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THE GROMOV-HAUSDORFF DISTANCES BETWEEN

ALEXANDROV SPACES OF CURVATURE BOUNDED

BELOW BY 1 AND THE STANDARD SPHERES

By

Ayato Mitsuishi

Abstract. Main result in the present paper is the following: If an

n-dimensional Alexandrov spaces X n of curvatureb 1 has radius

greater than p� e, then the Gromov-Hausdor¤ distance between X n

and the standard sphere Sn is less than tðeÞ. Here, tðeÞ is an explicit

positive function depending only on e such that lime!0 tðeÞ ¼ 0. We

prove this by using quasigeodesics on Alexandrov spaces.

1. Introduction and Main Results

Alexandrov spaces are metric spaces having a generalized notion of sectional

curvature bounds. Let X be an Alexandrov space with curvature bounded from

below by 1 possibly of infinite dimensional. It is known by [3] that X has

diameter less than or equal to p. For a metric space A, its radius is defined

by rad A ¼ infa AA supa 0 AA dða; a 0Þ. Obviously, 1
2 diam Aa rad Aa diam A. The

maximum radius theorem states that if X has radius p then X is isometric to the

unit sphere of some Hilbert space with the angle metric ([8], cf. [2]). When we

write X n for a natural number n, this denotes an n-dimensional X . Perelman-

Petrunin [14], (cf. [11]) and Grove-Petersen [5] proved, in di¤erent ways, that if

X n has radius greater than p
2 , then X n is homeomorphic to Sn.

Let us consider the Riemannian case. Shiohama and Yamaguchi [16] proved

Theorem 1.1 ([16]). Let Mn be an n-dimensional Riemannian manifold of

sectional curvature greater than or equal to 1. If Mn has radius greater than p� e,

then the Gromov-Hausdor¤ distance dGHðMn;SnÞ between Mn and Sn is less than

tðeÞ. Here, tðeÞ is an explicit positive function depending only on e such that

lime!0 tðeÞ ¼ 0.
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Furthermore, if e is su‰ciently small depending on n, then Mn must be

di¤eomorphic to Sn with a di¤eomorphism having the norm of its di¤erential tnðeÞ-
close to 1. Here, tnðeÞ is an explicit positive function depending on e and n such

that lime!0 tnðeÞ ¼ 0.

Now, a natural question must emerge. Is it true that if an Alexandrov space

X n of curvatureb 1 has radius greater than p� e, then the Gromov-Hausdor¤

distance dGHðX n;SnÞ is less than tðeÞ? In the present paper, we solve the above

problem a‰rmatively. The main results are

Theorem 1.2. Let n be a nonnegative integer. Let X n be an n-dimensional

Alexandrov space of curvatureb 1. If its radius rad X n is greater than p� e then

dGHðX n;SnÞ is less than tðeÞ. Here, tðeÞ is an explicit function depending only on e

such that lime!0 tðeÞ ¼ 0.

In particular, for a sequence X n
i of n-dimensional Alexandrov spaces of

curvatureb 1, rad X n
i ! p as i ! y is equivalent to X n

i ! Sn as i ! y in the

Gromov-Hausdor¤ topology.

Also, the stability theorems in [3, Theorem 9.5] or [17, Corollary 0.4], to-

gether with Theorem 1.2 implies

Corollary 1.3. For any nonnegative integer n, there is positive constant

e0ðnÞ such that if an n-dimensional Alexandrov space X n of curvatureb 1 having

radius > p� e for ea e0ðnÞ, then X is tnðeÞ-isometric to the standard sphere Sn, i.e.

there is a bijective map f : X ! Sn such that

sup
x0y AX

dð f ðxÞ; f ðyÞÞ
dðx; yÞ � 1

����
����< tnðeÞ:

Here, tnðeÞ is an explicit function depending on e and n such that lime!0 tnðeÞ ¼ 0.

Now we define Mðn; eÞ as the set of all isometry classes of n-dimensional

Alexandrov spaces of curvatureb 1 having radius > p� e, and

ynðeÞ :¼ maxfdGHðX n;SnÞ jX n A Mðn; eÞg:

In this notation, Theorem 1.2 states the existence of an explicit estimate:

ynðeÞa tðeÞ, which is not depending on n. Grove and Petersen essentially proved
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lime!0 ynðeÞ ¼ 0, in the proof of [5, Theorem 3] (cf. [2, Exercise 10. 9. 15]). Their

proof was done by using the stability theorem for the unit spheres [3, Theorem

9.5] (cf. [10]) and the maximal radius theorem, and the filling radius [4].

