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A High Performance FPGA-Based Sorting Accelerator with a Data
Compression Mechanism

Ryohei KOBAYASHI†a) and Kenji KISE††b), Members

SUMMARY Sorting is an extremely important computation kernel that
has been accelerated in a lot of fields such as databases, image processing,
and genome analysis. Given that advent of Internet of Things (IoT) era due
to mobile technology progressions, the future needs a sorting method that is
available on any environment, such as not only high performance systems
like servers but also low computational performance machines like embed-
ded systems. In this paper, we present an FPGA-based sorting accelerator
combining Sorting Network and Merge Sorter Tree, which is customizable
by means of tuning design parameters. The proposed FPGA accelerator
sorts data sent from a host PC via the PCIe bus, and sends back the fully
sorted data sequence to it. We also present a detailed analytical model that
accurately estimates the sorting performance. Due to these characteristics,
designers can know how fast a developed sorting hardware is in advance
and can implement the best one to fulfill the cost and performance con-
straints. Our experiments show that the proposed hardware achieves up to
19.5x sorting performance, compared with Intel Core i7-3770K operating
at 3.50GHz, when sorting 256M 32-bits integer elements. However, this re-
sult is limited because of insufficient memory bandwidth. To overcome this
problem, we propose a data compression mechanism and the experimental
result shows that the sorting hardware with it achieves almost 90% of the
estimated performance, while the hardware without it does about 60%. In
order to allow every designer to easily and freely use this accelerator, the
RTL source code is released as open-source hardware.
key words: sorting, hardware accelerator, data compression, open source

1. Introduction

Sorting is one of the most fundamental computation kernels
in data management, and lots of approaches to accelerate the
kernel have been proposed [1]–[8]. These approaches of-
fer significant results, but mostly these studies utilize SIMD
instructions of Intel processors [1], [7], [8] to exploit data-
level parallelism or experiment on rich hardware environ-
ments such as supercomputers [5] or clusters [7]. It is un-
clear that these approaches are available on low computa-
tional performance machines like embedded systems. Be-
sides, Internet of Things (IoT) era is about to seriously begin
due to mobile technology progressions, and large amounts
of information are more and more generated from mobile
devices, wireless sensors, and others. Therefore, the future
needs a sorting method that is available on any environment
from embedded systems to high performance systems like
servers.
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To address the problem, we propose an FPGA-based
sorting hardware called FACE [9], which combines Sorting
Network and Merge Sorter Tree. The proposed sorting hard-
ware is customizable by means of tuning design parameters,
and we also provide an analytical model that accurately es-
timates the sorting performance depending on the hardware
configuration. In other words, due to these characteristics
designers can estimate sorting accelerator performance in
advance and can implement the best one to meet constraints
of the cost and performance. We have presented the basic
concept of the proposed sorting accelerator in [9], and in
this paper we summarize the proposed sorting accelerator
in terms of the design, the implementation, and the evalua-
tion of the sorting performance and the hardware resource
usage. To allow every designer to easily and freely use this
accelerator, the Register Transfer Level (RTL) source code
is available at [10].

Our proposed sorting accelerator can be high perfor-
mance by tuning design parameters, in that case, not only
the hardware resource usage but also the memory bandwidth
has to be considered. In fact, the highest performance con-
figuration in [9] suffers from the memory bandwidth limi-
tation. To address this problem, in this paper we propose
a data compression mechanism for the sorting accelerator.
Among lots of data compression algorithms, we use an al-
gorithm using the relative difference between values of con-
tinuous locations, which is based on [11]. As sorting is
proceeded, the relative difference between them becomes
smaller. This means that the algorithm is quite suitable for
sorting. Besides, the algorithm can be implemented by a
simple vector subtraction and addition. That is why we
introduce this algorithm, and the data compression mech-
anism can alleviate the memory bandwidth limitation while
keeping the operating frequency high.

Our contributions in this work are:

• We propose a high performance and customizable sort-
ing accelerator with two sorting architectures, and also
propose a detailed analytical model. Therefore, design-
ers can estimate sorting accelerator performance in ad-
vance and can implement the best one to fulfill con-
straints of the cost and performance.
• To mitigate the bandwidth limitation of accessing

the off-chip memory, we propose a data compression
mechanism for the sorting accelerator. Experimental
results show that the sorting accelerator with the mech-
anism offers better performance than without it.
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• To allow every designer to easily and freely use this
accelerator, we release the RTL source code in Verilog
HDL as an open-source hardware. To the best of our
knowledge, this is the first open-source sorting acceler-
ator in the world that is high performance, is customiz-
able, and addresses the memory bandwidth limitation.

This paper is organized as follows. We describe the
sorting architectures that we use in Sect. 2. In Sect. 3, the
design and the analytical model of the proposed sorting
hardware are detailed, and we explain the data compression
mechanism for the proposed sorting accelerator in Sect. 4.
Section 5 shows the implementation of the sorting hardware,
the sorting performance and the hardware resource usage
with and without the data compression mechanism, and we
discuss these experimental results. In Sect. 6, we present
several related studies, and we finally conclude this paper in
Sect. 7.

2. Sorting Architectures

Our proposed sorting accelerator takes advantage of the
sorting network and the merge sorter tree. We describe these
sorting architectures. In order to avoid ambiguity, all sorters
described in this paper target at the ascending order and 32-
bits integer elements.

2.1 Sorting Network

A sorting network [12] is an algorithm that sorts a fixed se-
quence of numbers by using a fixed sequence of compar-
isons. The sorting network consists of two types of items,
which are wires and comparators. The wires are running
from left to right, carrying values (one per wire) that traverse
the network all at the same time. Each comparator connects
two wires. When a pair of values, traveling through a pair
of wires, encounters a comparator, the comparator swaps the
values only if the top wire’s value is greater than the bottom
wire’s value. The sorting network benefits are to sort values
in parallel and to be implemented without complicated hard-
ware. That is why the sorting network is a desirable compo-
nent for building high performance sorting hardware [13]–
[15].

