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Abstract. In this paper, we classify k-simple prehomogeneous vector
spaces of type

(GL{XG] xka’p(ll)®®p§(1)++p§1>®®pl(€1))

where for any i, j, each p/@ is a nontrivial irreducible representation
of a simple algebraic group G; (i.e., p}-l) # 1) with k>3 and [ > 2
under full scalar multiplications. We consider everything over the

complex number field C.

Introduction

Let G be a connected linear algebraic group, V' a finite dimensional vector
space (dim V' > 1), and p a rational representation of G on V, all defined over
the complex number field C. If V" has a Zariski-dense G-orbit, the triplet (G, p, V)
is called a prehomogeneous vector space (abbrev. PV). In this paper, we as-
sume that G = GL{ X G X --- X G where each G; is a simple algebraic group
(1 <i<k). Then any representation (g,V) of G; x --- x Gy is the direct sum
of irreducible representations (g, V) = (o1, V1) ® -+ @ (g, Vi) where each o; is
of the form O'Y) ®--® O'/g) and a/([) is an irreducible representation of G;
(1<j<k). Let p be the composition of scalar multiplications GL! on each
Vi (1 <i<]l) and g. We call such a PV (G,p, V) a k-simple PV. When k =1
(K]) or k =2 ([KKIY], [KKTI]), they are completely classified. When k = 3, it
has been classified under some condition. In this paper, we classify all k-simple
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PVs under the condition that aj@ #1 for 1<i</ and 1< j<k. For any
representation p of any group G and any natural number 7 satisfying deg p < n, a
triplet (GxGLyp ALV ®V(n) = (GL x GX SLy, A1 ®p @ A1, V(1) ®
V® V(n)) is always a PV. We call such a PV a trivial PV.

In section 1, we give, as preliminaries, a notion of castling transform. Our
solution of the classification problem consists of the explicit description of the
process of castling transform and list of reduced prehomogeneous vector spaces.
We also give basic propositions. In particular, the unpublished result of T.
Kimura (Proposition 1.9) is essential for our classification in this paper. We
generalize it in section 2.

In section 2, first we give some lemmas. By using them, we classify k-simple
PVs of type (A) which is

! . N . .
<GL{ < Gix - x G @ ol @ @ Vi) @@ V(m,i’”) ()
i=1 i=1

where for any i, j, each pj(-i) is a nontrivial irreducible representation of G; on
V(mj(-i)) with k >3 and / > 2 under full scalar multiplications with m](-i) > 2 for
I<i<land 1 <j<k.

In section 3, we give the list of k-simple prehomogeneous vector spaces of

type (A).

NotaTioN. As usual, C stands for the field of complex numbers. For
positive integers m, n, we denote by M (m,n) the totality of m x n matrices over
C. If m =n, we simply write M (n) instead of M(n,n). Two triplets are called
isomorphic and denotes by (G,p, V)= (G',p', V') if there exists a group iso-
morphism o : p(G) — p(G') and an isomorphism 7: V — V' of vector spaces
satisfying 7(p(g)(v)) = (ap(g))z(v) for all ge G and ve V. In our classification,
we identify isomorphic triplets.

We denote by A; the standard representation of GL, on C". More generally,
Ay (k=1,...,r) denotes the fundamental irreducible representation of a simple
algebraic group of rank r. In general, we denote by p* the dual representation of
a rational representation p. Note that (G,p, V) = (G,p*, V*) if G is reductive.
Also if G| and G, are reductive, then we have (G; x Gz,p(l*) ®p§*)) ~ (G) X Gy,
p1 ® p,) where pt*) stands for p or its dual p*.

We denote p; +--- + p; by (—ID p;- When there is no confusion, we sometimes

i=1
write (G,p) instead of (G,p, V).
For / > 2, we do not write the action of GL! for simplicity. Namely we write
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(GL} x G,o1+ - +0, V1@ --- ®V)) instead of (GLI x G,AI®1® - ®1®
o+ +1® - QIIA ®c, V1@ -+ @V)) when [ >2.

1. Preliminaries

For our classifications of PVs, the following propositions and theorems are
basic.

