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REPRESENTATIONS OF NORMALIZER SUBGROUPS
OF MAXIMAL TORI OF THE CLASSICAL GROUP
OF TYPE C

By

Makoto TAKAHASHI

Abstract. We study representations of the normalizer subgroup N
of a maximal torus of the classical group of type C, Sp(n). We
obtain a formula of the irreducible characters of N, and give the
branching rule from Sp(n) to N.

1. Introduction

The research of representations and characters of Sp(n), the classical group of
type C, has been developed and we have the characterization of the irreducible
representations and formulae of the dimensions and characters (see [W]).

Restriction of an irreducible character of Sp(n) to a maximal torus 7 is a
polynomial invariant under the action of the Weyl group of type C. The Weyl
group of a semisimple Lie group is obtained as the quotient of the normalizer
subgroup of a maximal torus by the maximal torus itself. When we research
representations of the semisimple Lie groups, it is important to decompose the
representation space into the weight spaces of the maximal torus. The weight
spaces are permuted by the action of the Weyl group. So, maximal tori and Weyl
groups play a crucial role to investigate the representations of the semisimple Lie
groups.

We consider the representations of the normalizer subgroup N of a maximal
torus of Sp(n). The group N has the properties of both the maximal torus and
the Weyl group. Indeed, N includes the maximal torus 7" that gives the weight
space decomposition and the Weyl group N/T permutes the weights. Each of the
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characters of SP(n) is determined by its restriction to a maximal torus 7, since
any element of G is conjugate to an element of 7. This restriction is a polynomial
function on 7' which is invariant under the action of the Weyl group W = N/T.
So, the research of difference between representations of N and representations of
the whole group Sp(n) is an interesting subject. To compare the representations
of Sp(n) and N, we consider the restriction of the representation of Sp(n) to N
and give a combinatorial formula for the multiplicities of the irreducible rep-
resentations of N in the restriction of the irreducible representation of Sp(n) to N.

The representation theory of N has been developed in the context of the zero-
weight representation and so many interesting results are obtained (see [AMT],
[Mat], [Na], [Ni], [MT]).

In this paper, we use the method given by Clifford [C] to determine irre-
ducible characters of N. Each element of N is determined by we N/T and t€ T.
We write the corresponding element as n,,¢z. Then, we obtain the character value
of n,t of irreducible representations of N.

In the remainder of this section, we summarize the contents of this paper.

In section 2, basic facts and notations are introduced to proceed the
arguments, and we have a criterion given by Clifford of the irreducibility of
representations of N.

In section 3, we determine the character value at n,¢ of irreducible repre-
sentations of N.

In section 4, we write the value of elementary symmetric functions at
eigenvalues of n,7 in terms of w and ¢. Then, the character value of an irreducible
representation of Sp(n) at n,r is expressed by w and z.

In section 5, we obtain the branching rule between N and Sp(n). We use an
inner product on the space of characters of N given by normalized Haar measure
on N.

I would like to thank Prof. J. Matsuzawa who introduced me the subject of
this paper and gives me a lot of lectures. I would also like to thank Prof. K.
Koike and Prof. I. Terada for many important suggestions. I am grateful to Prof.
M. Miyamoto for all the help on my study.

2. The Irreducible Representations of N

In this paper, define the classical group of type C, Sp(n), as follows;

Sp(n) :={ge UQ2n)|'gJng = Ju},

0 I . . . .
where J, = ( I 6’ ) € GL(2n,R) and I, is the identity matrix of degree n.
—n
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We fix a maximal torus T of Sp(n) as follows;
T = {diag(ti, t2, ... tay 11, D2y .., 1) | 1; = €1, 0, € R},

where 7; is the complex conjugate of #;. Let N be the normalizer subgroup of 7.
Then, the following sequence becomes exact;

1—-T—>N—W—1 (exact),

where W is the Weyl group of type C, which is isomorphic to the semi-direct
product S, X (Zy)".
For i > 0, let t_; := f;. Then, the elements ¢t of T are expressed as follows;

t=diag(ti,ta, ...ty t_1,t 0, ... t_p).
The group W consists of the permutations ¢ on the set
{1,2,...,n,—1,-2,... —n},

which satisfy the condition o(—i) = —a(i). The group W can be regarded as a
subgroup of &,,. For we W, we use the same symbol w for the permutation

. . . .. A C
matrix corresponding to w in U(2n). Then, the matrix is of type w = (C A)’
where the matrix w is a permutation matrix of size 2n x 2n, the size of block
matrices 4 and C is nxn, and the matrices 4, C satisfy the conditions
‘A4 +'CC =1, and 'AC = 4'C =0.

A C A C
N 2.1. F = y = .
OTATION or each we W, w (C 4 ), we set n, ( _c A)

Then, n, € Sp(n), and we obtain

I’l;l ny, = diag([w(l)a [w(2)7 B tw(n)a [w(71)7 Z‘w(72)7 B lw(fn))~
REMARK 2.2. Let x1,Xx2,...,X, be the generators of W as Coxeter group,
where x, corresponds to the long root. For x; (i=1,2,...,n—1), we have the
following expression;
A; 0
ny, =
X 0 Ai 5
where
Iy
0 1
ke 10 ’
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and
Inf 1

In—l
-1 0

In the matrices A; and ny,, the entries which are not written are 0.
In fact, we can choose elements n, of N corresponding to x; as

(B 0
™ =\o B )

where

fori=1,2,....n—1, and
Ry, =Ny, .

In the matrix B;, the entries which are not written are 0.

For each i, where i = 1,2, ... n, elements ny, and ny, of N differ by an element
of T; n;l_lﬁxl. eT. In [MT], ny,’s are used to proceed the argument (see [MT],
Remark 5.2).

