ON SOME CLASSES OF SPECTRAL POSETS

By

Тотоо Үокоуама

Abstract. This paper deals with sufficient conditions on a poset in order to get it spectral. A motivating question is the following (p. 833 [LO76]): "If X is a height 1 poset such that for all $x \neq y \in X$, $\uparrow x \cap \uparrow y$ and $\downarrow x \cap \downarrow y$ are finite, is X spectral?" We obtain the some sufficient conditions for such a poset X to be spectral. In particular, we prove that either if there is a finite subset $F \subseteq X$ such that $\downarrow F \supseteq \text{Min } X$, or if diam $X \leq 2$, then the poset X is spectral.

1. Introduction and Preliminaries

W. J. Lewis and J. Ohm showed the following result [LO76]: An ordered disjoint union X of spectral posets $(X_{\lambda}), \lambda \in \Lambda$ is spectral. In the same paper, they also showed that if a height 1 poset X satisfies that for all $x \in X$, $\uparrow x \cap \uparrow y = \emptyset$ and $\downarrow x \cap \downarrow y = \emptyset$ for all but finite many $y \in X$, then X is spectral. Moreover, they asked the following analogous two questions: (1) If a spectral poset X is the ordered disjoint union of posets (X_{λ}) , $\lambda \in \Lambda$, are the X_{λ} also spectral? (2) If a height 1 poset X satisfies that for all $x \neq y \in X$, $\uparrow x \cap \uparrow y$ and $\downarrow x \cap \downarrow y$ are finite, is X spectral? In [BE04], Belaid and Echi studied the both question. For the second question, several authors contributed to the question (e.g. [BF81], [DFP80], [F79], and [LO76]). The first question was answered negatively in [AZ04]. In particular, M. E. Adams and van der Zypen constructed a negative example (i.e., an example which is not a spectral poset but can be embedded in some spectral poset). Note that there is a non-spectral poset which can not be embedded as a connected component in any spectral poset (see Example 3.3). On the other hand, the second was also answered negatively in [Y09]. In particular, one showed that there are height 1 countable non-spectral posets X with diameter \geq 3 such that

2000 Mathematics Subject Classification. Primary: 06A06; Secondary: 54F05.

Received May 6, 2010.

Key words and phrases. spectral posets, height 1 posets.

Revised August 25, 2010.

for all $x \neq y \in X$, $\uparrow x \cap \uparrow y$ and $\downarrow x \cap \downarrow y$ are finite subsets. In contrast, we consider the sufficient conditions for a height 1 poset to be spectral, which are similar to the condition in the second question.

Recall that a poset (X, \leq) is said to be spectral or representable if there is a commutative ring R with unit such that X is order isomorphic to the set $\operatorname{Spec}(R)$ of its prime ideals with the inclusion order. Define the height of X is the supremum of lengths of chains in X. For an element x of a poset X, $\uparrow x := \{y \in X | x \leq y\}$ and $\downarrow x := \{y \in X | y \leq x\}$ are called the saturation of x and the cosaturation of x respectively. Note that $\uparrow x$ (resp. $\downarrow x$) is also called the set of generalization (resp. specialization) of x.

For a subset $Y \subseteq X$, $\uparrow Y := \bigcup_{y \in Y} \uparrow y$ and $\downarrow Y := \bigcup_{y \in Y} \downarrow y$ are called the saturation of Y and the cosaturation of Y respectively. A subset $Y \subseteq X$ is called a saturation or a upset if $Y = \uparrow Y$. Similarly a subset $Y \subset X$ is also called a cosaturation or a downset if $Y = \downarrow Y$.

Define the diameter diam X of a poset X as the minimal number n such that there is $x \in X$ such that either $(\uparrow\downarrow)^k x = X$ or $(\downarrow\uparrow)^k x = X$ whenever n = 2k is even, and either $(\uparrow\downarrow)^k \uparrow x = X$ or $\downarrow(\uparrow\downarrow)^k x = X$ whenever n = 2k + 1 is odd. Here, by induction, we mean that $(\uparrow\downarrow)x = \uparrow(\downarrow x) = \{y \in X \mid y \in \uparrow z \text{ for some } z \in \downarrow x\},$ $\downarrow(\uparrow\downarrow)x = \downarrow(\uparrow(\downarrow x)) = \{y \in X \mid y \in \downarrow z \text{ for some } z \in \uparrow\downarrow x\}, (\uparrow\downarrow)^2 x = \uparrow(\downarrow(\uparrow(\downarrow x))), \text{ and}$ so on. In general, $(\downarrow\uparrow)^k x$ and $(\uparrow\downarrow)^k x$ are different even if k = 1 and the height of X is one.