ProposITION 1.1 ([SK, Proposition 1 in section 3]). If (G,p, V) is a PV, then
we have dim G = dim V.

ProposITION 1.2 (Castling transform) ([SK, Proposition 7 in section 2]). Let
p be a representation of an algebraic group H on an m-dimensional vector space V.
For any n satisfying m > n > 1, the following conditions are equivalent.

l. (HxGL,p® AL,V ®V(n)) is a PV.
2. (HXGLy—n,p* @A, V®V(Mm—n)) is a PV.
3. (HXGLy—n,p @A,V ®V(m—n)) is a PV if H is reductive.

We say the triplets 1, 2 (resp. 1, 3 if H is reductive) in Proposition 1.2 are
castling transforms of each other. Two triplets are called castling-equivalent if one
obtained from the other by a finite number of castling transformations.

THEOREM 1.3. Let p;: G — GL(V;) (i=1,2) be finite-dimensional rational
representations of an algebraic group G, and let n > max{dim V\,dim V,} be an
arbitrary natural number. Then the following conditions are equivalent.

1. (GXGLy,p,®@A1+p, QA VI®V(n)+Vo®V(n)) is a PV.
2. (Gopy ®py, VI ® V2) is a PV.

Proor. See [K3, Proposition 7.8, P229]. OJ

The following Theorem is a modification of Theorem 1.3 with respect to
scalar multiplication.

THEOREM 1.4. Let ¢;: H— GL(V;) (i=1,2) be finite-dimensional rational
representations of an algebraic group H, and let n > max{dim V\,dim V,} be an
arbitrary natural number. Then the following conditions are equivalent.
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1. (GL} x HX SL,,01 @ A1 + 2 @A[, Vi@ V(n)+Va® V(n)") is a PV.
2. (GLy x H/ A1 ®01 ®ay, V1 ®Va) is a PV.

Proor. If we put G =GL; x H and p, = A; ® g; (i =1,2) in Theorem 1.3,
we have (G x GLy,p; @ A1 +p, ® A}) = (GL} x H X SL,,01 ® A| + 02 ® A})
and (G,p, ®p,) = (GL; x H A ® (61 ® 02)). Hence we have our result by
Theorem 1.3. O

Now we shall introduce some classifications of reductive PVs.

THEOREM 1.5 ([SK, Section 7]). Any irreducible PV (G,p,V) is castling-
equivalent to one of the following PVs:

() Regular PVs
(1) A trivial PV, ie, (HXGL,,p® A, M(n)) where p is an n-
dimensional irreducible representation of a connected semisimple
algebraic group H.
(2) (GL,,p) where p=2A;; 3A; (n=2); Ay (n=even); A3 (n=06,
7,8).
(SL; x GLy,2A1 ® A1, V(6) ® V(2
(SLe x GLy, Ay ® A1, V(15) ® V(2
(SLS X GL,,,AZ ®A1, V(IO) ® V(n)) (l’l = 3,4)
(SL3 X SL3 X GLz,Al @A] @A], V(3) ® V(3) @ V(2))
(Spn X GLzm,A] ® A], V(2n) X V(2Wl)) (l’l >m > 1)
(
(

F N ON)

))-
))-

9,

N~ N S N~~~
~N
—_ o2

o0

GLl X Sp3,/\1 ®/\3, V(14))

SO, X GLy, Ay @ Ay, V(n) ® V(m)) (n>m=>1).
Note that (503,/\1) = (SL2,2A1), (S04,A1) = (SLQ x SL;,
A] ®A1), (505,[\1) = (sz,Az), (SOG,Al) = (SL4,A2).
(10) (Spiny x GL,, the spin rep. ® A1) (1 <n <3).

\O

(
(11) (GL, x Spin,, A1 ® the spin rep.) (n=9,11).
(12) (Spinio x GL,, a half-spin rep. ® A1) (n=2,3).
(13) (GL; x Spin,, A1 ® a half-spin rep.) (n = 12,14).
(14) (G2 X GL,,,/\Q ® A], V(7) @ V(I’l)) (l’l = 1,2)
(15) (E6 X GLn,/\l ® /\17 V<27) ® V(I’l)) (l’l = 1,2)
(16) (GLl x E7, A1 ® Ay, V(56)).