Here, we consider the irreducibility of representations of N.

THeEOREM 2.3 (Clifford [C]). Let (p,V) be a finite dimensional continuous
representation of N. Then, we obtain the weight space decomposition of V with
respect to T as follows;

V= Vyl @ I/;Q@@ Vra
where w;: T — C* is a continuous homomorphism, and
Vi, =A{veVI|VteT,p(t)o = pu(t)v (u;(t) e C*)}.
Fix a weight u. Then,

Vi={ve V|Vie T.p(t)o = (v (u(t) e C*))}.
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Let N, be the maximum subgroup of N that stabilizes the weight space V). Then,
the representation (p, V') is irreducible if and only if the following two conditions
hold,

@) (ply, Vi) is an irreducible representation of Ny,

(b) ¥ = p(N) V. 0

Weyl group W acts on the set of weights of the irreducible representation (p, V).
The weights are permuted under the action of W and form a W-orbit. For a
weight u, we can define a subgroup N, of N as the stabilizer subgroup of ux by
the action. Then, the stabilizer subgroup N, is the maximum subgroup of N that
stabilizes the weight space V. In the set of weights, we introduce the dominance
order by which the following weight x4 becomes the highest weight;

u(t)y =t >t pielso, pr=pr>--->p, >0. (2.1)

For the highest weight 4, we obtain the weight space V/, and the maximum
stabilizer subgroup N,. Let W, := N,/T. Then, we can parameterize the irre-
ducible representation p by the weight x4 and an irreducible representation ¢ of
W, in the context of [C].

Each element of W can be uniquely written in product of the following
elements;

(ivip -+ - i —iy—ip -+ - —ig),
(i1i2 ce ik)(—il—iz cee —ik).

Namely, i and —i appear in one cycle element simultaneously or not. Define a
cycle element to be self-contained if i and —i appear in the expression, and to be
separated otherwise. For separated case, we have a pair of cycle elements. The
self-contained cycle elements have even length. For we W, if w is decomposed
into cycle elements all of which are separated, then we call the element w to be
separated.

Let W, :=N,/T < W. Then, W, is isomorphic to the direct product of Weyl
groups.

DEFINITION 2.4. For the highest weight p, w(t)=t"t> -1, p; e Z,,
p1=>py > > p, >0, define the number of p;’s which are equal to 0 to be ny,
and the number of distinct elements which are not equal to 0 in the set {p1,...,pn}
to be q. We define the numbers ni,ny,...,n, as follows;



6 Makoto TAKAHASHI

PL=p2=""= Pn
> P+l = Pm+2 = = Pnjtny
> > Puyetng 41 = Piptetng 42 = 00 = Pty > 0. L]

DErFINITION 2.5. For 0 <i < q, define the sets I, I as follows;

1
L={m+-+m+Lm+-+n+2,... .0+ +n_1+n}
(i=1,2,...),

Iy:={m+---+n+1nm+-+n+2,....n+---+n,+n},
I :={—k|kel}. [
DEFINITION 2.6.  Define W (A,—1) to be the group which consists of all the
separated permutations ¢ on the set I;UI/ with the conditions
o) < by oll)) <1/,

and W(C,,) is the Weyl group of type C on the set IyUI,. ]

Then, we have the following equation;

Wy=W(Any 1) x W(Ap,—1) X - x W(Ay,1) x W(Cy). (2.2)

As in the notation 2.1, let n,, = 4-C , where w = 4 c . Then, each
—-C 4 C 4

element of N can be written as n,¢ uniquely for we W, t € T, and we obtain the
following proposition.

PROPOSITION 2.7.  For the highest weight p, we define a map fi: N, — C* as
follows;,

alnyt) :=pu(t) (VeeT). (2.3)

Then, the map f becomes a character of N, and we have f|; = u.

Proor. It is clear that g is a well-defined map. Immediately, we have
Al = u. We show that g is a group homomorphism from N, to C*.
For elements n,t,n,t € N,, we have

(nyt) (myrt) = mymy (i, )

= My (n;,lt,,nwn\,v/)(n;,l tny)t'.
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Since n_!,n,n, € T, we have

ww

() (")) = (e (15 ) () )1
= p( (1ot () t,0)1')
= ﬂ(”;&ﬂnw”w’)ﬂ(”;’l tmy )u(t').
Then, we have

() (1)) = (om0 a(t") (24)

from the condition n, € N,.
Here, we determine the value of ﬂ(n;‘{,,nwnwf). Let ny =n; +--- +n,. Then,
the matrix n;}v,nwn.‘,/ is expressed as follows;

I,
Ty

» Dy,
ny Myl = L )
n

D,

where D,, is a diagonal matrix of size ny x nyg, and the entries of the matrix
n;,l,,nwnw/ which are not written are 0.
Since p; =0 for i =n{+1,n5+2,...,n5+ny, we have

'u(n;llv’nwnw/) = 1

Then, from (2.4), we have the following equations;

A(nt)(mprt)) = 1 p()p(t')
= fnpt)il(nyt'). (255)
The equation (2.5) shows that the map g: N, — C* is a character of N,. [J
From the proposition 2.7, we obtain the fact that for any irreducible rep-

resentation x4 of 7, we have a representation g of N, which satisfies fi|; = .
Next, we consider representations of N, given by representations of W,,.