For a subset $Y \subseteq X$, denote by Min Y (resp. Max Y) the set of minimal (resp. maximal) elements of Y with respect to the restricted order. The connected component or the order component of X containing an element $x \in X$ is the subset S of X of all elements y which have a path $y = y_0 \le y_1 \ge y_2 \le \cdots \ge x$ from y to x. If X has only one component, then X is said to be connected.

A topological space X is said to be spectral if there is a commutative ring R with unit such that X is homeomorphic to the set Spec(R) of its prime ideals with the Zariski topology.

In [H69], Hochster showed that a topological space X is spectral if and only if X is T_0 , sober and compact, and has a compact open basis closed under finite intersections.

Let (X, T) be a topological space and \leq a partial order on X. The topology T is said to be order compatible with \leq , if $\overline{\{x\}} = \downarrow x$, for each $x \in X$. One can obviously see that (X, \leq) is spectral if and only if there exists an order compatible spectral topology on X.

A poset (X, \leq) with an order compatible topology is called a CTOD (or Priestley) space if X is compact and is totally order-disconnected in the sense

215

that, given $y \not\leq x \in X$, there exists a clopen downset U such that $x \in U$, $y \notin U$. By the results in [S37] and [P94], it is shown that a poset X is spectral if and only if X has a CTOD-topology. Note that a poset (X, \leq) is spectral if and only if the poset (X, \geq) with the opposite order is spectral.

We obtain the following result, which is a generalization of Corollary (p. 166 [BF81]).

THEOREM 1.1. Let (X, \leq) be a height 1 connected poset. Suppose that $|\downarrow x \cap \downarrow y| < \infty$ for any elements $x \neq y$ of X. If there is a finite subset $F \subseteq X$ such that $\downarrow F \supseteq \operatorname{Min} X$, then X is a spectral poset. In particular, if either Max X or Min X is finite, then X is spectral.

By the well-known fact that for a spectral poset (X, \leq) the set (X, \geq) with the reverse order is spectral, the dual statement of the above result holds.

Because any height 1 poset X with diameter ≤ 2 has an element $x \in X$ such that either $\uparrow x \supseteq \text{Max } X$ or $\downarrow x \supseteq \text{Min } X$, the poset X satisfies the conditions in the above theorem or the dual statement. The following corollary is induced.

COROLLARY 1.2. Any height 1 poset X with diameter ≤ 2 and with $|\uparrow x \cap \uparrow y| + |\downarrow x \cap \downarrow y| < \infty$ for any distinct elements $x \neq y \in X$ is spectral.

This result is in stark contrast to the existence of non-spectral height 1 poset with diameter 3 satisfying the finiteness condition in the above corollary. We will show the following corollary in the next section.

COROLLARY 1.3. Let (X, \leq) be a height 1 poset with connected components X_i , $i \in I$. Suppose that $|\downarrow x \cap \downarrow y| < \infty$ for any elements $x \neq y$ of X. If there are finite subsets $F_i \subseteq X$ for all $i \in I$ such that $\bigcup_{i \in I} \downarrow F_i \supseteq \{x \in X : |\downarrow x| + |\uparrow x| = \infty\}$, then X is spectral.

2. Proofs of Results

In this section, we show Theorem 1.1 and Corollary 1.3.

PROOF OF THEOREM 1.1. Let w_1, \ldots, w_n be finitely many elements of X such that $\bigcup_{i=1}^n \downarrow w_i \supseteq \operatorname{Min} X$. Let $Y = X - \bigcup_{i=1}^n \downarrow w_i = \operatorname{Max} X - \{w_1, \ldots, w_n\}$. Since $\downarrow y \cap \downarrow w_i$ for any $y \in Y$ and any $i = 1, \ldots, n$ is finite, this implies that $\downarrow y \cap \operatorname{Min} X = \bigcup_{i=1}^n (\downarrow y \cap \downarrow w_i)$ is finite. Thus $\downarrow y$ is finite for any element $y \in Y$. Let

Тотоо Үокоуама

 $W = \bigcup_{i \neq j} \downarrow w_i \cap \downarrow w_j$. Since any intersection of cosaturation of two distinct elements is finite, W is finite. Define an order compatible topology T of X by the closed subbasis $\mathscr{F}_X = \{ \downarrow F : F \subseteq X \text{ is finite} \} \cup \{X - S : S \subseteq Y\}.$

CLAIM 2.1. \mathcal{F}_X is the set of all closed subsets.

