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THE STRUCTURE JACOBI OPERATOR FOR REAL

HYPERSURFACES IN THE COMPLEX PROJECTIVE

PLANE AND THE COMPLEX HYPERBOLIC PLANE

By

Hiroyuki Kurihara

Abstract. Recently, we investigated real hypersurfaces in a n-

dimentional complex projective space and complex hyperbolic space

with respect to various structure Jacobi operator conditions. How-

ever these results necessitates dimension assumption nb 3. The

purpose of this paper is to study such real hypersurfaces in the

complex projective plane and the complex hyperbolic plane.

1. Introduction

A complex n-dimensional Kähler manifold with Kähler structure J of

constant holomorphic sectional curvature 4c is called a complex space form,

which is denoted by MnðcÞ. As is well-known, a connected complete and simply

connected complex space form is complex analytically isometric to a complex

projective space PnC, a complex Euclidean space C or a complex hyperbolic

space HnC according as c > 0, c ¼ 0 or c < 0.

The study of real hypersurfaces in complex projective space PnC was initiated

by Takagi [12], who proved that all homogeneous real hypersurfaces in PnC

could be devided into six types which are said to be of type A1, A2, B, C, D

and E.

In the case of complex hyperbolic space HnC, the classification of homo-

geneous real hypersurfaces in HnC is obtained by Berndt and Tamaru [2]. In

particular, real hypersurfaces in HnC, which are said to be of type A0, A1 and A2

were treated by Montiel and Romero [9]. Real hypersurfaces in PnC and HnC
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have been studied by several authors (cf. Cecil and Ryan [3], Okumura [8],

Montiel and Romero [7]).

Let M be a real hypersurface in MnðcÞ, c0 0 and n a unit normal vector field

on M. Then a tangent vector field x :¼ �Jn to M is called the structure vector

field on M. M has an almost contact metric structure ðf; x; h; gÞ induced from J.

We denote ‘ and S, the Levi-Civita connection and the Ricci tensor of M,

respectively. If the structure vector is a principal vector, then M is called a

Hopf hypersurface. It is known that the principal curvature a is locally constant

(Maeda, Y. [9], Ki and Suh [6]).

On the other hand, the Jacobi operator field with respect to X in a

Riemannian mannifold M is defined by RX ¼ Rð�;X ÞX , where R denotes the

Riemannian curvature tensor of M. We will call the Jacobi operator on M with

respect to x the structure Jacobi operator on M. The structure Jacobi operator Rx

is said to be cyclic-parallel if it satisfies

SR 0
xðX ;Y ;ZÞ ¼ Sgð‘XRxðY Þ;ZÞ ¼ 0

for any vector fields X , Y and Z, where S denote the cyclic sum. The structure

Jacobi operator Rx ¼ Rð�; xÞx has a fundamental role in contact geometry.

Ortega, Pérez and Santos [10] have proved that there are no real hypersurfaces

in PnC, nb 3 with parallel structure Jacobi operator ‘Rx ¼ 0. More generally,

such a result has been extended by [11] due to them. Recently, author et al. have

some classification results with respect to the structure Jacobi operator for real

hypersurfaces in MnðcÞ, c0 0 [4, 5].

Theorem 1 (Ki and Kurihara (in preparation)). Let M be a real hyper-

surface in a complex space form MnðcÞ, c0 0, nb 3 which satisfies ‘xRx ¼ 0.

Then M holds RxfS ¼ RxSf if and only if a ¼ 0 or M is locally congruent to one

of real hypersurfaces of type A1, A2 of PnC or of type A0–A2 of HnC.

Theorem 2 ([5]). Let M be a real hypersurface in a complex space form

MnðcÞ, c0 0, nb 3 which satisfies ‘xRx ¼ 0. Then RxfS ¼ SfRx if and only if M

is locally congruent to one of real hypersurfaces of type A1, A2 of PnC with a0 0

or of type A0–A2 of HnC.

Theorem 3 ([4]). Let M be a real hypersurface in a complex space form

MnðcÞ, c0 0, nb 3. If the structure Jacobi operator is cyclic-parallel, then M is

locally congruent to one real hypersurfaces of type A1, A2 and a tube of radius r
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over complex quadric Qn�1, where cot r ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2cþ 4

p
þ

ffiffiffiffiffi
2c

p
Þ=2 of PnC or of type

A0–A2 of HnC.