To prove Theorem 1.1, Shiohama and Yamaguchi used the geodesic

completeness of complete Riemannian manifolds. But on an Alenxadrov space, a

geodesic can not be extended to a complete geodesic. To avoid this di‰culty, we

will use quasigeodesics on Alexandrov spaces instead of geodesics.

Quasigeodesics on convex hypersurfaces in R3 were introduced by A. D.

Alexandrov [1]. The precise history of them were written in [14], [13]. For finite

dimensional Alexandrov spaces, Perelman-Petrunin formulated them as curves

satisfying some comparison inequality (2.3.1) which is similar to that for a

geodesic on an Alexandrov space. (cf. Definition 2.3). We will use the following

Theorem 1.4 instead of the geodesic completeness.

Theorem 1.4 ([13], [14]). Any finite dimensional Alexandrov space X satisfies

the following property (1.4.1).

For any p A X and x A Sp; there is a quasigeodesic g : ½0; aÞ ! X

such that gð0Þ ¼ p and gþð0Þ ¼ x and any quasigeodesic can be

extended to a complete quasigeodesic:

9>=
>;ð1:4:1Þ

Since tðeÞ in Theorem 1.2 does not depend on n, we expect to prove that an

infinite dimensional Alexandrov space of curvatureb 1 having radius > p� e is

tðeÞ-close to the unit sphere in a Hilbert space in the sense of Gromov-Hausdor¤

distance.

We can have a weak answer for the above expectation. Under the assumption

(1.4.1), we can prove the next statement.

Theorem 1.5. Let X be an Alexandrov space of curvatureb 1 possibly of

infinite dimensional. Assume that X satisfies the property (1.4.1). If rad X > p� e

then the Gromov-Hausdor¤ distance dGHðX ;SSpÞ between X and the suspension

SSp of the space of directions Sp at any p A X is less than tðeÞ.
In particular, if Sp is isometric to the unit sphere SH of a Hilbert space H for

some p A X , then dGHðX ;SHÞ < tðeÞ.

A point p in an Alexandrov space X n is regular if its space of the directions

Sp is isometric to Sn. Burago-Gromov-Perelman [3] and Otsu-Shioya [9] proved

the next theorem.
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Theorem 1.6 ([3], [9]). Let X n be an n-dimensional Alexandrov space of

curvatureb k. Then a subset RX consisting of all regular points of X n has full

n-dimensional Hausdor¤ measure. In particular, RX is dense in X n.

Theorem 1.6 together with Theorem 1.4 and Theorem 1.5 implies Theorem 1.2.

Therefore we have only to prove Theorem 1.5. This will be done in the last section.

Finally, in this section, we provide a few problems.

Problem 1.7. (1) Is Theorem 1.4 valid without the assumption of finiteness

of dimension of X ?

(2) Is there a regular point p in an infinite dimensional Alexandrov space X

such that Sp is isometric to the unit sphere of a Hilbert space? Moreover,

are there regular points densely in X ?

(3) Is there a universal constant e0 > 0 instead of e0ðnÞ such that Corollary

1.3 is valid? Can we take tðeÞ instead of tnðeÞ in Corollary 1.3? (Even

if X n is a Riemannian manifold, these problems are still open.)

(4) For an infinite dimensional Alexandrov space X of curvatureb 1 having

radius rad X > p� e, is it true that X and SSp for some p A X are tðeÞ-
isometric? Moreover, is it true that X and the unit sphere SH for some

Hilbert space H are tðeÞ-isometric?

2. Settings

First of all, we recall the definitions and properties around Alexandrov

spaces. The reader may refer to [2], [3], [15] for more informations.

For a while, A denotes a metric space, and fix p, q A A and k A R. The

distance between p and q A A is denoted by dðp; qÞ, dX ðp; qÞ, or jpqj. The length

of a curve g is denoted by LðgÞ. The symbol kþ denotes maxfk; 0g, and Mk

denotes the k-plane which is a simply-connected surface of constant curvature k.

