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Foxp3þ regulatory T cells maintain the bone
marrow microenvironment for B cell lymphopoiesis
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Foxp3þ regulatory T cells (Treg cells) modulate the immune system and maintain

self-tolerance, but whether they affect haematopoiesis or haematopoietic stem cell

(HSC)-mediated reconstitution after transplantation is unclear. Here we show that B-cell

lymphopoiesis is impaired in Treg-depleted mice, yet this reduced B-cell lymphopoiesis is

rescued by adoptive transfer of affected HSCs or bone marrow cells into Treg-competent

recipients. B-cell reconstitution is abrogated in both syngeneic and allogeneic transplantation

using Treg-depleted mice as recipients. Treg cells can control physiological IL-7 production

that is indispensable for normal B-cell lymphopoiesis and is mainly sustained by a

subpopulation of ICAM1þ perivascular stromal cells. Our study demonstrates that Treg

cells are important for B-cell differentiation from HSCs by maintaining immunological

homoeostasis in the bone marrow microenvironment, both in physiological conditions and

after bone marrow transplantation.
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F
oxp3þ regulatory T cells (Treg cells) have an important role
in immune homeostasis and provide protection from
autoimmune diseases. Foxp3 is specifically expressed in

CD4þCD25þ Treg cells and is required for the differentiation
from naive CD4þ T cells1. Loss-of-function mutations of
foxp3 gene in both humans and mice results in the lack of
Treg cells and development of autoimmune diseases1,2. Treg cells
are also important for modulating complications of allogeneic
transplantation, such as Graft-versus-host-disease (GVHD).
Co-infusion of freshly-isolated donor Treg cells can abrogate
GVHD without reducing graft-versus-tumor (GVT) effects both
in mouse models and in humans3,4. On the other hand, the role
of host-derived Treg cells after transplantation is unclear5.
Utilizing in vivo imaging, host-derived Treg cells co-localizes
with infused allogeneic haematopoietic stem cells (HSC),
suggesting a possible role for Treg cells in providing an
immune niche to HSCs helping them evade host immunity,
and favouring their survival6.

Within the HSC-niche, cellular components maintain and
regulate HSC ‘stemness’. The HSC-niche is thought to be
a perivascular area in the bone marrow (BM), created by mature
haematopoietic cells, mesenchymal stem cells (MSC), stromal
cells, endothelial cells, osteoblasts/osteoclasts, sympathic nerves
and non-myelinating Schwann cells. Niche dysfunction in any of
these components might induce HSC loss or functional defects.
Perivascular stromal cells, a component of the HSC-niche, secrete
CXCL12 and other growth factors important for HSC homing
and further differentiation into specific cell lineages7,8.

In GVHD experimental models, it has been reported
that alloreactive Fasþ T cells can target some components of
the HSC-niche after transplantation to induce a defect in
lymphoid differentiation from HSC mainly affecting B cells9.
Here, we show that the in vivo depletion of host-derived Treg
cells induces expansion of the phenotypic long-term HSC
population (CD34�Lineage� cKitþSca1þ population), thereby
reducing the production of B cell progenitors and mature B cells.
Moreover, severe defects of donor-derived B lymphopoiesis
are detected after syngeneic/allogeneic transplantation in
Treg-depleted recipients. Lastly, we find that the perivascular
ICAM1þCD31�CD45�TER119� stromal cells located in the
BM have reduced Interleukin-7 (IL-7) and CXCL12 production
after Treg depletion suggesting that activated T cells that are
generated in the absence of Treg cells may target lineage-specific
BM niche cells, resulting in defective lymphopoiesis from HSC.
Therefore, our results suggest that Treg cells regulate the
production of important growth factors for lymphopoiesis and
are crucial for maintaining niche activity and for preserving
the function of HSC. These results provide new insights into
Treg cells biology and function and are also relevant for further
clinical application for the modulation of immune reconstitution
defects after transplantation.

Results
Treg depletion induces a B-cell differentiation defect. To
evaluate the impact of Foxp3þ Treg cells on haematopoiesis in
the BM, we analysed BM stem and progenitor cells in Foxp3-DTR
(FTR) mice with or without treatment with diphtheria toxin
(DT). FTR mice received 1 mg DT every other day for five
injections (Fig. 1a). We next analysed the phenotype and the
number of several immune cells and progenitor populations,
including myeloid cells (Gr1þ , Mac1þ ), B cells and B-cell
progenitors. We found an increase in the Gr1þMac1þ cells
(Po0.01, Student’s t-test) and a significant decrease in the
frequency of B220þ B cells (Po0.001, Student’s t-test) in the
BM of Treg-depleted mice (Fig. 1b–d). The total number or

BM cells after DT treatment were slightly increased in
Treg-depleted mice (Fig. 1e). Mature B cells (IgMþB220þ ,
Po0.001, Student’s t-test), Pre-B cells (IgM�B220þCD19þ

cKit� , Po0.001, Student’s t-test) and Pro-B cells (IgM�B220þ

CD19þ cKitþ , Po0.05, Student’s t-test) were all decreased with
a slight increase in PrePro-B cells (IgM�B220þCD19� cKit�

Flt3þ , Po0.05, Student’s t-test, Fig. 1f–h).
In the haematopoietic stem/progenitor cell fraction, we detected

a significant increase in the frequencies of haematopoietic stem/
progenitor cells (Lin�Sca1þ cKitþ cells; LSK, Po0.001, Student’s
t-test, Fig. 1i,j), lymphoid primed multipotent progenitor
(Flt3highþLSK; LMPP, Po0.0001, Student’s t-test, Fig. 1k), and
long-term HSC population (CD34� LSK, Po0.001, Student’s
t-test, Fig. 1l) in mice depleted of Treg cells with DT. Moreover,
analysing cell cycle status, the G0 state of LSK and CD34�LSK
(Ki67� Hoeschest33324� population) was significantly reduced in
Treg-depleted FTR mice (Fig. 1m–o). There were no significant
differences in WT mice with or without DT treatment, suggesting
that these results were not due to non-specific toxicity of
DT treatment (Fig. 1). According to these data, we conclude
that Treg depletion induces a block in the early phase of the B cell
differentiation process, while phenotypic HSC populations enter
into cell cycle from the quiescent state and expand.

We also analysed BM T cells in the presence and absence of
Treg cells. Although the total number of T cells was not
significantly different, the frequencies of CD62LþCD44� naive
T cells in the CD4þ and CD8þ T-cell subpopulations were
decreased (Po0.01, Student’s t-test), while CD44þCD62L�

effector T cells were increased in Treg-depleted mice (Po0.01,
Student’s t-test, Supplementary Fig. 1A–C). As expected, we could
not detect CD4þFoxp3þ cells in the DT-treated FTR mouse BM
(Supplementary Fig. 1B). Moreover, we observed elevated
expression of known T-cell activation markers in DT-treated
animals such as CD69 in both CD4þ and CD8þ cells and
Lag3 in CD4þ T cells (Supplementary Fig. 1B,C), suggesting
that BM T cells acquired an activated phenotype after Treg
depletion. Indeed, the serum levels of inflammatory cytokines
such as IL-1b, TNFa and IFN-g were elevated in these conditions
(Supplementary Fig. 1D–G). Furthermore, we confirmed that
CD4þ T cells and B220þ B cells were diffusely located in the
BM of untreated mice, while B220þ B cells could not be found
after Treg depletion by immunocytochemistry analysis (Supple-
mentary Fig. 1H). BM B lineage derived (B220þ ) apoptotic cell
(annexin-VþPI� ) frequencies of B220þ cells from DT-treated
FTR mice were comparable to those from untreated FTR mice
(P40.05, Student’s t-test, Supplementary Fig. 1I), indicating that
the B cell defect in Treg-depleted animals is not due to an
increase in B cell apoptosis.