However these results are proved for nb 3 and the methods of proofs depend

on this. In this paper we invistigate corresponding results for n ¼ 2 (Theorem 3–7

in Section 4–6).

All manifolds in this paper are assumed to be connected and of class Cy and

the real hypersurfaces are supposed to be oriented.

2. Preliminaries

2.1. Real Hypersurfaces in MnðcÞ, c0 0

We denote by MnðcÞ, c0 0 be a nonflat complex space form with the

Fubini-Study metric ~gg of constant holomorphic sectional curvature 4c and Levi-

Civita connection ~‘‘. For an immersed ð2n� 1Þ-dimensional Riemannian man-

ifold t : M ! MnðcÞ, the Levi-Civita connection ‘ of induced metric and the

shape operator H of the immersion are characterized

~‘‘XY ¼ ‘XY þ gðHX ;Y Þn; ~‘‘X n ¼ �HX

for any vector fields X and Y on M, where g denotes the Riemannian metric of

M induced from ~gg and n a unit normal vector on M. In the sequel the indeces

i; j; k; l; . . . run over the range f1; 2; . . . ; 2n� 1g unless otherwise stated. For a

local orthonormal frame field feig of M, we denote the dual 1-forms by fyig.
Then the connection forms yij are defined by

dyi þ
X
j

yij5yj ¼ 0; yij þ yji ¼ 0:

Then we have

‘ei ej ¼
X
k

ykjðeiÞek ¼
X
k

Gkijek;

where we put yij ¼
P

k Gijkyk. The almost contact metric structure ðf ¼ ðfijÞ;
x ¼

P
i xieiÞ is induced on M by following equation:

JðeiÞ ¼
X
j

fjiej þ xin:

The structure tensor f ¼
P

i fiei and the structure vector x ¼
P

i xiei satisfy
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X
k

fikfkj ¼ xixj � dij ;
X
j

xjfij ¼ 0;
X
i

x2i ¼ 1; fij þ fji ¼ 0;

dfij ¼
X
k

ðfikykj � fjkyki � xihjkyk þ xjhikykÞ;

dxi ¼
X
j

xjyji �
X
j;k

fjihjkyk:

ð2:1Þ

We denote the components of the shape operator or the second fundamental

tensor H of M by hij. The components hij;k of the covariant derivative of H are

given by
P

k hij;kyk ¼ dhij �
P

k hikykj �
P

k hjkyki. Then we have the equation of

Gauss and Codazzi

Rijkl ¼ cðdik djl � dil djk þ fikfjl � filfjk þ 2fijfklÞ þ hikhjl � hilhjk;ð2:2Þ

hij;k � hik; j ¼ cðxkfij � xjfik þ 2xifkjÞ;ð2:3Þ

respectively.

From (2.2) the structure Jacobi operator Rx ¼ ðXijÞ is given by

Xij ¼
X
k; l

hikhjlxkxl �
X
k; l

hijhklxkxl þ cxixj � cdij:ð2:4Þ

From (2.2) the Ricci tensor S ¼ ðSijÞ is given by

Sij ¼ ð2nþ 1Þcdij � 3cxixj þ hhij �
X
k

hikhkj;ð2:5Þ

where h ¼
P

i hii.

First we remark

Lemma 1 ([5]). Let U be an open set in M and F a smooth function on U.

We put dF ¼
P

i Fiyi. Then we have

Fij � Fji ¼
X
k

FkGkij �
X
k

FkGkji:

2.2. The Case Where n ¼ 2

In this section, we treat the case where n ¼ 2.

Now we retake a local orthonormal frame field fe1; e2; e3g in such a way

that
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� e1 ¼ x,
� e2 is in the direction of h12e2 þ h13e3,
� e3 ¼ fe2.

Then we have

x1 ¼ 1; x2 ¼ x3 ¼ 0 and f32 ¼ 1:ð2:6Þ

We put a :¼ h11, b :¼ h12, g :¼ h22, e :¼ h23 and d :¼ h33. Then the shape operator

H and the structure tensor f are represented by matrices

H ¼
a b 0

b g e

0 e d

0
B@

1
CA; f ¼

0 0 0

0 0 �1

0 1 0

0
B@

1
CA;ð2:7Þ

respectively.