Geodesics are always parametrized by arclength. pq denotes a geodesic from p

to q. Sp ¼ SpX denotes the space of directions at p. The distance function on Sp

will be denoted by ff. C ðkÞ
p ¼ C ðkÞSp denotes the (k-)tangent cone at p which is

the k-cone over Sp. Here, the k-cone over A ¼ ðA; dAÞ is the completion of a

warped product pseudo-metric space ðA;minfdA; pgÞ �snk

�
0; pffiffiffiffi

kþ
p

�
with the warping

function snk. Here, snk :
�
0; pffiffiffiffi

kþ
p

�
! R is the solution of the ODE: sn 00

k þ k snk ¼ 0,

snkð0Þ ¼ 0, and sn 0
kð0Þ ¼ 1. An element ða; tÞ A C ðkÞA is often denoted by ta, and

1a is simply denoted by a. Set jða; tÞj ¼ t for ða; tÞ A C ðkÞA. The 1-cone is called

the suspension over A denoted by SA. A point Sp � f0g (respectively Sp � fpg) in
SSp is denoted by op (respectively �op).

4 Ayato Mitsuishi



For three points a0, a1, a2 in a metric space with a0 0 a1; a2 and

ja0a1j þ ja1a2j þ ja2a0j < 2pffiffiffiffi
kþ

p , there are points ai in Mk, uniquely up to isometry,

such that jaiajj ¼ jaiajj for i; j ¼ 1; 2; 3, We denote ~ffffa1a0a2 by ffa1a0a2, and call

it a comparison angle of a1a0a2.

Definition 2.1. A metric space X is called an Alexandrov space of

curvatureb k if X satisfies the following two properties:

(1) The distance dðx; yÞ between any two points x, y in X is given by the

infimum of the lengths LðgÞ of curves g connecting x and y.

(2) There is a open covering fUag of X such that for any a and x0, x1, x2, x3

in Ua with x0 0 xi and jx0xij þ jx0xjj þ jxixjj < 2pffiffiffiffi
kþ

p for i; j A f1; 2; 3g, we have

~ffffx1x0x2 þ ~ffffx2x0x3 þ ~ffffx3x0x1 a 2p:

There are many other equivalent definitions for Alexandrov spaces. From the

definition, any geodesic in an Alexandrov space does not branch.

A geodesic pq is called almost extendable if for all e > 0 there is x such that
�ffffqpx > p� e. A subset in a topological space is called Gd if it is intersection

of countable collection of open subsets. Plaut proved the following theorem [15,

Theorem 1.4].

Theorem 2.2 ([15]). Let X be an Alexandrov space of (locally) curvature

bounded from below and p A X. Then there is a dense Gd subset Jp such that for all

q A Jp there is a unique, almost extendable geodesic pq.

For a function f : X ! R, its absolute gradient j‘x f j at x A X is defined as

j‘x f j ¼ max lim sup
y!x

f ðyÞ � f ðxÞ
dðx; yÞ ; 0

( )
:

In this notation, Jp is precisely given by (cf. [15])

Jp ¼ fx A X j j‘x distpj ¼ 1g:

For a geodesic g ¼ pq on X with gð0Þ ¼ p, gþð0Þ ¼ "q
p A Sp denotes the

direction of pq at p and, we put logp q ¼ ð"q
p ; dðp; qÞÞ A Cp. For a curve

g : ½0; a� ! X on an Alexandrov space X , a (forward) direction v ¼ gþð0Þ A Cp of

g at p ¼ gð0Þ is defined as

v ¼ lim
tj!0

logp xj

if its limit exists, where xj A Jp is any sequence with limtj!0
dðxj ; gðtjÞÞ

tj
¼ 0.
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For two curves a : ½0; aÞ ! X and b : ½0; bÞ ! X having the directions at

t ¼ 0 with að0Þ ¼ bð0Þ, the angle ffða; bÞ between these curves at t ¼ 0 is defined

by ff
� aþð0Þ
jaþð0Þj ;

bþð0Þ
jbþð0Þj

�
in Sað0Þ. For two geodesics pq and pr, denotes ffqpr by the

angle between pq and pr.

Perelman and Petrunin formulated quasigeodesics on Alexandrov spaces as

follows.