DrrFINITION 2.8.  Let m: Ny, — W, be the quotient map and ¢ a representation
of W,. Then, we define a representation ¢ of N, as follows;

p:=g@om. (2.6)
O
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Then, we have

g(mit) = p(w). (2.7)

Lemma 2.9 (Clifford [C]). Let u be an irreducible representation of T. Then,
we have a stabilizer subgroup N, and a group representation fi of N, as (2.3). For
an irreducible representation ¢ of W,, we have a representation ¢ of N, as (2.6).
Then, the representation i ® ¢ becomes an irreducible representation of N,. [

From (2.3) and (2.7), we have

(i ® @) (myt) = u(t) @ p(w). (2.8)

THEOREM 2.10 (Clifford [C]). Let (p, V) be an irreducible representation of N,
u the highest weight of (p, V). Define a representation ¢ of W, as follows;

p(w) == pln,) (we W,). (2.9)

Then, (9, V,) is an irreducible representation of W, and the following condition
holds;
for the representation t(u,p) of N, defined as

(1, 9) (m0t) 1= (@ §)(mut) = lr) ® p(w), (2.10)
we have

p= (i) 1. (2.11)

O

From the theorem 2.3, lemma 2.9 and theorem 2.10, we obtain the following
theorem.

THEOREM 2.11 (Clifford [C]). The irreducible representation (p,V) of N is
parameterized uniquely by the highest weight u and an irreducible representation
@ of W, up to equivalence. Moreover, let (p, V), (p',V') be irreducible repre-
sentations of N, u, u' the weights of them and ¢, ¢' irreducible representations of
W, Wy respectively. Let p = t(u,q) T]]\V,ﬂ, pl =y, ) T]]\\,;,. Then, (p,V) and
(p', V') are equivalent if and only if there exists an element we W by which
w =w-pu (in which case we have W,= W,) and ¢'=w-¢ hold, where
(w-p) (1) = u(n;tiny), (w-9)(x) =@(w™'xw) for te T and x e W,. O
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NoOTATION 2.12.  Let (p, V) be an irreducible representation of N. From the
equation (2.11), we have
p =i, 0) 1,
. N .
Then, we write t(u,p) TN” as 0, (4, 0);

p= 9’[,71(‘[,’(/,). (212)

3. The Irreducible Characters of N

Each element of N can be written as n,t where n,, is given in the notation 2.1
and re T. Fix an element we W and te T. The system of representatives of
N/N, = W /W, forms a finite set. Let

R={wi,wa,...wp} (3.1)

be one of the complete sets of representatives. For each w; € R, we have n,, € N
as in the notation 2.1. Then,

V= @ Vi, (3.2)
where V; = p(n,,)V,. Then, p(n,t) permutes the summands ¥;. Hence, we have
tr p(nyt) = Z tr p(nwt)|y - (3.3)

P, V=V,

For ve V,, we obtain the following equations;
p(nyt)p(ny, o = p(nyiny,)v
= p(ny, - n;l_lnwnw,. . n;l_l ny, v
= ,u(n‘;’,1 tnwi)p(nwl.)p(n;ﬁlnwnwi)v. (3.4)
So, from (3.4), if n;{lnwn\,ﬁ. ¢ N, then
pnt)Vi # Vi

and the summand ¥; gives no contribution to the value of # p(n,1).
Assume that for some g € R, the summand p(n,)V, is fixed by the action of
p(nyt). Then, ng‘lnwng is an element of N,. Here, we have

-1 _ 11
ng iy = ngfl\,vg(ny,lwgng Mywhg),

—~1 —1 . H -1 —
and N My Tl 1S an element of 7. So, we obtain g~ 'wg e N,/T = W,.
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For each w, consider
U'={ueW|u'wue Ww,}. (3.5)

For 8,7 € U" which satisfy that 6~ 'wd and 5wy are in the same conjugacy class
of W,, we have 6 € Zy (w)nW,

u» where Zy,(w) is the centralizer subgroup of w in
w.

NotatioN 3.1.  Let {n,n,,...,n;} be the complete set of representatives of
the following quotient;

wwWN\U" | W,.
Then, we have a decomposition of U" into the equivalence classes;
U =Zwwim W, UZyw)np, WU ---UZy(w)yW,. (3.6)

On the other hand, let

U" = (Zw(w)n,W,) NR. (3.7
Then, from (3.6), we have
ZW(W)r/ W/t = |_| Wi VVuv (3 8)
wieUY
1
U = |_|< L] wi Wﬂ>. (3.9)
r=1 \w;eU»

THEOREM 3.2. Let (p, V) be an irreducible representation of N, u the highest
weight of p, ¢ the representation of W, given in (2.9), & the character of ¢. Then,
we can write

P =) = (ll@(ﬂ)TN

as in section 2, (2.10), (2.12). Let n,t be an element of N given by the notation 2.1,
and {n;,M,,...,n,} be the set given in the notation 3.1. Then, the character value

determined by the element n,t on space V with representation p is written as

follows;,

i

tr p(nyt) = Zé(’l;lwﬂr) Z ﬂ(nul — lnnnn )z Wi (1)t57(2) lfi’;(”)- (3.10)
r=1 wieUY
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Proor. From (2.10), (2.11), (3.3), (3.4), (3.8) and (3.9), we obtain the
following equations;

rplmt) = S g my) tr (e nun,)l
w;€ER,

w,.’l ww; e Wy,

/
= Z Z 'u(n‘:il m”’i) tr p(n;ilnwnw,-)h/ﬂ
r=1 w;e Ur‘“‘
!
- Z Z r T(/“‘ (ﬂ)(l’l PPy, )//C(n;il tnw[)
r=1 w;eUY

/
= Z Z rt ,L( (ﬂ)( n lww[ : nnl ww; I’l lanH )Iu(n‘;il an{)

r=1 wieU,

[
M~

Z r ¢( WW )'u(nul ww; n, ln”n” )lu(n;il tnwf)'

r=1 w;eUY

Let & be the character of the irreducible representation ¢ of W,. Then, we obtain
the following equation;