Indeed, put $\mathscr{F}_0 := \{ \downarrow F : F \subseteq X \text{ is finite} \}$ and $\mathscr{F}_1 := \{ \downarrow \{X - S : S \subseteq Y\} \}$. For $C \in \mathscr{F}_0$, there are $L \subseteq \{1, \ldots, n\}$ and a finite downset $F \subseteq X - \{w_1, \ldots, w_n\}$ such that $C = \bigcup_{i \in L} \bigcup w_i \cup F$. For $C_1, \ldots, C_n \in \mathscr{F}_X$, if there is $i \in \{1, \ldots, n\}$ such that $C_i \in \mathscr{F}_1$, then $\bigcup_{i=1}^n C_i \in \mathscr{F}_1$. Otherwise $C_1, \ldots, C_n \in \mathscr{F}_0$ and so there are $L \subseteq \{1, \ldots, n\}$ and a finite downset $F \subseteq X - \{w_1, \ldots, w_n\}$ such that $\bigcup_{i=1}^n C_i =$ $\bigcup_{i \in L} \downarrow w_i \cup F \in \mathscr{F}_0$. Thus \mathscr{F}_X is closed under finite unions. Therefore it suffices to show that \mathscr{F}_X is closed under arbitrary intersections. For $\{C_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathscr{F}_X$, if $\{C_{\lambda}\}_{\lambda\in\Lambda}\subseteq\mathscr{F}_{1}$ then $\bigcap_{\lambda\in\Lambda}C_{\lambda}\in\mathscr{F}_{1}$. Replacing $\{C_{\lambda}\}_{\lambda\in\Lambda}\cap\mathscr{F}_{0}$ by $\bigcap\{C_{\lambda}\mid C_{\lambda}\in\mathscr{F}_{0},$ $\lambda \in \Lambda$ }, we may assume that $|\{C_{\lambda}\}_{\lambda \in \Lambda} \cap \mathscr{F}_{1}| \leq 1$. If there is a unique element $C \in \mathscr{F}_1$, then either $\{C_{\lambda}\}_{\lambda \in \Lambda}$ consists of exactly a single element C or there is some $C_{\lambda} \in \mathscr{F}_0 \cap \{C_{\lambda}\}_{\lambda \in \Lambda}$. Thus we may assume that there is some $C_{\lambda} \in \mathscr{F}_0 \cap \{C_{\lambda}\}_{\lambda \in \Lambda}$. Then there are $L \subseteq \{1, ..., n\}$ and a finite downset $F \subseteq X - \{w_1, ..., w_n\}$ such that $C \cap C_{\lambda} = \bigcup_{i \in L} \bigcup w_i \cup F \in \mathscr{F}_0$. Replacing C by $C \cap C_{\lambda}$, we may assume that $\{C_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathscr{F}_{0}$. Since each intersection $\downarrow x \cap \downarrow x'$ for any distinct elements $x \neq i$ $x' \in X$ is finite, by the forms of elements of \mathscr{F}_0 , there are $L \subseteq \{1, \ldots, n\}$ and a finite downset $F \subseteq X - \{w_1, \dots, w_n\}$ such that $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \bigcup_{i \in L} \downarrow w_i \cup F \in \mathscr{F}_0$. Thus \mathscr{F}_X is closed under arbitrary intersections.

For $L \subseteq \{1, ..., n\}$, denote $U_L = X - \bigcup_{i \in L} \downarrow w_i$. Then there is an open basis $\mathscr{B} = \mathscr{B}_0 \cup \mathscr{B}_1$, where $\mathscr{B}_0 = \{V \cap U_L : V \text{ is a cofinite upset in } X, L \subseteq \{1, ..., n\}\}$, $\mathscr{B}_1 = \{U \subseteq Y : \text{finite}\}$. Notice that $\mathscr{B}_0 = \{X - C \mid C \in \mathscr{F}_0\}$ and $\mathscr{B}_1 = \{X - C \mid C \in \mathscr{F}_1\}$. Hence \mathscr{B} is the set of all open subsets. We will show that \mathscr{B} consists of compact subsets. It suffices to show the following claim:

CLAIM 2.2. For $L \subseteq \{1, ..., n\}$ and a cofinite upset $V \subseteq X$, the open subset $U = V \setminus \bigcup_{i \in L} \downarrow w_i$ is compact.