Figure 1 shows a sorting network with 4-inputs and 4-
outputs. This network realizes bubble sort, since the largest
value is carried to the bottom at first. By changing the con-
nection of the comparators, sorting networks can realize lots
of sorting algorithms, such as even-odd merge sort, bitonic
sort, bubble sort, insertion sort, etc. In [13], authors im-
plement several sorting networks on an FPGA and conclude

Fig. 1 Bubble sort network with 4-inputs and 4-outputs

that Batcher’s even-odd merge sort network is the most ef-
ficient in terms of hardware resource usage and throughput.
Consequently, our proposed hardware uses this sorting net-
work.

Figure 2 shows Batcher’s even-odd merge sort net-
work [16] with 16-inputs and 16-outputs. This sorting net-
work consists of 63 comparators and 10 stages. Although
it is possible to be implemented as a purely combinational
circuit, this case probably causes performance reduction be-
cause of large network delay. To address this problem, it
is a common way to implement this network as a pipelined
circuit by inserting registers between each stage, which pre-
vents a degradation of the operating frequency and improves
the network throughput [13]. This network is embedded in
our proposed hardware.

2.2 Merge Sorter Tree

2.2.1 Overview

The merge sorter tree [17] offers highly effective perfor-
mance and good hardware resource usage. The merge sorter
tree is a data path that executes merge process and the data
path consists of connecting sorter cells as a perfect binary
tree. Sorter cells compare two input-values and output one
of them, depending on its comparison result.

Figure 3 shows how elements are sorted in the merge
sorter tree. The merge sorter tree in Fig. 3 has two input
ports. We define the tree in Fig. 3 as 2-way merge sorter
tree. If a merge sorter tree has k input ports, the tree is called
k-way merge sorter tree. Now, we explain how elements are
sorted in this 2-way merge sorter tree.

First, at Cycle N, each way outputs integers of 2, and 1.
Then, 2 and 1 are compared. The data sequences in the left-

Fig. 2 Pipelined synchronous Batcher’s odd-even merge sort network
with 16-inputs and 16-outputs

Fig. 3 Sorting process in merge sorter tree
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Fig. 4 The merge sorter tree and off-chip memory. The tree sorts the
initial data sequence {8, 5, 2, 1} by using the memory.

most FIFOs must be sorted. We define these data sequences
as Units. In this example, the sorted element 8 and 2 in the
upper FIFO is a Unit, and the element 5 and 1 in the lower
FIFO is another Unit. The sorter cell outputs the smaller ele-
ment depending on the comparison result, unless the output
FIFO of the sorter cell is full. At Cycle N+1, 1 is emitted
from the root. At the same time, 2 and 5 are compared, and
then the sorter cell outputs 2. At Cycle N+2, 2 is emitted
from the root. At the same time, the sorter cell outputs 5
depending on the comparison result between 8 and 5.

As shown in Fig. 3, the Units are merged in the tree,
and then the root of the tree emits the sorted data sequence.
In other words, the tree merges the two Units, and then gen-
erates the one Unit composed of 1, 2, 5, and 8. If k-way
merge sorter tree executes this process, the tree can merge k
Units and generate a larger Unit.

However, if the number of the Units to be merged is
more than k, the data sequence passed through the tree is
not fully sorted yet. If so, the tree uses a buffer like off-chip
memory in order to store the data sequence. We explain this
using a simple example shown in Fig. 4.

In Fig. 4, the off-chip memory is divided into two areas,
which are Read Area and Write Area. Read Area is used to
hold the data sequence that is sent to the merge sorter tree. If
k-way merge sorter tree is used, this area is further divided
into k areas and each divided area is allocated to each way.
Here k is 2, therefore Read Area is divided into two areas.
Write Area is used to buffer the data sequence emitted from
the tree.

In Fig. 4 (a), Read Area has an unsorted data sequence,
which is {8, 5, 2, 1}. This data sequence consists of 4 Units
shown in Fig. 4 (a). As mentioned above, Read Area is di-
vided into two areas. Hence, one has {8, 5}, the other has
{2, 1}. First, 8 and 2 are sent to each way. These elements
are merged into one Unit, and then the Unit {2, 8} is written
into the head of the Write Area, as shown in Fig. 4 (b).

After that, in Fig. 4 (c), 5 and 1 are sent and merged.
Then, as shown in Fig. 4 (d), the Unit {1, 5} is stored in Write
area. This means that the entire data sequence in Read Area
is passed through the merge sorter tree and stored in Write
Area. As shown in Fig. 4 (d), the data sequence {2, 8, 1, 5} in

Fig. 5 A sorter cell that can emit four elements per cycle

Write Area is not fully sorted, and has to be passed through
the tree again. That is why if the number of the Units to be
merged is more than k, the data sequence passed through the
tree is not fully sorted yet.

In Fig. 4 (e) the 2 Units, {2, 8} and {1, 5}, are sent to the
ways and are merged in the tree. The operation of the tree
is same as Fig. 3. As shown in Fig. 4 (f), the data sequence
emitted from the tree is fully sorted, which is {1, 2, 5, 8}.

2.2.2 Enhancement of the Merge Sorter Tree

The merge sorter tree takes N cycles to emit N elements,
because the sorter cell can emit only one element. In order
to improve the tree throughput, it is important for the cell to
be able to handle multiple elements.

Figure 5 shows a logical overview of how a sorter
cell emits four sorted elements at a cycle [18]. Similar to
Sect. 2.2.1, the data sequences in the both FIFOs must be
sorted. Each cycle, the smallest element of each input are
compared and four elements with the smaller smallest ele-
ment are ejected from the input FIFO. These four elements
are passed through the multiplexer and the internal FIFO,
and then are merged with the largest four elements, which
are from the previous cycle, at the network in the cell. The
four smallest elements resulting from the merge are guaran-
teed to be smaller than any other element yet to be handled,
because any elements smaller than the four elements have
already been ejected. However, the largest four values may
be larger than and therefore must be fed back and merged
with the next set of input elements. In this way, four sorted
elements are emitted and four elements are ejected from one
of the input FIFOs each cycle.

