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1. 5-HT1A receptor upregulates BDNF and AMPA receptor expression in vitro.  
2. 5-HT1A receptor downregulates BDNF expression in developing cortex in vivo. 
3. 5-HT1A receptor activation has different effects between in vitro and in vivo. 
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Abstract 

The possible interactions between serotonergic and glutamatergic systems during 

neural development and under the pathogenesis of depression remain unclear. We now 

investigated roles of 5-HT1A receptor in the mRNA expression of AMPA receptor 

subunits (GluR1 and GluR2) and brain-derived neurotrophic factor (BDNF) using primary 

culture of cerebral cortex of mouse embryos. Neurons at embryonic day 18 were cultured 

for 3 days or 14 days and then treated with 5-HT1A receptor agonist (8-OH-DPAT) for 3 

hours or 24 hours. In neurons cultured for 3 days, 8-OH-DPAT treatment for both 3 hours 

and 24 hours increased the mRNA levels of BDNF and GluR1, but not GluR2. In neurons 

cultured for 14 days, however, 8-OH-DPAT had no effects on these mRNA levels. Next, 

we examined in vivo roles of 5-HT1A receptor by administration of 8-OH-DPAT to 

newborn mice. Twenty-four hours after the oral administration of 8-OH-DPAT, the 

mRNA expression of BDNF was decreased in the frontal cortex, but had no effects on the 

mRNA expression of GluR1 and GluR2. Taken together, the present study suggests that 

5-HT1A receptor activation modulates mRNA expression of AMPA receptor subunit and 

BDNF in cortical neurons, and the effects are different between in vitro and in vivo.   
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1. Introduction  

  Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine with multiple physiological 

functions. The early appearance of 5-HT neurons and 5-HT receptors in the embryonic 

brain (Lidov and Molliver, 1982a,b; Wallace and Lauder, 1983; Lauder, 1990) suggests 

that 5-HT plays crucial roles in the neural development (Gaspar et al., 2003; Wirth et al., 

2015). In addition, disorder of 5-HT system is closely related to neuropsychiatric diseases. 

For example, depression is hypothesized to be caused by altered levels of 5-HT (Artigas 

et al., 2013; Dale et al., 2015) and commonly prescribed antidepressants such as selective 

serotonin reuptake inhibitors (SSRIs) target 5-HT system (Olfson and Marcus, 2009). 

5-HT receptors are classified into 7 families with at least 14 different subtypes (Barnes 

and Sharp, 1999; Bockaert et al., 2006; Celada et al., 2013). Among these receptors, 5-

HT1A receptor appears in the early embryonic brain and regulates various aspects of neural 

development (Bonnin et al., 2006). In the matured brain, 5-HT1A receptor acts as 

presynaptic autoreceptor in 5-HT neurons of the raphe nuclei and postsynaptic 

heteroreceptor in many brain regions including the cerebral cortex, hippocampus and 

amygdala (Artigas et al., 2013; Fiorino et al., 2014). Human studies of postmortem 

patients (Lopez-Figueroa et al., 2004; Szewczyk et al., 2009) and by positron emission 

tomography (Bhagwagar et al., 2004; Drevets et al., 2007) as well as preclinical studies 

using experimental animals (Haddjeri et al., 1998; Scorza et al., 2012) have demonstrated 

that 5-HT1A receptor in the cerebral cortex is involved in action of antidepressants.  

Recently, a number of studies have shown that glutamatergic system may be a novel 

target for treatment of major depressive disorder (MDD). α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptor is likely to be involved in actions of 

antidepressants. AMPA receptor consists of tetramers composed of four subunits, GluR1-
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GluR4. Among these subunits, only GluR2 lacks Ca2+ permeability, which gives diverse 

properties to AMPA receptors in the process of neuroplasticity (Derkach et al., 2007; 

Huganir and Nicoll, 2013). AMPA receptors appear early in the developing brain (Jourdi 

et al., 2003) and the trafficking of AMPA receptors to the synaptic membrane plays an 

important role during synaptogenesis and synapse maturation, as well as synaptic 

plasticity (Kumar et al., 2002; Fortin et al., 2012). 

   Previous studies suggested possible interactions between 5-HTergic and 

glutamatergic systems under the pathogenesis of depression. Antidepressants such as 

SSRI upregulate the expression of AMPA receptor subunits both in vitro and in vivo 

(Svenningsson et al., 2002; Barbon et al., 2006; Cai et al., 2013). However, roles of 

specific 5-HT receptors in the regulation of AMPA receptor expression are not well 

understood. 