To evaluate the differentiation capacity of the CD34�LSK
HSC population after Treg depletion, single-cell colony assays
using FACS-sorted CD34�LSK HSC derived from WT or FTR
mice were analysed with or without DT treatment. The
frequencies of colony formation from single-phenotypic HSCs
derived from Treg-depleted mice were significantly decreased
compared with those from untreated FTR mice or from WT mice
(86.8 versus 64.5%, Po0.01, Student’s t-test, Supplementary
Fig. 1J). We also performed competitive repopulation
experiments to evaluate if the absence of Treg cells modifies
the reconstitution capacity of phenotypic HSC derived from
DT-treated or untreated FTR mice in vivo. On day 28 after
transplantation, the phenotypic HSC derived from Treg-depleted
mice showed significantly lower reconstitution in all the lineages
analysed (B cells, CD4þ T cells, CD8þ T cells and Gr1þMac1þ

myeloid cells, Supplementary Fig. 1K–O). These data suggest that
the expanded phenotypic HSCs after Treg depletion had reduced
reconstitution capacity on a per-cell basis.
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A normal BM environment rescues the B lymphopoiesis defect.
To estimate the number of functional HSC in total BM cells
derived from Treg-depleted mice, we next evaluated the
differentiation capacity of total BM cells derived from FTR
mice with or without Treg depletion after in vitro culture and we

found that the frequencies of multi-lineage mixed colony
(neutrophil, macrophages, erythrocytes and megakaryocytes)
from total BM cells were comparable (Fig. 2a).

We thus performed competitive repopulation experiments to
evaluate if a WT BM environment can rescue the lymphoid
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differentiation defect that follows Treg depletion. When
comparing the reconstitution capacity of total BM cells from
FTR mice with or without DT treatment with WT mice, we found
that total BM cells derived from DT-treated FTR mice was
still capable of engrafting (Fig. 2b–g). These results demonstrate
that the number of functional HSC in total BM cells from
Treg-depleted mice was not significantly changed, although the
CD34�LSK population was expanded. Further, the components
of the normal BM environment can rescue the defective lymphoid
differentiation induced by Treg depletion.

Host-Treg depletion delays donor B-cell reconstitution.
To investigate the impact of the BM environment after Treg
depletion, we next performed transplant experiments using
Treg-depleted mice as recipients. Treg depletion was performed
by DT treatment on day � 2 and � 1 before transplantation
followed by lethal irradiation (9.8 Gy) and injection of donor
CD45.1 congenic B6 T-cell depleted BM (TCD BM) cells (1� 106

per mouse) on day 0 when Treg cells were not detected in the
periphery of transplanted mice (Fig. 3a and Supplementary
Fig. 4A). While we could not detect any difference in total per-
ipheral blood (PB) donor chimerism (Fig. 3b,h), Treg-depleted
transplanted mice had significantly lower frequencies and abso-
lute numbers of donor B cells compared to untreated animals at
various time points following transplantation (Fig. 3c,d,i).
Moreover, host-type CD4þ T cells persisted longer in
Treg-depleted mice leading to prolonged CD4þ T-cell mixed
chimerism (Fig. 3e,j). No clear differences could be seen analysing
CD8þ T cell and myeloid cell populations (Fig. 3f,g,k,l).

To investigate B-cell differentiation in these conditions, we
further analysed B-cell progenitor cells in the BM at day 28 and
42 after transplantation. The frequencies of donor Pro-B cells and
mature B cells were significantly reduced in Treg-depleted mice,
while donor-derived LSK and LMPP frequencies were instead
increased (Supplementary Fig. 2A–D). Therefore donor B-cell
differentiation is impaired in the absence of Treg cells and
blocked at early stages of maturation. Moreover, we could not
observe differences in production of serum inflammatory
cytokines suggesting that the B cell defect is not due to
modification of inflammatory cytokine milieu in these conditions
(Supplementary Fig. 2E–H).

Next, to further clarify whether delayed immune reconstitution
after transplant is directly correlated with Treg depletion and to
exclude any possible DT-mediated effects on the BM environ-
ment, we transplanted Treg-depleted mice (CD45.2þ , FTR mice)
with syngeneic TCD BM (CD45.1þ WT-B6 mice) together with
1� 106 in vitro activated CD4þCD25þFoxp3þ Treg cells
derived from CD45.2þ WT-B6 mice (Fig. 3m,n). Treg cells
completely rescued donor B-cell reconstitution in Treg-depleted
animals where donor B-cell frequencies after Treg cells transfer
were comparable to non-Treg-depleted mice (Fig. 3n). These

results confirm that Treg cells are required for effective donor
B-cell reconstitution.

Treg cells are required for allogeneic donor engraftment. In
a model of allogeneic transplantation where irradiated recipient
mice received allogeneic TCD BM, residual host-Treg cells could
be detected for at least 4 weeks in spleen, lymph nodes and
BM even after lethal irradiation (Supplementary Fig. 3A–E).
We also found that host-Treg cells re-isolated 2 weeks
after transplantation were functional and could suppress T-cell
proliferation in response to an allogeneic stimulus (Suppleme-
ntary Fig. 3F).

To investigate the role of residual host-Treg cells in vivo after
allogeneic transplantation, Treg-depleted FTR mice (H-2b) were
lethally (TBI 10 Gy) irradiated and transplanted with TCD BM
from allogeneic MHC-major mismatched donor BALB/c (H-2d)
mice (Fig. 4a). Treg cells were depleted with DT (Supplementary
Fig. 4A). As expected, the transplanted mice did not show any signs
of acute GVHD because the donor-derived T cells
were removed from the graft3. However, around 50% of the
Treg-depleted FTR host mice died due to BM aplasia as
demonstrated by haematoxylin and eosin staining of the BM
collected at day 28 after transplantation (Fig. 4b,c). Moreover,
surviving Treg-depleted animals had a significantly lower donor
chimerism in comparison to non-Treg-depleted mice (Fig. 4d). The
frequencies of donor-derived B cells were significantly
lower in Treg-depleted mice, even if the donor graft was not
B-cell-depleted and contained ample B cells (Fig. 4e). We also
observed reduced donor CD4þ , and CD8þ T cell, and myeloid
chimerism following Treg depletion (Fig. 4f–h) suggesting that host
Treg cells are protective against host-versus-graft BM alloreactivity.
To confirm these results, we performed rescue experiments
by injecting in vitro activated host-Treg cells in transplanted
Treg-depleted animals. Treg-depleted mice that received a Treg
cells inoculum (1� 106 per mouse) engrafted and survived similar
to non-Treg-depleted control animals (Fig. 4i–k). Strikingly, donor
chimerism and donor-derived B-cell frequencies were fully rescued
by adoptive transfer of Treg cells and were comparable to untreated
control mice (Fig. 4j,k, Supplementary Fig. 4B,C), confirming that
host-Treg cells facilitate donor engraftment and immune
reconstitution after allogeneic transplantation.