3. Proposed Sorting Accelerator

3.1 Data Path

Figure 6 shows a data path of the baseline sorting accelera-
tor. We implement it on an FPGA, and verify that it accu-
rately works by using a host PC. We explain how the hard-
ware sorts data sequences using Fig. 7. For simplicity, the
initial data sequence of 256 elements is a reverse-order data
sequence from 256 to 1.

At first, the host PC generates the initial data sequence
and sends it to the FPGA via the PCI Express (PCIe) bus,
and the data received in the FPGA is passed through Sorting
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Fig. 6 Data path of the baseline sorting accelerator

Fig. 7 Example: sorting 256 elements from 256 to 1

Network after packed into a 512-bits data. This network is
Batcher’s even-odd merge sort network [16] with 16-inputs
and 16-outputs, which means that this network can sort 16
elements. Thus, the initial data sequence turns into 16 sorted
data sequences by passed through this network. In other
words, the number of Units is 16 and one Unit has 16 ele-
ments as shown in Fig. 7.

The data sequence passed through Sorting Network is
stored in Input Buffer that consists of FIFO. The stored el-
ements must already be sorted, and that is why the network
is used. The data sequence stored in Input Buffer is sent to
512-bit shift register. This shift register breaks down a 512-
bits data into 16 elements, and then sends them to Merge
Sorter Tree.

For simplicity, we draw 4-way merge sorter tree with
the sorter cell that can emit 4 sorted elements in Fig. 6. Ev-
ery sorter cell works in parallel and ejected elements from
it are enqueued into an output FIFO each cycle, and even-
tually the merged data sequence is emitted from the root of
the tree. After passed through the tree, the data sequence
composed of 16 Units turns into 4 Units, each of which has
64 elements.

The data sequence emitted from the root of the tree is
sent back to the host PC if it is fully sorted. However, as
shown in Fig. 7, this process is not done yet and it has to be
passed through the merge sorter tree again as described in
Sect. 2.2.1. Therefore, the emitted data sequence is sent to
512-bit shift register, and then is packed into a 512-bits data.
After packed, the data sequence is sent to Output Buffer, and
then is stored in the external memory via DRAM Controller.

To complete the sorting process, the stored data is load
from the off-chip memory and is sent to the merge sorter
tree. In the tree, 4 Units are merged into one Unit and then
elements of the Unit are emitted from the root of the tree
cycle by cycle. This means that all of the emitted elements
are fully sorted. Therefore, the data sequence is streamed
into Result Buffer and is sent back to the host PC. To verify

Fig. 8 Wrong sorting and correct sorting

the result, the received data sequence is checked by using
typical sorting software.

By passing the data sequence through Sorting Network
and Merge Sorter Tree, it can be fully sorted. We define
the process that passes the data sequence through Sorting
Network and Merge Sorter Tree as Phase. The number of
required Phases for fully sorting the data sequence is given
by log# of ways

# of elements
S where S is the number of sorted el-

ements at Sorting Network in the first Phase. For instance,
in Fig. 7 the number of required Phases is 2, because S and
the number of ways and elements to be sorted are 16, 4, and
256 respectively.

3.2 Control Logic

When Units are merged in the merge sorter tree, each Unit
needs to be treated separately. If not be separated, that sort-
ing cannot be executed successfully, because invalid ele-
ments are mixed into Units.

In Fig. 8 (a), this example is demonstrated. Figure 8
shows a wrong case (a) and a correct case (b) of merging
Units (i.e. merging 3 and 4). We define Valid elements as
the elements which should be merged into one Unit in the
merge sorter tree (i.e. 3 and 4). At Cycle N+1, 4 should be
emitted from the sorter cell, because 4 is a Valid element.
However, in (a) 2 is emitted, which is an Invalid element,
hence this sorting cannot be done successfully.

To address this problem, we proposed that the maxi-
mum value, which depends on the bit width of elements, is
inserted after Valid elements [19]. Figure 8 (b) shows how
this method is applied. By doing so, this sorting can be exe-
cuted successfully, because 4 is emitted from the sorter cell
at Cycle N+1.

To realize this (Fig. 8 (b)), a circuit that generates the
maximum value to separate Units is implemented in Input
Buffer as shown in Fig. 9. Each Input Buffer has a counter,
which counts the number of emitted elements from this
buffer. We define the number of elements in each Unit in
Phase p as Ep. When the counter value exceeds Ep, the
maximum value is emitted from this buffer, and this buffer
keeps holding subsequent Units.

Output Buffer also has a counter, which counts the
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Fig. 9 Two input buffers and one sorter cell

Fig. 10 How to generate reset signal from output buffer

number of stored elements in Output Buffer as shown in
Fig. 10. When the counter value exceeds Ep+1, all FIFOs
in the merge sorter tree, the counter of Input Buffer, and the
counter of Output Buffer are reset. After this, the tree begins
to merge subsequent Units. Exceeding Ep+1 means that all
elements of a Unit, which is generated in the merge sorter
tree, are stored in Output Buffer.

Due to this mechanism, each Unit is treated separately
and it can be guaranteed that elements are sorted success-
fully. In Fig. 7, in the 1st Phase Ep is 16, Ep+1 is 64, and in
the 2nd Phase Ep is 64, Ep+1 is 256.

3.3 Performance Model

In this section, in order to accurately analyze 100% per-
formance of the proposed sorting accelerator itself without
any effect like memory latency or bandwidth, we assume an
ideal external memory whose bandwidth and latency are in-
finity and 1 cycle respectively. The bandwidth and latency
come from FPGA internal memory performance like Block
RAM. The sorting performance can be estimated by calcula-
tion of the number of required cycles to complete the entire
process. This can be calculated by summation of the number
of cycles in each Phase.

