then there

exists an existentially closed model of T .

Definition 2.3. Let T and T 0 be two L-theories.

(1) T is said to be model complete if every embedding between models of T

is elementary.

(2) T 0 is said to be a model companion of T if the following conditions are

satisfied:

(a) every model of T can be embedded in some model of T 0;

(b) every model of T 0 can be embedded in some model of T ;

(c) T 0 is model complete.

Fact 2.4 ([4] Theorem 8.3.6). Let T be an L-theory. T has a model

companion if and only if the class of existentially closed models of T is axio-

matizable in a first-order theory and, in that case, the model companion of T is its

axiomatization.

Until the end of this section, we assume the following: T is a countable

complete theory; We work in a big saturated model M of T ; A;B; . . . denote

subsets of M whose cardinalities are strictly less than that of M; a; b; . . . denote

elements of M; a; b; . . . denote finite tuples of elements of M; For a and A,

tpða=AÞ denote the set of formulas with parameters in A which are realized

by a in M.

Definition 2.5. Let jðx; yÞ be an L-formula.

(1) We say that jðx; bÞ divides over A if there is an indiscernible sequence

ðbiÞi<o over A with b0 ¼ b such that 6
i<o

fjðx; biÞg is inconsistent.

(2) We say that a partial type GðxÞ divides over A if there is a formula jðxÞ
such that GðxÞ ‘ jðxÞ and jðxÞ divides over A.

Definition 2.6. We say that T is simple if T has local character of dividing,

that is, for any finite tuple a and any set B, there is a countable subset A of B

such that tpða=BÞ does not divide over A.
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Definition 2.7. We say that T is supersimple if for any finite tuple a

and any set B, there is a finite subset A of B such that tpða=BÞ does not divide

over A.

3. Construction

Let L ¼ fR;Rf g be a relational language, where R is a binary relation

symbol and Rf is a ternary relation symbol. We always assume that for any

L-structure A, RA is a graph relation, and RA
f is the graph of a partial injective

function from A2 to A.

Let Tf be the following (incomplete) theory:
� the universe, say M, is a random graph;
� RM

f is the graph of a bijection between M 2 and M.

Definition 3.1. Let AHB be an extension of L-structures. We say that

ðA;BÞ is a good pair if for any a; b; c A B,
� if a; b A A and B � Rf ða; b; cÞ, then c A A and
� if c A A and B � Rf ða; b; cÞ, then a; b A A.

Intuitively, if ðA;BÞ is a good pair, then A is closed under f and f �1 in B, where

f is the (partial) function which maps ða; bÞ to c if Rf ða; b; cÞ holds in B for any

a; b; c A B.

Definition 3.2. Suppose a ¼ ða0; . . . ; am�1Þ and b ¼ ðb0; . . . ; bn�1Þ are two

finite tuples. Let j
a;b

ðx; yÞ denote the conjunction of the L-diagram of abb, where
x is a tuple of variables for a and y is a tuple of variables for b. The formula

ja;aðx; jÞ will be denoted by caðxÞ.

Remark 3.3. For simplicity, let us use the notation jA;BðX ;Y Þ for sets A

and B of elements and sets X and Y of variables to denote the formula j
a;b

ðx; yÞ
where a (resp. b, x, y) is a tuple which is an enumeration of all elements of A

(resp. B, X , Y ).

Definition 3.4. Define the theory T as follows:

T :¼ Tf U fEX ðcAðX Þ ! bYjA;BðX ;YÞÞ j ðA;BÞ is a good pairg:

Lemma 3.5. For any model M of Tf , M is an existentially closed model

of Tf if and only if M is a model of T .
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Proof. (only if ): Suppose that M is an existentially closed model of Tf ,

ðA;BÞ is a good pair, and there is CHM such that M � cAðCÞ. Take an

su‰ciently saturated random graph ðN;RNÞ extending ðM;RMÞ, the reduct of

M to the language fRg. Then by the saturation of N, we can get a subset D 0

of NnM such that CD 0 is isomorphic to AB as graphs. Let s denote this

isomorphism.

We expand ðN;RNÞ to an L-structure ðN;RN ;RN
f Þ as follows. Let

� RN
f VM 3 ¼ RM

f and
� N � RN

f ða; b; cÞ if and only if B � RB
f ðsðaÞ; sðbÞ; sðcÞÞ for each a; b; c A D 0.

