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ON WEAKLY s-QUASINORMALLY EMBEDDED AND

ss-QUASINORMAL SUBGROUPS OF FINITE GROUPS*

By

Changwen Li

Abstract. Suppose G is a finite group and H is a subgroup of G.

H is called weakly s-quasinormally embedded in G if there are

a subnormal subgroup T of G and an s-quasinormally embedded

subgroup Hse of G contained in H such that G ¼ HT and

H VT aHse; H is called ss-quasinormal in G if there is a subgroup

B of G such that G ¼ HB and H permutes with every Sylow sub-

group of B. We investigate the influence of weakly s-quasinormally

embedded and ss-quasinormal subgroups on the structure of finite

groups. Some recent results are generalized.

1. Introduction

All groups considered in this paper are finite. A subgroup H of a group G is

said to be s-quasinormal in G if H permutes with every Sylow subgroups of G.

This concept was introduced by Kegel in [1]. Morerecently, Ballester-Bolinches

and Pedraza-Aguilera [2] generalized s-quasinormal subgroups to s-quasinormally

embedded subgroups. H is said to be s-quasinormally embedded in a group G

if for each prime p dividing jHj, a Sylow p-subgroup of H is also a Sylow p-

subgroup of some s-quasinormal subgroup of G. In recent years, it has been of

interest to use supplementation properties of subgroups to characterize properties

of a group. For example, Yanming Wang [3] introduced the concept of c-normal

subgroup (a subgroup H of a group G is said to be c-normal in G if there exists

a normal subgroup K of G such that G ¼ HK and H VKaHG, where HG is the

maximal normal subgroup of G contained in H). In 2009, Yangming Li [4]
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introduced the concept of weakly s-quasinormally embedded subgroup (a sub-

group H of a group G is called weakly s-quasinormally embedded in G if there

are a subnormal subgroup T of G and an s-quasinormally embedded subgroup

Hse of G contained in H such that G ¼ HT and H VT aHse). In 2008, Shirong

Li [5] introduced the concept of ss-quasinormal subgroup (a subgroup H of a

group G is said to be an ss-quasinormal subgroup of G if there is a subgroup B

such that G ¼ HB and H permutes with every Sylow subgroup of B). There are

examples to show that weakly s-quasinormally embedded subgroups are not ss-

quasinormal subgroups and in general the converse is also false. The aim of this

article is to unify and improve some earlier results using weakly s-quasinormally

embedded and ss-quasinormal subgroups.

2. Preliminaries

Lemma 2.1 ([4], Lemma 2.5). Let H be a weakly s-quasinormally embedded

subgroup of a group G.

(1) If HaLaG, then H is weakly s-quasinormally embedded in L.

(2) If NtG and NaHaG, then H=N is weakly s-quasinormally embedded

in G=N.

(3) If H is a p-subgroup and N is a normal p 0-subgroup of G, then HN=N is

weakly s-quasinormally embedded in G=N.

(4) Suppose H is a p-group for some prime p and H is not s-quasinormally

embedded in G. Then G has a normal subgroup M such that jG : Mj ¼ p and

G ¼ HM.

Lemma 2.2 ([5], Lemma 2.1). Let H be an ss-quasinormal subgroup of a

group G.

(1) If HaLaG, then H is ss-quasinormal in L.

(2) If NtG, then HN=N is ss-quasinormal in G=N.

Lemma 2.3 ([5], Lemma 2.2). Let H be a nilpotent subgroup of G. Then the

following statements are equivalent:

(1) H is s-quasinormal in G.

(2) HaF ðGÞ and H is ss-quasinormal in G.

(3) HaF ðGÞ and H is s-quasinormally embedded in G.

Lemma 2.4 ([15], Lemma 2.7). Let G be a group and p a prime dividing jGj
with ðjGj; p� 1Þ ¼ 1.
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(1) If N is normal in G of order p, then NaZðGÞ.
(2) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.

(3) If MaG and jG : Mj ¼ p, then MtG.