Brain-derived neurotrophic factor (BDNF) is required for neuronal development early 

in life and for neuronal survival and plasticity in the adult brain. It was shown that the 

expression of BDNF is decreased by stress whereas increased by antidepressant treatment 

in the hippocampus and prefrontal cortex (PFC) (Duman and Aghajanian, 2012; Duman 

and Voleti, 2012). In addition, BDNF upregulates mRNA expression, protein expression 

and membrane trafficking of AMPA receptor subunits in the hippocampus and cerebral 

cortex (Narisawa-Saito et al., 2002; Jourdi et al., 2003; Caldeira et al., 2007; Nakata and 

Nakamura, 2007; Fortin et al., 2012) 

  In the present study, in order to elucidate the interactions between 5-HT and 

glutamatergic systems during development and pathogenesis, we examined roles of 5-

HT1A receptor in the regulation of mRNA levels of AMPA receptor subunits (GluR1 and 

GluR2) and brain-derived neurotrophic factor (BDNF) using cortical neurons both in vitro 
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and in vivo. 

 

 

2. Materials and Method 

All the experiments followed the Guide for the Care and Use of Laboratory Animals 

described by the National Institutes of Health (USA), and were approved by the Animal 

Experimentation Committee of University of Tsukuba. 

 

2.1. Primary culture of cortical neurons 

   BALB/c mice (Nihon SLC, Hamamatsu, Japan) were used in the present study. The 

day of the vaginal plug was considered to be embryonic day (E) 0. Embryos at E18 were 

removed from pregnant mice under the deep anesthesia by isoflurane (Mylan, Tokyo, 

Japan), and quickly decapitated. The cerebral cortex was excised and meninges were 

carefully removed. The cerebral cortex was incubated in 0.025% trypsin-EDTA 

(Invitrogen, Carlsbad, CA) for 5 minutes at 37oC, which was followed by incubation in 

DNase I (Roche Diagnostics, Mannheim, Germany) for another 5 minutes. The cells were 

dissociated by trituration with a Pasteur pipette. After filtration with 70-µm nylon cell 

strainer (BD Falcon, San Jose, CA), dissociated cells were plated on 8-well chamber 

slides (NUNK, Rochester, NY) at a density of 4 x 104 cells/cm2 for immunocytochemistry 

or 24-well plates (BD Falcon) at a density of 1 x 105 cells/cm2 for real-time RT-PCR. The 

slides and plates were coated with 0.2% polyethyleneimine (Sigma, St. Louis, MO) in 

advance. The cells were cultured in Minimal Essential Medium (Life Technologies, 

Carlsbad, CA) supplemented with 10% heat-inactivated fetal bovine serum (Life 

Technologies), 0.5 mM L-glutamine (Life Technologies), 25 µM glutamate (Wako, Osaka, 
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Japan) and 25 µg/ml penicillin/streptomycin (Sigma) in a humidified atmosphere of 95% 

air-5% CO2 at 37oC. Eight hours after plating, the medium was replaced by Neurobasal 

Medium (Life Technologies) with 2% B-27 supplement (Life Technologies), 0.5 mM L-

glutamine and 25 µg/ml penicillin/streptomycin. One day after plating, 5 μM cytosine-β-

arabinofuranoside (Ara-C; Sigma) was added to medium for 24 hours to remove 

proliferating glial and neuronal progenitors. 

 

2.2. Immunocytochemistry 

Cortical neurons were cultured for 3 or 14 days in vitro (DIV) as described above and 

fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (PB) for 30 minutes at room 

temperature. Nonspecific antibody binding was blocked by incubation with 2% normal 

goat serum and 0.1% Triton X-100 in 0.1 M PB for 30 minutes.  

To examine the expression of 5-HT1A receptor, the cells cultured for 3 DIV were 

incubated overnight at 4oC with the rat anti-5-HT1A receptor antibody (4A6, 1:1000 

dilution, Wako) and the chicken anti-MAP2 antibody (1:4000 dilution, Merck Millipore, 

Darmstadt, Germany). Cultured neurons were then incubated with Alexa Fluor 488-

conjugated goat anti-rat IgG antibody (1:500 dilution, Invitrogen) and Alexa Fluor 594-

conjugated goat anti-chicken IgG antibody (1:500 dilution, Invitrogen) for 1 hour at room 

temperature. In addition, cells cultured for 14 DIV were incubated with the rat anti-5-

HT1A receptor antibody and then Alexa Fluor 488-conjugated goat anti-rat IgG antibody. 

