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THE GROMOV-HAUSDORFF DISTANCES BETWEEN
ALEXANDROYV SPACES OF CURVATURE BOUNDED
BELOW BY 1 AND THE STANDARD SPHERES

By

Ayato MITSUISHI

Abstract. Main result in the present paper is the following: If an
n-dimensional Alexandrov spaces X" of curvature > 1 has radius
greater than 7 — ¢, then the Gromov-Hausdorff distance between X"
and the standard sphere S" is less than 7(¢). Here, 7(¢) is an explicit
positive function depending only on ¢ such that lim, o 7(¢) = 0. We
prove this by using quasigeodesics on Alexandrov spaces.

1. Introduction and Main Results

Alexandrov spaces are metric spaces having a generalized notion of sectional
curvature bounds. Let X be an Alexandrov space with curvature bounded from
below by 1 possibly of infinite dimensional. It is known by [3] that X has
diameter less than or equal to n. For a metric space A, its radius is defined
by rad A = inf,c 4 sup, .4 d(a,a’). Obviously, } diam 4 <rad 4 < diam A. The
maximum radius theorem states that if X has radius z then X is isometric to the
unit sphere of some Hilbert space with the angle metric ([8], cf. [2]). When we
write X" for a natural number n, this denotes an n-dimensional X. Perelman-
Petrunin [14], (cf. [11]) and Grove-Petersen [5] proved, in different ways, that if
X" has radius greater than 7, then X" is homeomorphic to S”".

Let us consider the Riemannian case. Shiohama and Yamaguchi [16] proved

THEOREM 1.1 ([16]). Let M" be an n-dimensional Riemannian manifold of
sectional curvature greater than or equal to 1. If M" has radius greater than ©w — ¢,
then the Gromov-Hausdorff distance dgy(M",S") between M" and S" is less than
7(e). Here, 1(¢) is an explicit positive function depending only on ¢ such that
lim, ¢ 7(¢) = 0.
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Furthermore, if ¢ is sufficiently small depending on n, then M" must be
diffeomorphic to S" with a diffeomorphism having the norm of its differential t,(¢)-
close to 1. Here, t,(¢) is an explicit positive function depending on & and n such
that lim,_o 7,(g) = 0.

Now, a natural question must emerge. Is it true that if an Alexandrov space
X" of curvature > | has radius greater than = — ¢, then the Gromov-Hausdorff
distance dgu(X",S") is less than 7(¢)? In the present paper, we solve the above
problem affirmatively. The main results are

THEOREM 1.2. Let n be a nonnegative integer. Let X" be an n-dimensional
Alexandrov space of curvature > 1. If its radius rad X" is greater than . — ¢ then
dou (X", S") is less than t(¢). Here, t(¢) is an explicit function depending only on &
such that lim,_ 7(¢) = 0.

In particular, for a sequence X! of n-dimensional Alexandrov spaces of

curvature > 1, rad X' — n as i — oo is equivalent to X' — S" as i — oo in the
Gromov-Hausdorff topology.

Also, the stability theorems in [3, Theorem 9.5] or [17, Corollary 0.4], to-
gether with Theorem 1.2 implies

COROLLARY 1.3. For any nonnegative integer n, there is positive constant
eo(n) such that if an n-dimensional Alexandrov space X" of curvature > 1 having
radius > n — ¢ for ¢ < g(n), then X is t,(¢)-isometric to the standard sphere S", i.e.
there is a bijective map f: X — S" such that

d(/(x), /()

su — e ]I ™i€).
x;ﬁyEX d(x, y) ()

Here, 1,(¢) is an explicit function depending on ¢ and n such that lim,_o 7,(¢) = 0.

Now we define .#(n,¢) as the set of all isometry classes of n-dimensional
Alexandrov spaces of curvature > 1 having radius > 7 — ¢, and

0,(e) := max{dgy (X", S") | X" € .4 (n,e)}.

In this notation, Theorem 1.2 states the existence of an explicit estimate:
0,(¢) < 7(¢), which is not depending on n. Grove and Petersen essentially proved
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lim,_o 0,(¢) = 0, in the proof of [5, Theorem 3] (cf. [2, Exercise 10. 9. 15]). Their
proof was done by using the stability theorem for the unit spheres [3, Theorem
9.5] (cf. [10]) and the maximal radius theorem, and the filling radius [4].

To prove Theorem 1.1, Shiohama and Yamaguchi used the geodesic
completeness of complete Riemannian manifolds. But on an Alenxadrov space, a
geodesic can not be extended to a complete geodesic. To avoid this difficulty, we
will use quasigeodesics on Alexandrov spaces instead of geodesics.

