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DOWKER SPACES REVISITED

By

Lewis D. Ludwig, Peter Nyikos, and John E. Porter

Abstract. In 1951, Dowker proved that a space X is countably

paracompact and normal if and only if X � I is normal. A normal

space X is called a Dowker space if X � I is not normal. The main

thrust of this article is to extend this work with regards a-normality

and b-normality. Characterizations are given for when the product of

a space X and ðoþ 1Þ is a-normal or b-normal. A new definition, a-

countably paracompact, illustrates what can be said if the product

of X with a compact metric space is b-normal. Several examples

demonstrate that the product of a Dowker space and a compact

metric space may or may not be a-normal or b-normal. A collec-

tionwise Hausdor¤ Moore space constructed by M. Wage is shown

to be a-normal but not b-nornal.

1. Introduction

A topological space X is called b-normal (a-normal) if for each pair of closed

disjoint subsets A;BHX there are open sets U ;V HX such that AVU ¼ A,

BVV ¼ B and U VV ¼ q (U VV ¼ q, respectively). This notion was intro-

duced by Arhangel’skii and Ludwig in 1999 [1] and others have worked on the

topic ([2], [6], [7], [9], [10], [11]). In 1951, Dowker proved that a space X is

countably paracompact and normal if and only if X � I is normal [4]. A normal

space X is called a Dowker space if X � I is not normal, where I is the unit

interval with the usual topology. The main thrust of this article is to extend this

work with regards a-normality and b-normality.

Section 2 is devoted to extending Dowker’s characterization of countably

paracompact normal spaces to a-normal and b-normal spaces. The two main

Date: December 21, 2009.

2000 Mathematics Subject Classification. 54D15.

Key words and phrases. a-normal, b-normal, products, Dowker, Moore spaces, a-countably para-

compact.

Received August 24, 2009.



results of the section, Theorem 2.3 and Theorem 2.9, characterize when

X � ðoþ 1Þ is a-normal and when this product is b-normal. A new definition, a-

countably paracompact, is introduced in this section and Corollary 2.7 shows that

if X � ðoþ 1Þ is b-normal, then X is b-normal and a-countably paracompact.

The converse is an open question.

In Section 3, examples of Dowker spaces whose product with the unit in-

terval are a-normal and b-normal (respectively) are given. Curiously, this section

also exhibits Dowker spaces whose product with the unit interval are not a-

normal and b-normal (respectively).

In Section 4 a collectionwise Hausdor¤ Moore space constructed by M.

Wage is shown to be a-normal but not b-nornal. The article concludes with a list

of open questions in Section 5. Throughout the paper, unless otherwise stated, a

‘‘space’’ is a T1, regular, topological space. The ordinals o, o1 are used to denote

the first two infinite cardinals. Readers may refer to Engelking [5] for undefined

terms.

2. Extending Dowker’s Result to a-Normality and b-Normality

To start, we restate Dowker’s characterization of countably paracompact

normal spaces as a fact for later reference purposes.

Fact 2.1. A topological space X is countably paracompact and normal if and

only if X � I is normal.

In light of Dowker’s characterization, it is natural to ask what would happen

if one weakened the supposition that X � I is normal to a-normal. We begin with

a characterization of a-normal spaces. The proof is left to the reader.

Lemma 2.2. A topological space X is a-normal if and only if for every pair H

and K of disjoint closed subsets of X there exists an open set U of X such that

H VU ¼ H and U VK is nowhere dense in K .

It should be noted, that in the standard proof of Fact 2.1, the reverse

direction only uses the existence of a non-trivial convergent sequence in the space

I [5]. So we can actually say X � ðoþ 1Þ is normal if and only if X is normal

and countably paracompact. We now have the following.

Theorem 2.3. Let X be a T1 space. The product X � ðoþ 1Þ is a-normal if

and only if
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(1) X is a-normal, and

(2) if fFn : n A og is a family of closed sets and F ¼ 7
n Ao clX ð6y

k¼n
FkÞ,

and E is a closed subset of X disjoint from F , then there is a family

fWn : n A og of open sets such that Wn VFn is dense in Fn and

7
n Ao clX ð6y

k¼n
WkÞ is nowhere dense in E.

Proof. Let fFn : n A og be a family of closed sets and F ¼
7

n Ao clX ð6y
k¼n

FkÞ, and suppose E is a closed subset of X disjoint from F .