Definition 2.3 ([13], [14]). A curve parametrized by arclength g : ½0; a� ! X

is called (k-)quasigeodesic on an Alexandrov space X of curvatureb k if there is

a unique forward direction gþðtÞ A CgðtÞ at any t A ½0; aÞ, and for any p A JgðtÞ with

dðgðsÞ; pÞ < p=
ffiffiffiffiffiffi
kþ

p
for all s A ½t; a�, we have

dðgðsÞ; pÞa dðgðsÞ; pÞ for any s A ½t; a�;ð2:3:1Þ

where g : ½t; a� ! Mk is a geodesic with length a� t such that

dðgðtÞ; pÞ ¼ dðgðtÞ; pÞ and ffðgþðtÞ; "p

gðtÞÞ ¼ ffðg; gðtÞpÞ:ð2:3:2Þ

The pair of geodesics ðg; gðtÞpÞ satisfying (2.3.2) as above is called a comparison

hinge of the hinge ðg; gðtÞpÞ. A quasigeodesic with infinite length is called a

complete quasigeodesic.

There are many other equivalent definition of quasigeodesics in [13] and [14].

From the definition, geodesics on an Alexandrov space of curvatureb k are

(k-)quasigeodesics. If the dimension of X is finite, then the assumption of the

existence of forward directions in a quasigedesic g can be taken o¤ in Definition

2.3. (cf. [14], [13]).

Remark 2.4. Quasigeodesics may branch. Set C ¼ C ð0ÞS the Euclidean cone

over an Alexandrov space S of curvatureb 1. For x A S, the corresponding ray gx
in C is naturally defined as gxðtÞ ¼ ðx; tÞ for t A ½0;yÞ. Assume that S has the

diametera p=2. Then for any x, h A S we have concatenating curve g : R ! C

such that gð�tÞ ¼ gxðtÞ and gðtÞ ¼ ghðtÞ for any tb 0 which is a quasigeodesic

starting at gð�1Þ ¼ gxð1Þ ¼ ðx; 1Þ A C tangent to the direction gþx ð1� tÞjt¼1 A Sðx;1Þ
and branch at the origin.

Quasigeodesics can not branch in geodesic directions:

Lemma 2.5. Let X be an Alexandrov space with curvatureb k and p A X.

Suppose that there is a geodesic g : ½0; a� ! X with initial vector x ¼ gþð0Þ A Sp and
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p ¼ gð0Þ. Then any quasigeodesic s starting at sð0Þ ¼ p with initial vector

sþð0Þ ¼ x coincides with g on ½0:a�.

Proof. Take any t A ½0; a�. By the assumption, the comparison hinge ðg; sÞ
of ðg; sÞ has angle ffðg; sÞ ¼ ffðx; xÞ ¼ 0. Thus by the hinge comparison (2.3.1), we

have gðtÞ ¼ sðtÞ. r

Now, we summarize the fundamental propositions for Alexandrov spaces

which can be found in [3]. We will implicitly use those propositions in the proof

of main results.

Proposition 2.6 ([3]). Let X be an Alexandrov space of curvatureb k. The

following are true.

(1) For any x0; x1; x2; x3 A X with jx0xij þ jx0xjj þ jxixjj < 2pffiffiffiffi
kþ

p for i; j A

f1; 2; 3g, we have
P

1ai< ja3
~ffffxix0xj a 2p.

(2) For any x1, x2, x3 in the space of directions Sp of any p A X , we have

jx1x2j þ jx2x3j þ jx3x1ja 2p.

(3) If X has curvatureb 1 then for any x1; x2; x3 A X , we have jx1x2j þ
jx2x3j þ jx3x1ja 2p.

3. Proof of Main Results

We start to prove Theorem 1.5 (and hence 1.2) in this section. Its proof will

be done along the same line as in [16]. However, as expressed in the introduction,

we make use of the existence property (1.4.1) for quasigeodesics instead of the

geodesic completeness.

Now, we fix an Alexandrov space X of curvatureb 1 having radius > p� e

satisfying the property (1.4.1). For any p A X , we denote p� a point which

satisfies dðp; p�Þ > p� e. Since we assume radius > p� e, we can have p�.

Lemma 3.1. The radius of SSp is greater than p� e for any p A X.

