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Abstract

In this paper, we consider an optimal hedging problem for multivariate derivative based on the
addtive sum of smooth functions on individual assets that minimize the mean square error (or
the variance with zero expected value) from the derivative payoff. By applying the necessary and
sufficient condition with suitable discretization, we derive a set of linear equations to construct
optimal smooth functions, where we show that the computations involving conditional expectations
for the multivariate derivatives may be reduced to those of unconditional expectations, and thus, the
total procedure can be executed efficiently. We investigate the theoretical properties for the optimal
smooth functions and clarify the following three facts: (i) the value of each individual option takes
an optimal trajectory to minize the mean square hedging error under the risk neutral probability
measure, (ii) optimal smooth functions for the put option may be constructed using those for the
call option (and vice versa), and (iii) delta in the replicating portfolio may be computed efficietnly.
Numerical experiments are included to show the effectiveness of our proposed methodology.

Keywords: Additive models, Minimum variance hedging, Basket options, Multivariate derivatives,
Smooth functions

1 Introduction

At the heart of hedging theory is how to construct a portfolio that replicates (or approximates) the value of
target asset as close as possible. In this paper, we formulate a problem of hedging multivariate derivatives
based on the idea from non-parametric regression technique known as the generalized additive model (GAM;
see Hastie and Tibshirani (1990), Wood (2006)), where the value of multivariate derivative is approximated
by optimizing smooth functions on individual derivatives to minimize the mean square error of the terminal
payoffs. Note that GAM applies cubic splines that minimizes the penalized residual sum of squares (PRSS) to
fit given sample data and may be considered as the generalization of linear regression model to the additive
model using the sum of smooth functions. For empirical analysis of hedging problem, GAM has been used to
investigate the hedge effect of weather derivatives in Yamada (2007, 2008a, 2008b).

An application of nonparametric regression to derivative pricing/hedging problems is a well examined area in
finance, in particular in the context of general nonparametric formula for option prices and/or implied volatility
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surface. For estimating the pricing formula, Hutchinson et al. (1994) applied a nonparametric approach via
learning networks given empirical observation, and since then, a number of researchers have investigated option
prices using nonparametric techniques based on, e.g., neural networks (Garciaa and R. Gencay, 2000), kernel
regressions (Ait-Sahalia and Lo (1998), Broadie et al. (2000)), and the so-called canonical valuation (Alcock
and Gray (2005), Gray et al. (2007), Stutzer (1996); see also Daglish (2003) and references therein for a
comparison of these nonparametric techniques). Note that the focus of our research is slightly different from
these nonparametric approaches, in the sense that the replication of payoff for a derivative security is a main
concern based on derivatives on individual assets. Also, it should be mentioned that we take a theoretical
approach in a continuous time framework instead of empirical one by solving a necessarily and sufficient condition
for the minimum mean square error.

For hedging European type basket options using options on individual assets, a super-hedging strategy
consisting of the weighted sum of options with the same types (i.e., calls or puts) may be available as described
in Hobson et al. (2005) and Su (2008), where the super-hedging strategy is to find a portfolio whose terminal
value is always larger than that of the multivariate option. In the simplest case, the super-hedging strategy for
basket option may be constructed by Jensen’s inequality, i.e., for a convex function g and pi, i = 1, . . . ,m such
that

m∑
i=1

pi = 1, pi ≥ 0,

we have
m∑

i=1

pig (xi) ≥ g

(
m∑

i=1

pixi

)
, ∀xi ∈ <, i = 1, . . . ,m.

In the above formulation, we can regard g as a payoff function, xi the terminal value of asset i ∈ [1, m], and pi

a weight parameter on asset i, and hence, an upper bound of European type basket option may be obtained by
the weighted sum of individual options with the same payoff function g. If g is a payoff function of call options,
then the upper bound may be improved so that the super-hedging portfolio is given by the weighted sum of
call options on individual assets with different values of strikes (Hobson et al. (2005), Su (2008)). Also, note
that, for hedging basket options using dynamic trading strategy, a semi-definite programming based receding
horizon control approach has been developed in Primbs (2009), where the problem for a European call option
is formulated as a finite horizon constrained stochastic control problem.