Then A ¼ 6fFn � fng : n A ogÞU ðF � fogÞ
�

and B ¼ E � fog are disjoint closed

subsets of X � ðoþ 1Þ. Since X � ðoþ 1Þ is a-normal, there is an open subset W

of X � ðoþ 1Þ such that W VA ¼ A and W is nowhere dense in B.

For each n A o, define Wn ¼ fx A X : ðx; nÞ A Wg. Clearly, Wn VFn is dense

in Fn. Since W is nowhere dense in B, 7
n Ao clX ð6y

k¼n
WkÞ is nowhere dense in

E.

Conversely, let A and B be disjoint closed subsets of X � ðoþ 1Þ. Consider
the sets

� An ¼ fx A X : ðx; nÞ A Ag,
� Ao ¼ fx A X : ðx;oÞ A Ag,
� Bn ¼ fx A X : ðx; nÞ A Bg, and
� Bo ¼ fx A X : ðx;oÞ A Bg.

Since X is a-normal and Ao and Bo are disjoint closed subsets of X , there

are disjoint open subsets UA and UB of X such that clX ðUA VAoÞ ¼ Ao and

clX ðUB VBoÞ ¼ Bo.

By (2) and the a-normality of X , there are open subsets Un and Vn of X such

that

(a) Un VAn is dense in An for each n A o,

(b) 7
n Ao clX ð6y

k¼n
UkÞ is nowhere dense in Bo,

(c) Vn is dense in Bn for each n A o,

(d) 7
n Ao clX ð6y

k¼n
VkÞ is nowhere dense in Ao, and

(e) Un VVn ¼ q for each n A o.

Let H ¼ Aon7n Ao clX ð6y
k¼n

VkÞ and K ¼ Bon7n Ao clX ð6y
k¼n

UkÞ. For each

d A H VUA, there is an open subset Od and nd A o such that

� Od HUA, and
� Od V6y

k¼nd
Vk ¼ q.

Similarly, for each d A K VUB, there is an open subset Od and nd A o such that
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� Od HUB, and
� Od V6y

k¼nd
Uk ¼ q.

Let

U ¼ 6fUn � fng : n A ogU6fOd � ½nd ;o� : d A H VUAg; and

V ¼ 6fVn � fng : n A ogU6fOd � ½nd ;o� : d A K VUBg:

Note that U and V are disjoint subsets of X � ðoþ 1Þ, U is dense in A, and V is

dense in B. Hence X � ðoþ 1Þ is a-normal. r

The b-normal case is similar to the a-normal case, albeit more complicated.

For convenience, we break up the theorem into two parts.

Lemma 2.4. Let X be a T1 space. If X � ðoþ 1Þ is b-normal, then:

(1) X is b-normal and

(2) if fFn : n A og is a family of closed sets and F ¼ 7
n Ao clX ð6y

k¼n
FkÞ,

and E is a closed subset of X disjoint from F , then there is a family

fWn : n A og of open sets such that Wn VFn is dense in Fn and

7
n Ao clX ð6y

k¼n
WkÞ is disjoint from E.

Proof. Clearly X is b-normal. Let fFn : n A og be a family of closed sets

with F ¼ 7
n Ao clX ð6y

k¼n
FkÞ, and let E be a closed subset of X disjoint from F .

Note that A ¼ 6
n AoðFn � fngÞU ðF � fogÞ and B ¼ E � fog are disjoint closed

sets in X � ðoþ 1Þ. Since X � ðoþ 1Þ is b-normal, there are open U ;V H
X � ðoþ 1Þ such that AVU is dense in A, BVV is dense in B, and U VV ¼ q.

The sets Wn ¼ fx A X : ðx; nÞ A Ug are open in X and Wn VFn is dense in Fn

for each n A o. Suppose C ¼ 7
n Ao clX ð6y

k¼n
WkÞ is not disjoint from E. Let

z A C VE. Then every neighborhood of z meets infinitely many Wn and since

Wn � fngHU , so ðz;oÞ A U . This is impossible since U VB ¼ q. r

At this point, it should be noted that Dowker had a useful characterization of

countably paracompact.