/

tr p(nyt) = Z Z f(wflww,')u(nnl ™ 1n“nw ),u(n‘;’,1 ny,). (3.11)

r=1 w;eUY
On the other hand, we have
EQwy twwy) = &Gy wa, ), (3.12)

plim ) = 7 007t (3.13)

wi(n)?
for the element w; € U". Then, from (3.11), (3.12) and (3.13), we obtain the
following equation;

!
1 -1 n
r p(mt) = D &1 wn) Y o 1 e ) )
r=1 wie UM
which gives the same value as (3.10). O
REMARK 3.3. For wie UY < Zy(w)nW,, we can write w; = z[n.hl, where

zl € Zw(w) and hl € W,. For each wj, fix zI and h] which satisfy w; = z/nh].
Then,
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{zl lwi = zn,hi} (3.14)
is the representatives of the following quotient set;

Zw(w)/(Zw (w) O, W, ). (3.15)

4. The Value of Symmetric Functions at Eigenvalues of 7,¢

In this section, we express the value of elementary symmetric functions at the
eigenvalues of the element n,¢ in N.
As in the notation 2.1, let

(A4 C\ (s 0
n,, = _C 4 5 - 0 § )

where ¢ is a diagonal matrix of Sp(n). Then, the characteristic polynomial of 7,
is written as follows;

I,—As  —Cs
det(xhy, — nyt) = del(x s s ) )

Cs xI, — A5

Let e; be the k-th elementary symmetric function, and let & (n,f) be the value
of the function ¢, at the eigenvalues of n,¢. Then, we obtain the characteristic
polynomial as the polynomial of x with coefficients +e(n,1);

det(xhy, — nyt) = X2 — (nwt)xz’“1 + sz(nwt)xz”*2 — et (—1)2’782,1(1’1“,[).

Fix an element w in W. Let f*(¢) be the function on 7" whose value at ¢ is given
as & (nyt). Here, we determine the form of the function f(r) on T.

DerINITION 4.1.  For each cycle element y = (ijip---is), define t(y) to be a
monomial t;t;,---t;, and |y| to be the length of y. For a cycle element y=
(i1l -+ -iy) in the cycle expression of w, define a matrix n, = (¢); _; <, 0f size
2n x 2n to be as follows;

Jor ny, = (”i/')lsi.jgzw

nif (l:y(])7]e{117315})
0  otherwise.

Then, define the value det(y) to be as follows;
det(y) = det(n,). 4.1
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Let the cycle expression of w be as follows;

W=7z 7 (4.2)

We set k;=|y;| and let (;,(;»,...,{ix, be the roots of the equation
xki + (=1)% det(y,)1(y;,) = 0. Then, the eigenvalues of n, are given as follows;

(Cl,l7§l,27'"7C1‘k15"'cj,kj)' (43)

On the other hand, for X = (Xl,XQ, - ,xkl), Xy = (Xlirl,xlirz, R ,xkl+k2), ey
Xj = (Xpy 4oty 415+ - o5 Xky totk;), Where ki +ky + -+ +k; = n, we have

e(x,..x) = > ep(x) e (x)). (4.4)
L++l=k

By substituting the eigenvalues of n,¢ in (x1,xz,...,x,) of the equation (4.4), we
have the following equation;

6’/((51,17---7@,1(,): Z 611(51,17---,51,@)"'ffl,»(Cj.17-~~,§,‘,k,)> (4-5)

h+-+l=k

and we have

det(y)t(y;) (I = ki)
ey (éz ly«-- 7Ci,k,-) = 1 (11 == O) (46)
0 otherwise.

So, we have the following lemma.

LemMA 4.2, We can express the function value of f(t) at t as follows;

R0y =" det(y)(;) det(y,)u(yy,) - - - det(y;)1(3;), (4.7)
{jy 7 d
where y; ...y, run over distinct cycle elements appearing in the cycle expression

of w, and satisfy the condition
il 1yl 4+ + 1yl =k, (4.8)

and det(y; ) is the value defined in definition 4.1 corresponding to the cycle element
Vj.- The set {y,»l,...,y/-,} appears exactly once in the sum.

Proor. The value f;(¢) is obtained by substituting the eigenvalues of n,? to
the symmetric function ex. So, ex((y, 1.,k ), the left hand side of (4.5), is the
value f(¢). From (4.5) and (4.6), we obtain the equation (4.7). O
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REMARK 4.3. In case y is self-contained, we obtain det(y) = +1. The reason
of this is explained as follows. Since the length of v is even as the element of S,,,
we obtain sgn(y) = —1. Furthermore, in the matrix n, defined in definition 4.1,
there are odd number of (—1)’s. So, we have det(y) = (—1)-(=1) = +1. With the
condition t(y) =1, we obtain det(y)t(y) = 1.

Here, in case separated y, and y, are expressed as y, = (ijip - ip), 75 =
(—i1—br - - —iy) respectively, we obtain

det(y,) = det(y,) = +1 or —1

and 1(y,) = t(y,), so we obtain t(y;) - t(y,) = 1, det(y,) - det(y,) = +1.

5. The Branching Rule from S,(n) to N

In this section, we calculate the multiplicity of the irreducible representation
of N in the restriction of the irreducible representation of Sp(n) to N.
Let p =0, (4 as (2.12), where u is the highest weight of p given in (2.1),
N, is the stabilizer of u, W, = N,/T, R = {wi,ws,...,wp} is a complete system
of representatives of N/N, = W /W, and ¢ is an irreducible representation of W,
(see theorem 2.3, (2.2), (2.9), (3.1)).