We also evaluated the impact of Treg depletion using purified
allogeneic HSC/HPC (haematopoietic progenitor cells) as the stem
cell source10. A total of 1� 104 allogeneic purified LSK from
WT-FVB mice (CD45.1, H-2q) were injected into lethally irradiated
FTR mice (H-2b) with or without Treg depletion (Supplementary
Fig. 4D–J). As expected, donor lymphoid reconstitution was
significantly delayed after transplantation (Supplementary
Fig. 4E–G). Foxp3þ T-cell frequencies in DT-treated FTR mice
were significantly lower than those in non-Treg-depleted mice, but
they were eventually recovered by the appearance of donor-derived

Figure 1 | Treg depletion impairs B-cell differentiation in BM. (a) Experimental scheme. (b,c) The gating strategy and representative FACS data of total

BM cells from FTR mice with or without DT treatment. Note that the frequencies of Gr1þMac1þ cells were significantly increased in DT-treated FTR mice

(b) and B220þ cells were decreased (c). (d) Frequencies of CD4þ T cells, CD8þ T cells, B220þ B cells and Gr1þMac1þ cells in BM from WT/FTR mice

with or without DT treatment (n¼4). Data are shown as mean±s.d. (e) Absolute number of total BM cells in WT/FTR mice with or without DT treatment.

***Po0.001, Student’s t-test. Data are shown as means±s.d. (f,g) Representative results of B-cell progenitor analysis in BM from FTR mice with or without

DT treatment. Typical plots of IgMþB220þ mature B cells (f), IgM�B220þCD19þ cKit� Pre-B cells, and IgM�B220þCD19þ cKitþ Pro-B cells are

shown (g). (h) The graph shows the total number of B-cell progenitors in BM derived from the FTR mice with or without DT treatment (n¼ 5, **Po0.01,

Student’s t-test). Data are shown as means±s.d. (i) Representative results of HSC analysis in BM from FTR mice with or without DT treatment. Note the

significant increase of LSK population and CD34� LSK population in FTR mice with DT treatment. (j–l), Frequencies of LSK (j), HSC (CD34� LSK; (k)), and

LMPP (Flt3þ LSK; (l)) in BM (n¼4 in each group, **Po0.01, ****Po0.0001, Student’s t-test) are also shown. Data are shown as means±s.d. (m–o) The

cell cycle status in HSCs derived from FTR mice with or without DT treatment is reported. Representative dot plot data (m), frequencies of G0 state in LSK

(n) and in CD34� LSK (o) are shown (n¼4 in total, **Po0.01, Student’s t-test). Data are shown as means±s.d.
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Treg cells 12 weeks after transplantation and simultaneously
donor-derived B cells gradually recovered (Supplementary
Fig. 4G,I,J). Because mature donor cells including mature B cells
and T cells were not included in the donor graft, these data
suggested that Treg depletion can modify the BM environment for
B-cell differentiation from HSC/HPC.

Host-Treg cells adoptive transfer promotes B-cell reconstitution.
We next examined whether Treg cells adoptive transfer could
promote B-cell reconstitution in a mouse transplant model using
immune-deficient mice where host-versus-graft immune
reactions are absent or minimal (Fig. 5). A total of 1� 106

allogeneic TCD BM cells from WT-B6 mice were injected into
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Figure 2 | Normal BM environment rescues B cell defect. (a) Results of methylcellulose colony assay using total BM cells from Treg-depleted or not FTR

mice are shown. Colony distribution is reported. GEMM; granulocyte, erythrocyte, macrophage, GM; granulocyte, monocytes, G; granulocyte,

M macrophage. Pooled data from three consecutive experiments are shown. (b) Experimental scheme of competitive repopulation assay using 1� 106 total

BM cells from FTR mice (CD45.2) with or without DT treatment. As competitor cells, the same number of total BM cells from WT-F1 B6 mice

(CD45.1/CD45.2) was co-injected into lethally irradiated CD45.1 B6 mice. (c–g) The frequencies of CD45þ (c), CD4þ T cells (d), CD8þ T cells

(e), B220þ B cells (f), Gr1þMac1þ granulocytes (g) derived from FTR mice at 4, 8, 12, 16 weeks after transplant are reported. ns¼ not significant,

DT-FTR-BM versus DTþ FTR-BM on 4 weeks after transplant in (c), (f), (g); *Po0.05, Student’s t-test, DT-FTR-BM versus DTþ FTR-BM on 4 weeks after

transplant in (e). **Po0.01, Student’s t-test. Data are shown as means±s.d.
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non-irradiated BALB/c-rag2� /�gc� /� mice with or without
in vitro activated BALB/c-derived Treg cells. We observed donor
engraftment including CD4þ , CD8þ T cells, even when we used
TCD-BM. The adoptive transfer of host-type Treg cells enhanced
donor chimerism over time and boosted donor B cell recon-
stitution as detected in the PB, BM and the spleen, while CD4þ

and CD8þ T cell frequencies did not show significant difference
between the groups (Fig. 5a–e).

Moreover, donor-derived CD8þ T cells in the BM of
Treg-treated animals had reduced expression of activation
markers such as CD69, CD44 and PD1 (Fig. 5f) and we detected
reduced amounts of inflammatory cytokines such as IL-1b, IFNg
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and TNFa in their sera (Fig. 5g,h), demonstrating that host-type
Treg cells control donor T-cell activation and production of
inflammatory cytokines favouring donor engraftment and B-cell
immune reconstitution.

To confirm these data and to provide a tool for further
clinical translation in immune-competent hosts, we transplanted

lucþ B6 TCD BM into sublethally irradiated (TBI 5.5 Gy)
BALB/c mice and observed the impact of host-Treg cells
adoptive transfer (5� 105 per mouse) on donor engraftment
and immune reconstitution (Supplementary Fig. 5). Mice
received intraperitoneal injections of low-dose IL-2 for 7 days
to allow for Treg cells in vivo activation. PB chimerism analysis
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Figure 4 | Allogeneic donor engraftment is impaired by host-Treg-depletion. (a) Experimental scheme: B6 WT or B6 FTR (both H-2b) mice with or

without DT treatment on day � 2 and � 1 were lethally irradiated and transplanted with 1� 107 TCD BM from allogeneic BALB/c (H-2d) mice. (b) Survival

of transplanted mice. Comparisons have been made between DT-untreated and DT-treated B6 WT and B6 FTR mice. The graph shows the results of

three-pooled consecutive experiments (***Po0.001, log-rank test). (c) Representative histological haematoxylin and eosin stained section of BM derived

from allogeneic transplanted untreated or DT-treated FTR mice 4 weeks after transplantation. (d) PB donor chimerism of total CD45þ cells over time after
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Myeloid cells (h) over time after transplantation of DT-treated and untreated B6 WT or B6 FTR mice. Statistical analysis of the differences between FTR and

DT-treated FTR at different time points are shown. Data are shown as means±s.d. ns¼ not significant, *Po0.05, **Po0.01, ***Po0.001, Student’s t-test.

(i) Survival of transplanted mice when host-Treg cells have been adoptively transferred to rescue donor BM engraftment. Comparisons have been made

between DT-untreated FTR mice, DT-treated FTR mice and DT-treated FTR mice that received host-Treg cells infusion at day 0 of transplantation.