Since dxi ¼ 0, we have

y12 ¼ ey2 þ dy3;ð2:8Þ

y13 ¼ �by1 � gy2 � ey3:ð2:9Þ

We put

y23 ¼ X1y1 þ X2y2 þ X3y3:ð2:10Þ

The equations (2.4) and (2.5) are rewritten as

Xij ¼ �ahij þ h1ih1j þ cdi1dj1 � cdij;ð2:11Þ

Sij ¼ ðaþ gþ dÞhij �
X3

k¼1

hikhjk � 3cdi1dj1 þ 5cdij;ð2:12Þ

respectively, where i A f1; 2; 3g.
Now, a fundamental property are stated for later use.

Theorem 4 (Okumura [8], Montiel and Romero [7]). Let M be a real

hypersurface in P2C or H2C. If the shape operator is commuts with the structure

tensor, then M is locally congruent to one of the following:
� in case that P2C,

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p=
ffiffiffiffiffi
4c

p
,

� in case that H2C,

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

H1C.
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3. Real Hypersurfaces with the Condition ‘xRx ¼ 0

Hereafter the indeces i, j, k, l run over the range f1; 2; 3g unless otherwise

stated.

In this section we assume that ‘xRx ¼ 0. The components Xij;k of the

covariant derivativation of Rx ¼ ðXijÞ is given by

X
k

Xij;kyk ¼ dXij �
X
k

Xkjyki �
X
k

Xikykj:

Substituting (2.11) into the above equation, we have

X
k

Xij;kyk ¼ �ðdaÞhij � adhij þ ðdh1iÞh1j þ h1iðdh1jÞð3:1Þ

þ a
X
k

hkjyki � ah1jy1i � bh1jy2i � cdj1y1i

þ a
X
k

hikykj � ah1iy1j � bh1iy2j � cdi1y1j:

In the following, we assume that b0 0.

Our assumption ‘xRx ¼ 0 is equivalent to Xij;1 ¼ 0, which can be stated as

follows:

e ¼ 0; adþ c ¼ 0;ð3:2Þ

ðb2 � agÞ1 ¼ 0;ð3:3Þ

ðb2 � ag� cÞX1 ¼ 0:ð3:4Þ

In the following, using the notion of Lemma 1, we write as follows:

ai ¼ h11; i; bi ¼ h12; i; gi ¼ h22; i; di ¼ h33; i ð1a ia 3Þ:

Now, we denote the equation (2.3) by ðijkÞ simply. Then from (2.3) we have

following equations (112)–(323):

a2 � b1 ¼ 0;ð112Þ

b2 � g1 ¼ 0;ð212Þ

ða� dÞg� b2 þ ðg� dÞX1 � bX2 ¼ �c;ð312Þ

a3 þ 3bd� ab þ bX1 ¼ 0;ð113Þ

b3 � adþ gd� b2 þ ðg� dÞX1 ¼ c;ð213Þ
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d1 þ bX3 ¼ 0;ð313Þ

g3 � 2bd� bgþ ðg� dÞX2 ¼ 0;ð223Þ

d2 þ ðg� dÞX3 ¼ 0:ð323Þ

Remark 1. Above equations (112)–(323) may not use equations (3.3) and

(3.4).

4. The Condition ‘xRx ¼ 0 and RxfS ¼ RxSf

Let M be a real hypersurface in P2C or H2C, which satisfies ‘xRx ¼ 0 and

RxfS ¼ RxSf. Under the assumption ‘xRx ¼ 0, it follows from (2.7), (2.11) and

(2.12) that the condition RxfS ¼ RxSf is equivalent to the following equation

b2 � ag� c ¼ 0:ð4:1Þ

Then taking account of the coe‰cient of y3 in the exterior derivative of (4.1), we

have

2bb3 � ga3 � ag3 ¼ 0:ð4:2Þ

From (312), (113), (213), (223) and (4.1) we have the following:

dg� ðg� dÞX1 þ bX2 ¼ 0;ð4:3Þ

a3 þ 3bd� ab þ bX1 ¼ 0;ð4:4Þ

b3 þ gd� ag� cþ ðg� dÞX1 ¼ 0;ð4:5Þ

g3 � 2bd� bgþ ðg� dÞX2 ¼ 0:ð4:6Þ

Substituting of (4.4)–(4.6) into (4.2), we have

bdðX1 � 4aÞ ¼ 0;