Let dn be the normalized Haar measure on N with [, dn = 1. For characters

W, ' of N, define an inner product {yr,y'> as follows;

W'y = JN W' dn (5.1)

Then, the value is the same as the following integration value;

|W| Z J (nut)W' (nyt) dt, (5.2)

weW

where we define the measure df on T as follows;

1
dt = — d0,---d0,, t;=¢"V 1=V (5.3)
(2)
Then, the irreducible characters of N form orthonormal basis under the inner
product (5.1).

LeEMMA 5.1. For the measure dt on T, we have the following equation;

1 (a,-zb,-,izl,Z,...,n)

JT(z;“ () dr = {0 (5.4)

O

(otherwise)
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Fix an element we W. From (3.5), notation 3.1 and (3.7), we have U",

{7717 s 7771}! Urw'
Let ng,n1,...,n, be the numbers defined in the definition 2.4. For te T, we

can write as follows;

’

,u(n;[l mw,-) = (tw;(l) T tw,-(nl))pl (e tl't’f(n1+---+n‘,))pq (5.5)

where p{,p5, ..., p; are all the distinct non-zero numbers in {pi, p2,...,pn},
w(t) = 1" 65 - -, with the condition pj > pj >--- > p; > 0.

Let wo = w; 'ww; € W,. Then, from the definition 2.6, wp is written in
product of elements of W(A4,,_1), k=1,...,q, and W(C,);

Wy = 5152 R -5(150, (56)

where
51{ € W(A,,k_l) (k = 1, A ,q), (50 € W(C,,O).

For k=1,...,q, let
o = 5;\,,15,’{‘15/{,25,;2 = -5;(_&5,'{”%, (5.7)
do = 00,1~ 00,5 (5.8)

be the cycle expression of J; and dg in W, where Ji ;’s are permutations on /; and

5,’(7 /'s are permutations on I respectively with 7(d¢ 1) = #(9; ;). Then, we obtain
the cycle expression of w as follows;

w= Vl,lyi.,l "'V],slyi,slyz,lyé,1 = 0,50 (5.9)
where

Yo = widk wi Vet = Wi5,271w;1. (5.10)

LemMmA 5.2. Let y,, be given as (5.10). Then, we obtain the following
equation;

plmgtiny,) = (11 1) - 1 )P (1) - 1(g,,)) (5.11)

Proor. Let nj =0, np =n; +---+m_1, k=2,3,...,q. Then, we have the
following equation;

ln,£+1tn,i+2 U tn,iJrnk = t(ék,l) T [(5/<,sk)~ (512)
Then, we obtain the following equation;

By +1) by +2) Byl ) = (V1) 1Pk )- (5.13)
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From (5.5) and (5.13), we obtain the following equation;

.u(n);,l t”w,') = (t(yl.l) e [(yl,sl ))pl T (t(yq,l) T t(yq,sq))pqv

by which the result follows. O

Let  be the character of p. Then, from the theorem 3.2, (3.10), we have
!
Y(nyt) = Z &t wny,) Z /‘(”);;llwwi”;flnW"W:)tit(l)tﬁf(z) et (5.14)

r=1 wieUY

Let x, be an irreducible character of Sp(n) with 1= (A1, 42,...,4),
M=l >->24,>0, and x}'(r) the value of y, at the element n,t;

1 (1) = i (ny). (5.15)

Let  be the irreducible character of N. Then, the multiplicity of ¥ in y; |y,
by, Ly, is given as follows;

Wt > = | o7 T (5.16)
Here, we express the function y, by the elementary symmetric functions.

THEOREM 5.3 (Koike-Terada [KTL1]). Let y; be the irreducible character of
Sp(n). Then, we have

2 = 1€y = €y =200y €0 4 (11) T € =301 -+ -5 €0 (=111 T €~y
(5.17)

where | = Ay and for a partition 1= (A1,22,...,4,), we define
V==, h—(n—1))eZ". O

Let ‘A = (41,45, ...,4;) be the transposed partition of 4 with / = ;. Expanding
the right hand side of (5.17), we obtain the following equation;

n=_ Gen@) > D)emen e, (5.18)

7eS;, Je{1,2,., 0}

where we define

(5.19)

3
=
\
——
~
Q -~
=
|
Q
—
z
I
P P
N~—
I
—
==
+
—
N~—
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From the equation (4.3), we have the eigenvalues of n,¢ as follows;

(=802 Ciks k)

PROPOSITION 5.4.  The value y;(nyt) = ) (t) is expressed as follows;

0= (sen) D (=D (D) S (0, (5.20)
GGS;'I JC{I,Z ,,,,, /11}
where my, k=1,2,..., 4 are given in (5.19).

PrROOF. Substituting { in the equation (5.17), from (5.18), (4.5), (4.6), we
obtain the following equations;

B0=3 (@) Y (D @en (@) em, ©)

ceC,, Je{l1,2,..., 21}
= > Gen(@) > (DY@ S ) S (1)
seS,, Je{1,2,, 21}
which gives the equation (5.20). [

Fix an element ue U and J < {l,2,...,4;}. Then, we have my, k=
1,2,...,21 as in (5.19). Here, we determine the coefficient of the term u(u~'tu) in

the function value [ (7)--- " (2).
1
For V=C*, let EK=VAVA--- AV (k multiple of V) be the k-th al-
ternative tensor space. Then, f)'(¢)--- f,’ () is the character value at n,¢ on the
4

representation space E"™ @ E™ ® --- ® E™n.
Let vy,v3,...,04,0_1,...,0_, be the basis of V' consisting of the weight
vectors of . Then, we have the basis of E" ® E™ ® --- ® E™ as follows;

41

Uilll /\U;21 /\---/\v,‘,"E /\viil' /\--~/\vf1n" ®-~-®vi"z1 /\---/\v,‘:’jl /\vg‘ /\---/\vf%,
(5.21)
where
afe{0,1}, k=1,....0,1=1,...,n,—1,...,—n, (5.22)
with

