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Abstract

In this paper, we analyze properties of multinomial lattices that model general stochastic
dynamics of the underlying stock by taking into account any given cumulants (or moments).
First, we provide a parameterization of multinomial lattices, and demonstrate that mean,
variance, skewness, and kurtosis of the underlying may be matched using five branches.
Then, we investigate the convergence of the multinomial lattice when the basic time period
approaches zero, and prove that the limiting process of the multinomial lattice that matches
annualized mean, variance, skewness and kurtosis is given by a compound Poisson process.
Finally, we illustrate the effect of higher order moments in the underlying asset process
on the price of derivative securities through numerical experiments using the multinomial
lattice, and provide a comparison with jump-diffusion models.

Keywords: Multinomial lattice, Cumulants, Excess kurtosis and skewness, Compound Pois-
son process, Volatility smile

1 Introduction

It is widely recognized today that there is a non-negligible discrepancy between the Black-Scholes
model and real market behavior, which appears as the “smile effect” or “implied volatility smile” in
option markets. With empirical evidence that implied volatility increases for in-the-money or out-
of-the-money options, both theoretical and empirical research on models that exhibit a smile effect
and/or heavy tail phenomena has been especially active since the late 80’s [9, 10, 12, 11, 20, 29],
and option valuation techniques have been extended to more realistic assumptions in a number of
ways for the underlying stock processes (e.g., [1, 2, 4, 7, 16, 17, 21, 24, 25, 22]), distributions (e.g.,
[6, 20, 26, 27, 31, 30]), and markets (e.g., [15, 32, 33]).

In this body of literature, there is a group of research related to discrete models and their gen-
eralization. This type of research may be categorized into two approaches: The first approach is to
formulate a general continuous time model and discretize it to solve pricing problems [1, 5, 7, 21]. The
second approach is to generalize the standard discrete model (such as the standard binomial tree or
trinomial tree models [8, 18]), directly, to incorporate real market behavior characterized as smiles or
heavy tails [10, 29, 30]. Although continuous models may sometimes provide a closed form solution



which can be solved analytically, the advantage in considering discrete models is that we can solve a
wider class of problems (such as American options or some Exotics) for option pricing and hedging
efficiently by using numerical techniques.

The objective of this paper is to provide another discrete model based on multinomial lattices
with cumulants, and analyze its properties. To achieve this objective, we first model general stochas-
tic dynamics of the underlying stock using multinomial lattices which take into account any given
cumulants (or moments). We demonstrate that the mean, variance, skewness, and kurtosis of the
underlying may be matched using five branches, and prove the positivity condition to be satisfied for
probabilities to construct the multinomial lattice. The convergence of the multinomial lattice is then
investigated when the basic time period approaches zero, and it is shown that the limiting distribution
of the multinomial lattice that matches annualized mean, variance, skewness and kurtosis is given by
that of a compound Poisson process. We will illustrate the effect of higher order cumulants in the
underlying asset process on the price of derivative securities through numerical experiments using the
multinomial lattice, and make a comparison with jump-diffusion models. The relation between the
multinomial lattice parameterization and the finite difference method for partial differential equations
is also discussed.

Note that the ideas of a multinomial lattice and moment matching originate from the pioneering
work of [7] using the binomial lattice model, and a number of extensions have been proposed since
then for modeling stock (or option) dynamics [1, 5, 8, 21, 29, 30] or interest rate dynamics [19, 23].
Therefore, providing a multinomial lattice parameterization that matches moments itself might not
be innovative. However it should be mentioned that the multinomial lattice parameterization of this
paper has some advantage over previous work in the sense that the parameterization proposed here is
simple and tractable, and is easy to implement. Moreover, the theoretical analysis in the paper allows
us to guarantee convergence and the positivity condition, which might be useful for practitioners as
well.

This paper is organized as follows: In Section 2, we provide a parameterization of multinomial
lattices and show the positivity condition for the probabilities. Then we apply mean square hedging
to evaluate the price of options in Section 3, and analyze the limiting property of the multinomial
lattice in Section 4. The comparison between the multinomial lattice and the jump-diffusion model is
made in Section 5. Section 6 offers some concluding remarks.

2 Multinomial lattice model

2.1 Stock dynamics

In this paper, we will model the underlying stock dynamics in the time interval ¢t € [0, ty], where
traders are allowed to purchase and sell the stock at the equally spaced discrete times ¢,, n =
0, 1,...,N with {5 = 0. We will denote the price of the stock at discrete times ¢t = ¢, by S,, n =
0,1,...,N.

Assume that the stock price evolves randomly on an L state lattice model (i.e., given the price of
the stock at time t,, n =0,..., N —1, there are L possible future prices that it can take at time ¢, 11).
Suppose that u and d satisfy u > d > 0, then a multinomial lattice can be constructed by taking the
L possible future states for S,,; from 5, as

Spp1 =ultd S, 1=1,...L (2.1)



with probabilities p;, | = 1,... L, satisfying p; + --- + pr, = 1. In this case, the stock may achieve
n(L — 1) 4+ 1 possible prices at time ¢t = t,, n =0,..., N given by
SW) — B Hl=kgh=lg "} — 1 . n(L—1)+1. (2.2)

n

Note that u and d may be thought of up and down factors at each step. Also, it can be shown
that the multinomial lattice still recombines even if u and d are time-dependent when u,/d, = c is
satisfied for some constant ¢ > 1, where u, and d,, n = 0,1,...,N — 1, are up and down factors
at each time step. An example of a multinomial lattice is depicted in Fig. 2.1 with a recombining
condition u, /d, = c.