(II) Non-regular PVs
(1) (GL; x Spy, x SO3, A1 @ A1 @ AL V(1)@ V(2n)® V(3)) (n=2).
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(2) ((GLy xX)H x SLy, (A1 ®)p @ A1, V(m) @ V(n)) where p is an m-
dimensional irreducible representation of a semisimple algebraic group
H with 1l <m<n.

(3) ((GLy X)SLop+1, (A1 ®)Az, V(im(2m +1))) (m = 2).

(4)

((GLy X)SLap11 X SLa, (A1 @)A2 @ A, V(im(2m+ 1)) ® V(2)) (m = 2).
(5)
((GLy X)Spy X SLymy1, (A1 @)A1 @ AL, V(2n) @ V(2m+1)) (n=2m+12>1).
(6) ((GLy x)Spinyo, (A1 ®) a half-spin rep., V(16)).
THEOREM 1.6 ([K, Section 3]). All non-irreducible simple PVs with scalar
multiplications are given as follows:

-1
(1) (GL{ x SLy, A 5 F A +A<*>) Q<i<n+1,n>2).

(GL! x SL,, Ay + AV +A N@2<i<4n>4)
except (GL} x SLn,Az + A1+ A+ A}) with n= odd.

—
3]
—

(3) (GL2 X SLoya1, A2 + Az) (m=2).

4) (GL} x SL,,2A, + A )

(5) (GL} x SLs, Ay + Az + AY).

(6) (GL? x SLy,As+ Ay (6<n<7).

(7) (GL} x SL¢, A3 +A1 + Ay).

8) (GL{ x Spu M T TA) 2<1<3,n>2),

(9) (GL2 X sz,[\z + Al)

(10) (GL} x Sp3, Az + Ay).

(11) (GL2 x Spiny, the spin rep. + the vector rep.).

(12) (GL? x Spin,, a half-spin rep. + the vector rep.) (n=8,10,12).
(13) (GL} x Spinjo, A + A), where A = the even half-spin representation.

THEOREM 1.7 ([KKIY, Section 3] and [KKTI, Section 5]). All non-irreducible
2-simple PVs are classified in [KKIY] for type 1 and [KKTI] for type 1L

For our classification, following two propositions are basic. In particular,
Proposition 1.9 is essential.
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ProposiTiON 1.8 (T. Kimura). Let (G,p, V) be a triplet such that

k ! k
—— —— ——
G:GL{XSL,,1 X XSLy, p=AMN® QA+ +(AI® - ®A),

I
——
V=Vmn - m)+-+Vm-n) withn=nm>->n =2,

k>3 and [ > 2.

1. If dim G > dim V, then it is castling-equivalent to a trivial PV.
2. If dim G =dim V amll' k = 3, it is castling-equivalent to a reguler simple PV

(GL{ X SL/,1,A1+"'+A1,M(1,Z— 1))
3. If dm G=dimV and k=2, it is a non PV.

ProoF. See [K2, Theorem 9.2 in section 9]. O

ProposiTION 1.9 ([K4, T. Kimura’s unpublished result]). If (G, p, V) which is
same as that of Proposition 1.8 is a PV, then (I — )ny---np < ny.

We shall generalize this proposition (See Proposition 2.4).

2. A Classification

In this section, we classify k-simple PVs of type (A) by using following

lemmas.

Lemma 2.1. Let (G,p,V) be an irreducible triplet such that G = GL; x
G X XGr, p=AM®p® - Q@pp, V=V()®- - QV(mg) with m >
my > 2>2mg =2, k>3 and each p; is a nontrivial irreducible representation
of a simple algebraic group G; (i.e., p; # 1) for any j. If (G,p, V) is a PV, then
(G1,py, V(m)) = (SLyy, A1, V(my)).

