THE STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN THE COMPLEX PROJECTIVE PLANE AND THE COMPLEX HYPERBOLIC PLANE

By
Hiroyuki Kurihara

Abstract

Recently, we investigated real hypersurfaces in a n dimentional complex projective space and complex hyperbolic space with respect to various structure Jacobi operator conditions. However these results necessitates dimension assumption $n \geq 3$. The purpose of this paper is to study such real hypersurfaces in the complex projective plane and the complex hyperbolic plane.

1. Introduction

A complex n-dimensional Kähler manifold with Kähler structure J of constant holomorphic sectional curvature $4 c$ is called a complex space form, which is denoted by $M_{n}(c)$. As is well-known, a connected complete and simply connected complex space form is complex analytically isometric to a complex projective space $P_{n} \mathbf{C}$, a complex Euclidean space \mathbf{C} or a complex hyperbolic space $H_{n} \mathbf{C}$ according as $c>0, c=0$ or $c<0$.

The study of real hypersurfaces in complex projective space $P_{n} \mathbf{C}$ was initiated by Takagi [12], who proved that all homogeneous real hypersurfaces in $P_{n} \mathbf{C}$ could be devided into six types which are said to be of type A_{1}, A_{2}, B, C, D and E.

In the case of complex hyperbolic space $H_{n} \mathbf{C}$, the classification of homogeneous real hypersurfaces in $H_{n} \mathbf{C}$ is obtained by Berndt and Tamaru [2]. In particular, real hypersurfaces in $H_{n} \mathbf{C}$, which are said to be of type A_{0}, A_{1} and A_{2} were treated by Montiel and Romero [9]. Real hypersurfaces in $P_{n} \mathbf{C}$ and $H_{n} \mathbf{C}$

[^0]have been studied by several authors (cf. Cecil and Ryan [3], Okumura [8], Montiel and Romero [7]).

Let M be a real hypersurface in $M_{n}(c), c \neq 0$ and v a unit normal vector field on M. Then a tangent vector field $\xi:=-J v$ to M is called the structure vector field on $M . M$ has an almost contact metric structure (ϕ, ξ, η, g) induced from J. We denote ∇ and S, the Levi-Civita connection and the Ricci tensor of M, respectively. If the structure vector is a principal vector, then M is called a Hopf hypersurface. It is known that the principal curvature α is locally constant (Maeda, Y. [9], Ki and Suh [6]).

On the other hand, the Jacobi operator field with respect to X in a Riemannian mannifold M is defined by $R_{X}=R(\cdot, X) X$, where R denotes the Riemannian curvature tensor of M. We will call the Jacobi operator on M with respect to ξ the structure Jacobi operator on M. The structure Jacobi operator R_{ξ} is said to be cyclic-parallel if it satisfies

$$
\Im_{\xi}^{\prime}(X, Y, Z)=\Im_{g}\left(\nabla_{X} R_{\xi}(Y), Z\right)=0
$$

for any vector fields X, Y and Z, where $\mathfrak{\subseteq}$ denote the cyclic sum. The structure Jacobi operator $R_{\xi}=R(\cdot, \xi) \xi$ has a fundamental role in contact geometry. Ortega, Pérez and Santos [10] have proved that there are no real hypersurfaces in $P_{n} \mathbf{C}, n \geq 3$ with parallel structure Jacobi operator $\nabla R_{\xi}=0$. More generally, such a result has been extended by [11] due to them. Recently, author et al. have some classification results with respect to the structure Jacobi operator for real hypersurfaces in $M_{n}(c), c \neq 0[4,5]$.

Theorem 1 (Ki and Kurihara (in preparation)). Let M be a real hypersurface in a complex space form $M_{n}(c), c \neq 0, n \geq 3$ which satisfies $\nabla_{\xi} R_{\xi}=0$. Then M holds $R_{\xi} \phi S=R_{\zeta} S \phi$ if and only if $\alpha=0$ or M is locally congruent to one of real hypersurfaces of type A_{1}, A_{2} of $P_{n} \mathbf{C}$ or of type $A_{0}-A_{2}$ of $H_{n} \mathbf{C}$.

Theorem 2 ([5]). Let M be a real hypersurface in a complex space form $M_{n}(c), c \neq 0, n \geq 3$ which satisfies $\nabla_{\xi} R_{\xi}=0$. Then $R_{\xi} \phi S=S \phi R_{\xi}$ if and only if M is locally congruent to one of real hypersurfaces of type A_{1}, A_{2} of $P_{n} \mathbf{C}$ with $\alpha \neq 0$ or of type $A_{0}-A_{2}$ of $H_{n} \mathbf{C}$.