L possible states Multinomial lattice

Fig. 2.1: Multinomial lattice model

2.2 Parameterization of multinomaial lattices

In the multinomial lattice model, we need to determine the up and down rates u and d, and the
probabilities p1,...,pr to fit actual market data as closely as possible. This may be done by taking
the cumulant (or moment) information of the underlying stock into account, and we have provided a
parameterization of multinomial lattice random walks to match given cumulant information [34, 35].
Here we will briefly summarize those results, and then provide further discussion.

Let us introduce the log stock price at time ¢,, as

X,:=InS,, n=0,1,...,N. (2.3)
Then (2.1) may be rewritten as
Xps1— Xp=(L—0)Inu+(—1)nd, [=1,...L. (2.4)

Assume that the the log stock return is ¢.i.d., i.e., the moments of X, 11 — X, are the same for all
n=0,...,N —1, and that its k-th order cumulant is given as ¢, k > 1. Let the up and down rates,

v v
u.-exp(L_l-i—a), d.-exp(L_l—a>, (2.5)

where L is the number of branches, and v and a > 0 are real numbers. In this case, the first order

u and d, be given as




cumulant (i.e., mean) of X,,11 — X, may be computed as

Zpl{ ~DInu+ (I —1)Ind}

= v (2.6)

The above condition ensures that the first order cumulant of X,, — X,,_; is matched using v, i.e., v
denotes the mean of X,, — X,,_1.
Similar to (2.6), one can compute the k-th order central moment! as

Zpl{ —DInu+ (I —1)Ind—v}F

Zpl{ ) (ﬁ—l-oz)—i-(l—l)(%—a)—u}k
ZL: (L -2+ 1)Fa (2.7)
=1

Let uy (k > 2) be the k-th order central moment of X,, — X,,_1, where the k-th order central moment
may be computed by using the following relation:

k
pe =y ( I;:i ) Cjllk—j- (2.8)

J=1

Then a moment matching condition would require that

L
> (L =20+ 1)Fak = gy (2.9)
=1

More generally, we have (2.9) for all & > 0 by setting pop = 1 and g1 = 0 because the sum of
p, I =1,...,L,is 1 and the first order central moment may be considered as 0.

Now, we would like to compute pq,...,pr and « that satisfy (2.9). Assume that the first m
cumulants are given. In this case, the first m central moments are computed using (2.8), and there

are m + 1 constraints for L plus 1 unknown parameters, p1,...,pr, and a. If « > 0 is fixed a priori,
P1, - -.,pr can be computed by solving m+ 1 linear equations. In this case, we need at least L = m+1
branches to guarantee the existence of a feasible solution. After computing p1,...,pr, @ > 0 may

be adjusted such that all the probabilities are positive. In particular, the first four cumulants are
often used to characterize a given random variable or distribution because they provide important
information such as the mean (= ¢;), variance (= c2), skewness, and excess kurtosis of the random
variable, where skewness and excess kurtosis are given as

C3 Cq
3/2 9’ _2 9’
02/ Ca

!Given the first k cumulants, we can always compute the k-th order central moment. On the other hand, the k-th
order cumulant may be computed using the first k central moments.



respectively. Here we provide a parameterization of the multinomial lattice to match the first four
moments using five branches.

Let mean, variance, skewness, and excess kurtosis of X, 1 — X, be given as
2
v, o, 8, K. (2.10)

Note that skewness s and excess kurtosis « are zero for Gaussian random variables and that excess
kurtosis is usually positive for most stock markets. In this paper, we will assume that x > 0.

The probabilities p;, I = 1,...,5, can be calculated through the solution of five linear equations,
and are given by

2
p = 382044 (—4a? + 4soa + (3 + k) 0?)
o’ 2 2
P2 = geg (16a* — 2500 — (3 + k) 0%)
1
p3 zaﬁﬂmﬁ—mﬁﬁ+@+@&) (2.11)
o’ 2 2
Pr = e (16a” + 2s0a — (3 + k) 0%)
52
Ps = 31 (—4a? — dsoa + (3 + k) 0?)

In this formulation, we can confirm the following properties:
e The probabilities are unsymmetric if skewness is not zero (s # 0), i.e.,

— positive (negative) skewness causes p; and p4 to increase (decrease), and

— the corresponding probabilities p; and po to decrease (increase) by an equal amount.

e The probability distribution of X,, — X,,_1 becomes leptokurtic (or heavy tailed) under positive
excess kurtosis, i.e.,

— p1, ps and ps increase with larger kurtosis, and

— po and py4 decrease if kurtosis increases.