In the current paper, we consider an optimal hedging problem for multivariate derivatives based on the
additive sum of smooth functions on individual assets, namely the additive models. Note that the problem may
be interpreted as an optimal approximation for the multivariate derivative using individual options with any
payoff functions that minimize the mean square error (or the variance with zero expected value). By applying the
necessary and sufficient condition with suitable discretization, we derive a set of linear equations to construct
optimal smooth functions, where we show that the computations involving conditional expectations may be
reduced to those of unconditional expectations for the multivariate derivatives, and thus, the total procedure
can be executed efficiently. We investigate the theoretical properties for the optimal smooth functions and
clarify the following three facts: (i) the value of each individual option takes an optimal trajectory to minimize
the mean square hedging error under the risk neutral probability measure, (ii) optimal smooth functions for the
put option may be constructed using those for the call option (and vice versa), and (iii) delta in the replicating
portfolio may be computed efficiently. We also compare our proposed methodology with the super-hedging
strategy based on the numerical experiment, and conclude that the optimal hedging strategy is better if we
take standard deviation as a performance measure of the hedge, whereas in terms of the worst case error,
super-hedging tends to provide a better bound with a given confidence level.

The rest of this paper is organized as follows: In Section 2, we formulate the minimum variance hedging
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problem using smooth functions, provide a necessarily and sufficient condition for the optimizers, and discuss
some properties of the problem. We also show that the optimal smooth functions are found by solving a system
of linear equations based on suitable discretization. In Section 3, we introduce price dynamics that enable us
to replicate the terminal payoffs via dynamic trading strategy, and demonstrate how to construct the linear
equations for the univariate and the multivariate cases. In Section 4, we investigate the minimum variance
hedging problem under the risk neutral probability measure. In Section 5, we discuss theoretical properties of
the optimal smooth functions based on the put-call parity and sensitivity analysis. Numerical experiments are
also provided to illustrate our proposed methodology in Section 6. Section 7 offers some concluding remarks.

2 Problem formulation and optimality condition

2.1 Minimum variance hedging problem based on the additive model

Let Si,t, i = 1, . . . ,m0 be the values of assets at time t ∈ [0, T ] under a probability space (Ω, F , P) and filtration
{Ft}t∈[0,T ]. In this paper, we consider the following problem of hedging the terminal payoff of derivative security
using the additive sum of smooth functions of Si,t, i = 1, . . . ,m, namely the additive model:

min
fi∈S

E

{GT −
m∑

i=1

fi (Si,T )

}2
, (1)

where m ≤ m0, and Gt, t ∈ [0, T ] stands for the value of derivative security whose terminal payoff at the
maturity T is a function of m0 assets, S1,T , . . . , Sm0,T .

Note that GT may be the terminal payoff of a illiquid (or nontraded) asset derivative. For example, if we
assume that Sm0,t is nontraded until the maturity T and GT is a function of Sm0,T with m < m0, then the
problem is to find optimal payoff functions of m tradable assets to minimize the terminal hedging error from
the value of illiquid asset derivative. Another case is that GT may be the terminal payoff of portfolio of options
(such as bull or bear spreads of different underlyings) or a compound option (derivative of options). Also, in
the case of basket options, GT may be given as

GT = g

(
m0∑
i=1

αiSi,T

)
,

with given weight parameters αi, i = 1, . . . ,m0 and a payoff function g.
For finding optimal smooth functions of problem (1), the following Lemma is key in this paper, which is

introduced in Chapter 5 of Hastie and Tibshirani (1990):