Theorem 3 ([4]). Let M be a real hypersurface in a complex space form $M_{n}(c), c \neq 0, n \geq 3$. If the structure Jacobi operator is cyclic-parallel, then M is locally congruent to one real hypersurfaces of type A_{1}, A_{2} and a tube of radius r
over complex quadric Q_{n-1}, where $\cot r=(\sqrt{2 c+4}+\sqrt{2 c}) / 2$ of $P_{n} \mathbf{C}$ or of type $A_{0}-A_{2}$ of $H_{n} \mathbf{C}$.

However these results are proved for $n \geq 3$ and the methods of proofs depend on this. In this paper we invistigate corresponding results for $n=2$ (Theorem 3-7 in Section 4-6).

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces are supposed to be oriented.

2. Preliminaries

2.1. Real Hypersurfaces in $M_{n}(c), c \neq 0$

We denote by $M_{n}(c), c \neq 0$ be a nonflat complex space form with the Fubini-Study metric \tilde{g} of constant holomorphic sectional curvature $4 c$ and LeviCivita connection $\tilde{\nabla}$. For an immersed $(2 n-1)$-dimensional Riemannian manifold $\tau: M \rightarrow M_{n}(c)$, the Levi-Civita connection ∇ of induced metric and the shape operator H of the immersion are characterized

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(H X, Y) v, \quad \tilde{\nabla}_{X} v=-H X
$$

for any vector fields X and Y on M, where g denotes the Riemannian metric of M induced from \tilde{g} and v a unit normal vector on M. In the sequel the indeces i, j, k, l, \ldots run over the range $\{1,2, \ldots, 2 n-1\}$ unless otherwise stated. For a local orthonormal frame field $\left\{e_{i}\right\}$ of M, we denote the dual 1 -forms by $\left\{\theta_{i}\right\}$. Then the connection forms $\theta_{i j}$ are defined by

$$
d \theta_{i}+\sum_{j} \theta_{i j} \wedge \theta_{j}=0, \quad \theta_{i j}+\theta_{j i}=0
$$

Then we have

$$
\nabla_{e_{i}} e_{j}=\sum_{k} \theta_{k j}\left(e_{i}\right) e_{k}=\sum_{k} \Gamma_{k i j} e_{k},
$$

where we put $\theta_{i j}=\sum_{k} \Gamma_{i j k} \theta_{k}$. The almost contact metric structure $\left(\phi=\left(\phi_{i j}\right)\right.$, $\xi=\sum_{i} \xi_{i} e_{i}$) is induced on M by following equation:

$$
J\left(e_{i}\right)=\sum_{j} \phi_{j i} e_{j}+\xi_{i} v
$$

The structure tensor $\phi=\sum_{i} \phi_{i} e_{i}$ and the structure vector $\xi=\sum_{i} \xi_{i} e_{i}$ satisfy

$$
\begin{align*}
& \sum_{k} \phi_{i k} \phi_{k j}=\xi_{i} \xi_{j}-\delta_{i j}, \quad \sum_{j} \xi_{j} \phi_{i j}=0, \quad \sum_{i} \xi_{i}^{2}=1, \quad \phi_{i j}+\phi_{j i}=0, \\
& d \phi_{i j}=\sum_{k}\left(\phi_{i k} \theta_{k j}-\phi_{j k} \theta_{k i}-\xi_{i} h_{j k} \theta_{k}+\xi_{j} h_{i k} \theta_{k}\right), \tag{2.1}\\
& d \xi_{i}=\sum_{j} \xi_{j} \theta_{j i}-\sum_{j, k} \phi_{j i} h_{j k} \theta_{k} .
\end{align*}
$$

We denote the components of the shape operator or the second fundamental tensor H of M by $h_{i j}$. The components $h_{i j ; k}$ of the covariant derivative of H are given by $\sum_{k} h_{i j ; k} \theta_{k}=d h_{i j}-\sum_{k} h_{i k} \theta_{k j}-\sum_{k} h_{j k} \theta_{k i}$. Then we have the equation of Gauss and Codazzi

$$
\begin{align*}
& R_{i j k l}=c\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}+\phi_{i k} \phi_{j l}-\phi_{i l} \phi_{j k}+2 \phi_{i j} \phi_{k l}\right)+h_{i k} h_{j l}-h_{i l} h_{j k} \tag{2.2}\\
& h_{i j ; k}-h_{i k ; j}=c\left(\xi_{k} \phi_{i j}-\xi_{j} \phi_{i k}+2 \xi_{i} \phi_{k j}\right) \tag{2.3}
\end{align*}
$$

respectively.
From (2.2) the structure Jacobi operator $R_{\xi}=\left(\Xi_{i j}\right)$ is given by

$$
\begin{equation*}
\Xi_{i j}=\sum_{k, l} h_{i k} h_{j l} \xi_{k} \xi_{l}-\sum_{k, l} h_{i j} h_{k l} \xi_{k} \xi_{l}+c \xi_{i} \xi_{j}-c \delta_{i j} . \tag{2.4}
\end{equation*}
$$

