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A NONTRIVIAL ALGEBRAIC CYCLE IN THE JACOBIAN
VARIETY OF THE FERMAT SEXTIC

By

Yuuki TADOKORO

Abstract. We compute some value of the harmonic volume for the
Fermat sextic. Using this computation, we prove that some special
algebraic cycle in the Jacobian variety of the Fermat sextic is not
algebraically equivalent to zero.

1. Introduction

B. Harris [5] defined the harmonic volume for the compact Riemann surface
X of genus g > 3, using Chen’s iterated integrals [2]. Let J(X) be the Jacobian
variety of X. By the Abel-Jacobi map X — J(X), X is embedded in J(X). By a
consideration of the special harmonic volume, Harris [6] proved that the algebraic
cycle F(4) — F(4)” is not algebraically equivalent to zero in J(F(4)). Here, F(4)
is the Fermat quartic, which is a compact Riemann surface of genus 3. Ceresa [1]
showed that the algebraic cycle X — X~ is not algebraically equivalent to zero in
J(X) for a generic X. We know few explicit nontrivial examples except for F(4).
Harris [7] used the special feature of F(4) that its normalized period matrix has
entries in a discrete subring of C. The Fermat sextic F(6) has the same feature.
We use this and prove

THEOREM 4.3. Let F(6) be the Fermat sextic. Then, the algebraic cycle
F(6) — F(6)" is not algebraically equivalent to zero in J(F(6)).

We compute iterated integrals with some common base point of F(6). This
is a similar computation of Tretkoff and Tretkoff [10]. In order to compute the
Poincaré dual of F(6), we use the result of Kamata [8] for the intersection
number of the first integral homology class of the Fermat curves. It is difficult to
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apply Harris’ method to other Fermat curves. We guess that we need to extend
the harmonic volume, but it has not been extended so far. We [9] proved the
same fact as the Klein quartic, but we did not use the above special feature.
Now we describe the contents of this paper briefly. In §2, we recall the
definition and fundamental properties of the harmonic volume and algebraic cycle
in J(X). §3 is devoted to the computation of iterated integrals of the Fermat
curves. In the latter half of this section, we prove that iterated integrals on those
curves are represented by some special values of the generalized hypergeometric
function 3F,. It was introduced in [9] but not proved. In §4, we prove Main
Theorem, using the numerical calculation by the Mathematica program.
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2. Harmonic Volumes and Algebraic Cycles

Let R be a discrete subring of C. We suppose that all the entries of the
period matrix of the compact Riemann surface X can be reduced to elements of
R. Harris [7] pointed out that we may replace Z[v/—1] for the Fermat quartic in
Harris’ method in [6] with R. We recall the harmonic volume for such X as
follows. Let H 11{,0 denote the space of homolophic 1-forms on X with R-periods.
It is a g-dimensional C-vector space. We choose a basis {K|, K>,. .., Ky} of the
first integral homology group H(X;Z) of X.

DerFiNiTION 2.1 ([7]). The harmonic volume is defined to be the homo-
morphism (H,le"o)®"3 — C/R by

2g

IR(CO1 ®CO2 ®CO2) = Za,.J w12 mod R.
C,

r=1
Here w; ® wy, ® w3 is an element of (HIIQ’O)®R3, C, is a loop in X at the fixed base
point xo whose homology class is K,, and the Poincaré dual of ws is equal to
2g
> @K, (a, € C). The integral [ wjw; is Chen’s iterated integral [2], that is,
r=1 "

JC/_ w1y = joétlgtzgl fi(t) fo(12) dydts for Cro; = fi(2) dt, i = 1,2, where 1 is the
coordinate in the unit interval [0, 1].
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We remark that Iz dose not depend on the choice of the base point xj. It is a
modified version of the original harmonic volume 7. See Harris [5] for 1.

Let J=J(X) be the Jacobian variety of X. By the Abel-Jacobi map
X — J(X), X is embedded in J(X). The algebraic l-cycle X — X~ in J(X) is
homologous to zero. Here we denote by X~ the image of X under the mul-
tiplication map by —1. We recall the relation between the harmonic volume and
algebraic 1-cycle X — X~ in J. We say the algebraic cycle X — X~ is algebraically
equivalent to zero in J if there exists a topological 3-chain W such that
OW =X — X" and W lies on S, where S is an algebraic (or complex analytic)
subset of J of complex dimension 2 (Harris [7]). The chain W is unique up to
3-cycles. Harris proved the key theorem.