After the incubation with the secondary antibody, neurons were incubated with 

rhodamine-phalloidin (1:100 dilution, Invitrogen) which selectively labels F-actin for 30 

minutes to visualize dendritic protrusions. 

To examine the localization of 5-HT1A receptor and GluR1 receptor, cortical neurons 
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at 3 DIV and 14 DIV were incubated overnight at 4oC with the rat anti-5-HT1A receptor 

antibody (1:1000 dilution) and rabbit anti-GluR1 antibody (#13185, 1:200 dilution, Cell 

Signaling Technology, U.S.A.), followed by the incubation with Alexa Fluor 488-

conjugated goat anti-rat IgG antibody and Alexa Fluor 594-conjugated goat anti-rabbit 

IgG antibody for 1 hour at room temperature.  

In confirmation of the specificity of the primary antibodies, the western blot analysis 

of mouse frontal cortex by anti-GluR1 antibody reveled a single band of 100 kD in the 

present study (data not shown). In addition, the incubation except for anti-5-HT1A 

receptor antibody or anti-GluR1 antibody yielded no specific staining (data not shown).  

X-Y plane or Z-stack images of stained neurons were taken respectively at 20x or 63x 

with confocal laser scanning microscopes (LSM 510 META ver.3.2, and LSM 800 with 

Airyscan, Carl Zeiss, Oberkochen, Germany).  

 

2.3. Quantitative real-time PCR 

2.3.1. Cortical neurons in vitro 

Cells cultured for 3 or 14 DIV were treated with 5-HT1A agonist ((R)-(+)-8-Hydroxy- 

2-(dipropylamino) tetralin hydrobromide, 8-OH-DPAT, Sigma) at concentrations of 1, 10 

and 100 nM for either 3 hours or 24 hours. Total RNA was extracted with RNAiso (Takara 

Bio, Shiga, Japan), according to the instructions of the manufacturer. The full content of 

a 24-well plate, with 2 x 105 cells/well, was collected for each experimental condition, 

and was immediately frozen in liquid nitrogen and kept at −80 ◦C until RNA extraction. 

Chloroform was added to separate RNA into aqueous layer. After centrifugation at 15,000 

rpm at 4 ◦C for 15 min, supernatant was collected, and then isopropanol and ethachinmate 

(Nippon Gene, Tokyo, Japan) was added to precipitate RNA. Precipitated RNA was 
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washed with 75% ethanol and centrifuged at 15,000 rpm at 4 ◦C for 5 min. Supernatant 

was discarded and RNA was dried out and dissolved into RNase-free water. 

Concentration of total RNA was measured using spectrophotometer (Eppendorf Bio 

Spectrometer). Genomic DNAs were removed and cDNAs were synthesized from 300 

ng of total RNA using QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany). 

The sample was stored at −30 °C until further use. 

For PCR amplification, cDNA was added to the reaction mixture containing SYBR 

Premix Ex TaqTM II (Takara Perfect Real Time; Takara Bio) and 0.2 µM of the primers. 

The specific primer pairs were: GluR1: forward primer, 5’-AGCGGACAACCA- 

CCATCTCTG-3’; reverse primer, 5’-AAGGGTCGATTCTGGGATGTTTC-3’; GluR2: forward 

primer, 5’-ATGGAACATTAGACTCTGGCTCCAC-3’; reverse primer, 5’-CTGCCG- 

TAGTCCTCACAAACACA-3’; BDNF: forward primer, 5’-GACAAGGCAACTTGGCCTAC- 

3’; reverse primer, 5’-ACTGTCACACACGCTCAGCTC-3’; tryptophan hydroxylase 2 

(Tph2): forward primer, 5’-GAGCAGGGTTACTTTCGTCCATC-3’; reverse primer, 5’-

AAGCAGGTCGTCTTT- GGGTCA-3’; serotonin transporter (Sert): forward primer, 5’-

AAGCCCCACCTTGACTCCTCC-3’; reverse primer, 5’-CTCCTTCCTCTCCTCACATATCC-3’. 

The endogenous control was 18S rRNA: forward primer, 5’-

ACTCAACACGGGAAACCTCA-3’; reverse primer, 5’-AACCAGACA- AATCGCTCCAC-3’. 