Z“zk = my. (5.23)
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The basis of E™ ® --- ® E™ as (5.21) which give contribution to the character
value at n,t are eigenvectors of n,. So, we obtain the condition for v to be an
eigenvector of n,, as follows;

for any cycle y = (i1, 2, . .., ;) which appears in the cycle expression of w, we
have
af =af = =af, k=12,...A. (5.24)
Then, for self-contained y = (i1, ..., i, —ii,...,—is), we have

af = a*, :a{f:ak :-~~:a<k:ak~_. (5.25)

LEMMA 5.5. Let v be an eigenvector of nyt in E™ ® ---® E™ that satisfies
(5.21), (5.22), (5.23), (5.24) with my, k=1,2,...,4; given in (5.19). For u(t) =
- tbe ) we define p_j = —p; for 1 > 0. If the eigenvalue of v is expressed as
scalar multiple of the term u(u='tu), then we have the following condition;

for dy=Y"jL af, we have

d/ 7d,[ :pu’l(l)a /| = 1,2,...,7[. (526)

- Pyt P
ProoF. Since p(u~'tu)=1¢"" -1, "

of the weight vector (5.21) is given as p,1;. There appear tld’ and tf}’ in the

, the power of #; in the ecigenvalue

eigenvalue and 7, = ;'!. Then, we have the following equation;

dy—d_; = p,),
by which the equation (5.26) follows. ]
Then, we obtain a matrix (af), k=1,2,...,4, [=1,2,...,n,—1,...,—n

which satisfies the conditions (5.22), (5.23), (5.24), (5.26).

Fix the space E™ ® --- ® E™ with my, k=1,2,... A given by (5.19), and
let u be as in lemma 5.5. Then, for the fixed elements we W and ue U, we
define M to be the set of all the matrices (af) that satisfy the conditions (5.22),
(5.23), (5.24), (5.26). Then, we obtain the following proposition.

PROPOSITION 5.6. Let the set X consist of all the weight vectors in the space
EMm®@---®E"™ given as (5.21) that become eigenvectors of ny,t and the
eigenvalue is scalar multiple of the term u(u='tu). Then, there exists one-to-one
correspondence between the set M and the set X.
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Proor. For each vector v in X, v is written as (5.21) and we obtain one
and only one matrix (a,k) which belongs to M. This correspondence is bijective.
Indeed, for each matrix (af) € M, we have the vector v defined as

a|

1 ai'l 41
V=0 A AV R @ A AV

Then, from (5.22) and (5.23), the vector v is an element of the alternative tensor
space E™M ® ---® E™1. From (5.24), the vector v is an eigenvector of n,t.
Furthermore, from (5.26), the eigenvalue of the vector v is written as & - u(u~"tu).
So, v is an element of X, and gives the matrix (af). Hence the correspondence is
one-to-one between M and X. O

As in (5.9), we have the cycle expression of w as follows;

o ’ I 1
W=P11711 " Y10 71,5 72,172,170, 500

DeFmNITION 5.7.  In the space E™ ® --- Q@ E™, let ve X. Then, we have
the matrix (a,k) € M corresponding to v. For each i =0,1,..., ¢q, define a matrix
A= (oc,i’j), where k=1,2,..., 4, j=1,2,...,s; as follows;

for separated y; ; = (hi, ha, ... hy),

;= (= ay, = =ay). (5.27)

Similarly, define a matrix B; = (ﬁli.,j)> where k=1,2,.... 0, j=1,2,...,5;, as
follows;

Jor separated y; ;= (=hi,~ha, ..., —hy),
Bi,=a* (=a*, = =d"). (5.28)
For self-contained %, = (M, hs,—hy,...,—hy), we use the same symbol Y0, 10
express the cycle element and we define ac,?ﬁ = ap and B ;=0 O

Then, we obtain a pair of sequences of matrices
[(A1,4>,...,A44,Ao), (B1,Bs, ..., By, By)], (5.29)

which satisfies the following conditions;

o P01}, =1 g k=1,...,,j=1,...s, (5.30)
q Si .
ZZ“IE,]W;’,A + Bi jlvi | = my. (5.31)

i=0 j=1
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LEMMA 5.8. Notations are as in definition 5.7. Let i =0,1,...,q. For a pair

of separated cycle elements y; ;, ;i j» we define numbers d j, d! ; as follows;

Qj:ggﬁﬂ, 4j=;;ﬁhv j=1.. s (5.32)

Then, we have the following equation;
dj—dj ;= p;, (5.33)

where p;’s are as in (5.5) with py = 0. For self-contained v, ;, dy ; = 0 and dy ; has
no restriction.

Proor. Let 9, ;= (h,...,hs), y,{’j = (=M,...,—hs). Then, d;;=d,,
d!;=d_, and we have
) 1

di.j — dfl,_/ =dy — dﬁ,” = Pu'(ln)-
Since u~'(h;) € I; (see definition 2.5), we obtain the following equation;

di,’j _dll :pi,'

1

For self-contained 7y, ; = (hl,hz,...,hs)l, we have /)’2‘“/:() and dj ;= 0. Since
thith - th, =1, we have (f,t,---1;,)®’ =1 and the number dy; gives no
contribution to the eigenvalue. Hence, the result follows. OJ

DEFINITION 5.9. Notations are as in definition 5.7. Fix J < {1,2,...,21}.
Then, we have a sequence (my,my,...,m;, ) where my’s are given in (5.19). Let v be
the sequence defined as (my,ma,...,my,). Define

Mat(w,u, v, i)

to be the set of the pair of sequences of matrices as (5.29) that satisfies (5.30),
(5.31), (5.33). ]