Lemma 1 Smooth functions f∗1 , . . . , f
∗
m provide minimizers of problem (1), if and only if the following condi-

tions are satisfied:
m∑

j=1

E
[
f∗j (Sj,T )

∣∣Si,T

]
= E [GT |Si,T ] , i = 1, . . . ,m (2)

By taking unconditional expectation for both sides in the above equation, we have

E [GT ] =
m∑

i=1

E [f∗i (Si,T )] . (3)

Therefore, it holds that

Var

[
GT −

m∑
i=1

f∗i (Si,T )

]
= E

(GT −
m∑

i=1

f∗i (Si,T )

)2
 . (4)
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Conditions (3) and (4) suggest that minimizing the mean square error corresponds to the variance minimization
with zero mean constraint.

Before showing the solution method for smooth functions satisfying Lemma 1, we discuss how to replicate
f∗i (Si,T ) , i = 1, . . . ,m as cash values. Since each f∗i (i = 1, . . . ,m) is a smooth function, there are two
approaches to attain f∗i (Si,T ) , i = 1, . . . ,m. The first approach is to use European type calls and puts with
maturity T and any strikes as given by Carr and Madan (2001), where any twice continuously differentiable
function, f(x), of the terminal stock price ST = x, can be replicated by a unique initial position of f (S0) −
f ′ (S0)S0 unit discount bounds, f ′ (S0) shares, and f ′′ (K) dK out-of-the money options of all strikes K based
on the the following relation:

f (x) = [f (S0) − f ′ (S0)S0] + f ′ (S0)x+
∫ S0

0

f ′′ (K) (K − x)+ dK +
∫ ∞

S0

f ′′ (K) (x−K)+ dK (5)

The advantage of this approach is that we do not have to estimate any parameters such as volatilities or mean
rates of returns of the underlying assets once the target payoff function f is specified.

The second approach is to dynamically trade Si,t to replicate the terminal payoff f∗i (Si,T ), similar to the
Black-Scholes-Merton dynamic hedging strategy (Black and Scholes (1973), Merton (1973)). For this approach
to be applicable, we need to introduce price dynamics for Si,t, i = 1, . . . ,m, namely the “dynamic hedging
model.” We will further discuss this approach in Section 3.

2.2 Solution method for optimal smooth functions

Recall that, from Lemma 1, we need to find a set of functions, f∗1 , . . . , f
∗
m, satisfying (2) to solve the minimum

variance hedging problem in (1). Noting that GT is nonnegative in general, there exists a function ĝi such that

E [GT |Si,T ] = ĝi (Si,T )

for each i = 1, . . . ,m (See pp. 81 in Shreve (2004)).
Assume that each pair (Si,T , Sj,T ) , i, j = 1, . . . ,m, i 6= j has a joint probability density function (PDF)

given by φSi,Sj (xi, xj), and define the following conditional PDF:

φSj |Si
(xj |xi) :=

φSi,Sj (xi, xj)
φSi (xi)

,

where φSi (xi) is the marginal PDF of Si,T , i = 1, . . . ,m. Then, for given f∗i , i = 1, . . . ,m, there exist functions
f̂i i = 1, . . . ,m such that

E
[
f∗j (Sj,T )

∣∣Si,T

]
= f̂i (Si,T ) , i = 1, . . . ,m.

where each f̂i may be written as

f̂i (xi) =
∫
<
f∗j (xj) · φSj |Si

(xj |xi) dxj , xi ∈ <.

Therefore, the problem reduces to finding a set of real-valued functions, f∗1 , . . . , f
∗
m, satisfying the following

system of equations:

f∗i (xi) +
∑
j 6=i

∫
<
f∗j (xj) · φSj |Si

(xj |xi) dxj = ĝi (xi) , i = 1, . . . ,m (6)

Note that ĝi, i = 1, . . . ,m in (6) may be defined explicitly in the following sections, and so far, we assume that
these functions are given.