Data reported is the results of two-pooled consecutive experiments. **Po0.01, log-rank test. (j,k) Total CD45þ cell donor chimerism (j) and donor B-cell

percentage (k) in PB of untreated FTR mice, DT-treated FTR mice and DT-treated FTR mice that were rescue with host-Treg cells infusion at day 0 of

transplantation are shown. Statistical analysis of the differences between DT-treated FTR and DT-treated FTR rescued with host-Treg cells at different time

points are shown. Data are shown as means±s.d. ns¼ not significant, *Po0.05, **Po0.01, ***Po0.001, Student’s t-test.
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Figure 5 | Host-Treg cells adoptive transfer promotes B-cell reconstitution. Immune-deficient BALB/c-rag2� /�gc� /� (H-2d) mice were transplanted

with 1� 106 TCD BM from allogeneic B6 (H-2b) mice and were treated with host-Treg cells at day 0 of transplantation. (a) Donor H-2kbþCD19þ B cells in

PB of transplanted BALB/c-rag2� /�gc� /� mice in the absence (left) or presence (right) of host-Treg cells treatment. (b,c) PB donor chimerism of total

CD45þ cells (b) and donor B-cell percentage (c) over time after transplantation of Treg cells-treated and untreated BALB/c-rag2� /�gc� /� mice. Data

are shown as means±s.d. ns¼ not significant, *Po0.05, **Po0.01, Student’s t-test. (d,e) Frequencies of total donor cells, donor CD4þ T cells, donor

CD8þ T cells and donor B cells in the BM (d) and in the spleen (e) of transplanted mice at day 28 after transplantation (n¼ 5 in each group). Data are

shown as means±s.d. ns¼ not significant, **Po0.01, Student’s t-test. (f) Frequencies of CD44, CD62L, CD69, CD103, ICOS, KLRG1, LAG3 and PD1

expressions on donor CD8þ T cells in the BM of transplanted mice at day 8 after transplantation (n¼ 5 in each group). Data are shown as

means±s.d. ns¼ not significant, *Po0.05, **Po0.01, ***Po0.001, Student’s t-test. (g–j). Serum concentrations of different cytokines in transplanted

BALB/c-rag2� /�gc� /� mice that received or not host-Treg cells adoptive transfer. Data are shown as means±s.d. ns¼ not significant, *Po0.05,

Student’s t-test.
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and in vivo imaging showed transient donor engraftment
followed by rapid rejection within 2 weeks after transplantation
in mice that received only donor TCD BM. Mice that
received TCD BMþ host-Treg cells alone or TCD BMþ IL-2
alone did not have a significant improvement in
donor engraftment, while mice that received TCD BMþ both
host-Treg cells and IL-2 treatment had an increased
and persistent donor engraftment (Supplementary Fig. 5A,F,G).

All the donor-derived white cell lineage frequencies (CD4þ T
cells, CD8þ T cells, B cells and myeloid cells) were strikingly
increased by host-Treg cellsþ IL-2 treatment, but while
donor myeloid cells were no more detectable after 4 weeks
from transplantation, host-Treg cellsþ IL-2 treatment ensured
a durable and persistent (analysis up to 120 days after
transplantation) donor lymphoid chimerism (Supplementary
Fig. 5B–E).
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Figure 6 | Treg-depletion reduces IL-7 production from ICAM1þ stroma. (a–c) Graphs show IL-7 concentrations in the serum of Treg-depleted mice after

syngeneic transplant (a), after allogeneic transplant (b), and in allogeneic transplanted BALB/c-rag2� /�gc� /� mice (c) that received or not host-Treg

cells adoptive transfer (n¼ 5 per group). Data are shown as means±s.d. *Po0.05, Student’s t-test. (d) Donor B-cell percentage in PB of untreated or

DT-treated FTR mice that received intraperitoneal administration of low-doses of IL-7. Statistical analysis of the differences between DT-treated FTR that

received IL-7 and DT-treated FTR alone at different time points are shown. Representative data from one of three experiments is shown. Data are shown as

means±s.d. ns¼ not significant, *Po0.05, **Po0.01, Student’s t-test. (e). Representative results of immunostaining using Treg-depleted FTR mice 28

days after syngeneic transplantation (right panels). The images of transplanted untreated FTR mice are also shown as control (left panels). Note that the

frequencies of B220þ cells (upper panels) and IL-7þ cells (upper and lower panels) are severely decreased in Treg-depleted FTR mice. (f). Representative

plot data of non-haematopoietic cells in BM from WT mice. Total BM cells were flushed out and digested with collagenase. Bone related cells were also

isolated from bone-derived digested cells. After gating for CD45�TER119� cells (left panel), digested marrow cells were gated for ICAM1 and CD31

expression (middle) and bone related cells were gated for Sca1 and PDGFRa expression (right). (g–i). Quantitative RT-PCR data using non-haematopoietic

cells from untreated or DT-treated FTR transplanted mice. il-7 mRNA (g), cxcl12 mRNA (h), and kitl mRNA (i) are shown (n¼ 3 in each group). Data are

shown as means±s.d. ns¼ not significant, *Po0.05, **Po0.01, ***Po0.001, Student’s t-test.
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Treg depletion reduces IL-7 production by ICAM1þ stroma.
For B-cell differentiation from HSC, extrinsic humoural factors
such as IL-7 or C-X-C motif chemokine 12 (CXCL12, also known
as stromal cell derived factor-1; SDF-1) are required11. These
cytokines are thought to be secreted by non-haematopoietic
stromal/niche cells in the BM. According to these reports, we
hypothesized that the B-cell differentiation defect after Treg
depletion could be due to a dysfunction of the cytokine-secreting
BM niche cells.

Indeed, in the sera obtained from Treg-depleted transplanted
mice IL-7 levels were lower compared with those without Treg
depletion (Fig. 6a–c). To further prove a role for Treg cells in
modulating IL-7 production in vivo, we transplanted lethally
irradiated Treg-depleted FTR mice with TCD BM from congenic
CD45.1þ B6 mice and low-dose IL-7 (1 mg per mouse per day)
for 7 consecutive days. As expected, all mice engrafted and
no differences were found in total donor cells, CD4þ or CD8þ

T cell chimerism (Supplementary Fig. 6A–D). IL-7 treatment
almost completely rescued donor B cell reconstitution in
Treg-depleted mice by 8 weeks after transplant (Fig. 6d, Supple-
mentary Fig. 6E). IL-7 treatment without Treg depletion did
not induce modifications in B cell numbers and reconstitution
suggesting that physiological levels of IL-7 are sufficient for donor
B cell differentiation. These data demonstrate that Treg cells
promote B-cell differentiation and reconstitution through an IL-7
dependent mechanism. IL-7 expressing cells in BM have been
examined by immunohistochemistry or il-7-reporter mice and
IL-7 is produced by BM stromal cells8, suggesting that IL-7 is not
directly secreted by Treg cells.

Intercellular Adhesion Molecule 1 (ICAM1, also known as
CD54) is a surface protein, which is mainly expressed on activated
T cells, endothelial cells and stromal cells in the BM. ICAM1þ

non-haematopoietic/endothelial cells were reported to be IL-7 and
CXCL12 secreting cells and are thought to play an important role
in B-cell differentiation12. Indeed, immunofluorescence analysis
using fresh BM showed that ICAM1þVE-Cadherin� cells were
located in the perivascular areas and were positive for IL-7,
although the majority of ICAM1þVE-Cadherinþ endothelial
cells were IL-7 negative (Supplementary Fig. 7A,B). Strikingly,
IL-7þ ICAM1þ cells were hardly detected in the Treg-depleted
host mice (Day 28, Fig. 6e). Quantitative RT-PCR analysis showed
that FACS-sorted BM ICAM1þCD31�CD45�TER119� stromal
cells showed higher levels of il-7 and cxcl12 mRNA compared
with ICAM1þCD31þCD45�TER119� endothelial cells, or total
BM samples (Fig. 6f–i). Importantly, il-7 expression was hardly
detected in all the other analysed populations (ICAM1þCD31þ

CD45�TER119� endothelial cells, ICAM1�CD31�CD45�

TER119� non-haematopoietic cells, total BM samples, Sca1þ

PDGFRaþ MSC, or Sca1�PDGFRa� endosteal stromal cells
from digested bone cells). Therefore, the major source of IL-7 in
the BM is represented by ICAM1þCD31�CD45�TER119�

stromal cells. This population is also positive in stem cell factor
(SCF, the ligand for cKit), which plays a crucial role for
HSC maintenance and B cell differentiation11, when analysed in
SCF-GFP mice (Supplementary Fig. 7C–F).