PCR was carried out on Thermal Cycler Dice Real Time System (Takara TP800, Software 

Ver.3.00) according to the following protocol: 5 s at 95 ◦C and 30 s at 60 ◦C – 50 cycles. 

Ct values were calculated from the crossing point of amplification curve and threshold, 

and relative quantitative analysis of targeted genes was carried out using calibration curve. 

The expression of 18S rRNA as internal control was used for compensation and the 

relative expression of mRNA in the experiment groups was calculated when the 
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expression of mRNA in the control group was set to 1.0. 

 

2.3.2. Frontal cortex and dorsal raphe in vivo  

BALB/c mice received a single oral administration of either vehicle (5% sucrose 

solutions) or 8-OH-DPAT (5 mg/kg) on postnatal day 1 (P1) where birthday is counted 

as P0. Twenty four hours after the drug treatment, mice were anesthetized by immersion 

in ice and quickly decapitated. The anterior 1/3 of cerebral cortex (frontal cortex) and the 

dorsal raphe nucleus were dissected from the brain. They were frozen immediately in 

liquid nitrogen and kept at −80 ◦C until RNA extraction. These brain regions were 

homogenized in RNAiso on ice using sonicator (Taitec, Saitama, Japan). Total RNA was 

diluted to 1:100 with distilled water and the concentration of total RNA was measured 

using spectrophotometer (Pharmacia Biotech Ultraspec 2000). For cDNA synthesis, 1 µg 

of total RNA was reverse-transcribed, and quantitative PCR was performed as described 

above.  

 

2.4. Statistical analysis 

The statistical analyses for cultures were performed by one-way ANOVA followed by 

post-hoc analysis (Fisher’s protected least significant difference test) using SPSS 

statistics 22 (SPSS Japan Inc.). The statistical analyses for pups were performed by 

student t-test using Microsoft Excel 2010. Significance was set at a value of p < 0.05. All 

the data were expressed as the mean ± SEM. 
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3. Results  

3.1. Localization of 5-HT1A receptor and GluR1 receptor in cortical neurons 

We examined the localization of 5-HT1A receptor and GluR1 in cortical neurons 

cultured for 3 days and 14 days using specific antibodies. At 3 DIV, neurons were 

immunostained by the antibody against 5-HT1A receptor in combination with MAP2 

antibody. 5-HT1A receptor showed spot-like localization, and was expressed in cell bodies 

and dendrites of all neurons (Fig. 1A). Double staining with anti-5-HT1A receptor and 

anti-GluR1 antibodies showed that GluR1 was expressed in cell bodies and dendrites of 

the same neurons in which 5-HT1A receptor was expressed (Fig. 1B). However, close 

examination revealed that 5-HT1A receptor and GluR1 were not co-localized at 

subcellular level (inset in Fig. 1B). 

At 14 DIV, neurons were immunostained by anti-5-HT1A receptor antibody in 

combination with either rhodamine-phalloidin or anti-GluR1 antibody. All the neurons 

showed the spot-like immunoreactivity for 5-HT1A receptor in cell bodies and dendrites 

(Fig. 1C). In dendrites, 5-HT1A receptor was localized in dendritic shafts but not in 

dendritic protrusions where GluR1 was localized (insets in Fig. 1C, D). 

 

3.2. 5-HT1A receptor agonist increased the mRNA expression of BDNF and GluR1 in 

cultured cortical neurons 

We examined effects of 8-OH-DPAT on the mRNA expression of BDNF, GluR1 and 

GluR2 on cortical neurons in vitro. Cortical neurons were cultured for 3 days and 14 days, 

and then treated acutely with 8-OH-DPAT (1, 10 and 100 nM) or vehicle for 3 or 24 hours. 

Real-time RT-PCR was performed to examine time- and dose-dependent effects of 8-OH-

DPAT on the mRNA levels for each gene.  
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At 3 DIV, the treatment with 1 nM 8-OH-DPAT for 3 hours increased the mRNA 

expression of BDNF (p = 0.08) and GluR1 (p < 0.05) as compared with vehicle (Fig. 2A). 

The treatment with 1 nM and 100 nM 8-OH-DPAT for 24 hours also increased the mRNA 

expression of BDNF (p < 0.05) and GluR1 (p < 0.01), respectively (Fig. 2B). Other 

treatment had no significant effect on the mRNA expression of BDNF and GluR1 at 3 

DIV. In addition, 8-OH-DPAT treatment at any concentrations had no significant effect 

on GluR2 mRNA expression at 3 DIV (Fig. 2A, B).  