Moreover, one can show that there exists « such that all the probabilities, p;, [ = 1,...,5, are positive
if and only if
K> 352 — 3. (2.12)

In the next subsection, we will discuss more detail about the above positivity condition. The conver-
gence of the multinomial lattice when N — oo, or 7 — 0, will be examined in Section 4, where 7 is a

basic time period defined as

tn
= . 2.13
r= (213)

Remark 1 Although the multinomial lattice parameterization provided in this paper is as tractable as
the standard binomial and trinomial lattices and may be extended to the multidimensional case, the
computational effort might increase exponentially with respect to the dimension, similar to the other
lattice models; This might be a limitation for these lattice models. However the multinomial lattices
can be considered useful for relatively low-dimensional problems and be used to solve American option
problems.



2.3 The positivity condition

Consider the probabilities p1,...,ps in (2.11). Assume that pq,...,ps are strictly positive. By solving

the simultaneous inequalities p1 > 0,...,p5 > 0 with respect to «, we obtain the following:
116 <|s|+ s2+16(ﬁ+3)> <a< % (—|s|+\/82+/<a+3) . (2.14)
Since

%\/3 Yk < 116 (|3| + /52 16(k + 3))

and

2 (-lsl+ v+ (5 +3) < SVBE R

hold for all s € R, we see that a necessary condition of (2.14) is given as

%\/3+—n’ <a< %\/?)—i-—li (2.15)
Let us replace a by -
a=o\[*55 4<B<I6 (2.16)
Then pi, ..., ps in (2.11) may be rewritten as
o= m((ﬁ—@(sw@w@ (3+n)6)
P = WM((IG—B)(?A—/@)—% B+ rB)
p3 = m(64(3+n)—205+,@2) (2.17)
i = WM(@G—@@%)HS B+ rB)
ps = m((ﬁ—éﬁ(?ﬁ-n)—% B+r)5)

We first note that p3 > 0, Y3 € (4, 16). From (2.17), we see that p; > 0 and p5 > 0 hold if and only if

1657
K> ;62 - 3. (2.18)
(B —4)
Similarly, p2 > 0 and p4 > 0 hold if and only if
4 2
> A6 (2.19)
(16 — )
Therefore p; > 0, p2 > 0, ps > 0 and pg > 0 hold if and only if
165> 4s?
k> max | 050 APy (2.20)
(8—4)" (16 - p)
for any given § € (4, 16).
2
Now, we will further examine the right hand side of the inequality in (2.20). Because (lﬁﬁj 4)%
monotonically decreases with 5 € (4, 16) and ( éng monotonically increases with 8 € (4, 16), the

6



right hand side of (2.20) takes its minimum if there exists an intersection between the two in the
interval of 3 € (4, 16). In fact,

1652 42
676 _ 4P (2.21)
(6-4)° (16 -75)
has the solution of 5 = 12 which satisfies § € (4, 16). Then we have
1652 42
/-i>max[ 5 352]—32332—3. (2.22)
(8—4)" (16 —p)
where the equality holds when g = 12, or
o on]3 ;; i (2.23)

Finally, we obtain the following proposition:

Proposition 1 There exists a such that all the probabilities p;, | = 1,...,5, are positive if and only

if
K> 352 — 3. (2.24)

and such a choice of a may be given as in (2.23).

Assume that « is given by (2.23). In this case, condition (2.11) simplifies to

[pla b2, P3, P4, p5] =
3+Kk+s5vVI+3k 3+kKk—5vVI+3k 34+2k 3+K+5VI+3k 3+Kk—5vVI+ 3k
13+k)? 23+k)? 7 23+k) 23+kr)? 1 4(3+k)?

. (2.25)

We can readily confirm that the probabilities are positive if (2.24) is satisfied.

3 Mean square optimal hedging using multinomial lattices

Before providing further discussion about the multinomial lattice, we will demonstrate a pricing al-
gorithm using mean square optimal hedging (MSOH) on the multinomial lattice, which allows us to
find an initial value of derivative securities including European and American options in a discrete
market. Note that, in contrast to a binomial lattice case, the standard risk neutral pricing method
may not be applied directly, since perfect replication is not possible on a multinomial lattice due to the
incompleteness of the discrete market (except the binomial model) and as a result a unique risk neutral
probability may not be obtained. MSOH provides an optimal solution in the mean square sense for
such discrete models, and can be solved efficiently using dynamic programming[11, 13, 14, 15, 32, 33].

3.1 Mean square optimal price

Let S, be the price of the underlying stock at t = ¢,, whose dynamics is expressed using a multinomial
lattice. We will consider a self-financing portfolio which consists of the stock and a risk free bank
account with fixed interest rate » > 0. The portfolio value 2, (n = 0...N) satisfies the following
difference equation:

Qn—l—l = AnSn—l—l +R (Qn - AnSn)
= RO+ Ay (Sps1 — RS,), n=0...N, (3.1)



where A,, is the number of shares of the stock held from n to n+ 1, and R:=1+r.

The objective of mean square optimal hedging (MSOH) is to optimally replicate or hedge the
payoff of a European derivative security Vi of maturity NV through a self-financing trading strategy
with an adequate initial portfolio value €y. This involves solving the following optimization problem:

. : B 2
MSOH: ~ min E[(VN QN)} (3.2)

subject to the dynamics of the underlying stock and the portfolio.