From (2.2) the Ricci tensor $S=\left(S_{i j}\right)$ is given by

$$
\begin{equation*}
S_{i j}=(2 n+1) c \delta_{i j}-3 c \xi_{i} \xi_{j}+h h_{i j}-\sum_{k} h_{i k} h_{k j}, \tag{2.5}
\end{equation*}
$$

where $h=\sum_{i} h_{i i}$.
First we remark

Lemma 1 ([5]). Let U be an open set in M and F a smooth function on U. We put $d F=\sum_{i} F_{i} \theta_{i}$. Then we have

$$
F_{i j}-F_{j i}=\sum_{k} F_{k} \Gamma_{k i j}-\sum_{k} F_{k} \Gamma_{k j i} .
$$

2.2. The Case Where $n=2$

In this section, we treat the case where $n=2$.
Now we retake a local orthonormal frame field $\left\{e_{1}, e_{2}, e_{3}\right\}$ in such a way that

- $e_{1}=\xi$,
- e_{2} is in the direction of $h_{12} e_{2}+h_{13} e_{3}$,
- $e_{3}=\phi e_{2}$.

Then we have

$$
\begin{equation*}
\xi_{1}=1, \quad \xi_{2}=\xi_{3}=0 \quad \text { and } \quad \phi_{32}=1 \tag{2.6}
\end{equation*}
$$

We put $\alpha:=h_{11}, \beta:=h_{12}, \gamma:=h_{22}, \varepsilon:=h_{23}$ and $\delta:=h_{33}$. Then the shape operator H and the structure tensor ϕ are represented by matrices

$$
H=\left(\begin{array}{ccc}
\alpha & \beta & 0 \tag{2.7}\\
\beta & \gamma & \varepsilon \\
0 & \varepsilon & \delta
\end{array}\right), \quad \phi=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

respectively.
Since $d \xi_{i}=0$, we have

$$
\begin{align*}
& \theta_{12}=\varepsilon \theta_{2}+\delta \theta_{3}, \tag{2.8}\\
& \theta_{13}=-\beta \theta_{1}-\gamma \theta_{2}-\varepsilon \theta_{3} . \tag{2.9}
\end{align*}
$$

We put

$$
\begin{equation*}
\theta_{23}=X_{1} \theta_{1}+X_{2} \theta_{2}+X_{3} \theta_{3} \tag{2.10}
\end{equation*}
$$

The equations (2.4) and (2.5) are rewritten as

$$
\begin{align*}
& \Xi_{i j}=-\alpha h_{i j}+h_{1 i} h_{1 j}+c \delta_{i 1} \delta_{j 1}-c \delta_{i j}, \tag{2.11}\\
& S_{i j}=(\alpha+\gamma+\delta) h_{i j}-\sum_{k=1}^{3} h_{i k} h_{j k}-3 c \delta_{i 1} \delta_{j 1}+5 c \delta_{i j}, \tag{2.12}
\end{align*}
$$

respectively, where $i \in\{1,2,3\}$.
Now, a fundamental property are stated for later use.
Theorem 4 (Okumura [8], Montiel and Romero [7]). Let M be a real hypersurface in $\mathrm{P}_{2} \mathbf{C}$ or $\mathrm{H}_{2} \mathbf{C}$. If the shape operator is commuts with the structure tensor, then M is locally congruent to one of the following:

- in case that $P_{2} \mathbf{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / \sqrt{4 c}$,
- in case that $\mathrm{H}_{2} \mathbf{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{1} \mathbf{C}$.

3. Real Hypersurfaces with the Condition $\nabla_{\xi} R_{\xi}=0$

Hereafter the indeces i, j, k, l run over the range $\{1,2,3\}$ unless otherwise stated.

In this section we assume that $\nabla_{\xi} R_{\xi}=0$. The components $\Xi_{i j ; k}$ of the covariant derivativation of $R_{\xi}=\left(\Xi_{i j}\right)$ is given by

$$
\sum_{k} \Xi_{i j ; k} \theta_{k}=d \Xi_{i j}-\sum_{k} \Xi_{k j} \theta_{k i}-\sum_{k} \Xi_{i k} \theta_{k j} .
$$

Substituting (2.11) into the above equation, we have

$$
\begin{align*}
\sum_{k} \Xi_{i j ; k} \theta_{k}= & -(d \alpha) h_{i j}-\alpha d h_{i j}+\left(d h_{1 i}\right) h_{1 j}+h_{1 i}\left(d h_{1 j}\right) \tag{3.1}\\
& +\alpha \sum_{k} h_{k j} \theta_{k i}-\alpha h_{1 j} \theta_{1 i}-\beta h_{1 j} \theta_{2 i}-c \delta_{j 1} \theta_{1 i} \\
& +\alpha \sum_{k} h_{i k} \theta_{k j}-\alpha h_{1 i} \theta_{1 j}-\beta h_{1 i} \theta_{2 j}-c \delta_{i 1} \theta_{1 j} .
\end{align*}
$$

