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a b s t r a c t

Vast diversity and high specificity of antigen recognition by antibodies are hallmarks of the acquired
immune system. Although the molecular mechanisms that yield the extremely large antibody repertoires
are precisely understood, comprehensive description of the global antibody repertoire generated in in-
dividual bodies has been hindered by the lack of powerful measures. To obtain holistic understanding of
the antibody-repertoire space, we used next-generation sequencing (NGS) to analyze the deep profiles of
naive and antigen-responding repertoires of the IgM, IgG1, and IgG2c classes formed in individual mice.
The overall landscapes of naive IgM repertoires were almost the same for each mouse, whereas those of
IgG1 and IgG2c differed considerably among naive individuals. Next, we immunized mice with a model
antigen, nitrophenol (NP)-hapten linked to chicken g-globulin (CGG) carrier, and compared the antigen-
responding repertoires in individual mice. To extract the complete antigen response, we developed an
intelligible method for detecting common components of antigen-responding repertoires. The major
responding antibodies were IGHV1-72/IGHD1-1/IGHJ2 for NP-hapten and IGHV9-3/IGHD3-1/IGHJ2 for
CGG-carrier protein. The antigen-binding specificities of the identified antibodies were confirmed
through ELISA after antibody-gene synthesis and expression of the corresponding NGS reads. Thus, we
deciphered antigen-responding antibody repertoires by inclusively analyzing the antibody-repertoire
space generated in individual bodies by using NGS, which avoided inadvertent omission of key anti-
body repertoires.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The antibody system's potency depends on its vast diversity and
fine specificity of antigen recognition. The antibody-producing B-
cell repertoire in an individual is generated by VDJ gene recombi-
nation in immunoglobulin gene loci [1,2], and its dimension is
estimated to be >1015 [3]. Immunization with an antigen triggers
clonal expansion of antigen-specific B cells pre-formed in the im-
mune system of individuals. To comprehensively understand the
Inc. This is an open access article u
protective antibody response against invading pathogens without
unconsciously omitting precious antibody repertoires, the overall
B-cell repertoires and their dynamic changes in individual immune
systems must be precisely described and analyzed. The B-cell
repertoires generated in individuals had been regarded as a “black-
box” because of the astronomical number of B-cell clones involved;
however, the recent advent of next-generation sequencing (NGS)
technology has led to a breakthrough in obtaining an overview of B-
cell repertoires [4]. Whole antibody repertoires were first analyzed
in zebrafish [5], and then in mice [6,7] and humans [6,8,9].
Although this method serves as a powerful tool for studying
adaptive immune responses, the commonalities and uniqueness of
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antibody repertoires developed in individuals remain inadequately
analyzed.

In this study, we obtained a global view of the common and
unique features of antibody repertoires generated in individual
mice by using the pyrosequencing technique. We also developed a
simple and confirmative method to decipher antigen-responding
antibody repertoires by comparing all aspects of B-cell repertoires
of individual mice. The accuracy of the detected repertoires was
confirmed through gene synthesis and protein expression of the
antibody-sequence outputs from NGS.

2. Materials and methods

2.1. Mice and immunizations

Wemaintained 7e8-week-old C57BL/6J femalemice (SLC Japan)
in a specific-pathogen-free facility and immunized them intraper-
itoneally with 100 mg of either 4-hydroxy-3-nitrophenylacetyl
(NP)48-chicken g-globulin (CGG) or CGG with alum-adjuvant, and
2 weeks later, collected the spleens for NGS analysis. All animal
experiments were performed according to institutional guidelines
Fig. 1. Schematic of sequencing strategy, immunization protocol, data-processing flowchart,
total RNA was reverse-transcribed and fragments containing VH-DH-JH and partial CH1 wer
Cg1H1, or Cg2cH1. These PCR products representing IgM, IgG1, and IgG2c repertoires were eq
group), immunized with NP-CGG (NP-CGG group), or immunized with CGG (CGG group), and
Amplicon reads obtained after pyrosequencing were processed as follows: (1) read sequen
Cg1H1, or Cg2cH1; (2) sequences were examined using IMGT/HighV-Quest and IgBLAST; (3)
sequences were further analyzed. (D) To visualize the overall antibody-repertoire landscape
and the y-axis represents 12x IGHD genes and 4x IGHJ genes. The gene order in the mesh is
reads classified on the node. Red spheres: un-annotated V, D, and J genes. (For interpretat
version of this article.)
and with the approval of the National Institute of Infectious Dis-
eases Animal Care and Use Committee.