This problem has been studied extensively [11, 13, 14, 15, 32, 33] and can be solved using dynamic
programming. Although we only formulate the MSOH problem for a European call option, note that
the same approach can be extended to other types of options, including exotics (such as barriers and
compounds), and options with time optionality (such as Americans and Bermudans). The dynamic
programming algorithm for MSOH only requires a change in the “boundary condition” corresponding
to the appropriate option type, and proper discounting to account for the time value of different wealth
balance cash flows.

Once the MSOH problem has been solved, the optimal initial portfolio value may be associated
with the value of the option and provides the mean square optimal price, i.e.,

Vo = Qo.

Under this price, E (Vy — Qn) = 0 is satisfied [13], and the objective function in MSOH gives the
minimum variance of the hedging error. Therefore, in this situation, the MSOH problem can be
thought of as minimizing the risk in the hedge as measured by the variance subject to a zero mean
constraint. Note that, although it has been shown that the above “price” may sometimes lead to
arbitrage opportunities (see the example by Schweizer [33]), we shall still refer to it as a price with
the possibility of abuse, in keeping with mean-variance theory.

3.2 Illustrative example

We use the NASDAQ 100 stock index data downloaded from the Chicago Mercantile Exchange. Fig.
3.1 shows the cumulative distribution of daily log-returns of the stock index from January 1998 to
December 2000.

The sample mean, standard deviation, skewness and kurtosis are computed as follows:

Mean | Standard Deviation | Skewness | Kurtosis

0.0007 0.0089 -0.3923 3.8207

With these statistics, we solved the mean square optimal hedging problem to compute the price of
a European call option. We first note that the standard model (i.e., the Black-Scholes model) uses
the information up to the second cumulant (i.e., standard deviation) only. We compare the MSOH
solution with higher order cumulants with the standard Black-Scholes solution. To understand the
difference between the two, we computed the implied volatility for European call options with different
maturities and strike prices. Figs. 3.2-3.5 are our numerical results, where the implied volatilities
are plotted versus the strike prices (denoted by K) normalized by the initial price of the stock index,
i.e., K/Sp, where the dashed is the annualized standard deviation. Each figure has a different time
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Fig. 3.1: Cumulative distribution of daily log-return

to expiration: Fig. 3.2 has an expiration of 10 days, Fig. 3.3, 20 days, Fig. 3.4, 40 days, and Fig.
3.5, 80 days. Note that the dashed line in each figure is a constant volatility corresponding to the
Black-Scholes solution.
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Fig. 3.2: 10 days expiration Fig. 3.3: 20 days expiration

First, we note that the smile effect is most clearly observed when the maturity is shortest. The
smile effect slowly disappears as we have longer maturities, but a smirk effect remains. This can be
explained using the term structure of skewness vs. smirk and the term structure of kurtosis vs. smile
as follows.

Let ¢ be the k-th order cumulant of daily log-returns of the stock index, and let s and x be the
corresponding skewness and kurtosis, respectively. Note that the first and second order cumulants

are the mean and variance, respectively. Moreover, skewness and kurtosis are functions of cumulants,
which are given as follows:

C3 C3
S = =75 KR = —F (33)
03/2 c
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Fig. 3.4: 40 days expiration Fig. 3.5: 80 days expiration

Now, assume that the log-returns of the stock index at each day are independent. Since the cumulants
have the additive property when independent random variables are summed, the k-th order cumulant
of the IV day log stock return is given by

Neg, k=1,2,.... (3.4)

If we substitute equation (3.4) to (3.3), we obtain

[ R Nc3 S

N day skewness” = (Neg)? = N2’ (3.5)
N

“N day kurtosis” = ( NCC;’)Z = % (3.6)

Equations (3.5) and (3.6) provide the term structure of skewness and kurtosis for N days with respect
to daily skewness and kurtosis.

In the Black-Scholes setting where the distribution of log-stock return is given by a Gaussian
distribution, skewness and kurtosis are both zero and the implied volatility is constant. On the other
hand, non-zero skewness and kurtosis may increase the smirk and the smile effects as observed from
our numerical experiments. Note that this result is consistent with the one described in [9] using the
risk neutral probability measure, whereas our numerical experiments indicate that a similar effect is
observed in the MSOH problem setting.

4 Properties of multinomial lattices

Here we provide further discussion about the multinomial lattice with five branches given in Section
2. Note that the relation between the multinomial lattice parameterization and the finite difference
method for partial differential equations is compared in Appendix A. In this section, we explore the
limiting property of the lattice model. To this end, we show the following proposition:

Proposition 2 The following two conditions hold:

1. If skewness and kurtosis at each time period T are fized, then the distribution of the multinomial
lattice converges to a Gaussian.

10



2. If annualized skewness and kurtosis are fized, then the distribution of the multinomial lattice

converges to the one given by a compound Poisson process with the same skewness and kurtosis.

Remark 2 Note that the convergence in Proposition 2 is in distribution of a random wvariable defined
by the multinomial lattice when T — 0, i.e., the distribution of the multinomial lattice converges to the
one given by a Gaussian process or a compound Poisson process for any fized time ty.