Indeed, let $L_i = \{1, \ldots, n\} - \{i\}$. Since $U_L \subseteq Y \cup \bigcup_{i \notin L} \downarrow w_i$, $Y \subseteq U_{L_i}$, and $\downarrow w_i \setminus W \subseteq U_{L_i}$, these imply that $U_L \setminus W \subseteq \bigcup_{i \notin L} U_{L_i}$. Since $U_L \supseteq \bigcup_{i \notin L} U_{L_i}$ and Wis finite, we have that $U_L \setminus W$ is cofinite in $\bigcup_{i \notin L} U_{L_i}$. Let U as in Claim 2.2. Since $U' := U \setminus W \subseteq U_L \setminus W$ is open and cofinite in $\bigcup_{i \notin L} U_{L_i}$, the finiteness of Wimplies that $U' \cap U_{L_i}$ is cofinite in U_{L_i} for any $i \notin L$. Since all nonempty open subset in U_{L_i} is cofinite in U_{L_i} , we obtain that $U' \cap U_{L_i}$ is compact for any $i \notin L$.

216

217

Hence $U' = \bigcup_{i \notin L} (U' \cap U_{L_i})$ is compact. Since W is finite, $U = U' \cup (U \cap W)$ is compact.

In particular, Claim 2.2 implies that X is compact. Therefore the following claim completes this proof.

CLAIM 2.3. X is sober.

Indeed, let *F* be a closed subset. Then *F* is either a cosaturation $F = \bigcup_{i=1}^{l} \downarrow x_i$ of a finite subset or F = X - S where $S \subseteq Y$ is a upset. It suffices to show that *F* is reducible or has a generic point. Therefore we may assume that F = X - S. If $S \neq Y$, then there is an element $x \in Y \setminus S \subset \text{Max } X$ such that $\downarrow x \subseteq F$ and $F - x = X - (\{x\} \sqcup S)$ are closed. Thus *F* is reducible or $\downarrow x = F$. Otherwise S = Y. Then $F = \bigcup_{i=1}^{n} \downarrow w_i$. If n = 1, then *F* has a generic point w_1 . Otherwise *F* is reducible.

PROOF OF COROLLARY 1.3. Since any ordered disjoint union of spectral posets is spectral, we may assume that X is connected. Suppose that there is a finite subset $\{w_1, \ldots, w_n\} \subseteq X$ such that $\bigcup_{i=1}^n \downarrow w_i \supseteq \{x \in X : |\uparrow x| + |\downarrow x| = \infty\}$. Let $Z = \bigcup_{i=1}^n \uparrow \downarrow w_i$ and $Y = \operatorname{Min} X \setminus Z$. Notice that for any $y \in Y$, $|\uparrow y| + |\downarrow y| < \infty$. Since $\bigcup_{i=1}^n \downarrow w_i \supseteq \operatorname{Min} Z$, Theorem 1.1 implies that Z is a spectral poset. Since Max $X \setminus Z$ has height 0 and so is a spectral poset, the order disjoint union $Z' := (\operatorname{Max} X \setminus Z) \sqcup Z$ is a spectral poset. Note that Y is a downset and $X = Z' \sqcup Y$. To apply Theorem 5.8 [LO76] to $X_1 = Y$ and $X_2 = Z'$, it is enough to show that, for any $x \in Z'$ and for any $y \in Y$, $|\downarrow x \cap Y$ and $|\downarrow y \cap Z'|$ are finite. For $x \in Z$, the definition of Z implies that $\downarrow x \cap Y$ is finite. For $x \in Z' - Z$, $|\downarrow x \cap Y| \le |\downarrow x| < \infty$. For any $y \in Y$, $|\uparrow y \cap Z'| \le |\uparrow y| < \infty$. Hence Theorem 5.8 [LO76] implies that X is spectral.

3. Examples

We describe some spectral posets.

EXAMPLE 3.1. Let $X_0 = \{c_i\}_{i \in \mathbb{Z}_{>0}} \cup \{w\}$ be a set and $X_1 = \{b_i\}_{i \in \mathbb{Z}_{>0}} \cup \{a\}$ a set. Define a poset $X = X_0 \cup X_1$ with an order \leq as follows: $c_i < a$, $w < b_i$ and $c_i < b_i$ for any *i*. Then Theorem 1.1 implies that X is spectral.

EXAMPLE 3.2. Let X as in Example 3.1. Define a poset $Y = X \sqcup \{w_i\}_{i \in \mathbb{Z}_{>0}}$ with an extension order \leq_Y of \leq by $w, w_2 <_Y w_1$ and $w_{2i}, w_{2i+2} <_Y w_{2i+1}$ for any $i \in \mathbb{Z}_{>0}$. Then Corollary 1.3 implies that X is spectral.