Proor. First assume that (G,p,V) is a reduced PV. If it is a trivial
PV, it is clear. If it is a nontrivial PV, then it is also obvious since (G, p)
is (GL] X SL3 X SL3 X SLz,Al ®A1 @Al ®A1) or (GLI X SL2 X SL2 X SLz,
A ® A ® A ® Aj) by Theorem 1.5. Next we assume that (G,p, V) is a non
reduced PV with (Gy,p,, V(m1)) % (SLy,, A1, V(m1)), Then there exists a castling
transformation to obtain a lower dimensional PV which must be of the form
(G',p', V') such that G'=GL; X Gy X -+ X% SLm,{ XX Gy, V' =V(m)



A classification of reductive prehomogeneous vector spaces 183

® ® V(m]f) ® - ® V(mg) with m]f =my---mj_ 1My ---my —m; for some
!
J
2m; —m; = m; which is a contradiction. So we have our result. O

j satisfying 2 < j <k. However we have mj=my - -mj_imjz1---mp —m; >

LeMMA 22. Let p=p, ® ---Qp, be an irreducible representation of
Gy X -+ X Gi where each p; is a nontrivial irreducible representation of a simple
algebraic group G; (1 < j<k). Then we have dim(G, x --- x Gi) < (deg n)?
+ o+ (deg pp)* — k < (deg p)* — k.

PROOF. Since p; is a nontrivial representation of a simple algebraic group,
we have dim p;(G;) =dim G; and p;(G;) = SL(degp;) (1 <j<k). Hence we
obtain the first inequality. Since we have ;- -t >t +--- 4+t for any 1,...,
tr > 2, we obtain the second inequality. O

LemmA 2.3. Let (G,p,V) be a k-simple PV of type (A). Then it is of the
Sfollowing form:

1

! . 4
(GL{ X SLx Gy x - x G, DAY @pl' @ @p!,
=1

DroYerm)) e - ® V(m2f>>>

i=1

with k>3, 1>2, pj@ # 1 and m,(i) >2 for any i, j and t > max{mj(-i> [1<i<]
2<j<k}

PrOOF. Assume that m(ll) > > m,(cl). Then we have (Gl,pgl), V(m(ll))) ~
(SL;, A1,V (t)) and hence Gy = SL, and pgw = Ay, l:m<11>. Now assume that
p(12> # Aj,A{. Then we have m§2> = deg p(12> > deg Ay = deg pgl) =t. Then by
Lemma 2.1, there is some j > 2 satisfying (Gj, ](.2), V(m;2>)) =~ (SL(T), A, V(T))
with T > m(lz)(> t). Then we have G; = SL(T) and t > m](-l) > T (> t), which is
a contradiction. Hence we have p§2) = AE*) and msz) =t. Similary we have
P =AY and ml? =1 for 1< j <k O

PropoSITION 2.4.  Let (G,p, V) be a k-simple PV of type (A) of the form in
Lemma 2.3. Put m; = mgw .- ~m,({l) (I<i<l)yand M=my+---+m;. Then we

have M —m; <t (1 <i<]).
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Proor. First note that the number / and dim G — dim V' are invariant under
castling transformations. Put g =dim(G, x --- x Gx). We may assume that
my >my>--->m(>2%"). Then, by Lemma 22, we have g < (m)’—
(k—1) < (my)* = 2. If t > M, it is clear. Hence we may assume that M > . By
Proposition 1.1, we have dim G > dim V' and hence f(f) >0 where f(x)=
x? — Mx + [+ g — 1. First we shall show that the discriminant D of f(x) satisfies
D>0. If D=M?—-4(l+g—1)<0, then we have M?/4—-I+1<g<
(m;)* —2 and hence (M + 2m;)(M — 2m;) < 4(I — 3). Since 2(/+2) < M + 2m,
and 2(/ —2) < M —2my, we have 4(I> —4) < 4(I - 3), ie., [(l—1) < 1. This is
a contradiction and we have D > 0. Next we shall show that ¢ > (M + /D)/2.
For this purpose, it is enough to show that (M —+/D)/2 <t Put m=
rnax{m(zl), o ,m}cl)}(s ). Then by Lemma 2.2, we have ¢ < {mg)}2 +-

m"}? — (k —1) < (k — 1)m* —k + 1. Hence we have

(M —VD)/2 = (M*—D)/(2M +2VD) =2(I+g —1)/(M + VD)
<2I+g—1)/M<2(1+g—1)/(Im) =2(I+g—1)/(m - -m)
<2(1+ (k — V)ym* — k) /(2" 2Im)

which is < m(< ¢) if and only if (T =)(2¥72] — 2k + 2)m?* — 2/ + 2k > 0. Since

m>2, 1>2 and k>3, we have T > (2F —2)/ — 6k +8 > 21 — 6k +4 > 2.