Let Xy = 0 without loss of generality. Similar to (3.4), the k-th order cumulant of

N-1
XN = Z Xn—l—l - Xn

n=0

is given by Nc¢g, where ¢ is the k-th order cumulant of X, 11 — X,,. Because the first and the second
order cumulants are mean and variance, mean and variance of Xy are, respectively, given as

Nc¢; and Nes. (4.1)

To make mean and variance of Xy finite when N — oo, assume that annualized mean and variance
(i.e., mean and variance of X when ¢y = 1) are given as # < oo and 62 < co. In this case, mean
and variance of X, 11 — X, at a basic time period may be given as

c, =0T, ¢ =607, (4.2)

respectively. We consider the following two cases:

4.1 Case 1: Fixed skewness and kurtosis of a basic time period

For any given T' > 0, let {5y = T. We will show that the distribution of X converges to a Gaussian

distribution given as

N (9T, 6°T) (4.3)

when N — oo, where 7 and 62 are annualized mean and variance. Note that this is a consequence of
the central limit theorem for 7.7.d. random variables.

Let a be given as in (2.16) for some [ such that p;, ¢ = 1,...,5, are positive, and assume that
skewness and kurotsis, s and k, at a basic time period are fixed. Since o = +/7, « is written as

a = an/T, (4.4)

where
.. 3tk
oa=a0 ﬁ
Define Y, by
Y, :=VN(X,-X, 1-071), n=1,...,N. (4.5)

We can readily verify that Y,, takes one of the following states

(5-204+1)aVT, 1=1,...,5 (4.6)

11



with probabilities p;, [ = 1,...,5, respectively. Noting that p;, [ = 1,...,5, and & are fixed if s, &,
and [ are given, Y, is a sequence of i.i.d. random variables. Therefore, one can apply the central
limit theorem for 4.i.d. random variables to show the following:

N
: 1 2
Jim i n§1j Yo, ~ N (0, 6°T). (4.7)

Condition (4.7) is equivalent to
N
lim (X — Xpo1) ~ N (9T, 6°T) . (4.8)

N—o0
n=1

Hence, we see that the distribution of X converges to (4.3).

4.2 Case 2: Fixed annualized skewness and kurtosis

Here we consider the case where « is chosen as in (2.23), or § = 12 in (2.16). Note that a similar
result may be obtained by choosing a different 5 as long as the probabilities pq,...,ps are positive.
We will show that the following lemma holds:

Lemma 1 The distribution of the multinomial lattice converges to the distribution of the following

compound Poisson process when annualized skewness and kurtosis, § and &, are fized:
dX(t) = vdt + WdY (¢t) (4.9)
where Y (t) is a Poisson process with intensity

3
A= —. 4.10
2k ( )

and W is a jump size which takes one of the following values

(6—2z')&,/%, i=1,2 4,5 (4.11)
with probabilities

1 3 1 3 1 3 1 3
14352 — 152 o 145/2 — 132 412
n 6(+8\/;>’QQ 3( S\/;>’q4 3(+3 /%)’% 6( iy n> (4.12)

at each time t € [0, ty].

We will show that the moment generating function of Xy converges to the one for the compound
Poisson process in Lemma 1, which is given as

'l[)(?)) — el?T’H»)xTE(e”Wfl) (413)

for any given T' = tx. Let us replace s and x in (2.25) with the ones using the annualized skewness §

and kurtosis &, i.e.,
3

(4.14)

S



Then we have

[pla b2, P3, P4, p5]
B+E4 S /0+8 3B Jor B 5 0k

4(3+5)° 23+ 5 T 2B+5)
k4 8 3k Ak _ 8 3k
B+Ep 943 345 £ foq ¥
2(3+ ) 4(3+ )
B [37’+/%+§\/97'+3/% 37’+;%—§\/97'+3/%7_ B 37
4 (37 + &)* ’ 2 (37 + &)* ’ 2(31 + &)’
37’+/%—|—§\/97'+3/%T 37’+/%—§\/97'+3/%T] (4.15)
2(37 + &)? ’ 4(37 + i) '
and
3r+ R
=5 4.1
a=§d 15 (4.16)
Let \; be defined as 3
Apim o 4.17
2 (37 + k) (4.17)
and rewrite the last equation in (4.15) as
[Pb D2, P3, P4, p5] = P‘TTQT,la ATTqT,Za 1- >\T7—7 ATTqTAa ATTqT,E)]' (4-18)

where

[qT,I? qr,2, 4r4, QT,5]
1 3 1 3 1 3 | [ 3
- [E(HS 37'—1—;%)’§<1_8\/37+k>’§<1+8\/37+k>’g<1_8 37'—1—;%)]'(4'19)

Note that g1, ¢r2, ¢r4, ¢r5 in (4.19) may be considered as probabilities since

qr,1 + qr,2 + qr,4 + qr5 = la qr,1597,2,971,4, 91,5 > 0.
Let Wy (7) be a random variable which takes one of the following states
(6 —2i)a, i=1, 2, 4, 5. (4.20)

with probabilities ¢,;, i =1, 2, 4, 5, at time t,, n =1,...,N. Also let Y,,(7) be a random variable
which takes, at time ¢,, n =1,..., N, either 0 with probability 1 — A7 or 1 with probability A7, and
is independent of W, (7). Then X,, — X,,_1 may be written using the product of two random variables
as follows:

Xy — X1 = 07 + Wi (7)Y (7). (4.21)

Consider the log of the moment generating function of Xy, i.e.,

N N
Ingy(0) =In[E (")), Xy =Y (Xn—Xn1) =0T+ Y Wa(7)Ya(7). (4.22)

n=1 n=1
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Since X,,— X1, n=1,...,N, are i.i.d., and W, (7) and Y,,(7) are independent, we have the following:

ln 'l[)N (’U) — lnE |:€’9TU+Z£[:1 'UWn(T)Yn (T):|

N
- 7 Wy (T)Yn(T)
l/Tv—l—nz:lln [E (e )]

= vTv+ Nln [E (e”Wl(T)Y1 (ﬂ)]

— 9Tv+Nh [/\TTE (e”W1<T>) 11— ATT} (4.23)
Let & be defined as
¢ =E (e”W1<T>) : (4.24)
Note that
}i_f)r(l) &= }I_I)I(l) i§475 qT,ie”(B*Zi)a =K (e”W) ) (4.25)

The last condition in (4.23) may be rewritten as
1
DTv + Nln |:)\7—7'E (e”Wl(T)) +1- ATT} = 0Tw + ~Tln[A7& + 1 — A7) (4.26)
T

Now we take the limit as N — oo, or 7 — 0, as

In[A7& +1— A7) T

lim In¢y(v) = 2Tv+ lim
N—oo 70 T
In[A 1— 7))
= T+ lim BRATEFLZAT)
70 7!

. . (TE FL =T
SR N WS
= pTv+ liH[l] (ATfT + A TE AT =N — )\’TT) .T
T—r

= Tv+ ATE (e"V — 1)
= Iny(v). (4.27)

Consequently, we conclude that
Jim g (0) = (o) (4.28)

5 Comparison with jump-diffusion model

We have shown in the previous section that the distribution of the multinomial lattice converges
to either a Gaussian or a compound Poisson when the basic time period approaches zero. On the
other hand, the so-called jump-diffusion process consists of a Gaussian part and a compound Poisson
part, and one may be interested in the difference and/or similarity between the multinomial lattice
and jump-diffusion models. For this reason, we are going to compare with a jump-diffusion model,
although there are a variety of Levy processes that possess non-zero skewness and excess kurtosis.
For simplicity, we consider the case where the stock process is already risk neutralized for both the
jump-diffusion and multinomial lattice model, and assume that they have the same mean, variance,
skewness, and kurtosis under the risk neutral probability measure.
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Here we apply the risk neutral pricing formula for jump-diffusion models in [24], where the log of
the underlying asset price, X () =1n S(¢), t € [0, tn], is given by the following stochastic differential
equation under the risk neutral measure:

dX(t) = (r - %2 - AVJ> dt + opdB(t) + JAY (1) (5.1)

where Y'(¢) is a Poisson process with intensity A and B(t) is the standard Brownian motion. J is the
jump size which we assume follows another Gaussian distribution

J~N (v, 03). (5.2)

at each time ¢ € [0, tn].
We use the following parameter set:

Sp =100, r=0.06, o =02, v;=-0.05 o;=.1, \=0.05.

We compute the implied volatility for European call options with different maturities (10 days, 20 days
and 40 days) and strike prices. Fig. 5.1-5.3 show our numerical results, where the implied volatilities
are plotted versus the strike prices normalized by the initial price of the stock (i.e., K/Sp). The dashed
line in each figure is a constant volatility corresponding to the annualized standard deviation. From
this numerical experiment, one can observe the term structure of implied volatility and note that the
shorter maturity provides the clearer smile effect.

KIS o KIS o KIS o

Fig. 5.1: 10 days expiration Fig. 5.2: 20 days expiration Fig. 5.3: 40 days expiration

Next, we compute the risk neutral prices, where the following standard risk neutral pricing formula
can be applied if the underlying stock process is modeled on a multinomial lattice under the risk neutral
probability measure. By using an appropriate discount factor, the initial price of a European derivative

security is obtained as
Vo=(1+7r) VE(Vy) (5.3)

where E is the expectation under the risk neutral probability measure and r is a fixed risk free rate.
Equation (5.3) can be solved using the standard backward calculation to find Vj.

We constructed a multinomial lattice using the same skewness and kurtosis as the above jump-
diffusion example, where four cumulants were matched using five branches. The skewness and kurtosis
were computed as

s =—0.16, k=3.5
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0225

0225 0225

Implied volatiity
Implied volatiity

Fig. 5.4: 10 days expiration Fig. 5.5: 20 days expiration Fig. 5.6: 40 days expiration

to match the ones given by the jump-diffusion model. Similar to the previous example, we computed
implied volatility surfaces, and obtained Fig. 5.4-5.6. Note that even with the same skewness and
kurtosis under the risk neutral probability measure, the multinomial lattice model exhibits clearer
implied volatility surfaces. It might be fair to say that this result is more consistent with real market
behavior since the volatility smile effect in the real market tends to be more pronounced than the one
obtained from the jump-diffusion model, and additionally the multinomial lattice model addresses the
specific influence of skewness and kurtosis more directly.