2.2. RNA preparation, cDNA synthesis, and 50-RACE PCR
amplification

Total RNA was extracted separately from each spleen by using a
TRIzol Plus RNA Purification Kit (Thermo Fisher) (Fig. 1A and B), and
1e4 mg of the RNA was used for first-strand cDNA synthesis by
SMARTer RACE cDNA Amplication Kit (Clontech) with oligo-dT-
containing 50-RACE CDS Primer A and SMARTer II A Oligonucleo-
tide. Next, cDNAs were amplified by PCR in a 20 ml reaction mixture
containing 0.5 mL of unpurified cDNA, 0.4U Phusion High-Fidelity
DNA Polymerase, 200 mM each dNTP and 250 nM primers in
1xHF buffer. Universal forward primers of 50-RACE containing
Multiplex Identifier (MID) adaptors (MID9_NUP 50-TAGTATCAG-
CAAGCAGTGGTATCAACGCAGAGT-30, MID11_NUP 50-TGA-
TACGTCTAAGCAGTGGTATCAACGCAGAGT-30, MID14_NUP 50-
CGAGAGATACAAGCAGTGGTATCAACGCAGAGT-30) were used with
reverse primers specific for immunoglobulin-constant-region-1
CmH1 (50-CACCAGATTCTTATCAGACAGGGGGCTCTC-30), Cg1H1 (50-
and data visualization for analyzing antibody repertoires in individual mice. (A) Spleen
e PCR-amplified using 50-RACE universal primer and 30-CH1 primer specific for CmH1,
ually mixed and pyrosequenced. (B) C57BL/6 mice (5 each) were not immunized (Naive
after 2 weeks, spleen total RNA from each mouse was purified and pyrosequenced. (C)

ces were translated in 6 reading-frames and checked for a defined sequence of CmH1,
purified sequences containing a productive VDJ junction were collected; and (4) these
, reads were arrayed on 3D-VDJ-plots in which the x-axis represents 110x IGHV genes
the same order as on the chromosome. Each sphere's volume represents the number of
ion of the references to colour in this figure legend, the reader is referred to the web
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CATCCCAGGGTCACCATGGAGTTAGTTTGG-30), or Cg2cH1 (50-
GTACCTCCACACACAGGGGCCAGTGGATAG-30) to amplify each iso-
type's repertoires through thermal cycling (98 �C for 30 s, 40 cycles
of 98 �C for 10 s, 71 �C for 15 s, 72 �C for 30 s, and a final extension at
72 �C for 5 min). The 600e800-bp PCR products were gel-purified
using NucleoSpin Gel and PCR Clean-up kits (Macherey-Nagel).
With this method, unlike with the use of degenerate 50-Vh gene
primers, the cDNAs of each antibody class were amplified evenly
using the universal 50-RACE primers. The purified amplicons were
quantitated, and equal amounts of each antibody class (IgM, IgG1,
IgG2c) from the same individual were pooled.
2.3. Pyrosequencing

The library was prepared using a GS Titanium Rapid Library
Preparation Kit (Roche), as per the manufacturer's method. Library
quality was assessed using an Agilent 2100 Bioanalyzer. Emulsion
PCR and sequencing reactions were performed using a 454 GS Ju-
nior Titanium emPCR Kit and GS Junior Titanium Sequencing Kit
(Roche).
2.4. Sequence assignment and visualization of VDJ repertoires

Raw reads from the 454-system were filtered for sequence
quality by using the 454 Roche pipeline, and filter-passed reads
were translated into amino acids in 6 reading-frames and checked
for a signature sequence of CmH1 (SQSFP), Cg1H1 (KTTPP), or
Cg2cH1 (KTTAP) [10]. The reads sorted into IgM, IgG1, and IgG2c
groups were analyzed using IMGT/HighV-Quest [11] and stand-
alone IgBLAST [12] to assign V-, D-, and J-gene segments (Fig. 1C).
Sequences containing productive VDJ junctions were collected. To
visualize the overall view of antibody repertoires, the reads were
arrayed on a 3D mesh in which the x-axis represented 110 � IGHV
genes and the y-axis represented 12 � IGHD and 4 � IGHJ genes
(Fig. 1D); the gene order in the plot mesh is the same as on the
chromosome [13], and is listed in Supplemental Method. Each
discrete point (“node”) in the figure represents a combination of V,
D, and J, and the volume of the sphere assigned to a node indicates
the number of reads (total read number was normalized to
1,000,000). The red spheres represent un-annotated V, D, and J
genes, and the visualized image is called a “3D-VDJ-plot” (Fig. 1D).
Data processing, including figure drawing, was performed by using
in-house computer programs with Perl, and R [14]; the “rgl”
package [15] of R was used for figure drawing.
2.5. Deciphering antigen-responding antibody repertoires

