Emergence of Fractals in Social Networks:
Analysis of Community Structure and Interaction Locality
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Abstract—Research on social network analysis (SNA) has
been actively pursued. Most SNAs focus on either social
relationship networks (e.g., friendship and trust networks) or
social interaction networks (e.g., email and phone call networks).
It is expected that the social relationship network and social
interaction network of a group would be closely related to
each other. For instance, people in the same community in
a social relationship network are expected to communicate
with each other more frequently than with people in different
communities. To the best of our knowledge, however, there
is not yet any empirical evidence to support the existence of
such interaction locality in large-scale online social networks.
This paper aims to bridge the evidence gap between intuition
about interaction locality and confirmation that it occurs. We
investigate the strength of interaction locality in large-scale
social networks by analyzing several types of data: logs of
mobile phone calls, email messages, and message exchanges
in a social networking service. Our results show that strong
interaction locality is observed equally in the three datasets and
suggest that the strength of the interaction locality is fractal,
by which we mean that the strength is invariant with regard
to the scale of the community.
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I. INTRODUCTION

Research on social network analysis (SNA) has been
actively pursued [1-3]. In SNA, individuals are represented
by nodes in a graph, and social ties among them are repre-
sented by links [1-3]. The resulting graph is then analyzed
to understand complex social phenomena, which involve
interactions among a large number of people.

Most SNAs focus on either social relationship net-
works [4-8] or social interaction networks [9-14]. Links in
social relationship networks represent relationships among
individuals, such as friendship or trust. In contrast, links
in social interaction networks represent actual interactions
between individuals, such as email communication, phone
calls, or face-to-face conversation.

Although it is intuitively expected that the social rela-
tionship network and social interaction network of a group
would be closely related to each other, there is not much
evidence on the relationship between these two types of
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networks. For instance, it is expected that the community
structure of a social relationship network will be related to
interactions among the people in the network. A community
in a social relationship network is a densely connected
subgraph, and in many cases, it represents a group in the
real world [15]. Therefore, people in the same community
in a social relationship network are expected to communicate
with each other more frequently than with people in different
communities. We call this characteristic interaction local-
ity (Fig. 1). The concept of the interaction locality is not new,
since it has been studied in the area of social sciences [16-
18]. However, empirical studies are limited to analysis
on small-scale social networks in offline environments. In
contrast, recent trends in SNAs are shifting from small-scale
analysis in offline environments to large-scale analysis in
online environments [1, 19]. Better understanding of inter-
action locality in large-scale social networks in offline and
online environments should be useful both for understanding
social phenomena and for developing novel services, such
as inferring potential communication demands and detecting
anomalous interactions within a social relationship network
by SNA. To the best of our knowledge, however, there is not
yet any empirical evidence to support the existence of inter-
action locality in large-scale online social networks because
traditional SNAs focus on small-scale social networks in
offline environments, and in recent SNAs focusing on online
environments, social relationship networks and interaction
networks have, in most case, been analyzed independently
of each other.

This paper aims to bridge the evidence gap between
intuition about interaction locality and confirmation that it
occurs. We therefore investigate the strength of interaction
locality in large-scale social networks by analyzing data on
mobile phone calls [20], email messages [21], and message
exchanges in a social networking service (SNS) [22]. We
obtain communities of users of mobile phones, email, and
an SNS by analyzing actual or inferred friendship networks,
which are one type of social relationship network. As a
measure of the strength of interaction locality, we choose
the ratio of the number of interactions within the community
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Figure 1. Intuition about the interaction locality. People in the same
community in a social relationship network are expected to communicate
with each other more frequently than with people in different communities.

to the total number of all interactions.

Our main contributions are summarized as follows.

o We empirically show that 80-90% of interactions are
communications among individuals in the same com-
munity, and strong interaction locality is observed
equally in data on mobile phone calls, email, and SNS
messaging.

« We analyze the dynamics of the interaction locality, and
show that the strength of interaction locality does not
change frequently, over time.

o We find that strength of interaction locality is fractal,
by which we mean that the strength is invariant with
regard to the scale of the community.

e We show that the community structure itself is also
fractal, and this should be one of major reasons that a
fractal relation emerges in interaction locality.

The remainder of this paper is organized as follows. In
Section II, we introduce works related to social relationship
and interaction network analyses. In Section III, we exten-
sively investigate the strength of interaction locality using
data on mobile phone calls, email messages, and message
exchanges in an SNS. Finally, Section IV concludes this
paper and discusses future work.