Finally, we computed implied volatility surfaces when we match up to the 5th and 6th cumulants
using a multinomial lattice, in addition to mean, variance, skewness, and kurtosis in the jump-diffusion
model, and obtained Fig. 5.7. In this case, we see that the implied volatility surfaces are closer to the

ones obtained from the jump-diffusion model.

Fig. 5.7: Multinomial lattice with the first 6 cumulants

Implied volatiity
Implied volatiity
plied volatiity

10 days expiration 20 days expiration 40 days expiration

6 Conclusion

In this paper, we showed some properties of multinomial lattices that model the underlying stock
dynamics by taking into account any given cumulants. First, we provided a parameterization of
multinomial lattices, and demonstrated that mean, variance, skewness, and kurtosis of the underlying
may be matched using five branches. Then, we investigated the convergence of the multinomial
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lattice when the basic time period approaches zero, and proved that the limiting distribution of the

multinomial lattice that matches annualized mean, variance, skewness and kurtosis is given by that

of a compound Poisson process. Finally, we illustrated the effect of higher order cumulants in the

underlying asset process on the price of derivative securities through numerical experiments using the

multinomial lattice, and provided a comparison with jump-diffusion models.
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Appendix

A Cumulant based finite difference approximations

The objective of this subsection is to compare the multinomial lattice parameterization with the finite
difference method for a certain partial differential equation (PDE). We first note that the explicit
finite difference method of the standard Black-Scholes PDE is known to be equivalent to the trinomial
lattice [18]. Therefore, one may wonder what is equivalent to the multinomial lattice provided in
Section 2. In order to consider this question, we will introduce a general Black-Scholes type PDE with

cumulants as follows.

A.1 Black-Scholes type PDE with cumulants

Let X (t), t € [0, T], be a (continuous time) Levy process on a probability space (€2, F, P). For
simplicity, we assume that X (¢) is a stationary process with finite moments, and also let ¢ (k =
1,2,...) be the k-th order annualized cumulant of X (¢), i.e., the cumulant of X (1). From the additive
property of cumulants, the k-th order cumulant of X (¢) is given by ¢;t and the characteristic function

of X(t) by
s cit
E [e X(t)] = exp ( k’; k> . (A.1)
k=

Moreover, the conditional characteristic function of X (7T), T' > t given xz(t) = x, denoted by ¢(z, t),

is written as

¢z, t) = E [eS(X(T)fx(t))‘ X(t) = x}
= e*exp (Z wtsk) . (A.2)
k=1

It is readily confirmed that cb(m t) is the solution to the following Kolmogorov Backward equation:

819
Z,";’:a Loz, ), dlz, T) = e (A.3)
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Let g(-) be a payoff function which is Borel measurable on (2, F, P), and define

u(z, t) = E (g (X(T))| X(t) = ). (A4)

Then a standard argument shows that u(x, t) satisfies the following:
cp OF
Z % (e, 0, ule, T) =g (@), (A.5)

Denote the discounted process of u(z, t) by v(z, t), where

v(z, t) =" T Dy, t). (A.6)
By applying the Feynman-Kac theorem to the discounted process v(x, t), the PDE in (A.5) is modified
as follows:
ro(z, t) = 2v(ac t) + ic—ka—kv(w t), v(z, T)=g(x) (A.7)
) - 8t ) k: k! amk ) ) 9’ - g . .

The above equation addresses the standard Black-Scholes equation in log-coordinate as a special
case. To see this, assume that X (¢) is the log return of the underlying stock price S(t), i.e., X(t) =
S(t)

In 500) which satisfies
2
AX(t) = (7“ - %) dt + odB(t) (A.8)

where B(t) is a Brownian motion under the risk neutral probability measure. Then, we have the
Black-Scholes equation for a European contingent claim in log-coordinate as follows:

2 92

ro(z, t) = %U (x, t)+ (7‘ — %) %v (x, t)+ %%U (z, t), v(x, T)=g(z). (A.9)
Note that condition (A.8) implies that X (7°) is normal with mean (r - —) T and variance 02T, and
thus, the annualized cumulants are given by

0.2

Q=r-—, =0, c. =0, k=3,4,.... (A.10)
Therefore, we see that the Black-Scholes equation can be written as (A.7) with the cumulants in
(A.10).
In Merton’s jump-diffusion case under the risk neutral probability measure, the return process may
be represented as

dX(t) =vdt + odB(t) + JAN(t) (A.11)
where N (t) is a Poisson process with intensity parameter A and

0_2

V::r—E—A]E(J). (A.12)

In this case, the value process of a European contingent claim, v(z, t), satisfies the following PDE:

0 0 o? §?
rv(z, t) = pre (z, t)+ vav (z, t) + 5 92" (z, t) + AE (v(z + J, t) —v(z, 1)),
v(z, T) = g¢g(z). (A.13)
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Since

v(z + J, t) ZJk—v z, t) (A.14)

holds, the PDE in (A.13) can be rewritten as

d d o? 2 2. E (J*) o*
ro(z, t) = prid (x, t) + Vsl (x, t) + 7@1) (z, t) + A; 1 ﬁv (z, t), v(z, T)=g(z).
(A.15)
Noting that the k-th order cumulant of X (1) is given as
o2
c=r—" a=0"+XE(S), o :/\E(J’“), k=3,4,... (A.16)

we see that condition (A.15) is consistent with (A.7) for the jump-diffusion case.