As described in Sect. 3.1 and Sect. 3.2, multiple Units
are merged into one Unit in the merge sorter tree. We call
this process Iteration. In Fig. 7, 16 Units generated from
the sorting network turn into 4 Units by passed through the
merge sorter tree in the 1st Phase. This means that four
Iterations are executed in the 1st Phase. In other words, the
number of Iterations in the 1st Phase is 4, and that is 1 in
2nd Phase. We define the number of Iterations, ways, and
elements to be sorted by the proposed system as I, k, and N
respectively. In nth Phase, the number of Iterations for nth

Phase is given by

In =
N

S kn
(1)

where S is the number of sorted elements at the sorting net-
work in the 1st Phase.

After Iteration, all FIFOs in the merge sorter tree are
reset (Sect. 3.2). Therefore, a few cycles overhead exists
between each Iteration. This overhead OHiter is given by

OHiter = 3 log2 k + 1 (2)

because at the beginning of each Iteration, it takes three cy-
cles to pass through a sorter cell handling multiple elements.

The beginning of each Phase also has an overhead. The
merge sorter tree cannot sort data sequences unless elements
are stored in all of the leftmost FIFOs. Elements have to be
stored in these FIFOs immediately, because they are empty
at the beginning of each Phase. In other words, this is the
overhead. We define the number of required cycles for this
buffering as α, and then the overhead OHphase is given by

OHphase = kα (3)

where α is tens of cycles at most.
We define the number of elements emitted from the

tree at a cycle as M. The number of required cycles for
nth Phase, Cn, is given by the following formula.

Cn =
N
M
+ In × OHiter + OHphase (4)

We explain this formula in three parts. First, the through-
put of the merge sorter tree is M element per cycle. Thus,
it takes N

M cycles to emit all elements from the merge sorter
tree. Second, in nth Phase, the number of Iterations is In.
Thus, the number of cycles for the overhead of all Itera-
tions is In × OHiter, because OHiter cycles overhead exists
between each Iteration. Third, the beginning of each Phase
has OHphase cycles overhead as mentioned. Consequently,
Cn can be calculated by summation of the number of these
cycles.

Hence, Cfully, which is the number of required cycles to
fully sort the data sequence, is given by

Cfully =

n∑

i=1

Ci (5)

where n is the number of required Phases. As described in
Sect. 3.1, the number of required Phases to fully sort the data
sequence is logk

N
S . In other words, Cfully can be also given

by the following formula.

Cfully =

logk
N
S∑

i=1

{ N
M
+

N
S ki

(3 log2 k + 1) + kα} (6)

The sorting process time can be estimated by means of di-
viding Cfully by the operating frequency.
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3.4 Duplication of the Merge Sorter Tree

We describe how to improve the proposed sorting acceler-
ator. One of the approaches to achieve this is to improve
the sorting logic throughput. We propose duplication of the
merge sorter tree. This approach is simple, yet effective for
the throughput improvement.

Figure 11 shows a data path of the sorting accelerator
with the duplicated merge sorter trees. The duplicated trees
work in parallel. Thus, the more the tree is duplicated, the
higher the sorting logic throughput is.

By taking advantage of the analytical model described
in Sect. 3.3, it is possible to analyze theoretical performance
of the sorting accelerator with the duplicated trees. If the
number of duplicated trees is defined as P, the number of
required cycles for nth Phase is given by Cn

P . This is be-
cause the duplicated trees sort data sequences in parallel. In
the last Phase, the parallelism benefit cannot be obtained.
Thus, Clast, which is the number of required cycles for the
last Phase, is given by

Clast =
N
M
+ 1 × OHiter + OHphase (7)

where the number of Iterations for the last Phase is definitely
one. Therefore, Cfully dup, which is the number of required
cycles to fully sort the data sequence by the sorting accel-
erator with the duplicated trees, is given by the following
formula.

Cfully dup = Clast +

(logk
N
S )−1∑

i=1

Ci

P
(8)

Hence, the number of required total cycles is estimated,
depending on the number of ways, duplicated trees, ele-
ments that the sorting network can handle, elements to be
emitted from the tree at a cycle, and elements to be sorted
by the sorting accelerator. Besides, designers can imple-
ment a sorting accelerator composed of required hardware
resources, by means of tuning these configuration parame-
ters.

As mentioned before, the higher the sorting logic
throughput is, the higher performance the accelerator
achieves. However, as the sorting logic throughput is higher,
the sorting performance becomes sensitive to the memory

Fig. 11 Data path of the proposed sorting accelerator with the
duplicated merge sorter trees

bandwidth. This means that the memory bandwidth be-
comes the performance bottleneck. Therefore, it is truly
important to consider approaches which can alleviate the
memory bandwidth limitation while keeping the operating
frequency high. We present an effective way to realize this
in the next section.

4. Data Compression for the Sorting Accelerator

4.1 Algorithm

To mitigate the bandwidth limitation of accessing the off-
chip memory, we adopt data compression. Data compres-
sion has been successfully adopted in a number of different
contexts in modern computer systems as a way to conserve
storage capacity and/or data bandwidth (e.g., downloading
compressed files over the Internet or compressing off-chip
memory) for several decades. Many data compression algo-
rithms are proposed in previous studies, and it is necessary
to decide the most appropriate algorithm according to data
types, applications, and hardware.

In general, data compression algorithms take advan-
tage of redundancy in the data used by applications [20]–
[22]. However, the data handled in sorting is generally ran-
dom, and there is little redundancy in the data used by the
application. Therefore, such algorithms like [20]–[22] are
not effective against sorting. Well then, which algorithm is
promising for the application?

We focus on a data compression algorithm based
on [11], which uses the relative difference between values
of continuous locations. As sorting is proceeded, the rela-
tive difference between them becomes smaller. That is why
the algorithm is quite suitable for sorting. The data com-
pressed by the algorithm is represented in a compact form
using a common base value and an array of relative differ-
ences (deltas).