Lemma 2.5 ([4], Theorem 4.7). Let P be a Sylow p-subgroup of a group G,

where p is a prime divisor of jGj with ðjGj; p� 1Þ ¼ 1. If every maximal subgroup

of P is weakly s-quasinormally embedded in G, then G is p-nilpotent.

Lemma 2.6 ([8], Lemma 2.3). Let G be a group and NaG.

(1) If NtG, then F �ðNÞaF �ðGÞ.
(2) If G0 1, then F �ðGÞ0 1. In fact, F �ðGÞ=FðGÞ ¼ SocðFðGÞCGðFðGÞÞ=

FðGÞÞ.
(3) F �ðF �ðGÞÞ ¼ F �ðGÞbFðGÞ. If F �ðGÞ is Solvable, then F �ðGÞ ¼ F ðGÞ.

Lemma 2.7 ([13], Lemma 2.3). Suppose that H is s-quasinormal in G, P a

Sylow p-subgroup of H, where p is a prime. If HG ¼ 1, then P is s-quasinormal

in G.

Lemma 2.8 ([13], Lemma 2.2). If P is an s-quasinormal p-subgroup of G for

some prime p, then NGðPÞbOpðGÞ.

3. p-nilpotentcy

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is a prime

divisor of jGj with ðjGj; p� 1Þ ¼ 1. If every maximal subgroup of P is either

weakly s-quasinormally embedded or ss-quasinormal in G, then G is p-nilpotent.

Proof. Let H be a maximal subgroup of P. We will prove H is weakly

s-quasinormally embedded in G.

If H is ss-quasinormal in G, then there is a subgroup BaG such that

G ¼ HB and HX ¼ XH for all X A SylðBÞ. From G ¼ HB, we obtain jB : H VBjp
¼ jG : Hjp ¼ p, and hence H VB is of index p in Bp, a Sylow p-subgroup of

B containing H VB. Thus SUH for all S A SylpðBÞ and HS ¼ SH is a Sylow

p-subgroup of G. In view of jP : Hj ¼ p and by comparison of orders, S VH ¼
BVH, for all S A SylpðBÞ. So BVH ¼ 7

b AB

ðSb VHÞ ¼a7
b AB

Sb ¼ OpðBÞ.

We claim that B has a Hall p 0-subgroup. Because jOpðBÞ : BVHj ¼ p or 1,

it follows that jB=OpðBÞjp ¼ p or 1. As ðjGj; p� 1Þ ¼ 1, then B=OpðBÞ is

93On weakly s-quasinormally embedded and ss-quasinormal subgroups



p-nilpotent by Lemma 2.4, and hence B is p-solvable. So B has a Hall

p 0-subgroup. Thus the claim holds.

Now, let K be a p 0-subgroup of B, pðKÞ ¼ fp2; . . . ; psg and Pi A SylpiðKÞ. By
the condition, H permutes with every Pi and so H permutes with the subgroup

hP2; . . . ;Psi ¼ K . Thus HK aG. Obviously, K is a Hall p 0-subgroup of G and

HK is a subgroup of index p in G. Let M ¼ HK and so MtG by Lemma 2.4.

It follows that H is s-quasinormally embedded, and so weakly s-quasinormally

embedded in G.

Since every maximal subgroup of P is weakly s-quasinormally embedded in G,

we have G is p-nilpotent by Lemma 2.5.

Corollary 3.2. Let p be a prime dividing the order of a group G with

ðjGj; p� 1Þ ¼ 1 and H a normal subgroup of G such that G=H is p-nilpotent.

If there exists a Sylow p-subgroup P of H such that every maximal subgroup

of P is either weakly s-quasinormally embedded or ss-quasinormal in G, then G is

p-nilpotent.