THEOREM 2.2 (Section 2.7 in [7]). If the algebraic cycle X — X~ is alge-
braically equivalent to zero in J, then 2Ir(w) =0 modulo R for any
we (HLER

®r3

See Harris [6, 7] for details. In §4, we find some element w € (H }Q‘O) such

that 2/gx(w) # 0 modulo R for the Fermat sextic.

3. [Iterated Integrals of the Fermat Curves

In this section we compute iterated integrals of the Fermat curves. Let H'°
denote the space of holomorphic I-forms on X. We choose a basis {w;,ws, ...,
wy} of HO. Let y be a loop in X at some base point. We remark that the
iterated integral fy wjw; depends on the choice of the base points and is invariant
under homotopy relative a fixed base point. This iterated integral and the
quadratic period defined by Gunning [4] are essentially same except for the sign.

For NeZs3, let F(N)={(X:Y:Z)eCP* X" + YV =27V} denote the
Fermat curve of degree N, which is a compact Riemann surface of genus
(N—1)(N—2)/2. Let x and y denote X/Z and Y/Z respectively. The equa-
tion XV + YV = Z¥ induces x" + y" = 1. Using this coordinate (x,y) € F(N),
the holomorphic map 7 : F(N) — CP! is defined by zn(x, y) = x. It is clear that
n is an N-sheeted covering F(N) — CP!, branched over N branch points
{C]"\,}Z.ZO_’1 ____ v_1 € CP'. Here {y denotes exp(2zv—1/N). Holomorphic auto-
morphisms o and f of F(N) are defined by a(X:Y:Z2)=((yX:Y:Z) and
PX:Y:Z)=(X:{yY:Z) respectively. We have that off = fo. and the sub-
group of the holomorphic automorphisms of F(N) which is generated by o and f
is isomorphic to (Z/NZ) x (Z/NZ). Let P; and Q; denote a’(1,0) and $'(0,1),
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i=0,1,...,N —1 respectively. We define a simply connected domain Q by
A\ = N 1{ZC/ t>1,teR}. Then n7!(Q) consists of N path-connected com-
ponents and we denote by Q; a connected component of z~!(Q) which contains
Q;, i=0,1,...,N—1. Let y, be a path [0,1] 37+ (1, V1 —tV) e F(N), where
V1 -1V is a real nonnegative analytic function on [0,1]. A loop in F(N) is
defined by
Ko =70" (/33’0)71 (o) - (0%)717

where the product /) - /, indicates that we traverse /; first, then /. We consider
a loop o'fi/iy as an element of the first homology group H|(F(N);Z) of

F(N). Kamata obtained the following lemma for the intersection number of
H\(F(N); Z).

LemmA 3.1 (Section 5 in [8]). We have

(o, o) = — (oo, Ko)

(0, rco) = 1 = —(Prco, o)

(7o, aﬂxo) —1 = —(afro, x0)
(10, 8~ Ko) Oi(aﬂilKo,Ko).

From this lemma, it is to show

PROPOSITION 3.2 (Section 5 in [8]).  We have {o'B/ro};q .. N-3.j=0.1.. N2 IS
a basis of Hi(F(N);Z).

REMARK 3.3. Intersection matrix of {ocf/ijico}i:0717“”/\,_3‘/:0‘1“1_,]\,_2 is given
by K in case (i) in [8].

It is a known fact that {o] = x"""y"Vdx/y""1}, | e~ 1 is a basis of
O of F(N). The beta function B(u, v) is defined by fo Y1 — 10" dr for
u,v > 0. It is clear that
J . w;,s: Ii\}ﬁjSJ a)r’,s: ]z‘\r}Jrst(r/]}/\;s/N).
Iﬁj/r) Yo

The integral of o] along a'f/Ko is obtained as follows.

ProposITION 3.4 (Appendix in [3]). We have

Jlﬁ/ w"‘Y:B(r/N7S/N)(1_C}V)(1—C%) "‘,’]‘/N
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We denote the 1-form N/ /BN by o, Here, BY = B(r/N,s/N). This
implies L{,ﬁ% w5 € Z[Ly).

Let f. s be a real 1-form on [0, 1] defined by yje, ="' (V1 — NN dr for
r,s>1, r+s5 <N — 1. The iterated integral j‘/o @y 50y = N? fy SrosSim/ (BYBY,)
is denoted by x, s ;. Here, y is the path [0,1] ¢ +— ¢ € [0, 1]. Iterated integrals of
o, along the loop a/f’iy can be computed.