We next analysed il-7, cxcl12 and kitl (ckit ligand) expression
levels of ICAM1þCD31�CD45�TER119� stromal cells in BM
derived from transplanted mice with or without Treg depletion
(Fig. 6g–i). However, the expression level of il-7 in ICAM1þ

CD31�CD45�TER119� stromal cells from Treg-depleted
transplanted mice was significantly lower in comparison to
non-Treg-depleted mice (Fig. 6g). cxcl12 and kitl were also
abundantly expressed in ICAM1þCD31�CD45�TER119�

stromal cells but were less impacted by Treg depletion (Fig. 6h,i).
These data provide evidence that the delayed immune

reconstitution including B cell differentiation from HSC after

Treg depletion was induced by the dysfunction of IL-7 secreting
ICAM1þCD31�CD45�TER119� perivascular cells in the BM.
Treg cells not only provide an immunological barrier to the
HSC-niche6, but also promote their further lymphoid
differentiation through control of IL-7 production via ICAM1þ

CD31�CD45�TER119� perivascular cells. The presence of
activated T cells and increased levels of inflammatory cytokines in
the BM in the absence of Treg cells suggest that Treg cells provide
immune protection to HSC and IL-7-secreting ICAM1þCD31�

CD45�TER119� perivascular cells. Treg cells are also required
for controlling BM immune homeostasis and development/
differentiation in physiologic conditions and after transplanta-
tion (proposed model, Fig. 7).

Discussion
Foxp3þ Treg cells are known to promote immunological
tolerance and suppress autoimmunity. Here, we show that Treg
cells are also required to maintain BM stromal cell function and
that these cells are necessary for immune reconstitution after
transplantation. We demonstrate that Treg cells are required for
B-cell differentiation under physiologic conditions and after
syngeneic and allogeneic transplantation. ICAM1þCD31�

CD45�TER119� perivascular cells were shown to be the main
producers of IL-7 and are a possible target of self-activating
T cells after Treg depletion.

Treg cells have been shown to possess tolerogenic properties in
several transplantation models2. One of the main mechanisms of
Treg cells function is thought to be their ability to suppress
the proliferation and activation of T cells that mediate donor
HSC rejection. Indeed, the adoptive transfer of Treg cells rescued
the engraftment failure that was induced in allogeneic transplant
using Treg-depleted recipient mice (Fig. 4). Inappropriate
inflammatory cytokine signalling, such as IFN or TNF can
induce HSC dysfunction13,14. These cytokine signals might be key
regulators in the Treg-depleted transplant model (Suppleme-
ntary Fig. 1). However, the number of functional HSC was
not significantly changed in transient Treg depletion model
(Figs 1 and 2, Supplementary Fig. 1), although the phenotypic
HSC population entered the cell cycle and expanded (Fig. 1).
Instead, a defect of B-cell differentiation was observed (Fig. 1)
upon host-Treg depletion suggesting that the BM environment
for B-cell differentiation was more susceptible to immune cell
activation after Treg depletion (Figs 3 and 4). These findings
imply that Treg cells might regulate not only inflammatory
cytokine secretion which controls HSC quiescence but also the
function of the BM environment. Moreover, Treg depletion
results in engraftment failure and impacts on all the lineages
when mice are transplanted in allogeneic conditions suggesting
that HSC and BM environment have a different degree of
susceptibility to the reactive host immune cells.

The presence of a cytokine pool is critical for lymphoid
differentiation from HSC in each differentiation stage11. IL-7 and
CXCL12 are critical for differentiation into B-cell lineages.
Exogenous IL-7 treatment of transplanted Treg-depleted mice
could rescue donor B-cell reconstitution, suggesting that Treg
cells might control IL-7 production. IL-7 has been used to boost
immune reconstitution after transplantation in preclinical studies
and in clinical trials15,16. Exogenous IL-7 injected into syngeneic
transplanted mice that were not Treg-depleted did not result in
enhanced immune reconstitution in comparison to untreated
animals confirming that in our model there was sufficient
physiological IL-7 production and that only Treg-depleted mice
lacked IL-7.

Osteoblasts were reported as a possible source of IL-7 (ref. 17).
Others, through the use of IL-7 promoter GFP mice, suggested
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that BM reticular stromal cells also secrete IL-7 (ref. 11). In our
qRT-PCR studies, il-7 mRNA was much higher in ICAM1þ

CD31� perivascular cells than those in Sca1�PDGFRaþ

endosteal cells, which are derived from bone digested samples.
These data indicate that the major source of IL-7 in BM is
represented by ICAM1þ perivascular stromal cells, which retain
the characteristics of osteoblast progenitors, a progeny of MSC18.
In a recent study, infection-related cytotoxic T cells stimulate
interleukin-6 (IL-6) secretion from MSC and promote
myelopoiesis19. Our data show that IL-7 secreting ICAM1þ

perivascular stromal cells represent another target of self-
activated T cells after Treg depletion.

Recently, extensive chronic GVHD after human transplanta-
tion was associated with osteoblast and B cell loss20.
In concordance with such a hypothesis, we also found
decreased levels of il-7 mRNA in Sca1�PDGFRaþ bone
associated cells after Treg depletion (Fig. 6e). However, our
data imply that activated T cells would not only target osteoblast
but also ICAM1þ perivascular stromal cells. ICAM1 is a ligand
for LFA-1, which is expressed on T cells, B cells, macrophages
and neutrophils and it is involved in recruitment to the site
of immune reactions21. This might be the reason why
ICAM1þperivascular stromal cells would become a preferred
target of activating T cells after Treg depletion.

Foxp3 deficient mice (‘scurfy’) and patients with defective or
absent FOXP3 expression (IPEX, immune dysregulation,
polyendocrinopathy, enteropathy, X-linked, syndrome) have high
levels of circulating autoantibodies suggesting that the Treg cells
defect is also followed by B cell dysfunction22,23. It has been also
proposed that uncontrolled autoimmune reactions may be
responsible for defective B lymphopoiesis in the fetus24.
However, the role of Treg cells in B cell differentiation from
HSC in adult BM and following transplantation could not be fully
elucidated since scurfy mice die soon after birth. Our data clearly
showed that Treg cells also play a critical role in adult immune
reconstitution including B cell differentiation and maintain the
function of IL-7 secreting ICAM1þCD31� stromal cells.
Therefore, Treg cells not only regulate the inflammatory
cytokine levels in the BM but also the cytokine-secreting
stromal cell function. We suggest that Treg cells play a key role
in immune-surveillance so that autoimmune like activating

effector T cells cannot abrogate the function of the BM
microenvironment.

Treg cells can regulate B cell function through direct B cell
killing25,26 or via CTLA4-mediated interactions25,26 and by
limiting B cell production of autoantibodies27,28. We further
demonstrate that Treg cells are required for maintaining immune
homeostasis at the HSC and B cell precursor niche level, therefore
playing a relevant role in B cell differentiation.