Proof. By Lemmas 2.1 and 2.2, every maximal subgroup of P is either

weakly s-quasinormally embedded or ss-quasinormal in H. By Theorem 3.1, H

is p-nilpotent. Now, let Hp 0 be the normal p-complement of H. Then Hp 0 pG. If

Hp 0 0 1, then we consider G=Hp 0 . It is easy to see that G=Hp 0 satisfies all the

hypotheses of our Corollary for the normal subgroup H=Hp 0 of G=Hp 0 by

Lemmas 2.1 and 2.2. Now by induction, we see that G=Hp 0 is p-nilpotent and so

G is p-nilpotent. Hence we assume Hp 0 ¼ 1 and therefore H ¼ P is a p-group.

Since G=H is p-nilpotent, let K=H be the normal p-complement of G=H. By

Schur-Zassenhaus’s theorem, there exists a Hall p 0-subgroup Kp 0 of K such that

K ¼ HKp 0 . By Theorem 3.1, K is p-nilpotent and so K ¼ H � Kp 0 . Hence Kp 0 is

a normal p-complement of G. This completes the proof.

Corollary 3.3. Let P be a Sylow p-subgroup of a group G, where p is

the smallest prime divisor of jGj. If every maximal subgroup of P is either weakly

s-quasinormally embedded or ss-quasinormal in G, then G is p-nilpotent.

Proof. It is clear that ðjGj; p� 1Þ ¼ 1 if p is the smallest prime dividing the

order of G and therefore Corollary 3.3 follows immediately from Theorem 3.1.

Corollary 3.4. Suppose that every maximal subgroup of any Sylow sub-

group of a group G is either weakly s-quasinormally embedded or ss-quasinormal

in G, then G is a Sylow tower group of supersolvable type.
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Proof. Let p be the smallest prime dividing jGj and P a Sylow p-subgroup

of G. By Corollary 3.3, G is p-nilpotent. Let U be the normal p-complement of G.

By Lemmas 2.1 and 2.2, U satisfies the hypothesis of the Corollary. It follows by

induction that U , and hence G is a Sylow tower group of supersolvable type.

Corollary 3.5 ([6], Theorem 3.1). Let P be a Sylow p-subgroup of a

group G, where p is a prime divisor of jGj with ðjGj; p� 1Þ ¼ 1. If every maximal

subgroup of P is either c-normal or s-quasinormally embedded in G, then G is

p-nilpotent.

Corollary 3.6 ([9], Theorem 3.1). Let P be a Sylow p-subgroup of a

group G, where p is the smallest prime divisor of jGj. If every maximal subgroup

of P is either c-normal or ss-quasinormal in G, then G is p-nilpotent.

Theorem 3.7. Let P be a Sylow p-subgroup of a group G, where p is a prime

divisor of jGj. If NGðPÞ is p-nilpotent and every maximal subgroup of P is either

weakly s-quasinormally embedded or ss-quasinormal in G, then G is p-nilpotent.

Proof. It is easy to see that the theorem holds when p ¼ 2 by Corollary

3.3, so it su‰ces to prove the theorem for the case when p is odd. Suppose that

the theorem is false and let G be a counterexample of minimal order. We will

derive a contradiction in several steps.

(1) Op 0 ðGÞ ¼ 1.

If Op 0 ðGÞ0 1, we consider G=Op 0 ðGÞ. By Lemmas 2.1 and 2.2, it is easy to see

that every maximal subgroup of POp 0 ðGÞ=Op 0 ðGÞ is either weakly s-quasinormally

embedded or ss-quasinormal in G=Op 0 ðGÞ. Since

NG=Op 0 ðGÞðPOp 0 ðGÞ=Op 0 ðGÞÞ ¼ NGðPÞOp 0 ðGÞ=Op 0 ðGÞ

is p-nilpotent, G=Op 0 ðGÞ satisfies all the hypotheses of our theorem. The min-

imality of G yields that G=Op 0 ðGÞ is p-nilpotent, and so G is p-nilpotent, a

contradiction.

(2) If M is a proper subgroup of G with PaM < G, then M is p-nilpotent.