We would like to find f∗i , i = 1, . . . ,m such that (6) holds for appropriate domains of input variables,
xi, i = 1, . . . ,m. Here we provide a solution method consisting of the following three steps:
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1. Discretize condition (6) for y, xi and xj (i, j = 1, . . . ,m) dimensions to obtain a set of linear equations.

2. Solve the set of linear equations to find discretized points of smooth functions.

3. Construct smooth functions using cubic splines.

Note that the above method may be applied if joint PDFs of pairs in (Si,T , Sj,T ) , i, j = 1, . . . ,m, i 6= j are
given.

First, we discretize condition (6) to approximate the integrals as

f∗i (xi) +
∑
j 6=i

N∑
l=1

[
f∗j

(
x

(l)
j

)
· φSj |Si

(
x

(l)
j

∣∣∣xi

)
δj

]
= ĝi (xi) , i = 1, . . . ,m (7)

for given xi, i = 1, . . . ,m, where δj is assumed to satisfy

N∑
l=1

φSj |Si

(
x

(l)
j

∣∣∣xi

)
δj = 1, j 6= i.

Note that δj may depend on xi as well, but we will omit to specify that dependence for brevity. We then
discretize condition (7) for xi dimensions, e.g., x(k)

i , k = 1, . . . , N , as

f∗i

(
x

(k)
i

)
+
∑
j 6=i

N∑
l=1

[
f∗j

(
x

(l)
j

)
· φSj |Si

(
x

(l)
j

∣∣∣x(k)
i

)
δj

]
= ĝi

(
x

(k)
i

)
, i = 1, . . . ,m.

Let f i ∈ <N (i = 1, . . . ,m) and g i ∈ <N be real-valued vectors whose k-th entries are, respectively, given as

f i [k] = f
(k)
i := f∗i

(
x

(k)
i

)
, g i [k] = ĝi

(
x

(k)
i

)
, k = 1, . . . , N.

Also, let Φi,j ∈ <N×N (i, j = 1, . . . ,m, i 6= j) be matrices whose (k, l)-entries are given as

Φi,j [k, l] := φSj |Si

(
x

(l)
j

∣∣∣x(k)
i

)
δj , k, l = 1, . . . , N

With these definitions and notations, we have the following proposition:

Proposition 1 For each i = 1, . . . ,m, condition (6) may be discretized as

fi +
∑
j 6=i

Φi,jfj = gi. (8)

Consequently, we obtain the following system of linear equations for f :=
[
f>1 , . . . , f

>
m

]>
∈ <mN :

Φf = g (9)

where

Φ :=



IN×N Φ1,2 Φ1,3 · · · Φ1,m

Φ2,1 IN×N Φ2,3 · · · Φ2,m

Φ3,1 Φ3,2 IN×N
. . . Φ3,m

...
...

. . . . . .
...

Φm,1 Φm,2 Φm,3 · · · IN×N


∈ <mN×mN , g :=


g1

g2

...
gm

 ∈ <mN
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Although the solution to (9) may not be unique, it can be expressed using the generalized inverse matrix as

f = Φ> [ΦΦ>]−1
g . (10)

Then, the optimal smooth functions, f∗i , i = 1, . . . ,m, may be constructed using cubic splines,

f∗i (x) = c0 + c1x+
1
12

N∑
k=1

θk

∣∣∣x− x
(k)
i

∣∣∣3 , (11)

where c0, c1 and θk, k = 1, . . . , N are found to satisfy f∗i
(
x

(k)
i

)
= f

(k)
i and

N∑
k=1

θk = 0,
N∑

k=1

θkx
(k)
i = 0.

3 Construction of optimal smooth functions

In this section, we introduce price dynamics for Si,t that enable us to replicate the terminal payoff f∗i (Si,T ) using
dynamic trading strategy, and demonstrate how to specify ĝi in (6). Assume that, under the probability space
(Ω, F , P), the price dynamics of S1,t, . . . , Sm,t are governed by the following stochastic differential equations
(SDEs),

dSi,t = µiSi,tdt+ σiSi,tdWi,t, i = 1, . . . ,m0, (12)

where W1,t, . . . ,Wm0,t are correlated Brownian motions with dWi,tdWj,t = ρijdt, i, j = 1, . . . ,m0, i 6= j.