Figure 12 shows the example diagram of the com-
pression and decompression method described in [11].
As shown in Fig. 12, the compression and decompression
method can be implemented by a simple vector subtraction
and addition. In Fig. 12 (a), the compressed data is repre-
sented in Base V0 and the array of Δ1 ∼ Δ3, using 7Bytes

Fig. 12 Example of the compressor and decompressor method that is
described in [11]. In this example, 4Bytes values are compressed into a
4Bytes base and an array of 1Byte Δ.
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Fig. 13 Adoption of the data compression

instead of 16Bytes. This results in saving 9Bytes of the orig-
inally used space. The compressed data can be easily de-
compressed by the addition of each delta to Base shown in
Fig. 12 (b).

4.2 Adoption of the Data Compression against the Pro-
posed Sorting Accelerator

Figure 13 shows the adoption of the data compression
against the proposed sorting accelerator. As described in
Sect. 3.1, 512-bit shift register packs 32-bits elements emit-
ted from the root of the merge sorter tree into a 512-bits data.
In Fig. 13 if two compressible 512-bits data are successive,
the two data are packed into a 512-bits data. For instance, if
all 512-bits data packed by the shift register are compress-
ible, the data amount transferred to the external memory is
a half of the original one. This means that it is possible
to theoretically obtain double performance efficiency if the
memory bandwidth is the performance bottleneck. In other
words, it is possible to estimate the performance improve-
ment ratio by calculation of the compression ratio against
all 512-bits data packed by the shift register under such situ-
ation. We define the process to pack two compressible 512-
bits data into a 512-bits data as 2x compression if the two
data are successive. The 2x compression ratio is given by

2xCompRatio = 1.0 + (2.0 − 1.0) × incidence (9)

where “incidence” is the occurrence rate of consecutive two
compressible 512-bits data against all 512-bits data packed
by the shift register.

4.3 Data Path

Figure 14 shows the data path of the proposed sorting ac-
celerator with the compressor and decompressor. The com-
pressor packs two compressible 512-bits data into a 512-bits
data like Fig. 15, and the decompressor unpacks compressed
data read from the external memory.

The encoding format for the 2x compression consists
of four parts, which are Base, Compressed, Void, and Flag
shown in Fig. 15. Base and Compressed represent a base
value and an array of deltas. The region of Base and Com-
pressed stands for a compressed data shown in Fig. 13. The

Fig. 14 Data path of the proposed sorting accelerator with the compres-
sor and decompressor

Fig. 15 The encoding format for the 2x compression

data emitted from the shift register consists of 16 sorted el-
ements. For instance, in Fig. 13 the 16 elements from V0 to
V15 are sorted, and V0 is the smallest and V15 is the largest
in the 16 elements. The most simple way is to choose the
smallest one as Base and is that the other 15 elements are
converted into the 15 13-bits deltas if Δls, which is a dif-
ference between the largest and the smallest, ≤ 0x1fff. And
then, if a subsequent 512-bits data is also compressible, the
compressor converts the two original data into a 512-bits
data shown in Fig. 15.

On this occasion, Flag is set to 0x0000 0000 1 in or-
der to identify that the 512-bits data is encoded. Here,
we explain why the flag needs 33 bits. It is assumed that
the flag is the Most Significant Bit (MSB) of a 512-bits
data, which means that ‘1’ stands for that the 512-bits data
is compressed. For instance, if a 512-bits data, which
is composed of 0xffff ffff, 0x0000 000e, 0x0000 000d,
0x0000 000c, . . . , and 0x0000 0000, is emitted from the
shift register, the compressor cannot compress the data be-
cause the delta is beyond 0x1fff. If the compressor cannot
convert two original data into a 512-bits data, this module
outputs the two original data one by one. However, because
of the MSB value, the decompressor identifies that the data
is compressed despite the fact that the data is NOT com-
pressed, and generates incorrect data. In order to prevent
this and to deal with all data patterns, we present a usage of a
flag 0x0000 0000 1, which requires 33 bits from the MSB.
The region corresponding to Flag of the two original data
blocks is NEVER 0x0000 0000 1, because the elements
in the two data are sorted in descending order shown in
Fig. 13. Due to this, the decompressor can identify whether
or not the data read from the external memory is encoded by
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Fig. 16 Modified compression and decompression designs based on the
prior work. In this diagram, 4Bytes values are compressed into a 4Bytes
base and an array of 1Byte Δ.

Fig. 17 Data path of the compressor

checking the region. We define the remained part in the en-
coding format as Void. In this paper, Void is unused space.

If a gap between the largest and the smallest is too
large, the simple way to generate Compressed cannot effi-
ciently work. To address this problem, we propose modified
compression and decompression designs based on the prior
approach, which is shown in Fig. 16. Unlike Fig. 12 (a), the
compression design subtracts the neighbor value from each
value in order to generate the array of Δ1 ∼ Δ3. Due to
this, in the 16 elements from V0 to V15 shown in Fig. 13,
V0 is Base and the other 15 elements are converted into the
15 13-bits deltas if all deltas ≤ 0x1fff. Because each delta is
smaller than Δls, this approach has more likelihood to gener-
ate Compressed than the simple way. In the decompression,
the pipelined addition is executed unlike the simple vector
addition shown in Fig. 12 (b). Although the decompression
design can be implemented as a purely combinational cir-
cuit, this probably causes the operating frequency reduction
due to the large delay. That is why we choose the pipelined
design like the sorting network described in Sect. 2.1.

Figure 17 shows the data path of the compressor. This
module consists of three components, which are Base+Delta
Compressor, Data Packer, and temp FIFO. Base+Delta
Compressor executes a simple vector subtraction to com-
press a 512-bit data emitted from the 512-bit shift register.
At the same time, the original data is stored in temp FIFO. If
the original data is not compressible, temp FIFO outputs all
stored data immediately. Data Packer generates a formatted
512-bits data shown in Fig. 15 if two compressible 512-bits
data are successive. On this occasion, temp FIFO is reset.