We developed a simple and confirmative method to reveal the
antigen-responding antibody repertoires that commonly appeared
in 5 mice after immunization. The 3D-VDJ-plot was drawn for each
mouse in the naive, NP-CGG, and CGG groups, and the common-
alities of each node of the 3D-VDJ-plot were tested thus:

(1) The read number on each node of the 3D-VDJ-plot was
represented as

Rvdj ð1 � v � 111; 1 � d � 13; 1 � j � 5Þ

where Rvdj is the number of reads on each node, with v, d, and j
subscripts indicating the IGHV, IGHD, and IGHJ numbers, respec-
tively (each number includes the nodes for “un-annotated genes” in
addition to genuine gene numbers). The 3D-VDJ-plot contains 7215
nodes in total.
(2) The presence of reads on each node among the 5 mice was
represented as

Nk ¼
h
R1
vdj; R

2
vdj; R

3
vdj; R

4
vdj; R

5
vdj

i
ðk ¼ 0; 1 … 7215Þ

where Nk is an array of read numbers of the 5 mice at each node,
with the subscript k indicating the node number and superscripts
1e5 indicating the mouse numbers.

(3) The commonalitydthe concurrent occurrence of distinct VDJ
reads in the 5 micedwas ranked from 1 to 5, depending on
the numbers of nonzero in the elements of the array Nk. The
means of the read number on each node of ranks were
represented as

1
Mk ¼ mean1 Nk ðk ¼ 0;1…7215Þ
2Mk ¼ mean2 Nk
3Mk ¼ mean3 Nk
4Mk ¼ mean4 Nk
5Mk ¼ mean5 Nk

ðk ¼ 0;1…7215Þ
ðk ¼ 0;1…7215Þ
ðk ¼ 0;1…7215Þ
ðk ¼ 0;1…7215Þ

where 1Mk is themean of the element of Nk inwhich one element is
not 0, 2Mk is the mean of the element of Nk in which 2 elements are
not 0, and so on; 5Mk represents the mean of the element of Nk in
which 5 elements are not 0, i.e., themean of the numbers of the VDJ
read that was common to all 5 mice. The VDJ repertoires that were
common to all 5 mice were visualized as a 3D-VDJ-plot by using
5Mk data.
2.6. Multivariate analysis

Cluster analysis of VDJ profiles of individual micewas performed
using Nk array data and “hclust” function of R-resource (“ward”
method with “canberra” distance) [14]. Pearson's correlation co-
efficients of IGHV usage between individual mice were calculated
using the array of IGHV-usage frequency of each mouse.

We developed a program to visualize changes in expression
levels of the immunoglobulins featuring different VDJ combina-
tions that appeared in the 5 individual mice. Consider that a set of
amino acid sequences exists for an immunoglobulin type, with the
sequences obtained under two different conditions, such as, in our
case, from distinct individuals. The amino acid sequences derived
from the two conditions were aligned, and based on the alignment,
identical sequences, excluding the terminal gaps, were classified
into groups. The longest sequence in each groupwas selected as the
group's representative sequence, and the distance between every
possible pair of the groups was calculated as the difference be-
tween the corresponding representative sequences. Next, a rooted
dendrogram generated by using the UPGMA method with the
distance was drawn as a circular tree. A line extending outside from
each leaf indicates, by its length, the numbers of the sequences
included in a group corresponding to the leaf. The two colors of a
line correspond to the different conditions. The alignment was
performed using MAFFT (option: FFT-NS-2) [16], and the dendro-
gram was generated as a postscript file by a programwritten using
C-language.
2.7. Antibody-gene synthesis and expression

The VDJ sequences of detected antibody genes were selected
from NGS-output reads, and the genes were synthesized and
cloned into an antibody-expression vector in which human-IgG1
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constant region and k-light-chain constant region are used
(Mammalian Power Express System, TOYOBO). The synthesized
heavy-chain genes in pTAKN vector were inserted into pEHgam-
maX1.1 vector by using BsiWI and NheI-HF sites. The synthesized
light-chain genes in pTAKN vector were inserted into pEHkap-
paX2.2 vector by using BsiWI and MluII sites. We used 3 types of
light-chain V-genes (Vl1, Vk_2ORB, Vk_2A6I) for the counterpart of
heavy-chains [17]. CHO cells were transfected with the construct
and screened using puromycin (10 mg/mL). Antibodies secreted into
culture mediumwere tested using ELISA for binding to NP and CGG.
3. Results