It is clear to see NMðPÞaNGðPÞ and hence NMðPÞ is p-nilpotent. Applying

Lemmas 2.1 and 2.2, we immediately see that M satisfies the hypotheses of our

theorem. Now, by the minimality of G, M is p-nilpotent.

(3) G ¼ PQ is solvable, where Q is a Sylow q-subgroup of G with p0 q.
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Since G is not p-nilpotent, by a result of Thompson [11, Corollary], there

exists a non-trivial characteristic subgroup T of P such that NGðTÞ is not

p-nilpotent. Choose T such that the order of T is as large as possible. Since

NGðPÞ is p-nilpotent, we have NGðKÞ is p-nilpotent for any characteristic

subgroup K of P satisfying T < KaP. Now, T char PtNGðPÞ, which gives

T tNGðPÞ. So NGðPÞaNGðTÞ. By (2), we get NGðTÞ ¼ G and T ¼ OPðGÞ.
Now, applying the result of Thompson again, we have that G=OpðGÞ is

p-nilpotent and therefore G is p-solvable. Then for any q A pðGÞ with q0 p, there

exists a Sylow q-subgroup of Q such that PQ is a subgroup of G [12, Theorem

6.3.5]. If PQ < G, then PQ is p-nilpotent by (2), contrary to the choice of G.

Consequently, PQ ¼ G, as desired.

(4) G has a unique minimal normal subgroup N such that G=N is p-nilpotent.

Moreover FðGÞ ¼ 1.

By (3), G is solvable. Let N be a minimal subgroup of G. Then NaOpðGÞ
by (1). Consider G=N. It is easy to see that every maximal subgroup of P=N

is either weakly s-quasinormally embedded or ss-quasinormal in G=N. Since

NG=NðP=NÞ ¼ NGðPÞ=N is p-nilpotent, we have G=N satisfies the hypothesis of

the theorem. The choice of G yields that G=N is p-nilpotent. Consequently the

uniqueness of N and the fact that FðGÞ ¼ 1 are obvious.

(5) The final contradiction.

By step (4), there exists a maximal subgroup M of G such that G ¼ MN and

M VN ¼ 1. Since N is elementary abelian p-group, NaCGðNÞ and CGðNÞV
MtG. By the uniqueness of N, we have CGðNÞVM ¼ 1 and N ¼ CGðNÞ.
But NaOpðGÞaFðGÞaCGðNÞ, hence N ¼ OpðGÞ ¼ CGðNÞ. If jNj ¼ p, then

AutðNÞ is a cyclic group of order p� 1. If q > p, then NQ is p-nilpotent and

therefore QaCGðNÞ ¼ N, a contradiction. On the other hand, if q < p, then,

since N ¼ CGðNÞ, we see that MGG=N ¼ NGðNÞ=CGðNÞ is isomorphic to a

subgroup of AutðNÞ and therefore M, and in particular Q, is cyclic. Since Q is a

cyclic group and q < p, we know that G is q-nilpotent and therefore P is normal

in G. Hence NGðPÞ ¼ G is p-nilpotent, a contradiction. So we may assume N

is not a cyclic subgroup of order p. Obviously P ¼ PVNM ¼ NðPVMÞ. Since
PVM < P, we take a maximal subgroup P1 of P such that PVMaP1. By our

hypotheses, P1 is either weakly s-quasinormally embedded or ss-quasinormal in G.

If P1 is weakly s-quasinormally embedded, then there are a subnormal subgroup

T of G and an s-quasinormally embedded subgroup ðP1Þse of G contained in

P1 such that G ¼ P1T and P1 VT a ðP1Þse. So there is an s-quasinormal sub-

group K of G such that ðP1Þse is a Sylow p-subgroup of K . If KG 0 1, then
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NaKG aK . It follows that Na ðP1Þse aP1, and so P ¼ NðPVMÞ ¼ NP1 ¼
P1, a contradiction. If KG ¼ 1, by Lemma 2.7, ðP1Þse is s-quasinormal in G.