Quasigeodesics on convex hypersurfaces in R® were introduced by A. D.
Alexandrov [1]. The precise history of them were written in [14], [13]. For finite
dimensional Alexandrov spaces, Perelman-Petrunin formulated them as curves
satisfying some comparison inequality (2.3.1) which is similar to that for a
geodesic on an Alexandrov space. (cf. Definition 2.3). We will use the following
Theorem 1.4 instead of the geodesic completeness.

THEOREM 1.4 ([13], [14]). Any finite dimensional Alexandrov space X satisfies
the following property (1.4.1).

For any pe X and £e€X,, there is a quasigeodesic y: [0,a) — X
(1.4.1) such that y(0) = p and y"(0) = ¢ and any quasigeodesic can be
extended to a complete quasigeodesic.

Since 7(¢) in Theorem 1.2 does not depend on n, we expect to prove that an
infinite dimensional Alexandrov space of curvature > 1 having radius > 7 — ¢ is
7(¢)-close to the unit sphere in a Hilbert space in the sense of Gromov-Hausdorff
distance.

We can have a weak answer for the above expectation. Under the assumption
(1.4.1), we can prove the next statement.

THEOREM 1.5. Let X be an Alexandrov space of curvature > 1 possibly of
infinite dimensional. Assume that X satisfies the property (1.4.1). If rad X >n —¢
then the Gromov-Hausdorff" distance dop(X,ZX,) between X and the suspension
X%, of the space of directions X, at any p € X is less than 1(g).

In particular, if ¥, is isometric to the unit sphere Sy of a Hilbert space H# for
some pe X, then dou(X,Sx) < t(¢).

A point p in an Alexandrov space X" is regular if its space of the directions
%, is isometric to S". Burago-Gromov-Perelman [3] and Otsu-Shioya [9] proved
the next theorem.
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THEOREM 1.6 ([3], [9]). Let X" be an n-dimensional Alexandrov space of
curvature > k. Then a subset Ry consisting of all regular points of X" has full
n-dimensional Hausdorff measure. In particular, Ry is dense in X".

Theorem 1.6 together with Theorem 1.4 and Theorem 1.5 implies Theorem 1.2.
Therefore we have only to prove Theorem 1.5. This will be done in the last section.
Finally, in this section, we provide a few problems.

ProBLEM 1.7. (1) Is Theorem 1.4 valid without the assumption of finiteness
of dimension of X?

(2) Is there a regular point p in an infinite dimensional Alexandrov space X
such that X, is isometric to the unit sphere of a Hilbert space? Moreover,
are there regular points densely in X?

(3) Is there a universal constant g > 0 instead of & (n) such that Corollary
1.3 is valid? Can we take 7(¢) instead of 7,(¢) in Corollary 1.3? (Even
if X" is a Riemannian manifold, these problems are still open.)

(4) For an infinite dimensional Alexandrov space X of curvature > 1 having
radius rad X > 7 — ¢, is it true that X and XX, for some p € X are t(e)-
isometric? Moreover, is it true that X and the unit sphere S, for some
Hilbert space # are t(¢)-isometric?

2. Settings

First of all, we recall the definitions and properties around Alexandrov
spaces. The reader may refer to [2], [3], [15] for more informations.

For a while, 4 denotes a metric space, and fix p, ge A and x € R. The
distance between p and g € A is denoted by d(p,q), dx(p,q), or |pq|. The length
of a curve y is denoted by L(y). The symbol x, denotes max{rx,0}, and M,
denotes the x-plane which is a simply-connected surface of constant curvature x.
Geodesics are always parametrized by arclength. pg denotes a geodesic from p
to g. X, = X,X denotes the space of directions at p. The distance function on X,
will be denoted by /. Ci = C, denotes the (x-)tangent cone at p which is
the x-cone over X,. Here, the x-cone over 4 = (4,d,) is the completion of a
warped product pseudo-metric space (4, min{dy,n}) X, [O,\/%] with the warping
function sn,.. Here, sn, : [O,\/%] — R is the solution of the ODE: sn/ + « sn, = 0,
sn,(0) = 0, and sn’(0) = 1. An element (a,¢) € C¥)4 is often denoted by ta, and
la is simply denoted by a. Set |(a,?)| =t for (a,f) € C*)A. The l-cone is called
the suspension over 4 denoted by XA4. A point X, x {0} (respectively X, x {n}) in
X%, is denoted by o, (respectively —o,).
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For three points ay, a;, a» in a metric space with ay # a;,a; and
2
|aoar| + |araz| + |azag] < =&

= -
such that |a,q;| = |a;a;| for i,j=1,2,3, We denote Zajapa, by la\dod,, and call

, there are points a; in M,, uniquely up to isometry,
it a comparison angle of ajaya;.