II. RELATED WORK

In the area of social sciences, the interaction locality
has been studied [16-18]. For instance, Lomi et al. [16]
propose a model of organizational evolution, in which global
dynamics emerge from local interaction among individ-
val organizations. This model succeeded to explain the
organizational evolution, which implies the existence of
the interaction locality. Leifer [17] discusses the relation
between local actions and the roles of actors. Mandel [18]
analyzes the local interaction of individuals and their role

in a community. These traditional SNAs focus on small-
scale social networks in offline environment. In contrast,
we investigate the interaction locality in large-scale social
networks including online social networks using several
types of communication logs.

Analysis of the relationship between social interaction
and relationship networks is a new research topic. Eagle et
al. [20] analyze the relation between a phone call network
of students and faculty at a university and their friendship
network. The research reveals that a friendship network
structure can be inferred from mobile phone log data.
Golder et al. [23] show that in a popular SNS, Facebook,
approximately 90% of messages are exchanges between
friends. Weng et al. [24] analyze the information diffusion in
social networks. They analyze information diffusion network
and follow network evolution in Twitter, a popular micro-
blogging service. Consequently, it is shown that information
diffusion affects the follow network evolution. The results of
these works suggest that social relationship and interaction
networks are closely related to each other. However, the
interaction locality, which we focus on in this paper, is not
yet well understood.

One notable exception to the dearth of research on inter-
action locality in large-scale social networks is the analysis
of a society-wide phone call network performed by Palla
et al. [25]. They showed that phone call durations between
individuals in the same community are 5.9-fold the durations
of calls to community nonmembers. This result strongly
suggests the existence of interaction locality. However, the
communities in that work were obtained from the phone
call network, which is a social interaction network. In
contrast, we focus on the communities obtained from social
relationship networks.

III. EXPERIMENT
A. Datasets and Methodology

We investigate the strength of interaction locality by using
three datasets, which contain a history of interactions and are
grouped by medium: mobile phone calls (MIT dataset) [20],
email messages (Enron email dataset) [21], and message
exchanges on an SNS (Facebook dataset) [22]. The MIT
dataset contains mobile phone call logs of students and
faculty at MIT (Massachusetts Institute of Technology) from
September 2004 to June 2006. The Enron email dataset
contains logs of emails sent to and from employees of the
Enron Corporation during April 2000 to March 2002. The
Facebook dataset contains logs on messaging among users
of Facebook, which is a popular SNS, during January 2008
to December 2008. The MIT and Facebook datasets also
contain “friendship” information among mobile phone and
Facebook users, respectively.

We obtained communities (i.e., densely connected clus-
ters) of mobile phone, email, and SNS users from these
datasets. Since the MIT dataset and the Facebook dataset



(a) MIT dataset

(b) Enron email dataset

(c) Facebook dataset

Figure 2. Visualization of the (inferred) friendship networks in three datasets (color of a node represents a community to which the node belongs). Since
the friendship network in the Facebook dataset is large, its subnetwork is shown.

Table T
OVERVIEW OF DATASETS

Dataset Number of users ~ Number of communities  Observation duration
MIT 60 10 9 months
Enron 149 9 24 months
Facebook 63,731 771 12 months

contain friendship information among the users, we obtained
communities by applying a popular community detection
algorithm called the fast Newman algorithm [26] to the
friendship networks constructed from the friendship infor-
mation. The friendship network is an unweighted undirected
network where nodes correspond to users. A link between
nodes ¢ and j (corresponding to users ¢ and j) is generated
when users ¢ and j are friends. Although the Enron email
dataset contains neither friendship information nor explicit
community information, we inferred communities in the
Enron Corporation by using an inferred friendship network,
constructed from the history of email communications. The
inferred friendship network is an unweighted undirected
network where nodes correspond to Enron employees. A
link between nodes ¢ and j is generated when the number
of email exchanges between employees ¢ and j exceeds 5.
We then obtained the communities of the Enron employees
from this inferred friendship network by the fast Newman
algorithm [26]. Figure 2 shows visualizations of the friend-
ship networks and communities revealed by the MIT dataset,
the Enron email dataset, and the Facebook dataset. Table I
shows the number of users, which correspond to nodes in
friendship networks, the number of communities obtained

by the fast Newman algorithm, and the observation duration
of communications for each dataset.

We investigated the strength of interaction locality at
two levels: the network level (macroscopic locality) and the
community level (microscopic locality). We calculated the
strength of macroscopic locality as the ratio of the number
of interactions between users in the same community to the
number of all interactions. We calculated the strength of
the microscopic locality of community k as the ratio of the
number of interactions between users in community k to
the number of interactions involving users in community
k. Using these measures, we investigated the strength of
interaction locality in each dataset. Note that we used only
those interactions for which both ends of the interaction are
in the friendship network.