Several studies have shown that Treg cells/CD4þ T cell ratios
are higher in the BM than in secondary lymphoid tissues29,30.
Here we show that BM Treg cells play a key role in normal
lymphopoiesis through the protection of BM environment. Our
data suggest that the regulation of the activation state of residual
BM T cells by Treg cells is a major mechanism for preserving
normal haematopoiesis and reconstitution. However, further
studies are needed to investigate other possible mechanisms
independent on the regulation of effector T cells.

Previous reports demonstrated that T cells are resistant to an
otherwise lethal dose of radiation in vivo31–33. Our results
confirm this finding, and further demonstrate that Treg cells have
a functional advantage over conventional T cells as they do not
require a high proliferation rate to exert their function; therefore
the activation of the host T-cell pool that follows irradiation is
counterbalanced by Treg cells suppressive activity.

We also showed that Treg cells adoptive transfer ameliorated
donor engraftment and boosted immune reconstitution
after transplantation in the absence of any treatment in
immune-deficient animals and after only sublethal irradiation
in immune-competent hosts. These data suggested that activation
of donor-derived T cells was regulated by the adoptive Treg
cells transfer. Thus, Treg cells-based cellular therapy could
represent a safer, less toxic and highly effective approach in
transplantation of patients that are unfit for myeloablative
conditioning regimens or of patients with non-malignant
haematological malignancies such haemoglobinopathies where
treatment toxicity is a major concern34. Another clinical
implication of our data could be transplantation for inherited
immune-deficient patients as delayed reconstitution of humoural
immunity is one of the major problems in such therapeutic
approaches35,36 and a Treg cells imbalance after transplant could
cause delayed B-cell reconstitution.
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Figure 7 | Schematic model of the role of Treg cells in BM microenvironment. Foxp3þ Treg cells in BM regulate the activation status of cytotoxic T cells

and maintain the function of BM environment including ICAM1þperivascular cells. Activated T cells after Treg cells depletion could abrogate IL-7 secretion

from ICAM1þ perivascular cells resulting in a defective B-cell differentiation from HSC.
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In summary, we show that Treg cells maintain the function of
BM ICAM1þCD31� stromal cells, and support lymphopoiesis
including B-cell differentiation from HSC. These results provide
new critical insights into Treg cells biology and function, and
suggest further clinical applications for the treatment of delayed
immune reconstitution after transplantation.

Methods
Mice. Wild type C57BL/6 (B6, H-2b, CD45.2þ ), CD45.1þ congenic mice,
and BALB/c (H-2d, CD45.2þ ) mice were purchased from the Jackson Laboratory
(Sacramento, CA). B6 FTR (FTR, H-2b, CD45.2þ , from Dr Rudensky,
New York, USA), BALB/c-rag2� /�gc� /� and B6-Foxp3.Luci.DTR-4 (H-2b)
mice (from Dr Hammerling, Heidelberg, Germany) were bred in our animal facility
at Stanford University. Eight to twelve weeks old gender matched mice were used
in the experimental procedures. All animal protocols were approved by the
Institutional Animal Care and Use Committee at Stanford University.

Antibodies and reagents. Information of all antibodies are shown in
Supplementary Table 1. Fixable Viability Dye eFluor 506 (eBioscience) was used to
exclude dead cells. FoxP3 Fixation/Permeabilization buffer set was purchased from
eBioscience. DT was purchased from Sigma-Aldrich. Treg depletion was obtained
as described in (ref. 37). Briefly, in transplantation experiments daily 50 mg kg–1

DT was injected intraperitoneally at days � 2 and � 1 before transplantation; for
Treg depletion in untreated mice 50 mg kg–1 DT was injected intraperitoneally
every other day for five times. In both the cases efficiency of Treg depletion was
checked the day after the last DT injection by PB FACS analysis.

Purification of HSC, Treg cells and stromal cells. Mouse CD34� LSK HSC and
CD4þCD25þ Treg cells were isolated as previously described3,38. Briefly, for HSC
isolation, BM lineage negative cells were enriched by biotinylated anti CD4, CD8,
B220, TER119, Gr1, CD127 antibodies, anti biotin beads and LS column. Then,
CD34� cKitþSca1þLineage� cells were sorted by FACS. For Treg cells isolation,
cells from lymph nodes and spleen were stained with anti-CD25 APC, incubated
with anti-APC microbeads and positively selected with a LS column (Miltenyi).
CD4þCD25þ cells were sorted and the purity of CD4þCD25þFoxP3þ was
495%.

For the isolation of stromal cells BM cells were digested with 100 U ml–1

collagenase IV and 10 U ml–1 DNase Invitrogen (I) at 37 �C for 30 min. Residual
bone tissues were digested with collagenase to isolate bone related non-
haematopoietic cells39. Non-haematopoietic cells were enriched by CD45/TER119
negative selection. Cells were sorted on a FACS Aria (BD Bioscience) and all flow
cytometry data were analysed with FlowJo software (Tree Star).

Mixed lymphocyte reactions. Isolated T cells were incubated with irradiated
(32 Gy) allogeneic splenocytes at different ratios as indicated and cultured in the
presence of IL-2 (100 IU ml–1, Roche). Cell proliferation was assessed through
H3-thymidine incorporation26. In the experiments with Treg cells co-incubation
purified Treg cells were added at an 1:2 Treg cells:T cell ratio.

Transplantation. A total of 1� 106 BM cells derived from CD45.1þ B6 mice were
injected into lethally irradiated FTR mice with or without DT on day � 2 and � 1
in syngeneic transplants. For the allogeneic transplant model, 5� 106 TCD-BM
(the frequencies of residual CD4þ and CD8þ T cells in the donor graft were
below 0.5%) cells from BALB/c (CD45.2, H-2d) mice or 1� 104 LSK HSCs derived
from WT-FVB mice (CD45.1, H-2q) were injected into lethally irradiated FTR
mice with or without DT on day -2, and -1. After transplantation PB-cell
chimerism was calculated according to the frequencies of donor type MHC.

In the competitive repopulation assays, chimerism was monitored through the
CD45 congenic marker system. A total of 2� 105 BM cells or 100 CD34�LSK cells
derived from FTR (CD45.2) with or without Treg depletion were mixed with
2� 105 BM competitor cells from B6 F1 mice (CD45.1/CD45.2) and were
transplanted into CD45.1þ congenic B6 mice irradiated at a dose of 9.8 Gy. The
reconstitution capacity of test cells was calculated as (% of CD45.2þ cells)/
(% of CD45.1þ /CD45.2þ þCD45.2þ cells)� 100.

In experiments with immune-deficient mice, BALB/c-rag2� /�gc� /� mice
were transplanted with 1� 106 allogeneic B6 TCD BM cells/mouse in the absence
of any conditioning and 1� 106 in vitro activated host-Treg cells were adoptively
transferred on day 0.

In experiments with Treg adoptive transfer in immune-competent hosts,
sublethally irradiated (5.5 Gy) BALB/c mice were transplanted with 5� 106

allogeneic lucþ B6 TCD BM cells/mouse and treated with or without 5� 105

freshly-isolated host-Treg cells with or without intraperitoneal low-dose IL-2
administration (50,000 IU� 2 daily from day 0 to 6). Bioluminescence imaging
(BLI) was used to quantify donor engraftment over time as previously reported40.
Briefly, mice were injected intraperitoneally with luciferin (10 mg g� 1 of body
weight). The mice were anesthetized and imaged using an IVIS Spectrum
charge-coupled device imaging system (Caliper-Xenogen) for up to 5 min. Imaging

data were analysed with Living Image Software (Caliper Life Sciences).
For IL-7 treatment experiments, 1 mg per mouse of IL-7 (R&D) was injected
intraperitoneally daily from day � 1 to 5 after transplantation. All flow cytometric
analysis were performed with LSR II cytometer (BD Biosciences).