To elucidate the onset of 8-OH-DPAT effects in more detail, we treated cortical 

neurons with 1 nM 8-OH-DPAT for 30 minutes at 3 DIV, which yielded no significant 

changes in the mRNA expression of BDNF, GluR1 and GluR2 (data not shown).  

Furthermore, to confirm the specific effects of 8-OH-DPAT, we treated cortical neurons 

with DOI, 5-HT2A/2C receptor agonist at 3 DIV for 3 hours. The DOI treatment showed 

no significant effects on the mRNA expression of BDNF, GluR1 and GluR2 (supplemental 

Fig. 1). 

At 14 DIV, the treatment with 8-OH-DPAT for 3 hours and 24 hours had no significant 

effects on the mRNA expression of BDNF, GluR1 and GluR2 (Fig. 2C, D). 

 

3.3. 5-HT1A receptor agonist decreased the mRNA expression of BDNF in newborn frontal 

cortex in vivo 

To examine in vivo roles of 5-HT1A receptor in the mRNA expression of BDNF, 

GluR1 and GluR2 in the frontal cortex, mice received a single oral administration of either 

8-OH-DPAT or vehicle at P1 and brain was removed after 24 hours. The treatment with 

8-OH-DPAT decreased the mRNA expression of BDNF (p < 0.05) but had no significant 

effects on the mRNA expression of GluR1 and GluR2 in the frontal cortex (Fig. 3A), 
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which showed the different effects compared with those of cortical neurons in vitro. Next, 

to clarify whether these differences of effects between in vitro and in vivo were caused by 

interactions between frontal cortex and other brain regions, we examined effects of 8-

OH-DPAT on the mRNA expression of Tph2 and 5-HTT in the dorsal raphe. 8-OH-DPAT 

treatment increased the mRNA expression of Tph2 (p < 0.01) but had no significant 

effects on the mRNA expression of 5-HTT (Fig. 3B). 

 

 

4. Discussion 

The present study examined roles of 5-HT1A receptor in the mRNA expression of BDNF, 

GluR1 and GluR2 of mouse cortical neurons in vitro and in vivo. In embryonic cortical 

neurons cultured for 3 days, 5-HT1A receptor activation upregulated the mRNA 

expression of BDNF and GluR1, but had no effects in neurons cultured for 14 days. In 

contrast, 5-HT1A receptor activation in newborn mice in vivo downregulated mRNA 

expression of BDNF but had no effect on the mRNA expression of GluR1 in the frontal 

cortex. These results demonstrate that 5-HT1A receptor may regulate the mRNA 

expression of BDNF and GluR1 in mouse cortical neurons in vitro, which may be 

modulated indirectly by other brain regions such as the dorsal raphe in vivo. 

 

4.1. The types of cultured neurons 

   In the present study, we cultured E18 cortical neurons for 3 days and 14 days. In the 

mouse cerebral cortex at E18, most neuronal progenitors have completed the final cell 

division and begin differentiation into layer II-VI neurons (Caviness, 1982). Thus, most 

neurons in the present study are supposed to include layer II-VI neurons. A previous study 
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reported that in the culture of embryonic mouse cortical neurons, the expression of 

synaptic proteins begin to increase at 5-10 DIV together with dendrite development. 

Subsequently at about 15-25 DIV, the expression of synaptic proteins reaches the highest 

levels (Lesuisse and Martin, 2002). These results suggest that 3 DIV culture and 14 DIV 

culture in the present study may correspond to the periods of dendrite elongation and 

synapse maturation, respectively.  

 

4.2. Roles of 5-HT1A receptor in the mRNA expression of AMPA receptor subunits and 

BDNF in vitro  

   In E18 cortical neurons cultured for 3 days, 8-OH-DPAT treatment upregulated the 

mRNA expression of GluR1, but not GluR2. Different effects on the expression of AMPA 

receptor subunits may be due to the developmental pattern of expression. A previous 

study reported that the expression of GluR1 mRNA rapidly increases during late 

embryonic days, while GluR2 mRNA expression gradually increases during postnatal 

days (Jourdi et al., 2003). Therefore, we treated embryonic cortical neurons at 3 DIV with 

8-OH-DPAT during the period of dynamic changes of GluR1 mRNA expression, but not 

GluR2 mRNA.  