In the following, we assume that $\beta \neq 0$.
Our assumption $\nabla_{\xi} R_{\xi}=0$ is equivalent to $\Xi_{i j ; 1}=0$, which can be stated as follows:

$$
\begin{align*}
& \varepsilon=0, \quad \alpha \delta+c=0 \tag{3.2}\\
& \left(\beta^{2}-\alpha \gamma\right)_{1}=0 \tag{3.3}\\
& \left(\beta^{2}-\alpha \gamma-c\right) X_{1}=0 \tag{3.4}
\end{align*}
$$

In the following, using the notion of Lemma 1, we write as follows:

$$
\alpha_{i}=h_{11 ; i}, \quad \beta_{i}=h_{12 ; i}, \quad \gamma_{i}=h_{22 ; i}, \quad \delta_{i}=h_{33 ; i}(1 \leq i \leq 3) .
$$

Now, we denote the equation (2.3) by (ijk) simply. Then from (2.3) we have following equations (112)-(323):

$$
\begin{align*}
& \alpha_{2}-\beta_{1}=0 \tag{112}\\
& \beta_{2}-\gamma_{1}=0 \tag{212}\\
& (\alpha-\delta) \gamma-\beta^{2}+(\gamma-\delta) X_{1}-\beta X_{2}=-c \tag{312}\\
& \alpha_{3}+3 \beta \delta-\alpha \beta+\beta X_{1}=0 \tag{113}\\
& \beta_{3}-\alpha \delta+\gamma \delta-\beta^{2}+(\gamma-\delta) X_{1}=c \tag{213}
\end{align*}
$$

$$
\begin{align*}
& \delta_{1}+\beta X_{3}=0 \tag{313}\\
& \gamma_{3}-2 \beta \delta-\beta \gamma+(\gamma-\delta) X_{2}=0 \tag{223}\\
& \delta_{2}+(\gamma-\delta) X_{3}=0 \tag{323}
\end{align*}
$$

Remark 1. Above equations (112)-(323) may not use equations (3.3) and (3.4).

4. The Condition $\nabla_{\xi} R_{\xi}=0$ and $R_{\xi} \phi S=R_{\xi} S \phi$

Let M be a real hypersurface in $P_{2} \mathbf{C}$ or $H_{2} \mathbf{C}$, which satisfies $\nabla_{\xi} R_{\xi}=0$ and $R_{\xi} \phi S=R_{\xi} S \phi$. Under the assumption $\nabla_{\xi} R_{\xi}=0$, it follows from (2.7), (2.11) and (2.12) that the condition $R_{\xi} \phi S=R_{\xi} S \phi$ is equivalent to the following equation

$$
\begin{equation*}
\beta^{2}-\alpha \gamma-c=0 \tag{4.1}
\end{equation*}
$$

Then taking account of the coefficient of θ_{3} in the exterior derivative of (4.1), we have

$$
\begin{equation*}
2 \beta \beta_{3}-\gamma \alpha_{3}-\alpha \gamma_{3}=0 \tag{4.2}
\end{equation*}
$$

From (312), (113), (213), (223) and (4.1) we have the following:

$$
\begin{align*}
& \delta \gamma-(\gamma-\delta) X_{1}+\beta X_{2}=0 \tag{4.3}\\
& \alpha_{3}+3 \beta \delta-\alpha \beta+\beta X_{1}=0 \tag{4.4}\\
& \beta_{3}+\gamma \delta-\alpha \gamma-c+(\gamma-\delta) X_{1}=0 \tag{4.5}\\
& \gamma_{3}-2 \beta \delta-\beta \gamma+(\gamma-\delta) X_{2}=0 \tag{4.6}
\end{align*}
$$

Substituting of (4.4)-(4.6) into (4.2), we have

$$
\beta \delta\left(X_{1}-4 \alpha\right)=0
$$

by virtue of (4.3). If $\delta=0$, then by (3.2) we have a contradiction and hence

$$
\begin{equation*}
X_{1}=4 \alpha \tag{4.7}
\end{equation*}
$$

Substituting of this equation into (4.3)-(4.5), we have

$$
\begin{align*}
& \beta X_{2}=4 \alpha(\gamma-\delta)-\delta \gamma \tag{4.8}\\
& \alpha_{3}+3 \beta \delta+3 \alpha \beta=0 \tag{4.9}\\
& \beta_{3}+3 \alpha \gamma-3 \alpha \delta+\gamma \delta=0 \tag{4.10}
\end{align*}
$$

It follows from (223), (4.1) and (4.8) that

$$
\begin{equation*}
\alpha \gamma_{3}+\beta(3 \alpha \gamma-6 \alpha \delta-\gamma \delta)=0 . \tag{4.11}
\end{equation*}
$$

Remark 2. we have already obtained above equations in [5], page 53.
We may put $\lambda:=\alpha_{1} / \alpha=\beta_{1} / \beta$. In fact, eliminating X_{3} from (313) and (323), we have $\beta \delta_{2}+(\delta-\gamma) \delta_{1}=0$ which, together with (3.2) and (112), implies $\alpha_{1} / \alpha=\beta_{1} / \beta$.