Thus we have (M —+/D)/2 <t and hence ¢ > (M ++/D)/2. Now assume that

M —m; >t for some i. Then we have M —m; >t> (M ++/D)/2 and hence

(M —=2m)*>D=M*—4(l+g—1), ie, I+g—1>mi(M—m;). Since

mi(M —m;) = mi(M — m; —mj) + mm; = m(M —m; —m;) + (m)*
>2(2(/-2))+(g+2) =4 +g -6,

we have /| —1>4/—6, i.e,, 5> 3/ (/ >2). This is a contradiction and we have
M —m; <t for any i. O

REMARK 2.5, In particular, if (Gj,p@, V(m}”)) = (SLy,;, A1, V(n;)) where for
any i, J, m}l) =n; with ny > --- > m; > 2, we obtain the proof of proposition 1.9

since M —m;=Iny---mg—ny---mpe=(U—Dny---m <t=ny.

LemMmA 2.6. Let o and t be nontrivial irreducible representations of a simple
algebraic group H. Then we have (deg o)(deg t) > dim H.
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Proor. We may assume that m = deg o > n = deg 7. Then we have mn >
n?>—1>dim H by Lemma 2.2. m

LemMA 2.7. Assume thatk >2 Leto=01® - Qo and =11 R - R 1%
be irreducible representations of Gy x --- x Gy where o; and t; are nontrivial
irreducible representations of a simple algebraic group G; (1 < j<k). Then we
have (deg o)(deg ©) > 1 + dim(Gy X --- X Gy). In particular (GLy x Gy X -+ X Gy,
A1 ® (6®7)) is a non PV.

Proor. By Lemma 2.6, we have (dego;)(degt;) > dim G;(>3) for
l1<j<k. Since t| -t >t;+---+ t, for any ¢;,...,4 > 3 with k£ > 2, we have

k
(deg o) (deg 7) H deg g;)(deg 7;) > Hdlm G > Z dim G;
J=1 J=1 J=1

= dim(Gy X --- X Gy).
Hence we have (deg o)(deg7) > 1 +dim(G; x --- X Gy). O

Now we shall classify all k-simple PVs of type (A). By Lemma 2.3, it is of
the following form:

<<;L{ X SL; % Gy x -+ % Gk,@p“) @ e ®p,

/

DV evm) e - V(m?f”)

i=1

with k>3 122, p'=Ay or A], p’#1, m">22<j<k) and >

rnax{m [1<i<l,2<j<k} Here we may assume that p(1 )

= A without loss
of generality. First we shall show that p1 = A forall i (I <i</). Assume that

p(1> = A for some i(>2). Then
(GLY x SL x Gy x -+ x G, A1 @ p) @ -+ @ p) + A{ ®@p @ -+ @ p},

V@ Vim') @ @ Vo) + V() @ Vimd) @@ Vim)

is a PV. By Lemma 2.4, we have m; :inél)~--r;1,((1> <M-m; <t and m; =
mg)n-m,((') < M —m; < t. Hence by Theorem 1.4, it is PV-equivalent to



186 Masaya OuCHI

(GLl X Gz X -+ X Gk)Al ® (pgl) ®pgl>) ® ® (p/(cl) ®p§(1))7

which is a non PV by Lemma 2.7. This is a contradiction and p(li) = A, for all i.
Hence our PV is of the form:

/ . .
(GL{ X SL; x (Ga % - X G), Ay ® <€r)p§’> ®~--®p§§)>7
i=1

V(@ (Vim)+---+ V(le)))

where m; :mg>~--m§€i) (I<i<D.If M=m+---+m <t then it is a trivial
PV. Assume that M > ¢. Then by Proposition 1.2, it is castling-equivalent to

! . .
(GL{ XSL(M—I) X (G2 X oo X Gk),Al ® (@pg)(@...@pg))’
i=1

VM —=1)® (V(m)+--+ V(mz))).