Treg cells in vitro activation. In the experiments where Treg cells were
adoptively transferred, purified Treg cells were cultured for 2–4 days in RPMI
with 10% fetal bovine serum and IL-2 and stimulated with anti-CD3/CD28 beads
(Thermo-Fisher). At the end of culture Treg cells were analysed for purity
(FoxP3495%).

Immunostaining. Frozen BM sections were prepared and immunostained
according to the Kawamoto Method41. Thin sections were fixed with
4% paraformaldehyde or ethanol. For IL-7 staining, anti-IL-7 antibody (Abcam)
and cell permeablization buffer (eBioscience) were used. Immunofluorescence
data were obtained using a TCS SP2 confocal microscope (Leica) and analysed by
image J (1.47v, National Institutes of Health).

Multiplex cytokine assays. Serum was collected from mice at the indicated time
points after DT treatment or transplantation. Twenty different cytokines were
analysed in a multiplex assay system (Cytokine Mouse 20-plex Panel for the
Luminex platform, LMC0006, Invitrogen) and quantified using the Luminex
200 system (Luminex).

qRT-PCR. BM derived stromal cells from FTR mice with or without DT treatment
were sorted by FACS and mRNA was purified using RNAeasy mini kit (Qiagen).
cDNA was generated with the SuperScript III First-Strand Synthesis System for
RT-PCR (Invitrogen) according to the manufacturer’s protocol. Real time
quantitative PCR was performed with specific Taqman probe (Applied Biosystems,
catalogue number; #4331182). Mm99999915_g1 for gapdh, Mm00445553_m1 for
cxcl12, Mm00442972_m1 for kitl, Mm01295803_m1 for il-7 were used. All primer
sequences are proprietary. ABI Prism Fast PCR system (Applied Biosystems) was
used for detection.

Statistical analysis. In survival experiments log-rank test (Kaplan Meyer analysis)
was used. In chimerism analysis two-way ANOVA with bonferroni post-test was
used, while for all the other comparisons the two-tail Student’s t-test was used.
Error bars in all graphs represent mean and standard deviation. All statistical
analysis were performed with Prism 6 (GraphPad Software).

Data availability. All the relevant data in this study within the article and its
Supplementary Files are available from the authors upon request.

References
1. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent

catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8,
191–197 (2007).

2. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and
immune tolerance. Cell 133, 775–787 (2008).

3. Edinger, M. et al. CD4þCD25þ regulatory T cells preserve graft-versus-
tumor activity while inhibiting graft-versus-host disease after bone marrow
transplantation. Nat. Med. 9, 1144–1150 (2003).

4. Di Ianni, M. et al. Tregs prevent GVHD and promote immune reconstitution
in HLA-haploidentical transplantation. Blood 117, 3921–3928 (2011).

5. Pierini, A., Alvarez, M. & Negrin, R. S. NK cell and CD4þ FoxP3þ regulatory
t cell based therapies for hematopoietic stem cell engraftment. Stem Cells Int.
2016, 9025835 (2016).

6. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the
haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

7. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic
stem cells. Nature 505, 327–334 (2014).

8. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the
hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone
marrow stromal cell niches. Immunity 25, 977–988 (2006).

9. Shono, Y. et al. Bone marrow graft-versus-host disease: early destruction of
hematopoietic niche after MHC-mismatched hematopoietic stem cell
transplantation. Blood 115, 5401–5411 (2010).

10. Scheffold, C., Scheffold, Y. C., Cao, T. M., Gworek, J. & Shizuru, J. A. Cytokines
and cytotoxic pathways in engraftment resistance to purified allogeneic
hematopoietic stem cells. Biol. Blood Marrow Transplant.: J Am. Soc. Blood
Marrow Transplant. 11, 1–12 (2005).

11. Nagasawa, T. Microenvironmental niches in the bone marrow required for
B-cell development. Nat. Rev. Immunol. 6, 107–116 (2006).

12. Mourcin, F. et al. Galectin-1-expressing stromal cells constitute a specific niche
for pre-BII cell development in mouse bone marrow. Blood 117, 6552–6561
(2011).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15068

12 NATURE COMMUNICATIONS | 8:15068 | DOI: 10.1038/ncomms15068 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


13. Sato, T. et al. Interferon regulatory factor-2 protects quiescent hematopoietic
stem cells from type I interferon-dependent exhaustion. Nat. Med. 15, 696–700
(2009).

14. Pronk, C. J., Veiby, O. P., Bryder, D. & Jacobsen, S. E. Tumor necrosis factor
restricts hematopoietic stem cell activity in mice: involvement of two distinct
receptors. J. Exp. Med. 208, 1563–1570 (2011).

15. Alpdogan, O. et al. Administration of interleukin-7 after allogeneic bone
marrow transplantation improves immune reconstitution without aggravating
graft-versus-host disease. Blood 98, 2256–2265 (2001).

16. Perales, M. A. et al. Recombinant human interleukin-7 (CYT107) promotes
T-cell recovery after allogeneic stem cell transplantation. Blood 120, 4882–4891
(2012).

17. Zaragoza, B. et al. Suppressive activity of human regulatory T cells is
maintained in the presence of TNF. Nat. Med. 22, 16–17 (2016).

18. Panaroni, C., Tzeng, Y. S., Saeed, H. & Wu, J. Y. Mesenchymal progenitors and
the osteoblast lineage in bone marrow hematopoietic niches. Curr. Osteoporos.
Rep. 12, 22–32 (2014).

19. Schurch, C. M., Riether, C. & Ochsenbein, A. F. Cytotoxic CD8þ T cells
stimulate hematopoietic progenitors by promoting cytokine release from bone
marrow mesenchymal stromal cells. Cell Stem Cell 14, 460–472 (2014).

20. Shono, Y. et al. Bone marrow graft-versus-host disease: evaluation of its clinical
impact on disrupted hematopoiesis after allogeneic hematopoietic stem cell
transplantation. Biol. Blood Marrow Transplant.: J Am. Soc. Blood and Marrow
Transplantation 20, 495–500 (2014).

21. Boscacci, R. T. et al. Comprehensive analysis of lymph node stroma-expressed
Ig superfamily members reveals redundant and nonredundant roles for
ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing. Blood 116, 915–925
(2010).

22. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy,
enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3.
Nat. Genet. 27, 20–21 (2001).

23. Lyon, M. F., Peters, J., Glenister, P. H., Ball, S. & Wright, E. The scurfy mouse
mutant has previously unrecognized hematological abnormalities and
resembles Wiskott-Aldrich syndrome. Proc. Natl Acad. Sci. USA 87, 2433–2437
(1990).

24. Leonardo, S. M., Josephson, J. A., Hartog, N. L. & Gauld, S. B. Altered B cell
development and anergy in the absence of Foxp3. J. Immunol. 185, 2147–2156
(2010).

25. Nguyen, V. H. et al. In vivo dynamics of regulatory T-cell trafficking and
survival predict effective strategies to control graft-versus-host disease following
allogeneic transplantation. Blood 109, 2649–2656 (2007).

26. Pierini, A. et al. Donor Requirements for regulatory T cell suppression of
murine graft-versus-host disease. J. Immunol. 195, 347–355 (2015).