DeFmiTION 2.1. A metric space X is called an Alexandrov space of
curvature > k if X satisfies the following two properties:

(1) The distance d(x, y) between any two points x, y in X is given by the
infimum of the lengths L(y) of curves y connecting x and y.

(2) There is a open covering {U,} of X such that for any o and xo, x1, x2, X3
in U, with xo # x; and |xox;| + |xox;| + [x;x;] < \/2% for i,j e {1,2,3}, we have

[x1x0%2 + /x3x0x3 + /x3x0%1 < 27

There are many other equivalent definitions for Alexandrov spaces. From the
definition, any geodesic in an Alexandrov space does not branch.

A geodesic pq is called almost extendable if for all ¢ > 0 there is x such that
/qpx >m —e. A subset in a topological space is called Gs if it is intersection
of countable collection of open subsets. Plaut proved the following theorem [15,
Theorem 1.4].

THEOREM 2.2 ([15]). Let X be an Alexandrov space of (locally) curvature
bounded from below and p € X. Then there is a dense Gj subset J, such that for all
q €J, there is a unique, almost extendable geodesic pq.

For a function f: X — R, its absolute gradient |V,f| at x € X is defined as
- S) - /&)
V.f| = max{ limsup —————= 0 5.
In this notation, J, is precisely given by (cf. [15])
J, ={xe X ||V,dist,| =1}.

For a geodesic y=pg on X with y(0)=p, y"(0) =17 €X, denotes the
direction of pg at p and, we put log, g = (T,?,d(p,q)) € C,. For a curve
7 :]0,a] — X on an Alexandrov space X, a (forward) direction v = y*(0) € C, of
y at p=y(0) is defined as

v=lim log, x;
l,‘ﬂo

do7(8)) _ o

7

if its limit exists, where x; € J, is any sequence with lim, .o
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For two curves o:[0,a) — X and f:[0,b) — X having the directions at
t = 0 with o(0) = #(0), the angle /(«,f) between these curves at ¢ = 0 is defined
by Z(WE 3‘ ‘g'go)l) in %,). For two geodesics pg and pr, denotes /gpr by the
angle between pg and pr.

Perelman and Petrunin formulated quasigeodesics on Alexandrov spaces as

follows.

DrrFINITION 2.3 ([13], [14]). A curve parametrized by arclength y: [0,a] — X
is called (x-)quasigeodesic on an Alexandrov space X of curvature > r if there is
a unique forward direction y*(z) € Cy(, at any ¢ € [0,a), and for any p € J,(;) with
d(y(s),p) <n//x; for all se[t,a], we have

(23.1) d(y(s),p) <d(y(s),p) for any sez,d,
where 7: [t,a] — M, is a geodesic with length a — ¢ such that

(232)  dG@).p)=dG().p) and ((H(0).1,) = L7.7(0)P).
)P

The pair of geodesics (7,7(¢)p) satisfying (2.3.2) as above is called a comparison
hinge of the hinge (y,y(f)p). A quasigeodesic with infinite length is called a

complete quasigeodesic.

There are many other equivalent definition of quasigeodesics in [13] and [14].
From the definition, geodesics on an Alexandrov space of curvature > x are
(r-)quasigeodesics. If the dimension of X is finite, then the assumption of the
existence of forward directions in a quasigedesic y can be taken off in Definition

2.3. (cf. [14], [13]).

REMARK 2.4. Quasigeodesics may branch. Set C = C(OX the Euclidean cone
over an Alexandrov space X of curvature > 1. For ¢ € X, the corresponding ray y;
in C is naturally defined as y:(¢) = (¢,¢) for 1€[0,00). Assume that ¥ has the
diameter < /2. Then for any &, 7 € ¥ we have concatenating curve y: R — C
such that y(—7) = y:(¢) and y(7) = y,(¢) for any t >0 which is a quasigeodesic
starting at y(—1) = y:(1) = (£, 1) € C tangent to the direction y} (1 —1)|,_; € Z(¢ y)
and branch at the origin. »

Quasigeodesics can not branch in geodesic directions:

Lemma 2.5. Let X be an Alexandrov space with curvature >k and p € X.
Suppose that there is a geodesic y : [0,a) — X with initial vector £ = y*(0) € X, and
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p=70). Then any quasigeodesic o starting at &(0) = p with initial vector
ot (0) =& coincides with y on [0.a].