Тотоо Үокоуама

The following example is a non-spectral poset which can not be embedded as a connected component in any spectral poset. Recall that the topology on a poset X which is generated by the closed base $\{ \downarrow F | F \subseteq X \text{ is finite} \}$ is called the upper topology on X.

EXAMPLE 3.3. Let $X_0 = \mathbb{Z}_{>1}$ and $X_1 = \operatorname{Spec} \mathbb{Z} - \{(0)\} = \{(2), (3), (5), \ldots\}$. For $n \in \mathbb{Z}_{>1}$, define $X_{1n} := \{(p) \in X_1 \mid p \le n\}$. Define a poset $X_n = X_0 \sqcup X_{1n}$ with an order \le as follows: m < (p) if and only if $m/p \in \mathbb{Z}$. Then the dual statement of Corollary 1.3 implies that X_n is spectral. However the colimit $X = X_0 \sqcup X_1$ of X_n is not spectral and can not be embedded as a connected component in any spectral poset. Indeed, since $\bigcap_{(p) \in X_1} \downarrow (p) = \emptyset$, $\downarrow (p)$ is closed but not compact with respect to the upper topology. Thus X is not compact with respect to the upper topology. Since any order compatible spectral topology contains the upper topology, X can not be embedded as a connected component in any spectral poset.

The following example which is a non-spectral poset X with diameter 2 shows that the finiteness condition (i.e. $|\downarrow x \cap \downarrow y| < \infty$ for any elements $x \neq y \in X$) in Theorem 1.1 and Corollary 1.2 can not be dropped entirely.

EXAMPLE 3.4. Let $X_0 = \{y_i | i \in \mathbb{Z}_{\geq 0}\}$ be a set and $X_1 = \{z_i | i \in \mathbb{Z}_{\geq 0}\}$ a set. Define a poset $X = X_0 \sqcup X_1$ with an order \leq as follows: $y_j \leq z_i$ if and only if $i \leq j \in \mathbb{Z}_{\geq 0}$. Then X is a non-spectral poset with diameter 2. Indeed, for any elements $z_i, z_j \in X$ with i < j, $\downarrow z_i \cap \downarrow z_j = \{y_k | k \in \mathbb{Z}_{\geq j}\}$ and thus $|\downarrow z_i \cap \downarrow z_j| = \infty$. Since $\uparrow \downarrow z_0 = X$, diam X = 2. Since $\downarrow z_i$ are closed and $\bigcap_{i\geq 0} \downarrow z_i = \emptyset$, this implies that $\downarrow z_0$ is closed but not compact with respect to the upper topology. Thus X is not compact with respect to the upper topology. Since any order compatible spectral topology contains the upper topology, there is no spectral topology on X.

References

- [AZ04] M. E. Adams, van der Zypen, Representable posets and their order components, Cah. Topol. Géom. Différ. Catég. 45 (2004), 179–192.
- [BE04] K. Belaid, O. Echi, On a conjecture about spectral sets, Topology Appl. 139 (2004), no. 1–3, 1–15.
- [BF81] A. Bouvier, M. Fontana, Une classe d'espaces spectraux de dimension 1; les espaces principaux, Bull. Sci. Math. (2) 105 (1981), no. 2, 159–167.
- [DFP80] D. E. Dobbs, M. Fontana, I. J. Papick, On certain distinguished spectral sets, Ann. Mat. Pura Appl., 128 (1980), 227–240.
- [F79] M. Fontana, Sopra alcuni relativi agli insierni spettrali, Rend. Sem. Fac. Sci. Univ. Cagliari. 49 (1979), 445–467.

- [H69] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60.
- [LO76] W. J. Lewis, J. Ohm, The ordering of Spec(R), Canad. J. Math., 28 (1976), pp. 820-835.
- [P70] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Sot. 2 (1970), 186–190.
- [P94] H. A. Priestley, Intrinsic spectral topologies, Papers on general topology and applications (Flushing, NY, 1992), 78–95, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994.
- [S37] M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis Pest. Mat. Fys. 67 (1937), 1–25.
- [Y09] T. Yokoyama, A solution to a spectral poset problem of Lewis and Ohm, Topology Appl. 156 (2009), 2220–2223.

Faculty of Marine Technology Tokyo University of Marine Science and Technology, 2-1-6, Etchujima Koto-ku, Tokyo, 135-8533, Japan E-mail address: yokoyama@ms.u-tokyo.ac.jp