  In the present study, the activation of 5-HT1A receptor upregulated the subunit-specific 

transcription of GluR1 mRNA, which may suggest the increase of calcium-permeable 

AMPA (CP-AMPA) receptor. CP-AMPA receptor lacks GluR2 subunit and mainly 

consists of GluR1 subunit. It has been shown that excitatory glutamatergic synapses 

express CP-AMPA receptors during early postnatal development, and these receptors are 

supposed to play an important role in synapse maturation and synaptic plasticity in 

developing networks (Kumar et al., 2002; Fortin et al., 2012). Therefore, it is likely that 
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in vitro activation of 5-HT1A receptor promotes the expression of CP-AMPA receptor in 

an early stage of cortical neurons, which might contribute to the synapse maturation and 

plasticity. Further studies are needed to examine this possibility.   

In contrast to the effects in short term culture, the treatment of more matured cortical 

neurons cultured for 14 days with 8-OH-DPAT had no significant effects on the mRNA 

levels of AMPA receptors. We examined immunocytochemically the localization of 5-

HT1A receptor and GluR1 subunit in cortical neurons that were cultured for 3 days and 14 

days. 5-HT1A receptor and GluR1 showed similar localization pattern demonstrating the 

both were expressed in the same neurons but not co-localized at sub-cellular level at 3 

DIV and 14 DIV. These results indicated that the differences in the effects of 8-OH-DPAT 

between young and more matured neurons are not due to the localization of 5-HT1A 

receptor and GluR1. It is likely that 5-HT1A receptor modulates the expression of AMPA 

receptors depending on developmental stages of cortical neurons. Different roles of 5-

HT1A receptor during development were shown in the regulation of dendrite development. 

We have shown that 5-HT1A receptor activation has no effects in the dendrite elongation 

of embryonic rat cortical neurons at 4 DIV (Ohtani, 2014) but inhibits maturation of 

dendritic spines at 14 DIV (Yoshida et al., 2011). Because 5-HT1A receptor can couple to 

variety of effectors such as Gi/adenylate cyclase/protein kinase A signaling pathway 

(Wirth et al., 2015), it is possible that signaling mechanisms downstream to 5-HT1A 

receptor may change depending on the developmental stages.  

   In addition to GluR1 mRNA, 5-HT1A receptor activation upregulated the mRNA 

expression of BDNF. It was reported that BDNF increases the expression of AMPA 

receptor subunits both in mRNA and protein levels of cultured hippocampal neuron at 7 

DIV, but this effect disappears at 14 DIV (Caldeira et al., 2007). It was also shown that 
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BDNF regulates GluR1 expression in a subunit-specific manner. In cultured hippocampal 

neuron, BDNF enhances synaptic strength via the trafficking to membrane of newly 

translated GluR1 subunits as CP-AMPA receptors (Fortin et al., 2012). Taken together 

with the present study, it is probable that BDNF is involved in the regulation of GluR1 

expression in cortical neuron in vitro. 

   In cultured cortical neurons at 3 DIV,  8-OH-DPAT treatment showed dose-

dependent effects on the mRNA expression of BDNF and GluR1. 8-OH-DPAT has not 

only full agonist activity for 5-HT1A receptor (EC50 = 9.6 nM、Ki = 0.65 nM) but also 

partial agonist activity for 5-HT7 receptor (EC50 = 1000 nM、Ki = 39 nM) (Sprouse et al., 

2004). Though it was reported that 5-HT7 receptor antagonist increased the mRNA 

expression of BDNF, exact roles of 5-HT7 receptor in the expression of BDNF remain 

unclear (Fumagalli et al., 2012; Homberg et al., 2014). Therefore, it is possible that 5-

HT7 receptor may be involved in the effects of 8-OH-DPAT treatment at higher dose.     