Fact 2.5. A topological space X is countably paracompact if and only

if for every decreasing sequence fFn : n A og of closed subsets of X satisfying

7
n Ao Fn ¼ q there exists a sequence fWn : n A og of open subsets of X such that

Fn HWn for n A o and 7
n Ao Wn ¼ q.
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This characterization prompted one of the authors to define the concept of

a-countably metacompact and a-countably paracompact spaces.

Definition 2.6. A topological space is said to be a-countably paracompact

(resp., a-countably metacompact) if for every decreasing sequence fFn : n A og of

closed subsets of X satisfying 7
n Ao Fn ¼ q there exists a sequence fWn : n A og

of open subsets of X such that Wn VFn is dense in Fn for n A o and

7
n Ao Wn ¼ q (resp., 7

n Ao Wn ¼ q).

With this new definition and Lemma 2.4, we have the following corollary

that exhibits what can be said of a space X if X � ðoþ 1Þ is b-normal. In this

direction, we can extend the result to the product of X and a compact metric

space as all that is needed is a distinct convergent sequence and its limit point.

The proofs are left to the reader.

Corollary 2.7. If X � ðoþ 1Þ is b-normal, then X is b-normal and a-

countably paracompact.

Corollary 2.8. If Y is an infinite compact metric space, and X � Y is

b-normal, then X is b-normal and a-countably paracompact.

With Lemma 2.4 in hand, we are now ready for the main b-normal result of

this section.

Theorem 2.9. Let X be a T1 space. The product X � ðoþ 1Þ is b-normal if

and only if the following three conditions are met:

(1) X is b-normal,

(2) condition (2) of Lemma 2.4 is satisfied, and

(3) for every decreasing sequence fFn : n A og of closed subsets of X satisfy-

ing 7
n Ao Fn ¼ q, there is a family fVn : n A og of open sets such that

Fn HVn and 7y
n¼0

clX ðVnÞ is nowhere dense in the relative topology of F0.

Proof. Let C be a closed subset of X � ðoþ 1Þ and U an open set of

X � ðoþ 1Þ containing C. It su‰ces to find an open set G such that GVC is

dense in C and GHU . Consider the following sets:

� Cn ¼ fx A X : ðx; nÞ A Cg
� Co ¼ fx A X : ðx;oÞ A Cg
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� Un ¼ fx A X : ðx; nÞ A Ug
� Uo ¼ fx A X : ðx;oÞ A Ug

Note that each Cn and Co are closed subsets of X , and each Un and Uo are

open subsets of X . Also, F ¼ 7
n Ao clX ð6y

k¼n
CkÞ is a closed subset of Co. By

condition (2) of Lemma 2.4 and b-normality of X , we can find open sets Wn

such that

(a) 7y
n¼0

clX ð6y
k¼n

WkÞ is a subset of Uo,

(b) Wn VCn is dense in Cn, and

(c) clX ðWnÞHUn.

Let G0 ¼ 6y
n¼0

ðWn � fngÞ. Note that G0 V ðX � fogÞ is a subset of

X � ðoþ 1Þ, while E ¼ XnUo is a subset of X . Hence G0 HU .

By the b-normality1 of X , we can find an open set V HX such that V VCo

is dense in Co and clX ðVÞHUo. Let Ek ¼ XnUk and let Fn ¼ clX ð6y
k¼n

EkÞVCo.

Then fFn : n A og is a decreasing sequence of closed subsets of X such that

7y
i¼1

Fi ¼ q and by condition (3) of Theorem 2.9 we can find open sets Vn IFn

such that 7
n Ao Vn meets F0 in a nowhere dense set.

Now ConVn is a closed set disjoint from clX ð6y
k¼n

EkÞ. So Wn ¼ ðVnVnÞ�
½n;o� is an open set whose closure is disjoint from Ek for all k and so, by

definition of V and Ek � fkg, the closure of Wn is a subset of U . Let G1 ¼
6y

n¼0
Wn. Then G1 VCo ¼ Con7y

n¼0
Vn is dense in Co, and the closure of G1 is

easily seen to be a subset of U . Thus G ¼ G0 UG1 is the desired open set.

Conversely, let Y ¼ X � ðoþ 1Þ and suppose Y is b-normal. It remains to

verify condition (3) of Theorem 2.9.