3.1. Antibody-repertoire deep sequencing

To analyze antibody repertoires inclusively, we used high-
throughput pyrosequencing. We analyzed immunoglobulin tran-
scripts from entire spleens rather than from cell-sorted B-cell
populations, because we aimed to obtain an overview of entire
antibody repertoires in individual mice. Total RNA was extracted
separately from the excised spleen of each mouse, reverse-
transcribed with SMARTer-oligos, and PCR-amplified with 50-
RACE universal forward primer and reverse primers specific for the
immunoglobulin constant region of IgM, IgG1, and IgG2c (Fig. 1A).
In addition to 5 naive mice, we used 5 mice each immunized with a
widely used model antigen, NP-hapten, and CGG-carrier (Fig. 1B).
The raw-read sequences from the 454-sequencer were checked for
quality and processed (Fig. 1C). This sequencing strategy yields data
on mRNA-species amounts in the overall repertoires of antibody
classes, which reflect the number and transcriptional activities of B
cells in the immune system. One NGS run was used for mice of the
Fig. 2. Cluster analysis of VDJ profiles and usage frequencies of IGHV genes. (A) Cluster an
frequency distributions). Similarities of VDJ profiles of IgM (black), IgG1 (blue), and IgG2c
and CGG-immunized mice (Cgg1e5). (B) Bar graphs showing usage frequencies of 110 IGH
IGHV11-2. (For interpretation of the references to colour in this figure legend, the reader is
same immunization status. From each run, 183,322, 157,498, and
131,047 reads were obtained (Supplemental Table S1). To visualize
globally the VDJ-rearrangement profile in individual mice, the VDJ
pattern was displayed on 3D-VDJ-plots, in which each sphere's
volume represents the relative frequency of an antibody featuring a
specific VDJ combination in overall B cells (Fig. 1D). Comparison of
two technical replicates showed that the results were highly
reproducible, indicating that our sequencing protocol and data-
processing pipeline were stable and adequately sensitive for
antibody-repertoire analysis (Supplemental Fig. S1).
3.2. Antibody repertoires of naive and immunized mice

Antibody repertoires of naive and immunized mice were
analyzed by comparing the IgM, IgG1, and IgG2c sequences from 5
each naive mice (Supplemental Fig. S2), NP-CGG-immunized mice
(Supplemental Fig. S3), and CGG-immunized mice (Supplemental
Fig. S4). Cluster analysis of the profiles of 3D-VDJ-plots of these
15 mice revealed that the VDJ profiles of IgM were clustered
separately from those of IgG1 and IgG2c (Fig. 2A). When the IGHV-
usage profiles of IgM, IgG1, and IgG2c were compared for the 5
naive mice, a strong non-random bias in IGHV usage was observed
in IgM repertoires but not IgG1 or IgG2c repertoires (Fig. 2B). The
profiles of IGHV-usage frequency of naive IgM were highly corre-
lated between individuals (mean Pearson's r ¼ 0.644 ± 0.186;
Supplemental Fig. S5). IGHV11-2, in particular, was highly
expanded in the IgM repertoire in all mice (Fig. 2B, Supplemental
Fig. S2). Conversely, IgG1 and IgG2c repertoires were not corre-
lated between individual naive mice (mean Pearson's
r ¼ 0.153 ± 0.263 and 0.240 ± 0.213, respectively; Supplemental
Fig. S5). However, after immunization, the IGHV usage of IgG1
alysis was used for examining the profiles of 3D-VDJ-plots (i.e., the VDJ-combination
(red) were analyzed for naive mice (N1e5), NP-CGG-immunized mice (NpCgg1e5),

V genes in IgM (bottom), IgG1 (middle), and IgG2c (top) in 5 naive mice. Arrowhead:
referred to the web version of this article.)
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repertoires was highly correlated in the 5 NP-CGG-immunized and
5 CGG-immunized mice (mean Pearson's r ¼ 0.620 ± 0.203 and
0.843 ± 0.158; Supplemental Fig. S6), which suggests that antigen
immunization induced selective amplification of a specific set of
IGHV genes.