From (3.2) and (4.1) we have

$$
\begin{equation*}
\delta=-\frac{c}{\alpha}, \quad \gamma=\frac{\beta^{2}-c}{\alpha} . \tag{4.12}
\end{equation*}
$$

Using above two equations, we can express X_{2} and X_{3} by three smooth functions α, β and λ. From (3.2), (212) and (4.1) two equations (4.8) and (323) are rewritten as

$$
\begin{align*}
& X_{2}=\frac{1}{\alpha^{2} \beta}\left(4 \alpha^{2} \beta^{2}+\beta^{2} c-c^{2}\right), \tag{4.13}\\
& X_{3}=\frac{\delta_{2}}{\delta-\gamma}=\frac{c \alpha \delta_{2}}{c \alpha(\delta-\gamma)}=\frac{-c \alpha_{2}}{\alpha^{2}(\gamma-\delta)}=\frac{-c \beta_{1}}{\alpha(\alpha \gamma+c)}=-\frac{c}{\alpha \beta} \lambda, \tag{4.14}
\end{align*}
$$

respectively.
On the other hand, taking account of the coefficient of $\theta_{1} \wedge \theta_{2}$ in the exterior derivative of (2.10), we have

$$
\begin{equation*}
-X_{1,2}+X_{2,1}+\gamma X_{3}+X_{1} X_{3}=0 \tag{4.15}
\end{equation*}
$$

Again taking account of the coefficient of θ_{1} in the exterior derivative of (4.13), we have

$$
X_{2,1}=4 \beta_{1}+c \lambda \frac{3 c-\beta^{2}}{\alpha^{2} \beta}
$$

and therefore the equation (4.15) implies

$$
\begin{equation*}
\lambda\left(2 \alpha^{2}+\beta^{2}-2 c\right)=0 \tag{4.16}
\end{equation*}
$$

The CASE Where $\lambda=0$. Then we have $\alpha_{1}=\beta_{1}=0$. Thus from (313) we have $X_{3}=0$ and therefore $\alpha_{2}=\delta_{2}=0$ because of (112). Hence, taking account of the coefficient of θ_{1} in the exterior derivative of (4.1), we have $\gamma_{1}=0$, and so $\beta_{2}=0$.

Now put $F=\alpha$ and β in Lemma 1. Then we have

$$
\alpha_{3}\left(\gamma+X_{1}\right)=0, \quad \beta_{3}\left(\gamma+X_{1}\right)=0 .
$$

If $\gamma+X_{1} \neq 0$, then we have $\alpha_{3}=\beta_{3}=0$, which implies α, β and δ are constant. Furthermore, by (4.1) we see that γ is constant. Thus from (4.9)-(4.11) we have

$$
\begin{align*}
& \alpha+\delta=0 \tag{4.17}\\
& 3 \alpha \gamma-3 \alpha \delta+\gamma \delta=0 \tag{4.18}\\
& 3 \alpha \gamma-6 \alpha \delta-\gamma \delta=0 \tag{4.19}
\end{align*}
$$

Hence, by (3.2) and (4.7) we have $\alpha^{2}-c=0$. Moreover eliminating $\gamma \delta$ from (4.18) and (4.19), we have $2 \beta^{2}+c=0$ because of (3.2) and (4.1), which is a contradiction. Therefore $X_{1}=-\gamma$, which, together with (4.7), implies $\gamma=-X_{1}=$ -4α. Thus it follows from (4.9) that $\gamma_{3}=-4 \alpha_{3}=12 \beta(\delta+\alpha)$. Hence from (4.11) this contradics $\alpha \delta=0$.

The case where $\lambda \neq 0$. Then from (4.16) we have

$$
\begin{equation*}
2 \alpha^{2}+\beta^{2}=2 c \tag{4.20}
\end{equation*}
$$

Taking account of the coefficient of θ_{1} in the exterior derivative of this equation, we have $\lambda\left(2 \alpha^{2}+\beta^{2}\right)=0$ and so $2 \alpha^{2}+\beta^{2}=0$. It follows from (4.20) that $c=0$, which is a contradiction. Therefore we have $\beta=0$.