Consider a decreasing sequence hFn : n A oi of closed subsets of X satisfying

7y
i¼1

Fi ¼ q. Let C ¼ F0 � fog and E ¼ 6
n Ao Fn � fng. Then C and E are

disjoint closed subsets of Y . By b-normality of Y , there is an open subset W of

Y whose intersection with C is dense in C, and whose closure is a subset of YnE.
Let Vn ¼ fx A X : ðx; nÞ B Wg. Clearly, Vn is an open subset of X , and Fn HVn.

If 7
n Ao Vn 0q, let z be in the intersection. Every neighborhood of ðz;oÞ meets

all but finitely many of the sets Vn � fng. Each of these sets is a subset of the

closure of YnW and so it misses W . Therefore, ðz;oÞ B W , and so 7
n Ao Vn

meets F0 in a nowhere dense subset of F0. r

1Here we use the equivalent definition of b-normality: A space X is b-normal if for each closed AJX

and for every open U JX that contains A, there exists and open V JX such that V VA ¼ AJ
V JU .
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3. Motivating Examples

After Dowker characterized countably paracompact normal spaces (Fact 2.1),

he asked whether every normal space is countably paracompact or not. That is,

does there exist a normal space X such that X � I is not normal (i.e., a Dowker

space). For several decades, the Dowker problem has fueled a great deal of

research. In 1971, M. E. Rudin constructed a Dowker space [13]. In light of a-

normality and b-normality, it is natural to ask whether the product of a Dowker

space and the unit interval can be a-normal or b-normal.

Example 3.1. The product of a normal space and a compact metric space

can be a-normal without being normal.

Proof. Consider a hereditarily separable Dowker space X and a compact

metric space Y . Hereditarily separable Dowker spaces have been constructed

under a variety of axioms independent of ZFC (see [12], [14], [15], and [16]).

Since these spaces are hereditarily separable and Y is second countable, X � Y

is hereditarily separable. A hereditarily separable regular space is a-normal [1].

r

We will see that the properties of the Dowker space dictate the outcome of

the product. In Example 3.1, the product of a hereditarily separable Dowker

space with a compact metric space resulted in an a-normal product space. If this

condition is dropped, as the next example demonstrates, the product may fail to

be a-normal.

Example 3.2 (ZFC). The product of a normal space and a compact metric

space need not be a-normal.

Proof. Recall that a topological space X is called a P-space if the in-

tersection of countably many open sets is open. If X is a Dowker P-space and

is extremally disconnected, that is if the closure of an open set is open, then X

fails condition (2) of Theorem 2.3. Dow and van Mill [3] have constructed such a

space in ZFC. r

Remark 3.3. Note that in extremally disconnected spaces, a-countably

paracompactness is equivalent to countable paracompactness. Thus, the normal

space in Example 3.2 is not a-countably paracompact.
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Although b-normality seems a much stronger condition than a-normality, it is

not enough to determine the Dowker situation as the next example illustrates.

Example 3.4 ðV ¼ LÞ. A normal space whose product with a compact

metric space is b-normal but not normal.

Proof. P. Nyikos [12] constructed a scattered hereditarily strongly collec-

tionwise (scwH) Hausdor¤ Dowker space X under the axiom V ¼ L. Recently,

it was shown that X � ðoþ 1Þ is scattered and hereditarily scwH, and therefore

X � ðoþ 1Þ is (hereditarily) b-normal by Nyikos and Porter’s Theorem 2.8 [11].

r

4. Moore Space Results

In light of Theorem 2.9, one may consider how close a-normal and b-normal

are in the presence of condition (2) of Theorem 2.3 and conditions (2) and (3) of

Theorem 2.9. The next example gives some insight on this.

Example 4.1. A first countable Tychonov space that is a-normal, collec-

tionwise Hausdor¤, and a-countably paracompact but not b-normal.

Proof. In [17], Wage produced an example of a collectionwise Hausdor¤

first countable Tychono¤ space that is not normal. We state the following lemma

used by Wage.

Lemma 4.2. There exist subsets of the real line A and B such that BHA and

every countable subset of B is contained in a Gd that does not meet A� B, yet

every Gd containing B does meet A� B.