by virtue of (4.3). If d ¼ 0, then by (3.2) we have a contradiction and hence

X1 ¼ 4a:ð4:7Þ

Substituting of this equation into (4.3)–(4.5), we have

bX2 ¼ 4aðg� dÞ � dg;ð4:8Þ

a3 þ 3bdþ 3ab ¼ 0;ð4:9Þ

b3 þ 3ag� 3adþ gd ¼ 0:ð4:10Þ
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It follows from (223), (4.1) and (4.8) that

ag3 þ bð3ag� 6ad� gdÞ ¼ 0:ð4:11Þ

Remark 2. we have already obtained above equations in [5], page 53.

We may put l :¼ a1=a ¼ b1=b. In fact, eliminating X3 from (313) and (323), we

have bd2 þ ðd� gÞd1 ¼ 0 which, together with (3.2) and (112), implies a1=a ¼ b1=b.

From (3.2) and (4.1) we have

d ¼ � c

a
; g ¼ b2 � c

a
:ð4:12Þ

Using above two equations, we can express X2 and X3 by three smooth functions

a, b and l. From (3.2), (212) and (4.1) two equations (4.8) and (323) are rewritten

as

X2 ¼
1

a2b
ð4a2b2 þ b2c� c2Þ;ð4:13Þ

X3 ¼
d2

d� g
¼ cad2

caðd� gÞ ¼
�ca2

a2ðg� dÞ ¼
�cb1

aðagþ cÞ ¼ � c

ab
l;ð4:14Þ

respectively.

On the other hand, taking account of the coe‰cient of y15y2 in the exterior

derivative of (2.10), we have

�X1;2 þ X2;1 þ gX3 þ X1X3 ¼ 0:ð4:15Þ

Again taking account of the coe‰cient of y1 in the exterior derivative of (4.13),

we have

X2;1 ¼ 4b1 þ cl
3c� b2

a2b
;

and therefore the equation (4.15) implies

lð2a2 þ b2 � 2cÞ ¼ 0:ð4:16Þ

The case where l ¼ 0. Then we have a1 ¼ b1 ¼ 0. Thus from (313) we have

X3 ¼ 0 and therefore a2 ¼ d2 ¼ 0 because of (112). Hence, taking account of the

coe‰cient of y1 in the exterior derivative of (4.1), we have g1 ¼ 0, and so b2 ¼ 0.
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Now put F ¼ a and b in Lemma 1. Then we have

a3ðgþ X1Þ ¼ 0; b3ðgþ X1Þ ¼ 0:

If gþ X1 0 0, then we have a3 ¼ b3 ¼ 0, which implies a, b and d are constant.

Furthermore, by (4.1) we see that g is constant. Thus from (4.9)–(4.11) we have

aþ d ¼ 0;ð4:17Þ

3ag� 3adþ gd ¼ 0;ð4:18Þ

3ag� 6ad� gd ¼ 0:ð4:19Þ

Hence, by (3.2) and (4.7) we have a2 � c ¼ 0. Moreover eliminating gd from

(4.18) and (4.19), we have 2b2 þ c ¼ 0 because of (3.2) and (4.1), which is a

contradiction. Therefore X1 ¼ �g, which, together with (4.7), implies g ¼ �X1 ¼
�4a. Thus it follows from (4.9) that g3 ¼ �4a3 ¼ 12bðdþ aÞ. Hence from (4.11)

this contradics ad ¼ 0.

The case where l0 0. Then from (4.16) we have

2a2 þ b2 ¼ 2c:ð4:20Þ

Taking account of the coe‰cient of y1 in the exterior derivative of this equation,

we have lð2a2 þ b2Þ ¼ 0 and so 2a2 þ b2 ¼ 0. It follows from (4.20) that c ¼ 0,

which is a contradiction. Therefore we have b ¼ 0.