Then, RN
f is the graph of an injection f1 from a subset of N 2. Take any extension

f2 of f1 which is a bijection between N 2 and N and define N � RN
f ða; b; cÞ if

f2ða; bÞ ¼ c for any a; b; c A N. Then we have MHN � Tf and N � jA;BðC;D 0Þ.
Since M is an existentially closed model of Tf and CHM, we have

M � bYjA;BðC;YÞ:

(if ): Let M be a model of T and N a model of Tf extending M. Suppose

that N � jðA;BÞ, where j is a quantifier-free L-formula, A is a finite subset

of M, and B is a finite subset of NnM. Then ðA;BÞ is a good pair, since RM
f is

the graph of a bijection between M 2 and M. So we can take a subset C of M

such that ACGAB as L-structures. Because j is quantifier-free and N � jðA;BÞ,
we have

M � jðA;CÞ:

Therefore, M is an existentially closed model of Tf . r

Corollary 3.6. T is a model companion of Tf .

Proof. By the above lemma and Fact 2.4. r

For M � T and AHM, let clMðAÞ denote the smallest subset B of M which

satisfies

(1) AHB,

(2) for any a; b; c A M, if M � RM
f ða; b; cÞ and a; b A B, then c A B, and

(3) for any a; b; c A M, if M � RM
f ða; b; cÞ and c A B, then a; b A B.

If there is no confusion, the subscripts M in clMðAÞ will be omitted for simplicity.

We say that A is closed (in M) if clðAÞ ¼ A.
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Remark 3.7. Suppose that M is a model of T . For a A M and 1a n < o,

we define sets SnðaÞ as follows:

(1) S0ðaÞ ¼ fag
(2) S1ðaÞ ¼ fb0; b1g, where M � Rf ðb0; b1; aÞ.
(3) Snþ1ðaÞ ¼ 6fS1ðbÞ j b A SnðaÞg.

Then for AHM and b A M, we have

b A clðAÞ , 6
n<o

SnðbÞ
� �

V 6
a AA

6
n<o

SnðaÞ
 !

0j:

Proposition 3.8. T is complete.

Proof. Let M and N be two o1-saturated models of T . Suppose that

a countable closed subset A of M and a partial L-isomorphism s from A to

sðAÞHN are given. Take any b A MnA and put B ¼ clðbAÞ. We want to extend

s to a partial isomorphism from B. Let pðX ;Y Þ be the quantifier-free type of B,

where X is a set of variables for A, and Y is a set of variables for BnA. Take any

finite subset A0 of A and any finite subset B0 of BnA. Note that, by closedness

of A, ðA0;A0B0Þ is a good pair. So jA0;B0
ðsðA0Þ;Y0Þ is satisfiable in N, where Y0

is a subset of Y corresponding to B0. Then by o1-saturation of N, the type

pðsðAÞ;Y Þ is satisfiable in N. Therefore, by a back-and-forth argument, we can

show that M and N are elementarily equivalent. r

4. Simplicity

In this section, we prove that T is simple but not supersimple. Again, we

work in a big saturated model M of T .

Lemma 4.1. Suppose that A and B are two closed sets. If A and B have the

same quantifier-free types, then tpðAÞ ¼ tpðBÞ.

Proof. By a similar back-and-forth argument as in Proposition 3.8. r

Lemma 4.2. For any set A, clðAÞ ¼ aclðAÞ.

Proof. By Remark 3.7, we have clðAÞH aclðAÞ. To show the other di-

rection, assume that A ¼ clðAÞ and b B clðAÞ. Put B ¼ clðbAÞnA. It is enough to

show that there are infinitely many subsets Bi ði < oÞ of M such that tpðB 0
i=AÞ ¼

tpðB=AÞ.
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Define a new L-structure N as follows:

(1) the universe of N is 6
i<o

A 0B 0
i ,

(2) B 0
i VB 0

j ¼ j for each i < j < o,

(3) A 0Bi GAB,

(4) RN ¼ 6
i<o

RA 0B 0
i , and RN

f ¼ 6
i<o

R
A 0B 0

i

f .

Because A is closed, N is well-defined and ðA 0;NÞ is a good pair. So identify-

ing A and A 0, we get an embedding s from N into M over A. For each i < o,

because AsðB 0
i Þ is closed, by Lemma 4.1, we have tpðsðB 0

i Þ=AÞ ¼ tpðB=AÞ.
r

Lemma 4.3. Suppose that A and B are two closed sets. Then for any in-

discernible sequence I ¼ ðBiÞi<o with B0 ¼ B over AVB, there is a subset A 0 of M

such that tpðA 0BiÞ ¼ tpðABÞ for each i < o.