Remark 1 One of the advantages for considering (12) is that there exists a dynamic trading strategy to
replicate the terminal payoff f∗i (Si,T ) once the optimal smooth functions are specified. Let ∆∗

i,t be shares of
Si,t possessed at time t in the replicating portfolio. Then, ∆∗

i,t may be obtained as ∆∗
i,t = ∂Vi,t/∂Si,t with

Vi,t := e−r(T−t)Ẽ [f∗i (Si,T )|Si,t]. Here Ẽ is the expectation under a risk neutral probability measure P̃ (being
equivalent to P). Although P̃ is not unique in general due to the incompleteness of the market, the risk neutral
process of Si,t may be described as

dSi,t = rSi,tdt+ σiSi,tdW̃ i,t, i = 1, . . . ,m,

where W̃ i,t is a Brownian motion under the corresponding risk neutral probability measure P̃. Note that Vi,t

also provides the value of the self-financing portfolio at time t ∈ [0, T ] and that the trading strategy ∆∗
i,t is

independent of the choice of risk neutral probability measure.

3.1 Hedging of illiquid asset derivatives

First, we demonstrate the case where GT depends on the terminal value of a single asset, illustrating the problem
of hedging derivative security whose underlying is nontraded (or illiquid) using derivatives on liquidly traded
assets. Let m0 := m + 1 in (12), and suppose that the (m + 1)-th asset, Sm0,t, is nontraded (or illiquid) until
the maturity T and that the other m assets can be traded liquidly.1 To distinguish the notation between the
tradable and nontradable assets, we use Yt for the value of nontraded asset, i.e., Yt ≡ Sm0,t is governed by the
following SDE:

dYt = µm+1Ytdt+ σm+1YtdWm+1,t. (13)
1The problem setting in this section addresses the one in Schwartz and Tebaldi (2006) when m = 1. Also, the problem in this

case is closely related to the pioneering work of Duffie and Richardson (1991) for hedging the spot price using the self-financing

portfolio of future price. Note that, in our formulation, we intend to hedge the payoff of illiquid asset derivatives using liquidly

traded asset derivatives with any payoff functions.
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Also, let the terminal value of Gt satisfy
GT = g (YT ) , (14)

where g is a given payoff function. For simplicity, µi, σi and ρij (i, j = 1, . . . ,m+ 1, i 6= j) are assumed to be
constant, although the result can readily be generalized for the case with deterministic functions of t. In this
case, YT and Si,T , i = 1, . . . ,m are given as

YT = Y0e
νm+1T+σm+1Wm+1,T , Si,T = Si,0e

νiT+σiWi,T ,

where

νi := µi −
σ2

i

2
, i = 1, . . . ,m+ 1.

With these definitions, we would like to characterize the conditional expectations in (2). Since the informa-
tion content in Si,t is the same as that in Wi,t, condition (2) may be rewritten as

m∑
j=1

E
[
f∗j (Sj,T )

∣∣Wi,T

]
= E [g (YT )|Wi,T ] , i = 1, . . . ,m. (15)

Let pj|i (wj |wi) , j 6= i be the conditional PDF of Wj,t given Wi,t, i.e.,

pj|i (wj |wi) :=
1√

2π(1 − ρ2
ij)T

exp

{
− (wj − ρijwi)

2

2
(
1 − ρ2

ij

)
T

}
. (16)

Based on the same argument as that for condition (6), the problem boils down to searching for smooth functions,
f∗i , i = 1, . . . ,m, such that

f∗i
(
Si,0e

νiT+σiwi
)