Since (2.5) and $\beta=0$, we see that α is constant in M (see [6]). Thus from (3.1) our assumption $\Xi_{i j ; 1}=0$ is equivalent to $\alpha h_{i j ; 1}=0$. Put $j=1$ in (2.3). Then by above equation we have $\alpha h_{i 1 ; k}=-c \alpha \phi_{i k}$. Therefore since (2.1) and $d \xi_{i}=0$, we have

$$
\alpha \sum_{k, l} h_{i k} \phi_{l k} h_{k j}+\alpha^{2} \sum_{k} \phi_{k i} h_{k j}=-\alpha h_{i 1 ; j}=c \alpha \phi_{i j},
$$

which implies that $\alpha^{2}(\phi H-H \phi)=0$. Hence owing to Theorem 4, we complete the proof of following Theorem 5.

Theorem 5. Let M be a real hypersurface in $P_{2} \mathbf{C}$ or $H_{2} \mathbf{C}$, which satisfies $\nabla_{\xi} R_{\xi}=0$. Then M holds $R_{\xi} \phi S=R_{\xi} S \phi$ if and only if $H \xi=0$ or M is locally congruent to one of the following:

- in case that $P_{2} \mathbf{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
- in case that $\mathrm{H}_{2} \mathbf{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{1} \mathbf{C}$.

5. The Condition $\nabla_{\xi} R_{\xi}=0$ and $R_{\xi} \phi S=S \phi R_{\xi}$

Let M be a real hypersurface in $P_{2} \mathbf{C}$ or $H_{2} \mathbf{C}$, which satisfies $\nabla_{\xi} R_{\xi}=0$ and $R_{\xi} \phi S=S \phi R_{\xi}$. Under the assumption $\nabla_{\xi} R_{\xi}=0$, it follows from (2.7), (2.11) and (2.12) that the condition $R_{\xi} \phi S=S \phi R_{\xi}$ is equivalent to the following equation

$$
\begin{equation*}
(\gamma \delta+4 c)\left(\beta^{2}-\alpha \gamma-c\right)=0 \tag{5.1}
\end{equation*}
$$

If $\beta^{2}-\alpha \gamma-c=0$, then by the same argument as that in Section 4 we have $\beta=0$, which is a contradiction. Therefore $\beta^{2}-\alpha \gamma-c \neq 0$. Then from (3.4) and (5.1) we have

$$
\begin{equation*}
X_{1}=0, \quad \gamma \delta=-4 c \tag{5.2}
\end{equation*}
$$

Now, taking account of the coefficient of $\theta_{1} \wedge \theta_{2}$ in the exterior derivative of $\theta_{23}=X_{2} \theta_{2}+X_{3} \theta_{3}$, we have

$$
\begin{equation*}
X_{2,1}+\gamma X_{3}=0 \tag{5.3}
\end{equation*}
$$

From (5.2) the equation (312) is rewritten as

$$
\beta X_{2}=-\left(\beta^{2}-\alpha \gamma-c\right)+4 c
$$

Therefore from (3.3) we have $\left(\beta X_{2}\right)_{1}=0$, which implies

$$
\begin{equation*}
\beta X_{2,1}=-\beta_{1} X_{2} \tag{5.4}
\end{equation*}
$$

Hence, by (5.3) we have

$$
\begin{equation*}
\beta \gamma X_{3}=\beta_{1} X_{2} . \tag{5.5}
\end{equation*}
$$

From (323), (5.5) and (112) it is easy to see that

$$
\alpha_{2}\left((\delta-\gamma) X_{2}+4 \beta \delta\right)=0
$$

This, together with (223), gives

$$
\begin{equation*}
\alpha_{2}\left(\beta \gamma-2 \beta \delta-\gamma_{3}\right)=0 \tag{5.6}
\end{equation*}
$$

If $\alpha_{2} \neq 0$, then we have

$$
\begin{equation*}
\gamma_{3}=\beta \gamma-2 \beta \delta \tag{5.7}
\end{equation*}
$$

By (5.2) we have $(\gamma \delta)_{3}=0$, which implies that

$$
\alpha \gamma_{3}-\gamma \alpha_{3}=0 .
$$

Since $\beta \neq 0$ substituting of (113) and (5.7) into above equation, it is easy to show that $c=0$, which is a contradiction. Hence we have $\alpha_{2}=0$. Then from (112), (3.3), (5.4) and (5.3) we have

$$
\begin{equation*}
\alpha_{2}=\delta_{2}=\beta_{1}=(\alpha \gamma)_{1}=X_{2,1}=X_{3}=0 \tag{5.8}
\end{equation*}
$$

Taking account of the coefficient of $\theta_{1} \wedge \theta_{3}$ and $\theta_{2} \wedge \theta_{3}$ in the exterior derivative of $\theta_{23}=X_{2} \theta_{2}$, we have $X_{2}=-2 \beta$ and $\beta_{3}-2 \beta^{2}=\gamma \delta+2 c$, respectively. It follows from (213) that

$$
\begin{equation*}
\beta^{2}=8 c \tag{5.9}
\end{equation*}
$$

which implies $\beta_{3}=0$. Thus from (213) we have $\beta^{2}=-6 c$, which contradicts (5.9).
Therefore M is a Hopf hypersurface. Thus by the same argument as that in Section 4 we complete proof of following Theorem 6.