From Lemma 2.8 we have OpðGÞaNGððP1ÞseÞ. Since ðP1Þse is subnormal in G,

P1 VT a ðP1Þse aOpðGÞ ¼ N. Thus, ðP1Þse aP1 VN and ðP1Þse a ððP1ÞseÞ
G ¼

ððP1ÞseÞ
OpðGÞP ¼ ððP1ÞseÞ

P
a ðP1 VNÞP ¼ P1 VNaN. It follows that ððP1ÞseÞ

G ¼ 1

or ððP1ÞseÞ
G ¼ P1 VN ¼ N. If ððP1ÞseÞ

G ¼ P1 VN ¼ N, then NaP1 and so

P ¼ P1, a contradiction. So we may assume ððP1ÞseÞ
G ¼ 1. Then P1 VT ¼ 1.

Since jG : T j is a number of p-power and T ppG, OpðGÞaT . From the fact

that N is the unique minimal normal subgroup of G, we have NaOpðGÞaT .

Hence N VP1 aT VP1 ¼ 1. Since jN : P1 VNj ¼ jNP1 : P1j ¼ jP : P1j ¼ p, P1 VN

is a maximal of N. Therefore jNj ¼ p, a contradiction. Now we assume P1 is

ss-quasinormal in G. By [5, Lemma 2.5], P1Q is a subgroup of G. As NtG, we

have P1 VN ¼ N VP1QtP1Q, and it follows that P1 VNt hP1Q;Ni ¼ G.

Moreover, since N is a minimal normal subgroup of G, we have P1 VN ¼ 1

and N is a cyclic subgroup of order p, a contradiction.

Corollary 3.8. Let p be a prime dividing the order of a group G and H a

normal subgroup of G such that G=H is p-nilpotent. If NGðPÞ is p-nilpotent and

there exists a Sylow p-subgroup P of H such that every maximal subgroup of P

is either weakly s-quasinormally embedded or ss-quasinormal in G, then G is

p-nilpotent.

Proof. By Theorem 3.7, H is p-nilpotent. If N is a normal Hall p 0-subgroup

of H, then N is normal in G. By the using the arguments as in the proof of

Corollary 3.2, we may assume N ¼ 1 and H ¼ P. In the case, by our hypotheses,

NGðPÞ ¼ G is p-nilpotent.

Corollary 3.9 ([13], Theorem 3.2). Let P be a Sylow p-subgroup of a group

G, where p is a prime divisor of jGj. If NGðPÞ is p-nilpotent and every maximal

subgroup of P is s-quasinormally embedded in G, then G is p-nilpotent.

Corollary 3.10 ([14], Theorem 3.1). Let P be a Sylow p-subgroup of a

group G, where p is an odd prime divisor of jGj. If NGðPÞ is p-nilpotent and every

maximal subgroup of P is c-normal in G, then G is p-nilpotent.

4. Supersolvability

Theorem 4.1. Let F be a saturated formation containing U, the class of all

supersoluble groups. A group G A F if and only if there is a normal subgroup H
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of G such that G=H A F and every maximal subgroup of any Sylow subgroup of H

is either weakly s-quasinormally embedded or ss-quasinormal in G.

Proof. The necessity is obvious. We only need to prove the su‰ciency.

Suppose that the assertion is false and let G be a counterexample of minimal

order.

By Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow subgroup

of H is either weakly s-quasinormally embedded or ss-quasinormal in H. By

Corollary 3.4, H is a Sylow tower group of supersolvable type. Let p be the

largest prime divisor of jHj and let P be a Sylow p-subgroup of H. Then P is

normal in G. We consider G=P. It is easy to see that ðG=P;H=PÞ satisfies the

hypothesis of the Theorem. By the minimality of G, we have G=P A F. If the

maximal P1 of P is ss-quasinormal in G, then P1 is s-quasinormal in G by

Lemma 2.3. Thus every maximal subgroup of P is weakly s-quasinormally

embedded in G. By [4, Theorem 3.4], G A F, a contradiction.