Figure 18 shows the data path of the decompressor.
This module has three components, which are FIFO, temp
FIFO, and Base+Delta Decompressor. The FIFO consists of
internal memory resources (hard macros) of the FPGA, and

Fig. 18 Data path of the decompressor

Fig. 19 The data emitted from the merge sorter tree is sequentially
written into the head of the Write Area, without (a) and with (b) the
data compression.

the data read from the external memory is stored in the com-
ponent. The stored data in the FIFO is sent to temp FIFO,
and then this component keeps holding the data unless the
dequeue signal is asserted. If the data is compressed one,
the data splits into two parts, and then Base+Delta Decom-
pressor picks up and decompresses the parts one by one, at
the same time the dequeue signal is asserted. If not, the data
is sent to Input Buffer directly, and the dequeue is done si-
multaneously. As mentioned before, the decompressor can
identify whether or not the data is compressed by checking
Flag shown in Fig. 15.

4.4 Control Logic

As described in Sect. 2.2.1, the data emitted from the merge
sorter tree is sequentially written into the head of the Write
Area like Fig. 19 (a). The figure shows that the data emit-
ted from 4-way merge sorter tree is written into the exter-
nal memory via DRAM Controller. The buffered data is
sent to each way of the tree in the next Phase. Without the
data compression in Fig. 19 (a), the data sent to each way in
the next Phase is correctly written into each region of the
memory by tuning data size of each way and grain size of
data written into the memory. With the data compression
in Fig. 19 (b), simple sequential write can mix each region
data that should be sent to each way, because each region
data can be non-uniform due to the data compression. In
that case, sorting cannot be accurately performed because
incorrect data is sent to each way.

To address this problem, we present a mechanism
named Throttling, which tunes grain size of the data writ-
ten into the external memory. Figure 20 shows the overview
of Throttling. DRAM Controller writes the data emitted
from the tree into the head of the Write Area. At the last of
completion of writing data sent to a way in the next Phase,
DRAM Controller gradually throttles the grain size. By do-
ing this, emitted data is correctly written into a correspond-
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Fig. 20 Writing the data emitted from the merge sorter tree by Throttling

ing region without mixing each region data. The flag to alert
that writing data almost finishes is asserted when the writing
data address crosses Threshold of a region.

After writing data into a corresponding region finishes,
DRAM Controller sets the writing address as the head of
the next region and then sequentially writes the data emitted
from the tree. By repeating this process, all of emitted data
is correctly written into the external memory. When setting
the writing address as the head of the next region, the writing
address is preserved. The address is used as a pointer to
identify how much data each way should read in the next
Phase.

5. Evaluation

5.1 Implementation

As a platform for the proposed FPGA accelerator, we use
the Xilinx Virtex-7 FPGA VC707 evaluation kit [23]. This
kit has the Virtex-7 XC7VX485T, 1GB DDR3 SO-DIMM
(800MHz/1600Mbps) memory, and PCIe Gen2 x8 connec-
tor. We replace that memory with 4GB DDR3 SO-DIMM
memory in order to sort larger data sequences. This kit is
connected to a desktop PC with Intel Core i7-3770K oper-
ating at 3.50GHz and 16GB DDR3-1600 memory via the
PCIe slot.

The sorting logic is implemented in Verilog HDL. To
implement DRAM and PCIe Controller, we use an IP core
provided by Xilinx [24] and an open-source framework for
communicating data using Direct Memory Access (DMA)
transfers between the host PC and FPGA via the PCIe bus,
which is called RIFFA [25]. The data widths from the sort-
ing logic to the both controllers are 512 bits and 128 bits as
shown in Fig. 6, and we set S and M to 16 and 4 respectively.

As a synthesis tool, we use Vivado 2015.4 [26]. The
placed and routed logic meets all timing constraints, and
all implemented logics on the FPGA operate at 200MHz.
We measured effective memory and PCIe bandwidths, and
they are 7.58GB/s (the harmonic mean of the read and write
memory bandwidths) and 3.20GB/s (both of from the host
PC/FPGA) respectively.

Fig. 21 Sorting performance comparison between the software and the
proposed sorting accelerator

5.2 Sorting Performance without Data Compression

We run our experiments on the host PC with the proposed
hardware sorter without the data compression mechanism.
The data-sequence size is 256M (M = 220) elements, whose
data type is 32-bits integer. As described in Sect. 3.1, the
initial data sequence is generated and sent to the FPGA via
the PCIe bus by the host PC, and then the proposed accel-
erator sorts it and sends back the fully sorted data sequence
to the host PC. We measured the elapsed time by using get-
timeofday. To compare the proposed sorter performance,
we implement popular sorting algorithms that are merge sort
and quick sort in C language, compile them using gcc 4.8.4
with -Ofast optimization, and run them on the host PC itself.
These two sorting are executed as single thread of Intel Core
i7-3770K.

Figure 21 shows the experimental results. In the figure,
4-way represents the sorting accelerator with 4-way merge
sorter tree and 4-way 2-tree represents the hardware with
two 4-way merge sorter trees. xorshift, sorted, and reverse
represent that the initial data-sequence types are a random
data sequence using Xorshift [27], a sorted data sequence,
and a reverse-order sorted data sequence respectively.

As shown in Fig. 21, the performance of xorshift,
sorted, and reverse of the sorting accelerator are almost
same. This means that the sorting accelerator is independent
on the data-sequence type. On the other hand, the software
considerably depends on it. Especially, the results of sorted
and reverse of quick sort clearly show this aspect because of
the worst-case complexity of O(n2).