Proof. For simplicity, we assume AVB ¼ j. Notice that Bi’s form a

D-system. So, if C is the intersection of Bi’s then Bi’s are pairwise disjoint

over C. Put D ¼ clðACÞnC and E ¼ clðBDÞnBD. It is enough to show that there

are subsets D 0 and Ei ði < oÞ of M such that tpðBiD
0EiÞ ¼ tpðBDEÞ.

Define a new L-structure N as follows:
� the universe of N is ð6

i<o
B 0
i ÞD 0ð6

i<o
EiÞ, (put I 0 ¼ 6

i<o
B 0
i ,)

� I 0 G I ,
� E 0

i VE 0
j ¼ j for each i < j < o,

� B 0
iD

0Ei GBDE for each i < o,
� RN ¼ RI 0

U6
i<o

RBiD
0Ei , and RN

f ¼ 6
i<o

RBiD
0Ei

f .

Then ðI 0;NÞ is a good pair. So identifying I 0 and I , we get an embedding s

from N into M. Then for each i < o, because BisðD 0EiÞ is closed, by Lemma 4.1

we have tpðBisðD 0EiÞÞ ¼ tpðBDEÞ. r

Lemma 4.4. Suppose A and B are two closed sets, AHB, and a is a finite

tuple. Then the following are equivalent:

(1) tpða=BÞ divides over A

(2) clðaAÞVB0A

Proof. (1 ! 2): Suppose that clðaAÞVB ¼ A. Then by lemma 4.3, tpða=BÞ
does not divide over A.

(2 ! 1): By Lemma 4.2. r

Theorem 4.5. T is simple.
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Proof. Take a finite tuple a and a set A. Without loss of generality, we

may assume that A is closed. By the above lemma, tpða=AÞ does not divide over

clðaÞVA. Because clðaÞ is countable, we have local character of dividing. r

Proposition 4.6. T is not supersimple.

Proof.

Claim 4.6.1. We can take a binary tree A ¼ ðah : h A 2<oÞ of distinct ele-

ments such that Rf ðahb0; ahb1; ahÞ holds for each h A 2<o
.

Proof. Let A 0 ¼ fa 0
h j h A 2<og be an L-structure having only required

relations. Because ðj;A 0Þ is a good pair, we can embed A 0 in M. r

For each 1a n < o, let bn be the element að0;...;0;1Þ, where ð0; . . . ; 0Þ has the

length n. Put B ¼ fbn j 1a n < og. It is enough to prove that tpðað0Þ=BÞ divides

over fb1; . . . ; bng for each 1a n < o. Take any 1a n < o. Let jðx; yÞ be the

formula

bx1by1 � � � bxn�1byn�1bxnRf ðxn; y; xn�1Þ5 5
n�1

i¼2

Rf ðxi; yi; xi�1Þ5Rf ðx1; y1; xÞ:

Let f be the function from M2 to M which maps ða; bÞ to c if M � Rf ða; b; cÞ
for each a; b; c A M. Then M � jða; bÞ if there are elements a1; b1; . . . ; an�1;

bn�1; an such that f ðai; biÞ ¼ ai�1 for each i ¼ 1; . . . ; n, where a0 ¼ a and bn ¼ b.

Note that jðx; bnÞ A tpða0=BÞ.

Claim 4.6.2. jðx; bnÞ divides over fb1; . . . ; bn�1g.

Proof. By Remark 3.7 and the choice of A, we have bn B clðb1; . . . ; bn�1Þ.
We will show that there are subsets C and Di ði < oÞ such that
� tpðC;DiÞ ¼ tpðclðb1; . . . ; bn�1Þ; ðclðb1; . . . ; bnÞnclðb1; . . . ; bn�1ÞÞÞ,
� Di VDj ¼ j for i < j < o.

Define a new L-structure N as follows:
� the universe of N is C U6

i<o
Di,

� Di VDj ¼ j for i < j < o,
� CG clðb1 � � � bn�1Þ,
� CDi G clðb1 � � � bnÞ for each i < o,
� RN ¼ 6

i<o
RCDi , and RN

f ¼ 6
i<o

RCDi

f .
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Then, ðCD0;NÞ is a good pair. So identifying CD0 and clðb1 � � � bnÞ, we can

embed N in M.

Take any i < o. Because CDi is closed, by Lemma 4.1, tpðDi=CÞ ¼ tpðD0=CÞ.
Take an automorphism s of M over C mapping D0 to Di. Clearly, the formula

jðx; bnÞ5jðx; sðbnÞÞ is inconsistent. r
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