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ON SOME CLASSES OF SPECTRAL POSETS

By

Tomoo Yokoyama

Abstract. This paper deals with su‰cient conditions on a poset in

order to get it spectral. A motivating question is the following (p. 833

[LO76]): ‘‘If X is a height 1 poset such that for all x0 y A X ; "xV"y
and #xV#y are finite, is X spectral?’’ We obtain the some su‰cient

conditions for such a poset X to be spectral. In particular, we prove

that either if there is a finite subset F JX such that #F KMin X , or

if diam X a 2, then the poset X is spectral.

1. Introduction and Preliminaries

W. J. Lewis and J. Ohm showed the following result [LO76]: An ordered

disjoint union X of spectral posets ðXlÞ, l A L is spectral. In the same paper, they

also showed that if a height 1 poset X satisfies that for all x A X , "xV"y ¼ q

and #xV#y ¼ q for all but finite many y A X , then X is spectral. Moreover, they

asked the following analogous two questions: (1) If a spectral poset X is the

ordered disjoint union of posets ðXlÞ, l A L, are the Xl also spectral? (2) If a

height 1 poset X satisfies that for all x0 y A X ; "xV"y and #xV#y are finite, is

X spectral? In [BE04], Belaid and Echi studied the both question. For the second

question, several authors contributed to the question (e.g. [BF81], [DFP80], [F79],

and [LO76]). The first question was answered negatively in [AZ04]. In par-

ticular, M. E. Adams and van der Zypen constructed a negative example (i.e., an

example which is not a spectral poset but can be embedded in some spectral

poset). Note that there is a non-spectral poset which can not be embedded as a

connected component in any spectral poset (see Example 3.3). On the other hand,

the second was also answered negatively in [Y09]. In particular, one showed that

there are height 1 countable non-spectral posets X with diameterb 3 such that
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for all x0 y A X , "xV"y and #xV#y are finite subsets. In contrast, we consider

the su‰cient conditions for a height 1 poset to be spectral, which are similar to

the condition in the second question.

Recall that a poset ðX ;aÞ is said to be spectral or representable if there

is a commutative ring R with unit such that X is order isomorphic to the set

SpecðRÞ of its prime ideals with the inclusion order. Define the height of X is

the supremum of lengths of chains in X . For an element x of a poset X ,

"x :¼ fy A X j xa yg and #x :¼ fy A X j ya xg are called the saturation of x and

the cosaturation of x respectively. Note that "x (resp. #x) is also called the set of

generalization (resp. specialization) of x.

For a subset Y JX , "Y :¼ 6
y AY "y and #Y :¼ 6

y AY #y are called the

saturation of Y and the cosaturation of Y respectively. A subset Y JX is called

a saturation or a upset if Y ¼ "Y . Similarly a subset Y HX is also called a

cosaturation or a downset if Y ¼ #Y .

Define the diameter diam X of a poset X as the minimal number n such that

there is x A X such that either ð"#Þkx ¼ X or ð#"Þkx ¼ X whenever n ¼ 2k is

even, and either ð"#Þk"x ¼ X or #ð"#Þkx ¼ X whenever n ¼ 2k þ 1 is odd. Here,

by induction, we mean that ð"#Þx ¼ "ð#xÞ ¼ fy A X j y A "z for some z A #xg,
#ð"#Þx ¼ #ð"ð#xÞÞ ¼ fy A X j y A #z for some z A "#xg, ð"#Þ2x ¼ "ð#ð"ð#xÞÞÞ; and
so on. In general, ð#"Þkx and ð"#Þkx are di¤erent even if k ¼ 1 and the height

of X is one.

For a subset Y JX , denote by Min Y (resp. Max Y ) the set of minimal

(resp. maximal) elements of Y with respect to the restricted order. The connected

component or the order component of X containing an element x A X is the

subset S of X of all elements y which have a path y ¼ y0 a y1 b y2 a � � �b x

from y to x. If X has only one component, then X is said to be connected.

A topological space X is said to be spectral if there is a commutative ring R

with unit such that X is homeomorphic to the set SpecðRÞ of its prime ideals with

the Zariski topology.

In [H69], Hochster showed that a topological space X is spectral if and only

if X is T0, sober and compact, and has a compact open basis closed under finite

intersections.

Let ðX ;TÞ be a topological space and a a partial order on X . The topology

T is said to be order compatible with a, if fxg ¼ #x, for each x A X . One can

obviously see that ðX ;aÞ is spectral if and only if there exists an order com-

patible spectral topology on X .

A poset ðX ;aÞ with an order compatible topology is called a CTOD (or

Priestley) space if X is compact and is totally order-disconnected in the sense
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that, given yE x A X , there exists a clopen downset U such that x A U , y B U .

By the results in [S37] and [P94], it is shown that a poset X is spectral if and only

if X has a CTOD-topology. Note that a poset ðX ;aÞ is spectral if and only if the

poset ðX ;bÞ with the opposite order is spectral.

We obtain the following result, which is a generalization of Corollary (p. 166

[BF81]).