Since (2.5) and b ¼ 0, we see that a is constant in M (see [6]). Thus from

(3.1) our assumption Xij;1 ¼ 0 is equivalent to ahij;1 ¼ 0. Put j ¼ 1 in (2.3). Then

by above equation we have ahi1;k ¼ �cafik. Therefore since (2.1) and dxi ¼ 0, we

have

a
X
k; l

hikflkhkj þ a2
X
k

fkihkj ¼ �ahi1; j ¼ cafij ;

which implies that a2ðfH �HfÞ ¼ 0. Hence owing to Theorem 4, we complete

the proof of following Theorem 5.

Theorem 5. Let M be a real hypersurface in P2C or H2C, which satisfies

‘xRx ¼ 0. Then M holds RxfS ¼ RxSf if and only if Hx ¼ 0 or M is locally

congruent to one of the following:
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� in case that P2C,

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p=2 and r0 p=4,
� in case that H2C,

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

H1C.

5. The Condition ‘xRx ¼ 0 and RxfS ¼ SfRx

Let M be a real hypersurface in P2C or H2C, which satisfies ‘xRx ¼ 0 and

RxfS ¼ SfRx. Under the assumption ‘xRx ¼ 0, it follows from (2.7), (2.11) and

(2.12) that the condition RxfS ¼ SfRx is equivalent to the following equation

ðgdþ 4cÞðb2 � ag� cÞ ¼ 0:ð5:1Þ

If b2 � ag� c ¼ 0, then by the same argument as that in Section 4 we have b ¼ 0,

which is a contradiction. Therefore b2 � ag� c0 0. Then from (3.4) and (5.1) we

have

X1 ¼ 0; gd ¼ �4c:ð5:2Þ

Now, taking account of the coe‰cient of y15y2 in the exterior derivative of

y23 ¼ X2y2 þ X3y3, we have

X2;1 þ gX3 ¼ 0:ð5:3Þ

From (5.2) the equation (312) is rewritten as

bX2 ¼ �ðb2 � ag� cÞ þ 4c:

Therefore from (3.3) we have ðbX2Þ1 ¼ 0, which implies

bX2;1 ¼ �b1X2:ð5:4Þ

Hence, by (5.3) we have

bgX3 ¼ b1X2:ð5:5Þ

From (323), (5.5) and (112) it is easy to see that

a2ððd� gÞX2 þ 4bdÞ ¼ 0:

This, together with (223), gives

a2ðbg� 2bd� g3Þ ¼ 0:ð5:6Þ
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If a2 0 0, then we have

g3 ¼ bg� 2bd:ð5:7Þ

By (5.2) we have ðgdÞ3 ¼ 0, which implies that

ag3 � ga3 ¼ 0:

Since b0 0 substituting of (113) and (5.7) into above equation, it is easy to show

that c ¼ 0, which is a contradiction. Hence we have a2 ¼ 0. Then from (112),

(3.3), (5.4) and (5.3) we have

a2 ¼ d2 ¼ b1 ¼ ðagÞ1 ¼ X2;1 ¼ X3 ¼ 0:ð5:8Þ

Taking account of the coe‰cient of y15y3 and y25y3 in the exterior derivative

of y23 ¼ X2y2, we have X2 ¼ �2b and b3 � 2b2 ¼ gdþ 2c, respectively. It follows

from (213) that

b2 ¼ 8c;ð5:9Þ

which implies b3 ¼ 0. Thus from (213) we have b2 ¼ �6c, which contradicts (5.9).

Therefore M is a Hopf hypersurface. Thus by the same argument as that in

Section 4 we complete proof of following Theorem 6.

Theorem 6. Let M be a real hypersurface in P2C or H2C, which satisfies

‘xRx ¼ 0. Then M holds RxfS ¼ SfRx if and only if Hx ¼ 0 or M is locally

congruent to one of the following:
� in case that P2C,

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p=2 and r0 p=4,
� in case that H2C,

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

H1C.

6. Cyclic-Parallel Structure Jacobi Operator Condition

In this section we invistigate the condition ‘‘cyclic-parallel structure Jacobi

operator’’ (see [4]). First in [4] the proof of Main Thorem suggests following

proposition.

Proposition 1. Let M be a Hopf real hypersurface in P2C or H2C. If the

structure Jacobi operator is cyclic-parallel, then M is locally congruent to one of

the following:
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� in case that P2C,

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p=
ffiffiffiffiffi
4c

p
,

ðBÞ a tube of radius r over complex quadric Q1, where cot r ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2cþ 4

p
þ

ffiffiffiffiffi
2c

p
Þ=2,

� in case that H2C,

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

H1C.