LEMMA 3.5. We consider o'’y as a loop at the base point Q;. Then the
iterated integral L’ﬁ’/«o Wy, 5O IS given by

ENIIE = (= G+ (1= B+ L™ = T = G}

. {(r-0) (s
Proor. It is clear that Ia'ﬁ’ko O, 5O :C,Z\EH J+ilstm) Lﬂ) o, 501 m. We have

only to compute [ @, ,,. We denote (f/l + ffz)a),._rscu,’m = f{l @ 5O+

J}Z o, 501, only here.
Proposition 3.4, the equation IY() s =1, and

J Wy sW] m + J Wy sWO] m + J wr,sJ Olm = J @y sO] m = 0
%0 %! % % Yoy "

give us the equation

J Wy s m = J +J . +J +J ) Wy s m
Ko % (Bro)” afyo (op9) ™~
+ J Wy, s J + J + J @f m
%o Bro)" o Jog) !
+J lwr,s J +J . wl,m""J wr,sJ lwl,m
(Bro)~ aByo (270)”~ afyo (70)”
— J +C;;;+m J +C/r\]+s+l+m J Jra;;rl J . )
Y0 VJI Y0 "/Jl 7 7

I+ /
+J Wr s\ — K;J +€ij —CNJ WOl m
Yo Y0 70 Yo
s I+ ! +s /
6o o b Yoam (@] )t ] en
%0 Y0 Y0 Y0 Y0
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_ {(1 + C};/+S+1+m) J (Cs-‘rm + cl+1) J }wr,swl,m
/0 Y0

+ (Cber + C’Jrl) J wr,sJ wkm

Y0 70

_ CN + Cl+m CN S+1+m + CJ+1 I+J+l
= (1 - ]rVH)(l - ;;;LW)J Wy, 5D, m
Y0
+ (1= R+ = = &) O

We define a path y; by y, - (ﬂ"yo)fl. Let y; ; denote the loop y; - CHU -yjfl.
Using the above lemma, we have iterated integrals of w, s along the loop y; ; at
the common base point Q.

THEOREM 3.6. The iterated integral f;» @y 5@, IS given by
ij ’

CN I = (1 = G ) + (L= GO + ™ = G = ()}

(== G =" = (1= G = G (1= G

Tretkoff and Tretkoff [10] computed the quadratic periods with another base
point by similar computation.

Proor. We have

J Wy sO|m = J - Wp 5O, +J wr,sJ - Wim — J _ wr,sJ Dl m-
Vij a'Blico % alfpl Ko ol lico Y

J J

From this equation and Lemma 3.5, the result follows. O

For the numerical calculation of X, ,;,,, we recall the generalized hyper-
geometric function 3F>. Let I'(z) denote the gamma function [, e 't""'d: for
7> 0. We define (a,n) by I'(a +n)/I'(a) for n e Z~y. For xe {z € C;|z| < 1} and
o, 0,03, 8,y > —1, the generalized hypergeometric function 3F, is defined by

OCl,OCz,OC} — 0(1, C)627 37”) n
) ; x".
( ﬂlaﬁZ ) ; ﬂla ﬁZv )( ) )
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PROPOSITION 3.7. Let A be a 1-simplex {(u,v) e R*;0<v<1,0 <u<v}. If
a,b,p,q>0, b<1, then we have

J w1 = w) P (1 = o) dudy
A

B —b
= M 11m 3 ( 14 _:l —:—p l).
a,a-—r+— p q

Proor. Using the equation

we compute as follows:

1 v
J v’ - U)‘FIJ w1 = u)" dudv
0 0

! 2 (1 —b,n) (°
P11 = )4t (A=bn) J w4 du
J,7 a0 2w b,

0

v

J Ua+p+n—l(1 o U)q71 (1 - b,l’l) 1

I
Mg

“—Jo (L,n) a+n
- (I1—b,m) 1
- B("”*”"”WHH

3
i
o

~T(a+p+nT(q) (1-b,n) 1
I'a+p+q+n) (L,n) a+n

I
M5

Il
o

n

_Fa+p Zx: Tla+p+q) T(@a+p+n) (1—>b,n)
(a+p+q“za+nT(a+p+qg+n) T(a+p) (1,m)
B . —b
_Blatpra 3F2< atp t>_ -
a 120 l+a,a+p+q’

From this proposition, we have
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LEmMA 3.8.