B. Macroscopic Analysis

We first perform macroscopic analysis, in which we
investigate the strength of macroscopic locality by using all
communications data in the three datasets. Figure 3 shows
the ratio of the number of intracommunity interactions to the
number of all interactions (i.e., the strength of macroscopic
locality) in each dataset.
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Figure 3. Ratio of the number of intracommunity interactions to the
number of all interactions

Figure 3 shows that 80-90% of interactions are intracom-
munity in all datasets. As we intuitively expected, strong
interaction locality is observed in mobile phone call, email,
and SNS messaging logs. It should be noted that strong
locality is commonly observed in communication by various
media. This result offers strong evidence to support our
intuition.

C. Stationarity Analysis

Communication patterns among users may change over
time, which raises a question: does the strength of interaction
locality change over time?

To answer the above question, we next investigate the
stationarity of the strength of macroscopic locality. The
time evolutions of the strength of macroscopic locality and
number of interactions by month are shown in Figs. 4 and 5,
respectively.

Although Fig. 5 shows that the frequency of interactions
varies from month to month, Fig. 4 shows that the strength
of macroscopic locality is quite stable in all datasets. Mean
strengths of all monthly macroscopic localities in MIT,
Enron, and Facebook are 0.94, 0.85, and 0.90, respectively.
Standard errors of them are 0.008, 0.02, and 0.005, respec-
tively. This suggests that the strength of interaction locality
does not change frequently, even over time. An explanation
for this is that neither the community structure in social
relationship networks nor the communication patterns of the
users change frequently. Longer periods of observation may
lead to a different conclusion, but changes in the interaction
locality are small for the three datasets here.

D. Microscopic Analysis

We next investigate interaction locality from the micro-
scopic viewpoint rather than from the macroscopic view-
point. We investigate the strength of microscopic locality for

Table II
COMMUNITY SIZE, NUMBER OF INTRACOMMUNITY CALLS (INTRA
CALLS), NUMBER OF INTERCOMMUNITY CALLS (INTER CALLS), AND
STRENGTH OF MICROSCOPIC LOCALITY BY COMMUNITY (MIT

DATASET)

ID  Community size Intra calls Inter calls  Locality
1 13 1,991 55 0.97
2 13 1,418 14 0.99
3 9 2,393 184 0.93
4 9 690 18 0.97
5 4 288 159 0.64
6 3 20 0 1.00
7 3 10 29 0.26
8 2 8 0 1.00
9 2 0 5 0.00

10 2 4 15 0.21

Table IIT
COMMUNITY SIZE, NUMBER OF INTRACOMMUNITY EMAILS (INTRA
EMAIL), NUMBER OF INTERCOMMUNITY EMAILS (INTER EMAIL), AND
STRENGTH OF MICROSCOPIC LOCALITY BY COMMUNITY (ENRON

DATASET)

ID  Community size  Intra email Inter email  Locality
1 56 5,555 947 0.85
2 30 6,172 1,508 0.80
3 28 4,772 752 0.86
4 23 2,743 957 0.74
5 8 184 43 0.81
6 1 0 2 0
7 1 0 4 0
8 1 0 5 0
9 1 0 5 0

each obtained community. Because the number of commu-
nities in the Facebook dataset is large (see Tab. I), we focus
on the MIT dataset and the Enron dataset in this subsection.

Table II shows the community size, the number of in-
tracommunity interactions, the number of intercommunity
interactions, and the strength of microscopic locality for
each community in the MIT dataset. Table III shows the
analogous values from the Enron dataset.

From Table II, strong interaction locality is observed in
most of the communities in the MIT dataset. In some com-
munities (in particular communities 7, 9, and 10), interaction
locality is very weak. This is likely because the sizes of
the communities are too small. Table III shows that strong
interaction locality is observed in the Enron dataset also.

We find from these results that the strength of microscopic
locality is similar between differently sized communities.
Moreover, we note that when we consider the Enron Corpo-
ration as a community, the strength of macroscopic locality
is approximately 0.8. Table III shows that when we partition
the set of Enron employees into several communities, the
strength of interaction locality in those communities is also
approximately 0.8.

This reminds us of a fractal structure. In particular,
this result suggests that the strength of interaction locality
is independent from the scale of the community. Many
social networks have hierarchical community structures [27].
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Similar interactional locality strengths may be observed
at different levels of the hierarchy. We further investigate
this phenomenon in the next section by using a large-scale
dataset with hierarchical communities, the Facebook dataset.