Then, we have the following proposition.
ProrosITION 5.10.  Notations are as in lemma 5.5, definition 5.7, definition

5.9. Then, there exists one-to-one correspondence between the set M and the set
Mat(w,u,v, ).
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ProoOF. Given the matrix (af) e M, from the equation (5.27) and (5.28),
there exists a unique pair of sequences of matrices as (5.29). Then, this cor-
respondence is bijective. Indeed, for the pair

[(AlaAZa-'-7Al]7A0)a(BlvB2a--~aBl]7BO)]7

set alkzoc,’;’j when y; ;= (l,...,hs) and I =h, for a certain t=1,...,s, or
af = Bi; when y/ ;= (=hy,...,—hy) and [ = —h, for a certain 1 =1,...,s. Then,
from the conditions (5.30), (5.31), (5.33), the matrix (af), k=1,..., 4, [ =
l,...,—n satisfies the conditions (5.22), (5.23), (5.24), (5.26). Hence, we have

(af) € M, and the pair given as (5.29) by the (af) coincides with the given pair
[(A1,4>,...,44,A0), (B1,Bs, ..., By, By)|.

Hence, the result follows. O

PrOPOSITION 5.11.  Notations are as in proposition 5.6 and proposition 5.10.

Then, there exists one-to-one correspondence between the set X and the set
Mat(w,u,v, ).

Proor. From proposition 5.6 and proposition 5.10, the result follows. []

DEFINITION 5.12.  Notations are as in proposition 5.11. Define m(w,u, v, u) to
be the number of the elements in the set Mat(w,u,v, u). O

Here, we investigate the eigenvalue of ve X for n,.

LemMA 5.13. Let my, k=1,2,..., A1 be given as in (5.19). For each ve X in
the space E™ ® ---® E™, we have the following equation;

nyo = (det(y, 1) det(y, 5) -~ det(py )"

(det(yy,y) - )7 (oo det(y, ) 0. (5.34)
Proor. Let n,, , . be the matrices given as in definition 4.1 for y; ; and
i ;- Then, we have the following equation;

ny =y

R IR R U (5.35)
Then, for n, and n, , we have
° L]

(nyi‘,,ny’gyj)v = (det(ny’,./))d'\f . (det(nyl_/_j))dﬁj v (5.36)
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Using the facts det(n,, ) del(nyi«_/) =1, d;; —d;j; = p} and the notation in defi-
nition 4.1, we have the following equation;

nyv = (det(y, 1) det(y, ,) - 'del(yl,sl))p{
- (det(yy,) -~ .)Pz’ (e det(yq_,sq))p‘;w
by which the result follows. [

DEFINITION 5.14. Let p(t) =" ---t’" and fix the element ue UY. For the
fixed element w where

_ ’ / I
W=P11711 " Y0 71,5 72,172,177 70,500

we define the number sgn(w,u, i) as follows;
sgn(w, u, 1) = (det(p, ) det(y, 5) -+~ det(y, )"

(det(py 1) -+ )P (- det(y,, ) (5.37)

Then we obtain the following equation;
nyv = sgn(w, u, 1)v. (5.38)
PrOPOSITION 5.15.  Notations are as in definition 5.12 and definition 5.14. Let

v=(my,my,...,my) be the sequence given in definition 5.9. Then, we have the
following equation;

J w(u ) S () -+ S (2) dt = sgn(w, u, p) - m(w,u, v, 1) (5.39)
T “1

Proor. Since the number of eigenvectors v which gives eigenvalue

sgn(w, u, @) (" tu)
is given as m(w,u,v,u), the coefficient of u(u~'tu) in the character value

f‘"(t)~--fn;‘;1 (7) is given as sgn(w,u,)m(w,u,v, ). Hence, the result follows.

O

ExampLE. Let w= (123)(—1,—-2,-3)(456)(—4,—-5,—6) € Ws. We calculate
the coefficient of the term #(123) = f1t2¢3 of the polynomial f*(z)/f3"(f) at myt.
Here,
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S (2) = 24 titatstatsts + titatst_at_st_g
+ Tt gt _3lalste + T 1ol _3F_4t_51_¢
S37(0) =itz + 11t ot 3+ tatste + t_at_st_g,
so we obtain the following equations;
T3 (1) = Atitats + At_1t_at_3 + dtatste + 4t_at_st_g
2 2
+ (t1tat3) " tatste + (t1tat3) "t _gt_st_¢
2 2
+ (to1tat3) tatste + (t_11_2t_3) t_4t_st_¢
2 2
+ tiats(tatste)” + t_1t_o2t_3(tststs)
2 2
+ titat3 (gt _st_g)” + t_1t_ot_3(t_4t_s5t_)",

and we obtain the coefficient of the term #,5¢; as 4.
Next, we consider the matrices. At first, we obtain the following table;

(123) | (=1-2-3) | (456) | (—4—5—6)

|1 1 0 0
w1 0 0 0

In the (1, 1)-entry of the table, we have the number 1. This means that we use
t(123) appearing in a monomial of f/'(¢) to construct a monomial #(123) in
<"(1) 5" (). So, this table means we choose monomials #(123)#(—1-2-3) in f.*(¢)
and #(123) in f}"(¢) to construct a monomial #(123) in f/"(¢) /3" ().