Put m=max{m{ |1 <i</,2<j<k}. We shall show that m>M —r. If
m < M —t, then by Proposition 2.4, we have M —m; < M — ¢, and hence t < m;.
Take j # i and applying Proposition 2.4 to the previous PV, we have M —m; < t.
Then we have t <m; < M —m; <t, which is a contradiction. Hence we have

m> M —t. Take i and j satisfying m\”

;0 = m. Then

(GLy x Gj x SL(M — t) X Gy X - Gj_1 X Gj41 X --- x Gy,
MO @M@ ® @ @) ® - ®p

Vim@ V(M -0 @ Vmi) @@ V)@ vm))® o Vim)

isa PV withm>M—1¢and m> mj@ 2<j<k).If (G, j(-i), V(m)) % (SLy, A1,
V(m)), then we have M —t=1 and k=3 by Lemma 2.1. This implies that
our original PV is castling-equivalent to a 2-simple PV. Now assume that
(Gi,p", V(m)) = (SLy, A1, V(m)). If M —t=1 and k=3, it is a 2-simple PV.
If M—t>2or (M—t=1 and k >4), then this PV is the same type as the
original PV with less dimension. Therefore, by repeating this procedure, we



A classification of reductive prehomogeneous vector spaces 187

obtain a k-simple trivial PV with k > 3 or a 2-simple PV or a simple PV. They
have already been classified by Theorem 1.7 ([KKIY] for type I and [KKTI] for
type II) and Theorem 1.6 ([K]). This completes the classification of PVs of type
(A).

3. A List

THEOREM 3.1.  Any non-irreducible k-simple prehomogeneous vector space of
type (GL{ x Gy X -+ X Gk,p(ll) ® - ®p,(€1) + -~~+p(ll) ®--- ®p,<(1)) where for any
i, j, each p](i) is a nontrivial irreducible representation of a simple algebraic group
G; (ie., p](-i) # 1) with k >3 and | > 2 under full scalar multiplications is castling-
equivalent to one of the following PVs:

(1) A trivial PV, ie, (GL!x Gy x - x GgxSLy,(py+--+p)®A)
where p; = p(li) ® - ® p,(? is an irreducible representation of Gy X --- X
Gy, my + --- +my < t by putting m; = deg p; and each p;i) is a nontrivial
irreducible representation of G; for any i, j with k>0, 1> 2 and t > 2.
(II) A nontrivial 2-simple PV

(GL} x SLy x SLy, Ay @ A1 + A1 ® Ay).
(III) Nontrivial simple PVs 1
(1) (GL! x SL;_1, A 4/—7-1~-+A1) (1=2).
(2) (GL!x SL,,,A1+~--+A11 +A]) 2<i<n+1,n>2).
-1

(3) (GL! x SLy, Ay + AV T FAY) 2<i<4n>4)
except (GL} x SL,, Ay + Ay + Ay + A}) with n = odd.

4) (GL? x SLoyy11,A0 + As) (m>2).

(5) (GL x SL,,2A; +Al) (n>2).

(6) (GL? x SLs, Ay + Ay + AJ).

(7) (GL? x SL,, Az + AlY) (n=6,7).

(8) (GL} x SL¢, A3 + + Ap).

9) (GL! x Spy, AT T A1) 2<I<3n>2).

(10) (GL{ x Sp2, Az + Ay).

(11) (GL? x Sp3, Az + Ay).

(12) (GL?} x Spins, the spin rep. + the vector rep.).

(13) (GL? x Spiny, a half-spin rep. + the vector rep.) (n=8,10,12).
(14) (GL? x Spinyo, A + A), where A = the even half-spin representation.
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REMARK 3.2. In particular, if (Gj, ](-i), V(mj@)) = (SLy,, A1, V(n;)) where for
any i, J, mj@ =n; with ny > --- > ni > 2, the results (I) and (III) (1) are that of

proposition 1.8.
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