3.3. Deciphering antigen-responding repertories

To identify antigen-responding antibodies from the global view
of antibody repertoires, we attempted to establish a method for
detecting the major antibody repertoires shared by the 5 mice
(biological replicates) of the same immune status (Supplemental
Figs. S2, S3, S4). However, from the results in Figs. S2, S3, and S4,
these antigen-responding antibody repertoires cannot be deci-
phered. Next, the method was applied for the IgG1 repertoires of
naive, NP-CGG-immunized, and CGG-immunized groups (Fig. 3).
When the commonalities of the reads on each node of the 3D-VDJ-
plots were calculated (Materials and methods), the antigen-specific
repertoire profiles were successfully revealed using this panning
method (Fig. 3). Naive mice did not appear to share VDJ repertoires
other than due to fortuitous co-occurrence, whereas VDJ profiles
were strongly correlated in NP-CGG-immunized and CGG-
immunized mice; this implies that immunization increased a
Fig. 3. Detection of antigen-responding antibodies from the global repertoire. IgG1 reperto
methods. The 3 panels on top: summation of the 5 mice of each group; the 3 panels in the
appeared in 3/5 mice; 4/5: reads that appeared in 4/5 mice; bottom row: reads that commo
the IGHV1-72 and IGHV9-3 populations, are indicated.
specific set of VDJ profiles of mice with the same genetic back-
ground. The major IGHVs commonly observed in the biological
replicates were IGHV1-72 and IGHV9-3 for the NP-CGG and CGG
groups, respectively. Given that IGHV1-72, also known as Vh186.2,
is a widely recognized anti-NP antibody in C57BL/6 mice [18,19],
our method successfully detected the canonical antigen-specific
repertoire. In the case of IGHV1-72 antibodies, IGHD usage was
confined to IGHD1-1, whereas several IGHD genes, IGHD3-1 to 4-1,
were inclusively used in the case of IGHV9-3 antibodies. To the best
of our knowledge, IGHV9-3 is the first described CGG-specific
antibody. We also detected minor repertoires that were common
in the NP-CGG-immune and CGG-immune groups.

3.4. Sequence analyses of identified antibodies

To analyze the VDJ region of the translated NGS reads of the
deciphered antigen-specific antibodies, multiple-sequence align-
ment was performed using MAFFT [16] (Supplemental Figs. S7 and
S8). The phylogenic-tree analysis of the major NP-responding
repertoire, IGHV1-72/IGHD1-1/IGHJ2, revealed that the sequences
were highly similar in the 5 mice. At least 5 distinct VDJ-sequence
combinations were commonly expressed in the 5 mice after im-
munization with the same antigen, which indicates that the same
ires of naive, NP-CGG, and CGG groups were processed as described in Materials and
second row, 2/5: collection of reads that appeared at least in 2/5 mice; 3/5: reads that
nly appeared in the 5 mice. The major repertoires identified in the immunized groups,
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antibodywas frequently generated in different individuals (Fig. 4A).
This analysis also yielded the profile of somatic hyper-mutation
(SHM) development. Of the two types of high-affinity mutation,
W33L-type and 95G-type, the 95G-type was reported to require
SHM accumulation for affinity maturation [20]. Here, the 95G-type
affinity maturation was still the minority as compared to W33L-
type at 2 weeks after immunization (Fig. 4A). The dendrogram of
the major CGG-responding repertoire, IGHV9-3/IGHD3-1~4-1/
IGHJ2, also showed that the sequences were highly similar among
the 5 mice (Fig. 4B).
3.5. Gene synthesis and expression of deciphered antibodies