We suppose that M is a non-Hopf hypersurface in P2C or H2C satisfying

Sgð‘XRxðY Þ;ZÞ ¼ 0 for any vector fields X , Y and Z, where S denote the cyclic

sum. Then we have b0 0. Our assumption Sgð‘XRxðY Þ;ZÞ ¼ 0 for any vector

fields X , Y and Z is equivalent to Xij;k þ Xjk; i þ Xki; j ¼ 0. This equation is

rewritten as

akhij þ aihjk þ ajhki þ aðhijk þ hjki þ hkijÞð6:1Þ

� h1jh1ik � h1kh1ji � h1ih1kj � h1jh1ki � h1kh1ij � h1ih1jk

þ ah1jðG1ik þ G1kiÞ þ ah1kðGlji þ G1ijÞ þ ah1iðG1kj þ G1jkÞ

þ bh1jðG2ik þ G2kiÞ þ bh1kðG2ji þ G2ijÞ þ bh1iðG2kj þ G2jkÞ

þ cd1jðG1ik þ G1kiÞ þ cd1kðGlji þ G1ijÞ þ cd1iðG1kj þ G1jkÞ

� a
X
l

hljðGlik þ GlkjÞ � a
X
l

hlkðGlji þ GlijÞ � a
X
l

hliðGlkj þ GljkÞ ¼ 0;

because of (3.1). Then the equation (6.1) can be stated as follows:

e ¼ 0;ð6:2Þ

adþ c ¼ 0;ð6:3Þ

ðb2 � agÞ1 ¼ 0;ð6:4Þ

ðagÞ3 þ 2ðb2 � ag� cÞX2 ¼ 0;ð6:5Þ

ðb2 � ag� cÞðX1 � dÞ ¼ 0;ð6:6Þ

ðb2 � ag� cÞX3 ¼ 0:ð6:7Þ

Hereafter we shall use (6.2) without quoting. Then from Remark 1 we have

equations (112)–(323) in Section 3. If b2 � ag� c ¼ 0, then by the same argu-
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ment as that in Section 4 we have b ¼ 0, which is a contradiction. Therefore

b2 � ag� c0 0. Then equations (6.6) and (6.7) imply

X3 ¼ 0; X1 ¼ d:ð6:8Þ

It follows from (112), (313), (323), (3.3) and (212) that

a1 ¼ d1 ¼ a2 ¼ d2 ¼ b1 ¼ b2 ¼ g1 ¼ 0:ð6:9Þ

From (312), (113) and (6.8) we have the following

bX2 þ ðb2 � ag� cÞ þ d2 ¼ 0;ð6:10Þ

a3 þ 4bd� ab ¼ 0:ð6:11Þ

Taking account of the coe‰cient of y15y3 in the exterior derivative of (6.10),

we have

d3 ¼ �bd� 2X2d;ð6:12Þ

which, together with (6.10) and (6.11), implies

�2b2dþ ad2 þ aðb2 � ag� cÞ ¼ 0:

Taking account of the coe‰cient of y2 in the exterior derivative of above

equation, we have g2 ¼ 0.

Now put F ¼ a; g and i ¼ 1, j ¼ 2 in Lemma 1. Then, we have

a3ðgþ dÞ ¼ g3ðgþ dÞ ¼ 0:

If gþ d0 0, then from (6.5) and (6.12) we have a contradicton. Thus gþ d ¼ 0,

which also contradicts (6.5) and (6.12). Hence M is a Hopf hypersurface.

Therefore from Proposition 1 we complete proof of following Theorem 7.

Theorem 7. Let M be a real hypersurface in P2C or H2C. If the structure

Jacobi operator is cyclic-parallel, then M is locally congruent to one of the

following:
� in case that P2C,

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p=
ffiffiffiffiffi
4c

p
,

ðBÞ a tube of radius r over complex quadric Q1, where cot r ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2cþ 4

p
þ

ffiffiffiffiffi
2c

p
Þ=2,

� in case that H2C,

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

H1C.
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[10] Ortega, M., Pérez, J. D. and Santos, F. G., Non-existence of real hypersurfaces with parallel

structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36,

1603–1613 (2006)
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