In xorshift, the 4-way performance is 8.77x and 6.07x,
compared with merge sort and quick sort respectively. The
8-way performance is 12.8x and 8.89x; the 16-way perfor-
mance is 16.0x and 11.1x than them. This shows that the
more the number of ways is increased, the higher the sort-
ing performance is. This is because the number of required
Phases to fully sort the data sequence is decreased since the
more the number of ways is increased, the more the num-
ber of elements to be sorted in the merge sorter tree is in-
creased. Moreover, the sorting accelerator achieves almost
100% performance efficiency. Estimated in Fig. 21 stands
for the theoretical performance obtained from the analyti-
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cal model described in Sect. 3.3. As shown in the figure,
these sorting performance are almost same as the theoret-
ical ones. This is because these sorting logic throughputs
are not higher than both of the effective memory and PCIe
bandwidths. Using the operating frequency F, the sorting
logic throughput in nth Phase, Tn, is given by the following
formula.

Tn =
N × 4Bytes

Cn

F

(10)

According to this formula, T1 of 4-way, 8-way, and 16-way
are 2.23GB/s, 2.44GB/s, and 2.66GB/s respectively, and in
the last Phase their throughputs are 3.20GB/s. The sorting
logic throughput against the external memory in nth Phase
except the first and last Phases is given by 2Tn where the
constant 2 comes from DRAM read and write. Therefore,
it can be seen that the sorting logic throughputs of 4-way,
8-way, and 16-way exceed neither of the both bandwidths.

As described before, the more the merge sorter tree is
duplicated, the higher the sorting performance is, since the
sorting logic throughput is improved. For instance, the 4-
way 2-tree performance is 1.15x and the 8-way 2-tree per-
formance is 1.17x and the 16-way 2-tree performance is
1.22x by compared with the performance of 4-way, 8-way,
and 16-way. The sorting accelerator with 16-way offers
19.5x and 13.5x performance compared with merge sort and
quick sort, but the tree duplication faces the memory and
PCIe bandwidth limitation. The sorting throughput using
the duplication technique in nth Phase is given by PTn, and
those of 4-way 2-tree, 8-way 2-tree, and 16-way 2-tree in
the first Phase are 4.45GB/s, 4.88GB/s, and 5.32GB/s. This
means that the performance efficiencies in the first Phase
are limited by the PCIe bandwidth. On the other hand, their
throughputs in the last Phase are 3.20GB/s, which means
that the sorting process and the PCIe data transfer in the
last Phase can be overlapped. This is because single tree
operates only in the last Phase. We modify the analytical
model described in Sect. 3.4 so that the sorting performance
including effect of the PCIe bandwidth can be estimated.
The sorting process time, Time, can be estimated the fol-
lowing formula.

Time =
N × 4Bytes

3.2GB/s
+ (

(logk
N
S )−1∑

i=2

Ci

P
+Clast) × 1

F
(11)

We draw the estimated performance of the three configura-
tions in Fig. 21. The performance efficiencies of 4-way 2-
tree, 8-way 2-tree, and 16-way 2-tree are 44.7%, 54.4%,
and 58.2% respectively. These relatively low performance
results are due to the memory bandwidth limitation. In the
next section, we evaluate how the proposed data compres-
sion mechanism mitigates it.

Figure 22 shows the hardware resource usage of the
sorting accelerator. In Fig. 22, FF, LUT Logic, LUT RAM,
and Block RAM represent a flip-flop (FF), a lookup table
(LUT) for combinational logic, LUT for distributed mem-
ory, and an internal memory (hard macro) of the FPGA. FF

Fig. 22 Hardware resource usage of the proposed sorting accelerator

Fig. 23 The performance efficiency of the sorting accelerator with and
without the data compression mechanism

is used for the control logics of the sorting accelerator, LUT
Logic and RAM are mostly for the merge sorter tree, and
Block RAM is used to implement Input Buffer and Output
Buffer. The Block RAM usage can be mitigated by tun-
ing the number of FIFO entries of Input Buffer and Output
Buffer.

5.3 Sorting Performance with Data Compression

Figure 23 shows that performance efficiencies of the sorting
accelerator with and without the data compression mecha-
nism. The data set is same as Sect. 5.2. Without it, as the
number of ways is larger, the performance efficiency be-
comes higher and gets close to the ratio of the memory band-
width to the average memory bandwidth required from the
sorting accelerator that is the harmonic mean of the sorting
logic throughput against the external memory among Phases
except the first and last. This is because the sorting acceler-
ator with a fewer ways has to access to the external memory
more frequently, which means that it is prone to suffer from
the memory bandwidth limitation.

It can be seen that the performance efficiency of the
sorting accelerator with the data compression mechanism is
improved in all data-sequence types. In sorted and reverse,
all data is compressed because each delta is very small. The
performance efficiencies of 4-way 2-tree, 8-way 2-tree, and
16-way 2-tree are 97.5%, 95.9%, and 88.2% respectively,
because of alleviation of the memory bandwidth limitation.
The reason why the efficiencies go down along with the
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Fig. 24 The data compression ratio in each Phase except the first and last

increased in the number of ways is Throttling overhead.
The sorting accelerator with more ways has to do Throt-
tling more frequently, and the process gradually reduces the
grain size of the data, which leads to reduction of the mem-
ory bandwidth utilization.

In xorshift, the performance efficiencies of them are
slightly better, which are 16.1%, 10.7%, 11.9% improve-
ments. In order to investigate the reason why the improve-
ment ratio is low, we implement a software simulator to
evaluate the data compression ratio in each Phase. Figure 24
shows that result. The number of required Phases of them
are calculated by using the formula described in Sect. 3.1.
The compression ratio shown in Fig. 24 is calculated by us-
ing the formula described in Sect. 4.2, for instance if all data
is compressible, the compression ratio is 2. Those in the
first and last Phase are not measured, because the sorting
logic throughput is limited by the PCIe bandwidth in the
both Phases. Gmean shown in Fig. 24 represents the geo-
metric mean of all compression ratios. As shown in Fig. 24,
while no data is compressed in early Phases, the compres-
sion ratio is improved as sorting is proceeded. Gmean of 4-
way 2-tree, 8-way 2-tree, and 16-way 2-tree are 1.29, 1.26,
and 1.35. It is clear that in xorshift the efficiency improve-
ments of them are due to the data compression in the latter
half of the Phases. In other words, because the average com-
pression ratio is low, the efficiencies are not improved well.
Besides, Throttling is executed in all Phases even if no data
is compressed. That is why the efficiency improvement of
16-way 2-tree is relatively low while the average compres-
sion ratio is higher than the others.