Proor. Take any ¢ € [0,a]. By the assumption, the comparison hinge (7,d)
of (y,0) has angle /(7,6) = /(&,&) = 0. Thus by the hinge comparison (2.3.1), we
have y(t) = o(¢). O

Now, we summarize the fundamental propositions for Alexandrov spaces
which can be found in [3]. We will implicitly use those propositions in the proof
of main results.

PrOPOSITION 2.6 ([3]). Let X be an Alexandrov space of curvature > k. The
following are true.
(1) For any xo,x1,x2,x3€ X Miilh [xo0x;i| + [x0x;| + |x:x;| < \/2,% for i,je
{1,2,3}, we have 3, ;.3 /xixox; < 21
(2) For any &, &, & in the space of directions X, of any pe X, we have
$18a] + €283 + |38 | < 27,

(3) If X has curvature > 1 then for any x|,x3,x3€ X, we have |x;x|+

|x2x3| + |x3x1| < 27

3. Proof of Main Results

We start to prove Theorem 1.5 (and hence 1.2) in this section. Its proof will
be done along the same line as in [16]. However, as expressed in the introduction,
we make use of the existence property (1.4.1) for quasigeodesics instead of the
geodesic completeness.

Now, we fix an Alexandrov space X of curvature > 1 having radius > 7 —¢
satisfying the property (1.4.1). For any pe X, we denote p* a point which
satisfies d(p, p*) > n —¢. Since we assume radius > 7 — ¢, we can have p*.

Lemma 3.1.  The radius of XX, is greater than m— ¢ for any p e X.

Proor. For any v in X¥,\{0,, —0,}, take a quasigeodesic y: [0, |v]] = X
such that y(0) = p and »*(0) =g Put x=y(|v]) and take x* in J,. Take
geodesics 7 from o, to v, and & from o, to log,(x*) in X¥,. By the construction,
(7,6) configurates a comparison hinge of (y, px*) on XX,. By (2.3.1) we have

d(v,log,(x")) > d(x,x") >n —e.

Therefore it completes the proof of the lemma. O
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REMARK 3.2. An argument similar to the proof of [14, Proposition] or
[11, Proposition 3.1] can be applied to our X, to prove that the radius of X, is
greater than n — ¢. This also implies Lemma 3.1.

We will use the next notation. A function 7(dl¢) is an explicit positive
function depending only on ¢ and & defined on {(d,¢)|d >0 and 0 < ¢ < 7(0)}
for some 7(d) such that lim,_o t(d|¢) =0 for fixing J.

LemMMA 3.3. Let y be a quasigeodesic on X starting at p ending at x. Let ¢
be a geodesic starting at p ending x*. If 6 < |px| < L(y) < m—0, then we have
n—/(y,0) < 1(dle).

Proor. Take a comparison hinge (7,6) of (y,0). By the assumption,
< L(®) =L(y) <m—9, L(&) = L(o) = |px*| = |xx*| — |px| > —¢, and L(5) <
27 — |xx*| — |px| < m — 0 + &. The hinge comparison inequality (2.3.1) implies

|Xx*| > |xx*| > 7 — ¢,
where X and x* are corresponding points for x and x* in the comparison hinge.

Thus by the elementary spherical geometry, /(y,0) = £(7,6) > n — t(d]e). O

LEmMA 3.4. Let y:[0,n] = X be a quasigeodesic. Then d(y(0),y(n)) >
n—2e
Moreover, we have

(3.4.1) e = s = d(p(2), (5))] < 2e
for any t,s€[0,n]

Proor. Set p =y(0) and take p* e J,. Let ¢ be a geodesic from p to p*.
Then the definition of quasigeodesic implies d(p*,y(n)) < e. Hence, d(p, y(n)) >

d(p,p*) —d(p*,y(n)) > n —2e.
To show the second assertion, we consider the following formula

(34.2) (t=170) (D)) + (s =t = [p(D)(s)]) + (7 — 5 = [7(s)y(m)])
=7 — ([7(0)y(@)| + [y(O)(s)] + [y(s)7(m)])
<7 — [7(0)y(n)]

< 2e.
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Since a quasigeodesic is 1-Lipschitz, all three terms in (3.4.2) are nonnegative.
Therefore, we have (3.4.1). O

LemmA 3.5. Let p,x,ye X be points such that d(p,x) >0, and y be a
quasigeodesic from p to x, and o be a geodesic from p to y. Suppose that
L(y) < m—0. If y is sufficiently near x, then the angle between y and ¢ at p is less
than ©(d|e).