From the table, we obtain the following matrix;

1 100
1 00 0/

In the same manner, we obtain the further three matrices;

1 010 1 0 0 1 0 01 1
000 1) \0o010/) \1 000/

So, the number of matrices which satisfy the conditions is 4, which coincides with
the coefficient of ##,¢;3 in the function value of f*(¢)f;"(¢) at n,t. O

For u,iie UY, we compare m(w,u,v, ) with m(w, i, v, u). From remark 3.3,

— =T r 77 — =~ r 1 r r r r
we have u = z)nhl, i =zlnhl with z,z} € Zy(w), h), h e W,.

r
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Let
_ 1 1 /
W=P11711 0 Vs 71,0 72,172,1 7 70,5

be a cycle expression of w given by wy as in (5.9), (5.10). Similarly, we write

w= 371,137{,1 "'771.3, 37{,‘?1172,1775,1 "')70,307 (5.40)
where
B = agiﬁ_,gfl, )7;“/ = aé(:aﬂ (5.41)
for

Wwo = u 'wit

= 517 15;’1 o ~517515{’5152‘15£71 e -50_’50. (542)

Then, there exists an element z € Zy/(w) by which the following conditions hold;
(1) a(l;) = zu(L;), u(I}) = zu(I/), where I;, I/ are given in the definition 2.5.
(2) For each pair of cycle elements j;, ; and y;, ;,, there exists a unique pair

1 -1

1o
37

of cycle elements y; ; and y;; which satisfies y; ; = zy; ;z=" and y] , = zy] ;z

Furthermore, we have i =i, |3, ;| = |y; ;, 17} | = i I
(3) For each i =0,1,...,¢q, we have s; = §;.
(4) The set {yy 1,71 1,---+%0,4) coincides with the set {J; 1,7 1.+, 704}

PropPOSITION 5.16. Let u,ue UY. Then, we have the following equation;
m(w,u, v, 1) = m(w, i, v, 1. (5.43)
Proor. We compare the set Mat(w,u,v,u) with the set Mat(w, i, v, u).
For each pair of sequences of matrices
[(Al,Az, . 7Aq,Ao), (Bth, A ,Bq,Bo)},

we obtain a unique pair of sequences of matrices

(A1, 43, ..., A4, A), (B, B, ..., B, By)] (5.44)

defined as follows;
for i’ =0,1,...,q,

A = (&), (5.45)

&,ﬁ’h,, = oc,’;:j, (5.46)
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and
=B (5.47)
Bi =B (5.48)

for ju jo=zyp 2l k=1,..., 2, j =1,.

Then, the pair (5.44) satlsﬁes the followmg conditions;

()ock],,ﬁk],e{o 1}, for i =0,1,...,q, k=1,...,4, j/=1,... s

(2) Since we have [y | =1ly;;], |7} ’jr|:|V,{,‘/|> we obtain the following
equation;

Zzakj |70, |+ﬂk, 17ir, 1|

i'=0j'=

q Sit
. -y
= E ,E o i|vir L+ B jlvin ]
=0 j=1

= mj.

(3) For dy ;+ and d ;- given as

Al
7/ i’ ./
= g ack,,, di 1= E Brjn J =1 s,
k=1

we have the following equation;

7 ! !
d,'/,j/ - di’,j’ =Dj-

From the conditions (1), (2), (3), the pair (5.44) belongs to the set
Mat(w,u,v, ). This correspondence is bijective. So, the result follows. O

DErFINITION 5.17. For U

r oo

we have n, given in notation 3.1. Then, we define
m(w,n,,v, ) as follows;

m(w, My Vs /u) = I’l‘l(W, Wi, V,,U) (549)

for an element w; e U)". U

Then, we obtain the following equation;

JTu( Stny) () - ’”/-1( ) dt = sgn(w, wi, wm(w,n,, v, 1. (5.50)



26 Makoto TAKAHASHI

PRrROPOSITION 5.18.  Let the notations be as in (5.15), theorem 5.3, proposition
5.4, definition 5.14, proposition 5.15 definition 5.17, (5.50). Then, we have the
following equation;

|| om0 dt = sgnto i) 3 Gsent)) (-1 o, v,
T 7e€, J (5.51)

where J's are given as J < {1,2,...,41} and for each J, v is given in definition 5.9.

Proor. From (5.20), (5.50), we obtain the following equations;

= jTum,;) i) Y (sgn(@) > (=1 (0) fo (1) -+ S (1) dt
J

= > (sen(o) (-1 ijn;} i) fo (O fo (0) -~ fov (2) dlt

666,;1 J
= sgn(w, wi, ) Z sgn(o Z DY lm(w, n,,v, ),
Uey,l J
which is equal to the right hand side of (5.51). I

From (5.14), we have the following equation;

nH

M\

En ) Z ,u(nwl L, o “nyny, ),u(n;,_lmwi), (5.52)

r=1 wieUY»

where ¢ is given as in theorem 3.2.

THEOREM 5.19. Under the situation of the proposition 5.18 and (5.52), we
obtain the multiplicity of ¥ in y, |y, <¥,x; 1y>, as follows;

o v > = |W|Zz_:é 'wi,)

’ Z 'u(n‘:11wn n ]n”nn ) sgn(w, Winu)
wie Uy

- (sen(@) Y (=)"mw,n,,v, 10, (5.53)

aex::,l J
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ProOOF. We obtain the following equations;

7] ZJ () (1) dt

w

<¢7X), J,N>

!
|W|ZJ Zé W”' Z ’u(nljllnwn lnunn)

r=1 wie UV

-l m,,) - 70 d

| W| Z Z é W”r Z ’u(n;l’llww,-n;flnwnwi)

w o r=1 wieUY

| ot

- ) 3 st )

wieUY»
: Z (Sgn(a)) Z(_l)u‘ Sgn(mj7 M}h/")m(na Mys vmu)
{TGS;.I J
/
- L3 et
wo =1

Z 'u(nw,.l ww; n, ln”n‘t ) Sgl’l(W, W,',,Lt)

wieUY
’ Z (Sgn<0>> Z(_l)mm(wvnra vvﬂ)v
568;41 J

by which (5.53) holds.
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