Theorem 6. Let M be a real hypersurface in $\mathrm{P}_{2} \mathbf{C}$ or $\mathrm{H}_{2} \mathbf{C}$, which satisfies $\nabla_{\zeta} R_{\xi}=0$. Then M holds $R_{\zeta} \phi S=S \phi R_{\xi}$ if and only if $H \xi=0$ or M is locally congruent to one of the following:

- in case that $P_{2} \mathbf{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
- in case that $\mathrm{H}_{2} \mathbf{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{1} \mathbf{C}$.

6. Cyclic-Parallel Structure Jacobi Operator Condition

In this section we invistigate the condition "cyclic-parallel structure Jacobi operator" (see [4]). First in [4] the proof of Main Thorem suggests following proposition.

Proposition 1. Let M be a Hopf real hypersurface in $P_{2} \mathbf{C}$ or $H_{2} \mathbf{C}$. If the structure Jacobi operator is cyclic-parallel, then M is locally congruent to one of the following:

- in case that $P_{2} \mathbf{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / \sqrt{4 c}$,
(B) a tube of radius r over complex quadric Q_{1}, where $\cot r=$ $(\sqrt{2 c+4}+\sqrt{2 c}) / 2$,
- in case that $\mathrm{H}_{2} \mathbf{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{1} \mathbf{C}$.

We suppose that M is a non-Hopf hypersurface in $P_{2} \mathbf{C}$ or $H_{2} \mathbf{C}$ satisfying $\varsigma_{g}\left(\nabla_{X} R_{\xi}(Y), Z\right)=0$ for any vector fields X, Y and Z, where \mathfrak{S} denote the cyclic sum. Then we have $\beta \neq 0$. Our assumption $\Im_{g}\left(\nabla_{X} R_{\xi}(Y), Z\right)=0$ for any vector fields X, Y and Z is equivalent to $\Xi_{i j ; k}+\Xi_{j k ; i}+\Xi_{k i ; j}=0$. This equation is rewritten as

$$
\begin{align*}
\alpha_{k} h_{i j} & +\alpha_{i} h_{j k}+\alpha_{j} h_{k i}+\alpha\left(h_{i j k}+h_{j k i}+h_{k j j}\right) \tag{6.1}\\
& -h_{1 j} h_{1 i k}-h_{1 k} h_{1 j i}-h_{1 i} h_{1 k j}-h_{1 j} h_{1 k i}-h_{1 k} h_{1 i j}-h_{1 i} h_{1 j k} \\
& +\alpha h_{1 j}\left(\Gamma_{1 i k}+\Gamma_{1 k i}\right)+\alpha h_{1 k}\left(\Gamma_{l j i}+\Gamma_{1 i j}\right)+\alpha h_{1 i}\left(\Gamma_{1 k j}+\Gamma_{1 j k}\right) \\
& +\beta h_{1 j}\left(\Gamma_{2 i k}+\Gamma_{2 k i}\right)+\beta h_{1 k}\left(\Gamma_{2 j i}+\Gamma_{2 i j}\right)+\beta h_{1 i}\left(\Gamma_{2 k j}+\Gamma_{2 j k}\right) \\
& +c \delta_{1 j}\left(\Gamma_{1 i k}+\Gamma_{1 k i}\right)+c \delta_{1 k}\left(\Gamma_{l j i}+\Gamma_{1 i j}\right)+c \delta_{1 i}\left(\Gamma_{1 k j}+\Gamma_{1 j k}\right) \\
& -\alpha \sum_{l} h_{l j}\left(\Gamma_{l i k}+\Gamma_{l k j}\right)-\alpha \sum_{l} h_{l k}\left(\Gamma_{l j i}+\Gamma_{l i j}\right)-\alpha \sum_{l} h_{l i}\left(\Gamma_{l k j}+\Gamma_{l j k}\right)=0
\end{align*}
$$

because of (3.1). Then the equation (6.1) can be stated as follows:

$$
\begin{align*}
& \varepsilon=0, \tag{6.2}\\
& \alpha \delta+c=0, \tag{6.3}\\
& \left(\beta^{2}-\alpha \gamma\right)_{1}=0, \tag{6.4}\\
& (\alpha \gamma)_{3}+2\left(\beta^{2}-\alpha \gamma-c\right) X_{2}=0, \tag{6.5}\\
& \left(\beta^{2}-\alpha \gamma-c\right)\left(X_{1}-\delta\right)=0, \tag{6.6}\\
& \left(\beta^{2}-\alpha \gamma-c\right) X_{3}=0 . \tag{6.7}
\end{align*}
$$