Figure 25 shows that the hardware resource usage of
the sorting accelerator with and without the data compres-
sion mechanism. It can be seen that the usage increases
of FF, LUT Logic, LUT RAM, and Block RAM are quite
small. The increase rates of FF and LUT Logic are due to
implementation of control logics like Throttling for the data
compression mechanism, and those of LUT RAM and Block
RAM depend on buffers of the compressor and decompres-
sor.

5.4 Discussion

We discuss that the proposed sorting accelerator can be im-

Fig. 25 The hardware resource usage of the sorting accelerator with and
without the data compression mechanism

Fig. 26 The number of Slices used for the sorting logic itself

plemented on any other FPGA. Figure 26 shows the number
of Slices used for the sorting logic itself. A Slice is a term
used by Xilinx, and it is a logic component including several
LUTs and FFs. We draw three areas in Fig. 26. The down is
for cost aware systems. We define the borderline of this area
as the number of available slices on the Artix-7 XC7A100T
that is used in the Digilent Nexys4 board [28]. The middle
is for cost-performance aware systems. We define the up-
per border of this area as the number of available slices on
the Kintex-7 XC7K325T that is used in the Xilinx Kintex-7
FPGA KC705 Evaluation Kit [29]. If more performance-
aware systems are required, they need larger devices like
the Virtex-7 FPGAs. As shown in Fig. 26, the designs ex-
cept 16-way 2-tree with and without the data compression
mechanism are within the down area, and the other designs
are within the middle area. This means that most of the pre-
sented designs in this paper can be implemented on low-end
devices and our proposed accelerator is available on various
environments depending on constraints of the cost and per-
formance. We release the RTL source code as open-source
hardware. Hence, designers can implement a sorting accel-
erator composed of required hardware resources by means
of tuning the configuration parameters.

6. Related Work

In recent years, FPGAs have benefited from technology pro-
cess advances to become significant alternatives to ASICs,
and lots of companies and research institutes have been in-
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terested in them. Due to the trend, several studies have pro-
posed sorting hardware with FPGAs [13]–[15], [17], [18],
[30].

The sorting network is one of the most famous sort-
ing architectures, and most studies focus on it [13]–[15],
[18], [30]. In [13]–[15], FPGA-based systems with sort-
ing networks are implemented and evaluated in terms of
circuit areas, throughputs, and power consumptions. [30]
proposes a Domain Specific Language (DSL) and a com-
piler to automatically generate sorting networks with opti-
mized throughput and area efficiency. As mentioned before,
a sorting network is easy to be implemented in hardware
due to simplicity of the architecture, but is unsuitable for
larger data sequences. This is because more comparators
are required to sort them, and this causes the circuit area
increase and the operating frequency degradation. There-
fore, the sizes of these data sequences are small. In [13],
if the data-sequence size is less than eight, it can be fully
sorted only in the sorting network. However, if not, the CPU
merges these sorted portions.

In addition to the sorting network, the merge sorter tree
is proposed in [17], [18]. In particular, [18] proposes a spe-
cial merge sorter tree that can handle six elements per cycle,
and we also use the special one handling four elements at
a cycle. Thanks to this, our proposed accelerator can offer
much higher sorting performance than that of the host PC
itself.

As mentioned before, as the sorting logic throughput is
higher, it is truly important consider approaches which can
address the memory bandwidth limitation while keeping the
operating frequency high. However, in [18], the proposed
hardware has massive memory bandwidth and the authors
do not consider that problem. In contrast to [18], we pro-
pose a data compression mechanism for the sorting accel-
erator to mitigate the bandwidth limitation of accessing the
off-chip memory. The experimental results show that the
sorting accelerator with the mechanism achieves better per-
formance than without it. To the best of our knowledge,
no related work proposes data compression mechanisms for
sorting hardware and evaluates the effectiveness. Besides,
our sorting accelerator is customizable and the RTL source
code is released as an open-source hardware. These are sig-
nificant differences with the prior work.

7. Conclusion

In this work, we presented the acceleration approach for
sorting application. Our proposed accelerator uses two sort-
ing architectures, the sorting network and the merge sorter
tree. It sorts data sent from a host PC via the PCIe bus and
sends back the fully sorted data sequence to it. In this paper,
we detailed the design and implementation, and evaluated
the sorting performance and hardware resource utilization.

As its most characteristic point, the proposed system
is customizable, and we also provided a detailed analytical
model that accurately estimates the sorting performance de-
pending on the hardware configuration. Due to these char-

acteristics, designers can estimate sorting accelerator perfor-
mance in advance and can implement the best one to meet
the cost and performance constraints.

Our proposed accelerator offers significantly high sort-
ing performance, but the performance efficiencies are lim-
ited due to the insufficient memory bandwidth. To address
this problem, we proposed the data compression mechanism
based on the algorithm using a base value and an array of
deltas. As a result, the sorting accelerators with it improved
the performance efficiencies in all data-sequence types, and
the performance efficiencies are almost 90% if all data is
compressed.

In order to allow every designer to easily and freely
use this accelerator, the RTL source code is released as
open-source hardware. To the best of our knowledge, this
is the first open-source sorting accelerator in the world
that is high performance, is customizable, and mitigates
the memory bandwidth limitation. All the code used
to obtain the results in this paper is also available at
https://github.com/monotone-RK/FACE.
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