Theorem 1.1. Let ðX ;aÞ be a height 1 connected poset. Suppose that

j#xV#yj < y for any elements x0 y of X. If there is a finite subset F JX such

that #F KMin X , then X is a spectral poset. In particular, if either Max X or

Min X is finite, then X is spectral.

By the well-known fact that for a spectral poset ðX ;aÞ the set ðX ;bÞ with

the reverse order is spectral, the dual statement of the above result holds.

Because any height 1 poset X with diametera 2 has an element x A X such

that either "xKMax X or #xKMin X , the poset X satisfies the conditions in the

above theorem or the dual statement. The following corollary is induced.

Corollary 1.2. Any height 1 poset X with diametera 2 and with

j"xV"yj þ j#xV#yj < y for any distinct elements x0 y A X is spectral.

This result is in stark contrast to the existence of non-spectral height 1 poset

with diameter 3 satisfying the finiteness condition in the above corollary. We will

show the following corollary in the next section.

Corollary 1.3. Let ðX ;aÞ be a height 1 poset with connected components

Xi, i A I . Suppose that j#xV#yj < y for any elements x0 y of X. If there are

finite subsets Fi JX for all i A I such that 6
i A I #Fi K fx A X : j#xj þ j"xj ¼ yg,

then X is spectral.

2. Proofs of Results

In this section, we show Theorem 1.1 and Corollary 1.3.

Proof of Theorem 1.1. Let w1; . . . ;wn be finitely many elements of X

such that 6n

i¼1
#wi KMin X . Let Y ¼ X �6n

i¼1
#wi ¼ Max X � fw1; . . . ;wng.

Since #yV#wi for any y A Y and any i ¼ 1; . . . ; n is finite, this implies that

#yVMin X ¼ 6n

i¼i
ð#yV#wiÞ is finite. Thus #y is finite for any element y A Y . Let
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W ¼ 6
i0 j

#wi V#wj . Since any intersection of cosaturation of two distinct ele-

ments is finite, W is finite. Define an order compatible topology T of X by the

closed subbasis FX ¼ f#F : F JX is finitegU fX � S : SJYg.

Claim 2.1. FX is the set of all closed subsets.

Indeed, put F0 :¼ f#F : F JX is finiteg and F1 :¼ 6fX � S : SJYg. For
C A F0, there are LJ f1; . . . ; ng and a finite downset F JX � fw1; . . . ;wng
such that C ¼ 6

i AL #wi UF . For C1; . . . ;Cn A FX , if there is i A f1; . . . ; ng
such that Ci A F1, then 6n

i¼1
Ci A F1. Otherwise C1; . . . ;Cn A F0 and so there are

LJ f1; . . . ; ng and a finite downset F JX � fw1; . . . ;wng such that 6n

i¼1
Ci ¼

6
i AL #wi UF A F0. Thus FX is closed under finite unions. Therefore it su‰ces

to show that FX is closed under arbitrary intersections. For fClgl AL JFX , if

fClgl AL JF1 then 7
l AL Cl A F1. Replacing fClgl AL VF0 by 7fCl jCl A F0;

l A Lg, we may assume that jfClgl AL VF1ja 1. If there is a unique element

C A F1, then either fClgl AL consists of exactly a single element C or there is some

Cl A F0 V fClgl AL. Thus we may assume that there is some Cl A F0 V fClgl AL.
Then there are LJ f1; . . . ; ng and a finite downset F JX � fw1; . . . ;wng such

that C VCl ¼ 6
i AL #wi UF A F0. Replacing C by C VCl, we may assume that

fClgl AL JF0. Since each intersection #xV#x 0 for any distinct elements x0

x 0 A X is finite, by the forms of elements of F0, there are LJ f1; . . . ; ng and

a finite downset F JX � fw1; . . . ;wng such that 7
l AL Cl ¼ 6

i AL #wi UF A F0.

Thus FX is closed under arbitrary intersections.

For LJ f1; . . . ; ng, denote UL ¼ X �6
i AL #wi. Then there is an open basis

B ¼ B0 UB1, where B0 ¼ fV VUL : V is a cofinite upset in X ;LJ f1; . . . ; ngg,
B1 ¼ fU JY : finiteg. Notice that B0 ¼ fX � C jC A F0g and B1 ¼ fX � C j
C A F1g. Hence B is the set of all open subsets. We will show that B consists of

compact subsets. It su‰ces to show the following claim:

Claim 2.2. For LJ f1; . . . ; ng and a cofinite upset V JX , the open subset

U ¼ Vn6
i AL #wi is compact.

Indeed, let Li ¼ f1; . . . ; ng � fig. Since UL JY U6
i BL #wi, Y JULi

, and

#winW JULi
, these imply that ULnW J6

i BL ULi
. Since UL K6

i BL ULi
and W

is finite, we have that ULnW is cofinite in 6
i BL ULi

. Let U as in Claim 2.2. Since

U 0 :¼ UnW JULnW is open and cofinite in 6
i BL ULi

, the finiteness of W

implies that U 0 VULi
is cofinite in ULi

for any i B L. Since all nonempty open

subset in ULi
is cofinite in ULi

, we obtain that U 0 VULi
is compact for any i B L.