Lastly, to confirm that the identified antigen-specific antibodies
Fig. 4. Phylogenic-tree analysis of major antigen-responding antibodies, IGHV1-72 and
expression. (A) Sequences of the major NP-responding repertoire, IGHV1-72/IGHD1-1/IGHJ2
The 5 colors of the wheel tree represent the 5 individual mice. The length of bars radiating ou
in different individuals; red and black circles: high-affinity mutations, W33L-type and 95G
IGHD3-1~4-1/IGHJ2, were translated into amino acid sequences and aligned for phylogenic-
from the IGHV1-72/IGHD1-1/IGHJ2 repertoire and the sequence was expressed with 3 repre
CHO cells and culture supernatants were tested using ELISA for binding to NP-CGG, NP-BSA
the references to colour in this figure legend, the reader is referred to the web version of t
bind to the corresponding antigens, we synthesized the antibody
genes from NGS sequences, expressed the proteins encoded by the
genes, and performed ELISA to examine their antigen-binding
ability. We arbitrarily selected one read each from IGHV1-72/
IGHD1-1/IGHJ2 and IGHV9-3/IGHD3-1/IGHJ2 and synthesized the
genes, which were cloned into an antibody-expression vector in
which human-IgG1 constant region and k-light chain are used. We
used 3 types of light-chain V-genes (Vl1, Vk_2ORB, Vk_2A6I) for
the counterpart of heavy-chains [17]. The antibodies were
expressed in CHO cells and the secreted antibodies were tested
using ELISA for NP and CGG binding. The results confirmed the
reactivity of the antibodies, although the heavy-chain binding ca-
pabilities were found to be affected by the counterpart light-chains
(Fig. 4C).
IGHV9-3, and confirmation of antigen specificity through VDJ-gene synthesis and
, were translated into amino acid sequences and aligned for phylogenic-tree analysis.
tside the wheel represents the number of reads. Asterisks: sequences found commonly
-type, respectively. (B) Sequences of the major CGG-responding repertoire, IGHV9-3/
tree analysis. (C) Gene synthesis was performed for a randomly selected VDJ sequence
sentative VL-domains of light-chain 2ORB, 2A6I, and l1. Antibodies were expressed in
, and CGG. Data represent means ± S.D. of triplicate experiments. (For interpretation of
his article.)
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4. Discussion

We performed pyrosequencing on antibody RNAs amplified
using the 50-RACE method. With this method, in contrast to what
occurs when using degenerate 50-Vh gene primers, the mRNAs of
each antibody class were amplified evenly with the universal 50-
RACE primers. Moreover, the use of reverse primers for the CH1 of
antibody genes enabled profiling of specific immunoglobulin-class
repertoires. This approach was highly favorable for both dissecting
class-specific antibody responses and comparing naive and
immunized repertoires.

Approximately 20% of the reads sequenced using the 454-
system are generally considered to be ambiguous [21]. Although
several correction methods can be used, 5%e10% remain ambig-
uous [4]. Therefore, we translated the sequences and filtered the
raw reads that yielded long amino acid sequence containing the
corresponding immunoglobulin constant regions (i.e., CmH1,
Cg1H1, Cg2cH1).

The global expression patterns of antibody repertoires of indi-
vidual naive mice revealed that the VDJ profile of IgM repertoires
was more highly conserved than those of IgG1 and IgG2c. Accord-
ing to previous reports, VDJ combinations are highly stereotyped in
immature zebrafish [22], and are also highly skewed in humans [6].
These non-random VDJ profiles were attributed to either prefer-
ential VDJ rearrangements or the selection over the antigens pre-
sented in the body. For example, IGHV11-2 was reported to be
dominant in the fetal IgM repertoire [23]. This IGHV11-2 predom-
inance in naive IgM is attributed to autoantibodies against the
determinant on senescent erythrocytes [23]. IGHV11-2 was also the
common major repertoire in our analysis of naive IgM.

In the aforementioned context, we found that antigen immu-
nization focused the non-oriented repertoire to the antigen-specific
repertoire in class-switched antibodies. We established a method
to decipher the antigen-responding repertoires by extracting the
commonalities in biological replicates of the same immune status.
By applying this simple method to the VDJ repertoire of the 5
immunized mice, the common components of antigen-responding
repertoires were successfully revealed.

We confirmed that the predicted heavy-chain repertoires bind
to the immunizing antigen by synthesizing and expressing heavy-
chain genes. In the expression vector, human IgG1 heavy-chain
constant region and k-light chain were used. However, antibodies
expressed from this vector showed distinct antigen affinities when
we used 3 types of canonical light-chain V-domain [17]. Thus,
future studies must establish either a method for determining
light-chain pairing to specific heavy chains, or a “universal light-
chain” that can associate with diverse heavy chains without losing
its antigen-binding properties.

We have established a simple prediction protocol for identifying
antigen-responding antibody repertoires from a global repertoire
in the body. By using the well-studied model antigen NP-CGG and
CGG-carrier, we ascertained that the overall perspective of anti-
body dynamics against an immunizing antigen is explicitly
descriptive in terms of the resolution of the NGS method. We
should now potentially be able to examine the details of antibody-
network dynamism, whichwould facilitate accelerated discovery of
protective antibodies against newly emerging pathogens.
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