Proof. For any v in SSpnfop;�opg, take a quasigeodesic g : ½0; jvj� ! X

such that gð0Þ ¼ p and gþð0Þ ¼ v
jvj . Put x ¼ gðjvjÞ and take x� in Jp. Take

geodesics g from op to v, and s from op to logpðx�Þ in SSp. By the construction,

ðg; sÞ configurates a comparison hinge of ðg; px�Þ on SSp. By (2.3.1) we have

dðv; logpðx�ÞÞb dðx; x�Þ > p� e:

Therefore it completes the proof of the lemma. r
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Remark 3.2. An argument similar to the proof of [14, Proposition] or

[11, Proposition 3.1] can be applied to our X , to prove that the radius of Sp is

greater than p� e. This also implies Lemma 3.1.

We will use the next notation. A function tðdjeÞ is an explicit positive

function depending only on d and e defined on fðd; eÞ j d > 0 and 0 < e < tðdÞg
for some tðdÞ such that lime!0 tðdjeÞ ¼ 0 for fixing d.

Lemma 3.3. Let g be a quasigeodesic on X starting at p ending at x. Let s

be a geodesic starting at p ending x�. If d < jpxjaLðgÞ < p� d, then we have

p� ffðg; sÞ < tðdjeÞ.

Proof. Take a comparison hinge ðg; sÞ of ðg; sÞ. By the assumption,

d < LðgÞ ¼ LðgÞ < p� d, LðsÞ ¼ LðsÞ ¼ jpx�jb jxx�j � jpxj > d� e, and LðsÞa
2p� jxx�j � jpxj < p� dþ e. The hinge comparison inequality (2.3.1) implies

jxx�jb jxx�j > p� e;

where x and x� are corresponding points for x and x� in the comparison hinge.

Thus by the elementary spherical geometry, ffðg; sÞ ¼ ffðg; sÞ > p� tðdjeÞ. r

Lemma 3.4. Let g : ½0; p� ! X be a quasigeodesic. Then dðgð0Þ; gðpÞÞ >
p� 2e.

Moreover, we have

j jt� sj � dðgðtÞ; gðsÞÞj < 2eð3:4:1Þ

for any t; s A ½0; p�.

Proof. Set p ¼ gð0Þ and take p� A Jp. Let s be a geodesic from p to p�.

Then the definition of quasigeodesic implies dðp�; gðpÞÞ < e. Hence, dðp; gðpÞÞ >
dðp; p�Þ � dðp�; gðpÞÞ > p� 2e.

To show the second assertion, we consider the following formula

ðt� jgð0ÞgðtÞjÞ þ ðs� t� jgðtÞgðsÞjÞ þ ðp� s� jgðsÞgðpÞjÞð3:4:2Þ

¼ p� ðjgð0ÞgðtÞj þ jgðtÞgðsÞj þ jgðsÞgðpÞjÞ

a p� jgð0ÞgðpÞj

< 2e:
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Since a quasigeodesic is 1-Lipschitz, all three terms in (3.4.2) are nonnegative.

Therefore, we have (3.4.1). r

Lemma 3.5. Let p; x; y A X be points such that dðp; xÞ > d, and g be a

quasigeodesic from p to x, and s be a geodesic from p to y. Suppose that

LðgÞ < p� d. If y is su‰ciently near x, then the angle between g and s at p is less

than tðdjeÞ.

Proof. Since y is su‰ciently near x, we can take x� ¼ y� in Jp. The as-

sumption: d < jpxjaLðgÞ < p� d and Lemma 3.3 implies ffðpx�; gÞ > p� tðdjeÞ
and ffðpy�; sÞ > p� tðdjeÞ. Since ffðpx�; gÞ þ ffðpx�; sÞ þ ffðg; sÞa 2p, we have

ffðg; sÞ < tðdjeÞ. r

Now, we begin to fix a quasigeodesics-map from SSp to X like as the

exponential map at p. First, we already define logp : Jp ! SSp by

Jp C x 7! ð"x
p ; jpxjÞ A Sp � ½0; p�:

Then we can define an exponential map expp : logðJpÞ ! X as the inverse of

logp. And next, for any x A Sp, we fix a quasigeodesic gx ¼ gðx; �Þ : ½0; p� ! X with

initial direction gþx ð0Þ ¼ x. By Lemma 2.5, we have gð"x
p ; dðp; xÞÞ ¼ x for any

x A Jp. Namely, gð"x
p ; �Þj½0;dðp;xÞ� is a geodesic and the quasigeodesics-map

f : SSp C ðx; tÞ 7! gðx; tÞ A X

is an extension of the exponential map. Of course, gxðpÞ is depending on x A Sp.