Hereafter we shall use (6.2) without quoting. Then from Remark 1 we have equations (112)-(323) in Section 3. If $\beta^{2}-\alpha \gamma-c=0$, then by the same argu-
ment as that in Section 4 we have $\beta=0$, which is a contradiction. Therefore $\beta^{2}-\alpha \gamma-c \neq 0$. Then equations (6.6) and (6.7) imply

$$
\begin{equation*}
X_{3}=0, \quad X_{1}=\delta \tag{6.8}
\end{equation*}
$$

It follows from (112), (313), (323), (3.3) and (212) that

$$
\begin{equation*}
\alpha_{1}=\delta_{1}=\alpha_{2}=\delta_{2}=\beta_{1}=\beta_{2}=\gamma_{1}=0 \tag{6.9}
\end{equation*}
$$

From (312), (113) and (6.8) we have the following

$$
\begin{align*}
& \beta X_{2}+\left(\beta^{2}-\alpha \gamma-c\right)+\delta^{2}=0 \tag{6.10}\\
& \alpha_{3}+4 \beta \delta-\alpha \beta=0 . \tag{6.11}
\end{align*}
$$

Taking account of the coefficient of $\theta_{1} \wedge \theta_{3}$ in the exterior derivative of (6.10), we have

$$
\begin{equation*}
\delta_{3}=-\beta \delta-2 X_{2} \delta, \tag{6.12}
\end{equation*}
$$

which, together with (6.10) and (6.11), implies

$$
-2 \beta^{2} \delta+\alpha \delta^{2}+\alpha\left(\beta^{2}-\alpha \gamma-c\right)=0
$$

Taking account of the coefficient of θ_{2} in the exterior derivative of above equation, we have $\gamma_{2}=0$.

Now put $F=\alpha, \gamma$ and $i=1, j=2$ in Lemma 1. Then, we have

$$
\alpha_{3}(\gamma+\delta)=\gamma_{3}(\gamma+\delta)=0 .
$$

If $\gamma+\delta \neq 0$, then from (6.5) and (6.12) we have a contradicton. Thus $\gamma+\delta=0$, which also contradicts (6.5) and (6.12). Hence M is a Hopf hypersurface. Therefore from Proposition 1 we complete proof of following Theorem 7.

Theorem 7. Let M be a real hypersurface in $P_{2} \mathbf{C}$ or $H_{2} \mathbf{C}$. If the structure Jacobi operator is cyclic-parallel, then M is locally congruent to one of the following:

- in case that $P_{2} \mathbf{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / \sqrt{4 c}$,
(B) a tube of radius r over complex quadric Q_{1}, where $\cot r=$ $(\sqrt{2 c+4}+\sqrt{2 c}) / 2$,
- in case that $\mathrm{H}_{2} \mathbf{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{1} \mathbf{C}$.

References

[1] Berndt, J., Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math. 395, 132-141 (1989)
[2] Berndt, J. and Tamaru, H., Cohomogeneity one actions on noncompact symmetric spaces of rank one, Trans. Amer. Math. Soc. 359, 3425-3438 (2007)
[3] Cecil, T. E. and Ryan, P. J., Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269, 481-499 (1982)
[4] Ki, U-H. and Kurihara, H., Real hypersurfaces with cyclic-parallel structure Jacobi operators in a nonflat complex space form, Bull. Aust. Math. Soc. 81, 260-273 (2010)
[5] Ki, U-H., Kurihara, H. and Takagi, R., Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math. 33, 39-56 (2009)
[6] Ki, U-H. and Suh, Y. J., On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32, 207-221 (1990)
[7] Montiel, S. and Romero, A., On some real hypersurfaces of a complex hyperblic space, Geom. Dedicata 20, 245-261 (1986)
[8] Okumura, M., On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212, 355-364 (1975)
[9] Maeda, Y., On real hypersurfaces in a complex projective space, J. Math. Soc. Japan 28, 529-540 (1976)
[10] Ortega, M., Pérez, J. D. and Santos, F. G., Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36, 1603-1613 (2006)
[11] Pérez, J. D., Santos, F. G. and Suh, Y. J., Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin 13, 459-469 (2006)
[12] Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19, 495-506 (1973)
[13] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 15, 43-53 (1975)
[14] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan 15, 507-516 (1975)

Hiroyuki Kurihara
Department of Liberal Arts and Engineering Siences
Hachinohe National College of Technology
Hachinohe, Aomori 039-1192, Japan
E-mail address: kurihara-g@hachinohe-ct.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 53B25; Secondary 53C15, 53C25.
 Keywords: complex projective plane, complex hyperbolic plane, real hypersurface, structure Jacobi operator.
 Received July 2, 2010.
 Revised January 11, 2011.