27. Ludwig-Portugall, I., Hamilton-Williams, E. E., Gottschalk, C. & Kurts, C.
Cutting edge: CD25þ regulatory T cells prevent expansion and induce
apoptosis of B cells specific for tissue autoantigens. J. Immunol. 181, 4447–4451
(2008).

28. Zhao, D. M., Thornton, A. M., DiPaolo, R. J. & Shevach, E. M. Activated
CD4þCD25þ T cells selectively kill B lymphocytes. Blood 107, 3925–3932
(2006).

29. Sage, P. T., Paterson, A. M., Lovitch, S. B. & Sharpe, A. H. The coinhibitory
receptor CTLA-4 controls B cell responses by modulating T follicular
helper, T follicular regulatory, and T regulatory cells. Immunity 41, 1026–1039
(2014).

30. Wing, J. B., Ise, W., Kurosaki, T. & Sakaguchi, S. Regulatory T cells control
antigen-specific expansion of Tfh cell number and humoral immune responses
via the coreceptor CTLA-4. Immunity 41, 1013–1025 (2014).

31. Fields, M. L. et al. CD4þ CD25þ regulatory T cells inhibit the maturation but
not the initiation of an autoantibody response. J. Immunol. 175, 4255–4264
(2005).

32. Hsu, W. T., Suen, J. L. & Chiang, B. L. The role of CD4CD25 T cells in
autoantibody production in murine lupus. Clin. Exp. Immunol. 145, 513–519
(2006).

33. Ludwig-Portugall, I., Hamilton-Williams, E. E., Gotot, J. & Kurts, C. CD25þ
T(reg) specifically suppress auto-Ab generation against pancreatic tissue
autoantigens. Eur. J. Immunol. 39, 225–233 (2009).

34. Zou, L. et al. Bone marrow is a reservoir for CD4þCD25þ regulatory
T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 64, 8451–8455
(2004).

35. Buckley, R. H. Transplantation of hematopoietic stem cells in human severe
combined immunodeficiency: longterm outcomes. Immunol. Res. 49, 25–43
(2011).

36. Cowan, M. J., Neven, B., Cavazanna-Calvo, M., Fischer, A. & Puck, J.
Hematopoietic stem cell transplantation for severe combined
immunodeficiency diseases. Biol. Blood Marrow Transplant.: J. Am. Soc. Blood
Marrow Transplant. 14, 73–75 (2008).

37. Kim, J. et al. Cutting edge: depletion of Foxp3þ cells leads to induction of
autoimmunity by specific ablation of regulatory T cells in genetically targeted
mice. J. Immunol. 183, 7631–7634 (2009).

38. Nishikii, H. et al. Unipotent megakaryopoietic pathway bridging hematopoietic
stem cells and mature megakaryocytes. Stem Cells 33, 2196–2207 (2015).

39. Houlihan, D. D. et al. Isolation of mouse mesenchymal stem cells on the
basis of expression of Sca-1 and PDGFR-alpha. Nat. Protoc. 7, 2103–2111
(2012).

40. Cao, Y. A. et al. Molecular imaging using labeled donor tissues reveals patterns
of engraftment, rejection, and survival in transplantation. Transplantation 80,
134–139 (2005).

41. Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from
nonfixed and undecalcified hard tissues using Kawamot’s film method (2012).
Methods Mol. Biol. 1130, 149–164 (2014).

Acknowledgements
We thank the Veterinary Service Center at Stanford University and the Stanford Shared
FACS Facility. This research was supported by P01 HL075462 from the National Heart,
Lung and Blood Institute. A.P. from Associazione Italiana per la Ricerca sul
Cancro—AIRC and American Society for Blood and Marrow Transplantation—ASBMT,
H.N. received funding from Daiichi Sankyo Foundation of Life Science, and A.B. from
the Interdisciplinary Center for Clinical Research (IZKF) Würzburg, Germany.

Author contributions
A.P. and H.N. designed, performed all experiments and wrote the manuscript. J.B. and
Y.C. performed in vitro analysis. H.S.K. and K.T. designed and performed stromal cell
purification. J.W. and J.S. analysed and interpreted data. R.S.N. interpreted the data,
provided overall research supervision and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Pierini, A. et al. Foxp3þ regulatory T cells maintain the
bone marrow microenvironment for B cell lymphopoiesis. Nat. Commun. 8, 15068
doi: 10.1038/ncomms15068 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15068 ARTICLE

NATURE COMMUNICATIONS | 8:15068 | DOI: 10.1038/ncomms15068 | www.nature.com/naturecommunications 13

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Treg depletion induces a B-—cell differentiation defect
	A normal BM environment rescues the B lymphopoiesis defect
	Host-Treg depletion delays donor B-—cell reconstitution
	Treg cells are required for allogeneic donor engraftment

	Figure™1Treg depletion impairs B-—cell differentiation in BM.(a) Experimental scheme. (b,c) The gating strategy and representative FACS data of total BM cells from FTR mice with or without DT treatment. Note that the frequencies of Gr1+Mac1+ cells were si
	Host-Treg cells adoptive transfer promotes B-—cell reconstitution

	Figure™2Normal BM environment rescues B cell defect.(a) Results of methylcellulose colony assay using total BM cells from Treg-depleted or not FTR mice are shown. Colony distribution is reported. GEMM; granulocyte, erythrocyte, macrophage, GM; granulocyte
	Figure™3Host-Treg depletion delays donor B cell reconstitution.(a) Experimental scheme: FTR mice (CD45.2) with or without DT treatment on Day -2 and -1 were lethally irradiated and transplanted with 1times106 total BM cells from congenic CD45.1+ B6 mice. 
	Figure™4Allogeneic donor engraftment is impaired by host-Treg-depletion.(a) Experimental scheme: B6 WT or B6 FTR (both H-—2b) mice with or without DT treatment on day -2 and -1 were lethally irradiated and transplanted with 1times107 TCD BM from allogenei
	Figure™5Host-Treg cells adoptive transfer promotes B-—cell reconstitution.Immune-deficient BALBsolc-rag2-sol-gammac-sol- (H-2d) mice were transplanted with 1times106 TCD BM from allogeneic B6 (H-2b) mice and were treated with host-Treg cells at day 0 of t
	Figure™6Treg-depletion reduces IL-7 production from ICAM1+ stroma.(a-c) Graphs show IL-7 concentrations in the serum of Treg-depleted mice after syngeneic transplant (a), after allogeneic transplant (b), and in allogeneic transplanted BALBsolc-rag2-sol-ga
	Treg depletion reduces IL-7 production by ICAM1+ stroma

	Discussion
	Figure™7Schematic model of the role of Treg cells in BM microenvironment.Foxp3+ Treg cells in BM regulate the activation status of cytotoxic T cells and maintain the function of BM environment including ICAM1+perivascular cells. Activated T cells after Tr
	Methods
	Mice
	Antibodies and reagents
	Purification of HSC, Treg cells and stromal cells
	Mixed lymphocyte reactions
	Transplantation
	Treg cells in™vitro activation
	Immunostaining
	Multiplex cytokine assays
	qRT-PCR
	Statistical analysis
	Data availability

	KimJ. M.RasmussenJ. P.RudenskyA. Y.Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of miceNat. Immunol.81911972007SakaguchiS.YamaguchiT.NomuraT.OnoM.Regulatory T cells and immune toleranceCell1337757872008EdingerM.CD4+CD25+ re
	We thank the Veterinary Service Center at Stanford University and the Stanford Shared FACS Facility. This research was supported by P01 HL075462 from the National Heart, Lung and Blood Institute. A.P. from Associazione Italiana per la Ricerca sul Cancro--
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