N2[ foshim NBY,, i <r/N,1—s/N,(r+l)/N t)
3472 5
0

= 1 ;
BNB, rBN.B), o 1+7r/N,(r+1+m)/N

Xr,s,l,m =

4. A Nontrivial Algebraic Cycle in J(F(6))

In this section, we consider only the case N = 6. We compute some value of
the harmonic volume for the Fermat sextic F(6). This tells the nontriviality of the
algebraic cycle F(6) — F(6) in J(F(6)). We have the genus of F(6) is equal to
10 and {® s}, ;o1 y15<s 1S @ basis of H"? of F(6). For the rest of this paper,
we denote (= C(,' and R =Z[{]. Proposition 3.2 gives that a set of loops

{V0,07V0,1»~~,V0,47V1,0»V1,1a~~~7V1,4»V2,0~~~,V3,0aV3,17~-,V3,4} may be considered
as a basis of the integral homology group H;(F(6);Z) of F(6). Let
P.D.: H'(F(6);C) — H{(F(6);C) be the Poincaré dual.

Lemma 4.1. Let L;y be a linear combination ijo C"ky,-yn in H (F(6);C).
Then we have

P.D.(w11) = é{(@f 130)Lo1 — (15—490) Ly 1 — (43 —510) Ly — (50 —21() L3 1}

ProOF. Since B.(y; ;) = 7; ;41 as a homology class, we obtain
B.Liy=C" Liy.
We have
ﬂ*(P.D.(O)L])) = P.D.((ﬂil)*a)l,l) = é'SP.D.(CL)]’l).

Since B.L; = CSLM, there exist constants A,...,43 € C such that P.D.(w; ) =
Z?:o AiL; 1. The result follows from Proposition 3.4 and the equations

w11 = (P.D.(1,1),70.0) = > _ 4(Li1,700) = (= o+ (= 1),

Y7%0,0

w11 = (P.D.(w1,1),71,0) =

71,0

;“i(Li,layl,O) = (1 - C);LO + (CS - é:)/h + (Ci 1);“27

w11 = (PD.(w11),720) = > 4i(Li1,720) = (1 =01 + (= O+ (= 1),

72,0

1,1 = (P.D.(w1,1),73.0) =

73,0

2i(Lin,y3.0) = (1= 0o+ (8 = ). O

M- - - -

Il
<)
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5
nk
Let ILi.k ;51 denote nz::oc ija),,_sa)hm.

Lemma 4.2. For i =0,...,3, we have

J w1013 = 6{C(1+)(x1215—1) = '}
L

ProoOF. By Theorem 3.6, it is easy to compute

| @r200a =204 00200 - D+ 200 00 -0)
Yin
_ (1 _ C3n)ci+2n(1 _ 2()
Using this equation, we obtain the result in a straightforward way. O

THEOREM 4.3.  Let F(6) be the Fermat sextic. Then, the cycle F(6) — F(6)™ is
not algebraically equivalent to zero in J(F(6)).

Proor. By the definition of the harmonic volume Ig, we have

3

IR(w12 @ w3 Qwi) = Z;Lij ) 201,3 mod R.
i=0 Li

Using Lemma 4.1 and 4.2, we obtain

6
(w1, ®w13@wi 1) = a{(42 —30)x1.2.1,3 — 95 +46(} mod R,

and denote it by o. By Lemma 3.8 and the numerical calculation (Figure 1 in
Appendix), we obtain the value

6

2R (o) al

(81x15.1.3 — 144) = 0.74286 + 1 x 10~ mod Z.

The result follows from Theorem 2.2 and the lemma

2R(o) ¢ Z = o ¢ Z[(]. O
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5. Appendix

We introduce the Mathematica program [11] in the proof of Theorem 4.3.

x[r , s, 1 , m ]:=(6*Beta[(r+1)/6,m/6])/ (r~Beta[r/6,s/6] *
Beta[l/6,m/ 6]) » HypergeometricPFQ[{r/6,1-s/6, (r+1) /6},
{l+r/6,(r+1+m)/6},1}

N[2 %*FullSimplify[6/6(81xx[1,2,1,3]-144)],20]+22

Figure 1. A numerical calculation program in the proof of Theorem 4.3
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