 

 

4.3. Roles of 5-HT1A receptor in the mRNA expression in the frontal cortex and dorsal 

raphe in vivo 

   The oral administration of 8-OH-DPAT to newborn mice downregulated the mRNA 

expression of BDNF but had no effects on the mRNA expression of AMPA receptor 

subunits in the frontal cortex. These results indicated that 5-HT1A receptor activation 

induced different changes between in vitro and in vivo. It is possible that in vivo effects 

on the frontal cortex may be mediated indirectly through other brain regions including 

the dorsal raphe. 5-HT neurons in the dorsal raphe express 5-HT1A receptor and project 

to various brain regions such as the cerebral cortex (Adell et al., 2002; Celada et al., 2013; 
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Fiorino et al., 2014). To clarify indirect effects of 8-OH-DPAT on cortical neurons via the 

dorsal raphe, we examined the mRNA levels of Tph2 and SERT in the dorsal raphe which 

encode 5-HT synthesizing enzyme and 5-HT transporter, respectively. 8-OH-DPAT 

treatment increased the mRNA expression of Tph2 but not SERT. These results suggest 

that 5-HT synthesis may be upregulated to increase 5-HT release in the frontal cortex. 

Then, the increased release of 5-HT may induce the decrease of mRNA expressions of 

BDNF, considering a pervious report that the increase of 5-HT concentration during an 

early stage of postnatal development downregulates mRNA levels of BDNF in the 

prefrontal cortex (Calabrese et al., 2013).  It is possible that 5-HT receptors other than 

5-HT1A receptor in cortical neurons mediate the downregulation of BDNF level 

(Homberg et al., 2014). Considering that 5-HT2A receptor has opposite effects to 5-HT1A 

receptor in various neuronal functions (Azmitia, 2001; Yoshida et al., 2011), we treated 

cultured embryonic cortical neurons with DOI, 5-HT2A/2C receptor agonist at 3 DIV, 

which had no significant effects on the mRNA expression of BDNF (supplemental Fig. 

1). These results suggest that 5-HT2A/2C receptors in cortical neurons are not involved in 

the effects of 5-HT1A receptor activation observed in vivo. 

  In addition to the indirect effects via changes of 5-HT release from the dorsal raphe 

discussed above, there may be another indirect mechanisms. Because it was reported that 

8-OH-DPAT treatment of neonatal mice affects respiratory function (Corcoran et al., 

2014), we can not exclude the possibility that oral administration of 8-OH-DPAT changed 

BDNF mRNA expression in the frontal cortex through general effects on respiratory 

activity. 

  Considering these results, we must be careful for the interpretation of the effects of 8-

OH-DPAT in vivo and in vitro. As a treatment of human patients such as neuropsychiatric 
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disorders, we must consider effects by oral administration. In contrast, in vitro 

experiments may be useful to examine signaling pathways affected through 5-HT 

receptors because of the availability of direct experimental manipulations.   

In conclusion, the present study showed that activation of 5-HT1A receptor modulates 

mRNA expression of AMPA receptor subunit and BDNF in cortical neurons. The effects 

are different between in vitro and in vivo treatments, which may represent direct and 

indirect effects, respectively.  
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Figure legends 

 

Fig. 1. Expression of 5-HT1A receptor and AMPA receptor subunit GluR1 in cortical 

neurons cultured for 3 days (A, B) and 14 days (C, D). (A) Neurons at 3 DIV were stained 

by anti-5-HT1A receptor antibody (green) and anti-MAP2 antibody (magenta). (B) 

Neurons at 3 DIV were stained by anti-5-HT1A receptor antibody (green) and anti-GluR1 

antibody (magenta). (C) Neurons at 14 DIV were stained by anti-5-HT1A receptor 

antibody (green) and rhodamine-phalloidin (magenta). (D) Neurons at 14 DIV were 

stained by anti-5-HT1A receptor antibody (green) and anti-GluR1 antibody (magenta). 

Arrowheads in C and D show dendritic protrusions where GluR1 but not  5-HT1A 

receptor was localized. Higher magnification of each figure is shown in inset. Scale bars: 

20 µm (A, C, D), 10 µm (B). 

 

Fig. 2. Effects of 5-HT1A receptor agonist 8-OH-DPAT on the mRNA expression of BDNF 

and AMPA receptor subunits, GluR1 and GluR2, in cortical neurons in vitro. Neurons 

were cultured for 3 days (A, B) and 14 days (C, D), and were treated with 8-OH-DPAT 

(1, 10 and 100 nM) or vehicle acutely for 3 hours (A, C) or 24 hours (B, D). *p < 0.05; 

**p < 0.01. 

 

Fig. 3. Effects of 5-HT1A receptor agonist 8-OH-DPAT on the mRNA expression of BDNF 

and AMPA receptor subunits, GluR1 and GluR2, in the frontal cortex (A), and Tph2 and 

5-HTT in the dorsal raphe (B) in newborn mice in vivo. *p < 0.05; **p < 0.01. 
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