A.2 Finite difference approximations

We apply a finite difference method to discretize the PDE in (A.7), allowing us to discuss the relation
between the finite difference method and multinomial lattices. We show that the multinomial lattice
that matches skewness and kurtosis corresponds to the finite difference approximation with the first
four cumulants.

To derive the formula, we need one more step. Let Y (¢) be given by

Y(t):=X(t) — ert (A.17)
using the first order cumulant (mean) of X (1). Then we have the following PDE instead of (A.7) with
the state variable y:

8
Tf(ya t)_ +Zk'6 k:f Y, t a f(ya T):g(y+clT)' (A18)
Noting that
v(z, t) = f(z —at, t) (A.19)

we see that solving (A.18) for f provides the solution to (A.7) as well.

Now, we are going to discreterize the PDE in (A.18) using the explicit finite difference method.
At first, consider the case where X (¢) satisfies (A.8), i.e., the standard Black-Scholes case in log-
coordinate. In this case, the cumulants are given as in (A.10), and condition (A.18) reduces to

0 cy 0?
iy )= o )+ 5 o5 D, fl, T) =g+ al). (4.20)
ot 2 dy
The difference equation derived from (A.20) for the explicit method becomes

figir = Jig | 0 finngin ® fiotgnn = 2fagun (A.21)
6t 2 6?!

rfig =
where J; > 0 and 6, > 0, and
fij = Wiy t5), fije1:=fWi, tj+6), firrjrr = flyi+ 0y, tj+0t), firjr1:= flyi—0dy, tj+0y)
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Solving equation (A.21) with respect to f; ; yields

1
fij = 55 (71 fim1,541 + T2 fijr1 + 73 fiv141) (A.22)
where 25 25
O~ 0¢ O~ 0¢
Tl = T3 = ﬁ, Ty = (1 — 5—?3) . (A23)

The coefficients w1, w2 and 73 may be thought of probabilities, and are exactly the same as pi, po
and ps in the multinomial lattice with three branches (i.e., trinomial lattice), respectively, if we set
0y = 20/0; and 6 = 7.

Next, we consider the case where we have up to the 4-th cumulant. In this case, the PDE in (A.7)
becomes

k 2 3 4
(x, t)+cl%v(m, t)—l—%%v(m, t)—l—%%v(m, t)+c—4%v(a:, t), v(z, T) =g (z).
(A.24)

Using the finite difference method for the standard Black-Scholes case in log-coordinate as a guide, we
are going to discretize the above PDE. The difference equation derived from (A.20) for the standard
explicit method is given as

ro(z, t) = pTa

= fij+1— fij  c2 fix1 41 + fic1j+1 — 2fij+1 firrj41 + ficije1 — fij+1 3Dz ca Dy
irj o

= + to
O 2! 65 65 3! 65’ 4! (53
(A.25)
Here D3 and D, are difference terms involving f;1o and f;_s, and
fij = [Wis t5), fivo 1= f(Wis t5 +200), fivrj41:= f(yi + 0y, tj 4 0),
figar = flyi, tj +0), fiirjrr = fyi — 0y tj+00), fiojrr = f(yi — 20y, tj +0p).
Rearrangement of (A.25) with respect to f; ; yields
fij = Tirs, (mifico g1 + Tafic1je1 + T3 fijpr + Tafirrj+1 + 75 fizo,j+1) (A.26)
where
1 (so? n kot
m o= — | =+ —
! 9 \ o3  4at)’
. o? n 1 2s0% kot
T 42 T o6 a3 at )’
1 o? kot
m o= 11— - —
s 402 640t )’
. o? n 1 [2s0® kot
™ T 302 T o6 \ad at )’
1 so® kot
N A A.27
o 96 < PE 4a4> ’ ( )
C3 C4
s , k= , (A.28)
&V 30
and d, is chosen to satisfy
8, = 2a\/6;. (A.29)



Similar to the trinomial lattice case, my,...,7s may be thought of probabilities for a multinomial
lattice with five branches. If we compare these probabilities with the ones given in (2.11), we see that

the terms related to skewness s and kurtosis x are exactly the same as the ones given by py,...,ps,
respectively. Therefore, the difference comes from the terms excluding the ones related to skewness
and kurtosis. To see the difference, let s =0 and k = 0 in (A.27). Then, m,..., 75 are given as
2 2
o o0
m =75 =0, 7r2:7r4:r“2, 7r3:(1—6—2>. (A.30)
y

This implies that the finite difference method with 3rd and 4th cumulants reduces the trinomial lattice
if we set s =0 and x = 0. On the other hand, the probabilities p,...,ps in (2.11) are not zero even
if s =0 and k = 0, and they are positive if (2.12) is satisfied.
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