Thus f is multivalued at �op ¼ Sp � fpg A SSp. f ðpxÞ is not simply f of �op, we

absolutely regard f ðpxÞ as gxðpÞ for x A Sp. Lemma 3.4 implies j f ðpxÞ f ðphÞj < 4e

for every x; h A Sp.

Lemma 3.6. For any v1; v2 A SSp, jdðv1; v2Þ � dð f ðv1Þ; f ðv2ÞÞj < tðeÞ.

Proof. For i ¼ 1; 2, put xi ¼ vi
jvi j , and gi : ½0; jvij� ! X quasigeodesics defined

by giðtÞ ¼ f ðxi; tÞ, and xi ¼ f ðviÞ.
First, we assume that jvija d for some i ¼ 1; 2. Without loss of generality,

we can do that jv1ja d. Since quasigeodesics are 1-Lipschitz, jpx1ja d. Thus,

we have

j jx1x2j � jpx2j ja jpx1ja d;

j jv1v2j � jv2j ja jv1ja d:
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This together with Lemma 3.4 implies

j jv1v2j � jx1x2j ja 2dþ j jv2j � jpx2j j < 2dþ 2e:

Next, we may assume that jv1jb p� d. By Lemma 3.4, we can estimate the

following value for v A SSpnfGopg and f ðvÞ ¼ x.

jdðp�; xÞ � dð�op; vÞja jdðp�; xÞ � ðp� dðp; xÞÞj þ jp� dðp; xÞ � dð�op; vÞj

< 2eþ j�dðp; xÞ þ jvj j

< 4e:

By assumption, we have

jx1 p�ja j f ðv1Þ f ðpx1Þj þ j f ðpx1Þp�j < p� jv1j þ 3ea dþ 3e:

Thus we have

j jx1x2j � jv1v2j ja j jx1x2j � jx2 p�j j þ j jx2 p�j � j�opv2j j þ j j�opv2j � jv1v2j j

< jx1 p�j þ 4eþ j�opv1j

a 2dþ 10e:

Lastly, assume that d < jvij < p� d for any i ¼ 1; 2. By the proof of Lemma

3.1, we can take logpðx�
1 Þ A SSp. Put v3 ¼ logpðx�

1 Þ and x3 ¼ x�
1 ¼ f ðv3Þ. For

i ¼ 1; 2; 3, set geodesics gi from op to vi and quasigeodesics gi ¼ f � gi from p to

xi. Remark that g3 is geodesic.

Take a point y1 A Jp su‰ciently close to x1 and put a geodesic s1 from p

to y1. Then by Lemma 3.5 we have ffðg1; s1Þ < tðdjeÞ. It follows that

jffðs1; g2Þ � ffðg1; g2Þj < tðdjeÞ:

Therefore, by the hinge comparison (2.3.1), we have

dðx1; x2Þa dðv1; v2Þ þ tðdjeÞ:

On the other hand, using (2.3.1) for ðg3; g2Þ at (3.6.1), we have

jx1x2jb jx1x�
1 j � jx�

1x2jð3:6:1Þ

> p� e� jv3v2j

b p� e� ð2p� jv3v1j � jv1v2jÞ

> jv1v2j � 2e:
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Therefore we have in any case,

j jx1x2j � jv1v2j j < tðdjeÞ þ tðdÞ:

Since d is arbitrary, if we now take a suitable function d ¼ dðeÞ in the explicit

forms of tðdjeÞ and tðdÞ, (e.g. put dðeÞ ¼
ffiffi
e

p
), then we complete the proof of the

lemma. r

From the definition of the map f , the closure of the image of f is X . Then it

follows together with Lemma 3.6 that the Gromov-Hausdor¤ distance between X

and SSp is less than tðeÞ. It completes the proof of Theorems 1.5 and 1.2.
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