Corollary 4.2 ([7], Theorem 3.2). Let F be a saturated formation con-

taining U, the class of all supersoluble groups. A group G A F if and only if

there is a normal subgroup H of G such that G=H A F and every maximal

subgroup of any Sylow subgroup of H is either s-quasinormally embedded or

c-normal in G.

Corollary 4.3 ([9], Theorem 3.2). Let F be a saturated formation con-

taining U, the class of all supersoluble groups. A group G A F if and only if there

is a normal subgroup H of G such that G=H A F and every maximal subgroup of

any Sylow subgroup of H is either ss-quasinormal or c-normal in G.

Corollary 4.4 ([5], Theorem 1.5). Let F be a saturated formation con-

taining U, the class of all supersoluble groups. A group G A F if and only if there

is a normal subgroup H of G such that G=H A F and every maximal subgroup of

any Sylow subgroup of H is ss-quasinormal in G.

Corollary 4.5. Let H be a normal subgroup of a group G such that G=H is

supersolvable. If every maximal subgroup of any Sylow subgroup of H is either

weakly s-quasinormally embedded or ss-quasinormal in G, then G is supersolvable.

Theorem 4.6. Let F be a saturated formation containing U. Suppose that G

is a group with a normal subgroup H such that G=H A F. If every maximal
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subgroup of any Sylow subgroup of F �ðHÞ is either weakly s-quasinormally

embedded or ss-quasinormal in G, then G A F.

Proof. By Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow

subgroup of F �ðHÞ is either weakly s-quasinormally embedded or ss-quasinormal

in F �ðHÞ. Thus F �ðHÞ is supersolvable by Corollary 4.4. In particular, F �ðHÞ is

solvable. By Lemma 2.6, F �ðHÞ ¼ FðHÞ. It follows that every maximal subgroup

of any Sylow subgroup of F �ðHÞ is weakly s-quasinormally embedded in G by

Lemma 2.3. Thus the result is a corollary of Theorem 3.5 in [4].

Corollary 4.7 ([6], Theorem 3.9). Let F be a saturated formation con-

taining U. Suppose that G is a group with a normal subgroup H such that

G=H A F. If every maximal subgroup of any Sylow subgroup of F �ðHÞ is either

s-quasinormally embedded or c-normal in G, then G A F.

Corollary 4.8. Let F be a saturated formation containing U, the class

of all supersoluble groups. Suppose that G is a group with a solvable normal

subgroup H such that G=H A F. If every maximal subgroup of any Sylow

subgroup of FðHÞ are either weakly s-quasinormally embedded or ss-quasinormal

in G, then G A F.

Corollary 4.9 ([6], Theorem 3.7). Let F be a saturated formation con-

taining U, the class of all supersoluble groups. Suppose that G is a group with a

solvable normal subgroup H such that G=H A F. If every maximal subgroup of

any Sylow subgroup of FðHÞ is either s-quasinormally embedded or c-normal in G,

then G A F.

Corollary 4.10 ([9], Theorem 3.3). Let F be a saturated formation

containing U, the class of all supersoluble groups. Suppose that G is a group with

a solvable normal subgroup H such that G=H A F. If every maximal subgroup

of any Sylow subgroup of FðHÞ is either ss-quasinormal or c-normal in G, then

G A F.

Corollary 4.11 ([16], Theorem 3.3). Let F be a saturated formation

containing U, the class of all supersoluble groups. Suppose that G is a group with a

normal subgroup H such that G=H A F. If every maximal subgroup of any Sylow

subgroup of F �ðHÞ is ss-quasinormal in G, then G A F.
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Theorem 4.12. If every cyclic subgroup of any Sylow subgroup of a group

G of prime order or order 4 is either weakly s-quasinormally embedded or ss-

quasinormal in G, then G is supersolvable.