E. Effect of the Scale of Community

To investigate the effects of the scale of community, we
obtained communities of different scales and examined the
strength of microscopic localities in these communities. An
illustrative example of obtaining communities of different
scales is shown in Fig. 6. To obtain communities of differ-
ent scales, we simply used the community detection algo-
rithm [26] recursively. We recursively partition a community
in the Facebook dataset into smaller communities. To do
so, we first obtain communities from the Facebook dataset.
For each community, we apply the community detection
algorithm to the subgraph corresponding to that community
and calculate the strength of interaction locality in the
community. More specifically, for subgraph G; = (V;, E;),
where V; is the set of nodes belonging to community ¢ and
E; is the set of links connecting nodes in V;, we divide
G, into n communities. We then calculate the strength of
microscopic locality in community k£ (1 < k£ < n). Note
that we used only those interactions for which both ends
of the interaction are in V; when calculating the strength of
microscopic locality in community ¢. We recursively repeat

community 1-3

community 1-1 _

-

community 1

Figure 6. An illustrative example of obtaining communities of different
scales. Large community 1 is divided into smaller communities 1-1, 1-2,
and 1-3.

this procedure until the size of the community falls below
100.

Figure 7 shows the relation between the size of a com-
munity and the strength of microscopic locality in that
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community.

These results show that although the sizes of the commu-
nities differ, most of the communities have similar strengths
of interaction locality (around 0.8). The mean of the strength
of microscopic locality is 0.80. Standard error of it is 0.006.
This result supports our hypothesis: interaction locality is
fractal. We can observe similar strengths in interaction
locality at different scales of community. We note that the
strength of interaction locality in smaller communities varies
more widely than in larger communities. The cause of this
may be that community detection is too aggressive and thus
artificially splits communities.

F. Cause of the Fractal Pattern

In this section, we discuss why interaction locality is
fractal. In the Facebook dataset, most of the messages
(97% of messages) are exchanged between friends, and
so the strength of interaction locality is almost completely
determined by the ratio of intracommunity links to all
links. Therefore, a simple and intuitive explanation for the
emergence of a fractal pattern in interaction locality is that
the community structure itself is fractal (i.e., the ratio of
intracommunity links to all links is insensitive to the scale
of the communities). Ferrara [28] shows that communities in
the Facebook are similar to each other. We therefore expect
that community structure in Facebook is fractal.

We investigate the ratio of intracommunity links to all
links in each community. Figure 8 shows the relation be-
tween the size of a community and the ratio of intracom-
munity links to all links in the community.

This result shows that although the sizes of the communi-
ties are different, the average of the ratio of intracommunity
links to all links in the community is around 0.8. The mean
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Figure 8. Relation between the size of a community and the ratio of

intracommunity links to all links in the community

of the ratio of intracommunity links to all links in the
community is 0.79. Standard error of it is 0.005.

This result supports our hypothesis that community struc-
ture is fractal (i.e., the ratio of intracommunity links to all
links is invariant with respect to the scale of the community).
Therefore, we suggest that this is the main cause of the
emergence of a fractal pattern in interaction locality.

G. Practical Implications

The fact that strong interaction locality exists may be use-
ful in designing new services, such as anomalous communi-
cation detection [29], traffic engineering [30], and virtual
network embedding [31]. Our results show the existence
of strong interaction locality, which implies that a large
amount of communication between members of different
communities is anomalous. Our results also show that the
strength of interaction locality does not change frequently,
which implies that rapid changes in the strength of inter-
action locality can identify anomalous events. Using these
characteristics, a novel scheme for anomaly detection can be
designed. Moreover, our results imply that coarse-grained
traffic demands of individuals can be inferred from their
communities. Such traffic pattern is expected to be useful
for traffic engineering and virtual network embedding.

The fractal pattern in interaction locality is also useful:
if we can know the strength of interaction locality in some
small communities, then we can also know the strength of
interaction locality in larger communities. It is not feasible
to observe a society-wide social relationship network and
investigate the strength of interaction locality in each com-
munity, but our results suggest that observing a fraction of
a large-scale social network is enough to know the strength
of interaction locality in the network.



IV. CONCLUSION AND FUTURE WORK

This paper has empirically validated the hypothesis that
people in the same community in a social relationship
network communicate with each other more frequently
than with people in different communities. This provides
empirical evidence to support the intuition that interaction
locality exists in large-scale social networks. Our results
support our hypothesis, and we have shown that 80-90%
of interactions occur within communities in mobile phone,
email, and SNS messaging communications. Moreover, our
results suggest that the strength of interaction locality is
fractal (i.e., the strength is invariant with regard to the scale
of the community). We also showed that the community
structure itself is fractal and that this should be the main
cause of the emergence of a fractal pattern in interaction
locality.

In the future, we plan to design novel services on the
basis of the fact that strong interaction locality exists. For
instance, anomalous interaction detection, traffic engineer-
ing, and virtual network embedding should be promising
applications.
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