To create Wage’s example, topologize A by letting the points of B have the

usual neighborhoods and each point of A� B be isolated. Let X ¼ A� ðoþ 1Þ�
B� fog: Wage showed this space to be first countable, Tychono¤, non-normal,

pseudo-normal, and collectionwise Hausdor¤. A similar argument to the one

Wage used to show that X is collectionwise Hausdor¤ will be used to show that

X is a-normal.

Since the points of ðA� BÞ � o are isolated and B� o is hereditary sep-

arable, it su‰ces to show that every countable subset of B� o is contained in

an open set whose closure misses ðA� BÞ � fog. Let CHB� o be countable.
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Since every countable subset of B is contained in a Gd that misses A� B, there

exist open sets Un HA with Unþ1 HUn such that fx A B : ðbn A oÞðx; nÞ A CgH
7fUn : n A og and 7fUn : n A ogV ðA� BÞ ¼ q. Note that CH6fUn � fng :

n A og, and the closure of 6fUn � fng : n A og misses ðA� BÞ � fog. That is, X
is a-normal.

To show that X is a-countably paracompact, let fFn : n A og be a sequence of

decreasing closed sets such that 7Fn ¼ q. For each n A o let

(i) Gn ¼ Fn V ðB� oÞ,
(ii) Hn ¼ Fn V ðA� BÞ � fog, and

(iii) In ¼ Fn V ðA� BÞ � o

Note that In is open in X . For each ðx;oÞ A Hn, let Uðx;oÞ ¼ fðx; kÞ : kb ng.
Note that 6fUðx;oÞ : ðx;oÞ A HngV ðA� BÞ � fog ¼ Hn. Since A� o is para-

compact open subset of X and fGn : n A og is a decreasing sequence of closed

sets, we can find open sets Vn such that Gn HVn and 7Vn V ðA� oÞ ¼ q.

Since Gn is closed, we can find an open set On such that Gn VOn ¼ Gn and

On V ðA� BÞ � fog ¼ q by the above arguments. Let Un ¼ Vn VOn, and let

Wn ¼ In U ð6fUðx;oÞ : ðx;oÞ A HngÞUUn:

Note that 7Wn ¼ q, and X is a-countably paracompact.

To show that X is not b-normal, we show that the closed sets B� o and

ðA� BÞ � fog cannot be b-separated. Suppose U and V are open sets such that

ðB� oÞVU is dense in B� o and ðA� BÞ � fogVV is dense in ðA� BÞ � fog.
Since ðA� BÞ � fog is discrete, for every x A A� B there is an nx A o such that

fðx; nÞ : nb nxgHV . We claim there exists x 0 A B and a sequence fxkg in A� B

and an m A o such that xk ! x 0 and nxk ¼ m. Since U IB� o, U must contain

fðx 0; nÞ : n A og. This shows that U VV 0q.

To prove the claim, let Em ¼ fx A A� B : nx ¼ mg. If the claim were not true,

then for every x A B there is a neighborhood Ox of x such that Ox VEm ¼ q.

Let Om ¼ 6
x AX Ox. Note that Om VEm ¼ q, and 7

m Ao Om is a Gd set which

contains B but misses A� B, a contradiction. This completes the proof. r

Wage used this space to construct a collectionwise Hausdor¤ non-normal

Moore space. This gives the following interesting result.

Example 4.3. There exists a collectionwise Hausdor¤, non-b-normal, a-

normal Moore space, X 0.
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Proof. Let X 0 be the set of all non-isolated points of X . The space

Y ¼ X 0 � fogU ðX � X 0Þ � o

as a subspace of X � ðoþ 1Þ is a Moore space which is a-normal but not b-

normal by the previous arguments. r

5. Questions

The authors close the paper by listing some open questions that the authors

were unable to answer.

Question 5.1. Is there a Dowker space whose product with a compact

metric space is b-normal in ZFC?

Question 5.2. Is there a Dowker space whose product with a compact

metric space is a-normal, but not b-normal?

Question 5.3. If X is b-normal and a-countably paracompact, is

X � ðoþ 1Þ b-normal? a-normal?

Question 5.4. If X is a-normal and a-countably paracompact, is

X � ðoþ 1Þ a-normal?

Question 5.5. If X � ðoþ 1Þ is a-normal, is X a-countably metacompact?

a-countably paracompact?

Question 5.6. Are b-normal a-countably metacompact spaces a-countably

paracompact?

Question 5.7. Is there a b-normal non-normal Moore space?
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