Proof. Assume the theorem is false and let G be a counterexample of

minimal order. It is obvious that the hypotheses of the Lemma are inherited for

subgroups of G. Our minimal choice yields that G is not supersolvable but every

proper subgroup of G is supersolvable. A well-known result of Doerk implies that

there exists a normal Sylow p-subgroup of G such that G ¼ PM, where M is

supersolvable and if p > 2 then the exponent of P is p, if p ¼ 2, the exponent of

P is 2 or 4. Let x be an arbitrary element of P. If hxi is ss-quasinormal in G,

then hxi is s-quasinormally embedded in G by Lemma 2.3. If hxi is weakly

s-quasinormally embedded in G, there are a subnormal subgroup T of G and

an s-quasinormally embedded subgroup hxise of G contained in hxi such that

G ¼ HT and H VT a hxise. Hence P ¼ PVG ¼ PVhxiT ¼ hxiðPVTÞ. Since

P=FðPÞ is abelian, we have ðPVTÞFðPÞ=FðPÞtG=FðPÞ. Since P=FðPÞ is a

minimal normal subgroup of G=FðPÞ, PVT aFðPÞ or P ¼ ðPVTÞFðPÞ ¼ PVT .

If PVT aFðPÞ, then hxi ¼ PtG and so hxi is s-quasinormally embedded

in G. If P ¼ PVT , then T ¼ G and so hxi is also s-quasinormally embedded

in G. We have proved that every cyclic subgroup of any Sylow subgroup of G of

prime order or order 4 is s-quasinormally embedded in G. Applying Theorem 3.3

in [10], we have G is supersolvable, a contradiction.

Theorem 4.13. Let F be a saturated formation containing U, the class of all

supersoluble groups. Suppose that G is a group with a normal subgroup H such that

G=H A F. If every cyclic subgroup of any Sylow subgroup of F �ðHÞ of prime

order or order 4 is either weakly s-quasinormally embedded or ss-quasinormal in G,

then G A F.

Proof. By Lemmas 2.1 and 2.2, every cyclic subgroup of any Sylow sub-

group of F �ðHÞ of prime order or order 4 is weakly s-quasinormally embedded

or ss-quasinormal in F �ðHÞ. Thus F �ðHÞ is supersolvable by Theorem 4.12. In

particular, F �ðHÞ is solvable. By Lemma 2.6, F �ðHÞ ¼ F ðHÞ. Since G=H A F,

we have that GF, the F-residual subgroup of G, is contained in H. Hence, for

any cyclic subgroup hxi of F �ðGFÞaF �ðHÞ of prime order or order 4, hxi is

weakly s-quasinormally embedded or ss-quasinormal in G. If hxi is weakly

s-quasinormally embedded in G, then there are a subnormal subgroup T of G

and an s-quasinormally embedded subgroup hxise of G contained in hxi such
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that G ¼ hxiT and hxiVT a hxise. If hxi is not s-quasinormally embedded in

G, then G has a normal subgroup K such that jG : K j ¼ p and G ¼ hxiK by

Lemma 2.1(4). Since G=K is cyclic, it follows that G=K A F by the hypotheses.

Therefore GF aK . This implies that hxiaK , so G ¼ K , a contradiction. If hxi

is ss-quasinormal in G, then hxi is also s-quasinormally embedded in G by

lemma 2.3. Hence we have proved that every cyclic subgroup of prime order or

order 4 of F �ðGFÞ is s-quasinormally embedded in G. Applying Theorem 1.2 in

[10], we have G A F.

Corollary 4.14 ([6], Theorem 4.3). Let F be a saturated formation

containing U, the class of all supersoluble groups. Suppose that G is a group with a

normal subgroup H such that G=H A F. If every cyclic subgroup of any Sylow

subgroup of F �ðHÞ of prime order or order 4 is either c-normal or s-quasinormally

embedded in G, then G A F.

Corollary 4.15 ([16], Theorem 3.7). Let F be a saturated formation

containing U, the class of all supersoluble groups. Suppose that G is a group with a

normal subgroup H such that G=H A F. If every cyclic subgroup of any Sylow

subgroup of F �ðHÞ of prime order or order 4 is ss-quasinormal in G, then G A F.
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