Proor. Since y is sufficiently near x, we can take x* = y* in J,. The as-
sumption: ¢ < |px| < L(y) <= —0 and Lemma 3.3 implies /(px*,y) > n — t(Jle)
and /(py*,o) > n—1(dle). Since /(px*,y)+ /(px*,0)+ /(y,0) <2rn, we have
/(y,0) < t(d]e). O

Now, we begin to fix a quasigeodesics-map from XX, to X like as the
exponential map at p. First, we already define log, : J, — XX, by

Jp SX— (T;7 |pX|) € Zp X [Oa T[].
Then we can define an exponential map exp, : log(J,) — X as the inverse of
log,. And next, for any ¢ € ¥, we fix a quasigeodesic y: = (¢, ) : [0, 7] — X with

initial direction y;f(O) =¢. By Lemma 2.5, we have y(1,,d(p,x)) = x for any
x € Jp. Namely, y(1,,)[jg,a(p, I8 @ geodesic and the quasigeodesics-map

J:255 () eX

is an extension of the exponential map. Of course, y:(7) is depending on &€ X,.
Thus f is multivalued at —o, =X, x {7} € XX,. f(n&) is not simply f of —o,, we
absolutely regard f(n&) as y:(n) for & € X,. Lemma 3.4 implies |f(n&) f(nn)| < 4e
for every &, neX,.

LeMMA 3.6.  For any vi,v; € 2%, |d(vi,v2) —d(f(v1), f(v2))] < 7(e).

Proor. Fori=1,2, put & = ﬁ, and y; : [0, |v;]] = X quasigeodesics defined
by (1) = f(&:, 1), and x; = f(v;).

First, we assume that |v;| <J for some i = 1,2. Without loss of generality,
we can do that |v| <. Since quasigeodesics are 1-Lipschitz, |px| <J. Thus,
we have

[lx1x2] — |[px2| | < |pxi| <0,

[[vrva| — oo | < v1| < 6.
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This together with Lemma 3.4 implies
[lo1vz| — |x1x2|| <20 + | |v2] — |px2| | < 20 + 2e.

Next, we may assume that |v;| > 7 —J. By Lemma 3.4, we can estimate the
following value for veXX,\{to,} and f(v) = x.

d(p", %) — d(—0p,0)| < Id(p", %) — (x — d(p, )| + 7 — d(p,x) — d(~0p,0)|
<2+ |—d(p,x)+|v||
< de.
By assumption, we have
[x1p"| < |f (o) f(mE)|+ |f (7€) pT| < —|v1] + 36 <0+ 3e.
Thus we have
| vz = Jorva| | < [[xixa| = [eap™| [ + | [x2p”| = [—opva| | + [ [=0pva| — [v102] |
< |x1p*| + 4e + |—opv1]
<26+ 10e.

Lastly, assume that § < |v;] < 7 —J for any i = 1,2. By the proof of Lemma
3.1, we can take log,(x7) € XX,. Put v3=log,(x]) and x3 = x| = f(v3). For
i=1,2,3, set geodesics ¥; from o0, to v; and quasigeodesics y; = f o y; from p to
x;. Remark that y; is geodesic.

Take a point y; € J, sufficiently close to x; and put a geodesic o; from p
to y;. Then by Lemma 3.5 we have /(y;,01) < t(d|¢). It follows that

[£(01,72) = L(71, 72)| < T(d]e).
Therefore, by the hinge comparison (2.3.1), we have
d(x1,x2) < d(v1,02) + 7(de).
On the other hand, using (2.3.1) for (y;,7,) at (3.6.1), we have
(3.6.1) [x1x2| = |x1x7] = |x7x2]
> —¢&— |30y
>n—¢e— (2n— |v3v1| — |v102])

> |vjva| — 2e.
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Therefore we have in any case,
| [x1x2| — Jviva| | < T(d]e) + 7(0).

Since ¢ is arbitrary, if we now take a suitable function J =J(¢) in the explicit
forms of t(dle) and (d), (e.g. put d(e) = v/¢), then we complete the proof of the
lemma. |

From the definition of the map f, the closure of the image of f is X. Then it
follows together with Lemma 3.6 that the Gromov-Hausdorff distance between X
and XX, is less than 7(e). It completes the proof of Theorems 1.5 and 1.2.
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