216 Tomoo Yokoyama



Hence U 0 ¼ 6
i BLðU 0 VULi

Þ is compact. Since W is finite, U ¼ U 0 U ðU VWÞ is

compact.

In particular, Claim 2.2 implies that X is compact. Therefore the following

claim completes this proof.

Claim 2.3. X is sober.

Indeed, let F be a closed subset. Then F is either a cosaturation F ¼ 6 l

i¼1
#xi

of a finite subset or F ¼ X � S where SJY is a upset. It su‰ces to show that

F is reducible or has a generic point. Therefore we may assume that F ¼ X � S.

If S0Y , then there is an element x A YnSHMax X such that #xJF and

F � x ¼ X � ðfxg t SÞ are closed. Thus F is reducible or #x ¼ F . Otherwise

S ¼ Y . Then F ¼ 6n

i¼1
#wi. If n ¼ 1, then F has a generic point w1. Otherwise F

is reducible. r

Proof of Corollary 1.3. Since any ordered disjoint union of spectral

posets is spectral, we may assume that X is connected. Suppose that there is

a finite subset fw1; . . . ;wngJX such that 6n

i¼1
#wi K fx A X : j"xj þ j#xj ¼ yg.

Let Z ¼ 6n

i¼1
"#wi and Y ¼ Min XnZ. Notice that for any y A Y , j"yj þ j#yj < y.

Since 6n

i¼1
#wi KMin Z, Theorem 1.1 implies that Z is a spectral poset. Since

Max XnZ has height 0 and so is a spectral poset, the order disjoint union

Z 0 :¼ ðMax XnZÞ t Z is a spectral poset. Note that Y is a downset and

X ¼ Z 0 t Y . To apply Theorem 5.8 [LO76] to X1 ¼ Y and X2 ¼ Z 0, it is enough

to show that, for any x A Z 0 and for any y A Y , #xVY and "yVZ 0 are finite.

For x A Z, the definition of Z implies that #xVY is finite. For x A Z 0 � Z,

j#xVY ja j#xj < y. For any y A Y , j"yVZ 0ja j"yj < y. Hence Theorem 5.8

[LO76] implies that X is spectral. r

3. Examples

We describe some spectral posets.

Example 3.1. Let X0 ¼ fcigi AZ>0
U fwg be a set and X1 ¼ fbigi AZ>0

U fag a

set. Define a poset X ¼ X0 t X1 with an order a as follows: ci < a, w < bi and

ci < bi for any i. Then Theorem 1.1 implies that X is spectral.

Example 3.2. Let X as in Example 3.1. Define a poset Y ¼ X t fwigi AZ>0

with an extension order aY of a by w;w2 <Y w1 and w2i;w2iþ2 <Y w2iþ1 for any

i A Z>0. Then Corollary 1.3 implies that X is spectral.

217On some classes of spectral posets



The following example is a non-spectral poset which can not be embedded as

a connected component in any spectral poset. Recall that the topology on a poset

X which is generated by the closed base f#F jF JX is finiteg is called the upper

topology on X .

Example 3.3. Let X0 ¼ Z>1 and X1 ¼ Spec Z� fð0Þg ¼ fð2Þ; ð3Þ; ð5Þ; . . .g.
For n A Z>1, define X1n :¼ fðpÞ A X1 j pa ng. Define a poset Xn ¼ X0 t X1n with

an order a as follows: m < ðpÞ if and only if m=p A Z. Then the dual statement

of Corollary 1.3 implies that Xn is spectral. However the colimit X ¼ X0 t X1 of

Xn is not spectral and can not be embedded as a connected component in any

spectral poset. Indeed, since 7ðpÞ AX1
#ðpÞ ¼ q, #ðpÞ is closed but not compact

with respect to the upper topology. Thus X is not compact with respect to the

upper topology. Since any order compatible spectral topology contains the upper

topology, X can not be embedded as a connected component in any spectral

poset.

The following example which is a non-spectral poset X with diameter 2

shows that the finiteness condition (i.e. j#xV#yj < y for any elements x0 y A X )

in Theorem 1.1 and Corollary 1.2 can not be dropped entirely.

Example 3.4. Let X0 ¼ fyi j i A Zb0g be a set and X1 ¼ fzi j i A Zb0g a set.

Define a poset X ¼ X0 t X1 with an order a as follows: yj a zi if and only

if ia j A Zb0. Then X is a non-spectral poset with diameter 2. Indeed, for any

elements zi; zj A X with i < j, #zi V#zj ¼ fyk j k A Zb jg and thus j#zi V#zjj ¼ y.

Since "#z0 ¼ X , diam X ¼ 2. Since #zi are closed and 7
ib0

#zi ¼ q, this implies

that #z0 is closed but not compact with respect to the upper topology. Thus X is

not compact with respect to the upper topology. Since any order compatible

spectral topology contains the upper topology, there is no spectral topology on X .
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