+
∑
j 6=i

∫ ∞

−∞
f∗j
(
Sj,0e

νjT+σjwj
)
pj|i (wj |wi) dwj = ĝi (wi) , i = 1, . . . ,m. (17)

Here ĝi is a function satisfying

ĝi (Wi,T ) = E [g (YT )|Wi,T ] , i = 1, . . . ,m. (18)

The following proposition provides an explicit formula for the function ĝi:

Proposition 2 Smooth functions ĝi, i = 1, . . . ,m satisfying (18) may be represented as

ĝi (wi) = Y0 exp

{(
µm+1 −

ρ2
i(m+1)σ

2
m+1

2

)
T + ρi(m+1)σm+1wi

}
N (d1 (wi)) −KN (d2 (wi)) (19)

when g(y) = (y −K)+ for European call options, or

ĝi (wi) = −Y0 exp

{(
µm+1 −

ρ2
i(m+1)σ

2
m+1

2

)
T + ρi(m+1)σm+1wi

}
N (−d1 (wi)) +KN (−d2 (wi)) (20)

when g(y) = (K − y)+ for European put options, where N is the standard normal distribution function, and
d1 (wi) and d2 (wi) are defined as

d1 (wi) :=
1

σm+1

√(
1 − ρ2

i(m+1)

)
T

[
ln
(
Y0

K

)
+ ρi(m+1)σm+1wi +

(
µm+1 +

σ2
m+1

2
− ρ2

i(m+1)σ
2
m+1

)
T

]
,

d2 (wi) :=
1

σm+1

√(
1 − ρ2

i(m+1)

)
T

[
ln
(
Y0

K

)
+ ρi(m+1)σm+1wi +

(
µm+1 −

σ2
m+1

2

)
T

]
.
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Proof: To simplify the notation, we assume that i = m = 1 and m0 = m+1 = 2, although the same result can
be obtained by suitable replacement of parameters. At first, we represent the value processes (12) and (13) using
independent Brownian motions instead of correlated Brownian motions. Consider the Cholesky decomposition
for the covariance matrix of [

dS1,t

S1,t
,
dYt

Yt

]>
given as

LL>dt ∈ <2×2,

where

L =

[
σ1 0

ρ12σ2 σ2

√
1 − ρ2

12

]
.

Then, there exist independent Brownian motions B1,t, B2,t such that the value processes of Yt and S1,t have
equivalent representations to equations (12) and (13) as[

dS1,t/S1,t

dYt/Yt

]
=

[
µ1

µ2

]
dt+ L

[
dB1,t

dB2,t

]
.

In this case, YT and S1,T are given by

S1,T = S1,0 exp
{(

µ1 −
σ2

1

2

)
T + σ1B1,T

}
, (21)

YT = Y0 exp
{(

µ2 −
σ2

2

2

)
T + ρ12σ2B1,T + σ2

√
1 − ρ2

12B2,T

}
,

where
σ11 = σ1, σ21 = ρ12σ2, σ22 = σ2

√
1 − ρ2

12.

We will compute a function ĝ1 satisfying2

ĝ1 (B1,T ) = E [g (YT ) |B1,T ]

Since B0,T is independent of B1,T , we can apply the so-called Independence Lemma (see pp. 73 in Shreve
(2004)) that ĝ1 is a function of a dummy variable, w1, given by the the following unconditional expectation:

ĝ1 (w1) = E
[
g

(
Y0 exp

{(
µ2 −

σ2
2

2

)
T + ρ12σ2w1 + σ2

√
1 − ρ2

12B2,T

})]
Let g(y) = (y −K)+, and Ŷ0, σ̂, and ν̂ be defined as

Ŷ0 := Y0 exp (ρ12σ2w1) ,

σ̂ := σ2

√
1 − ρ2

12,

ν̂ := µ2 −
σ2

2

2
+
σ̂2

2
= µ2 −

ρ2
12

2
.

Then, we have

ĝ1 (w1) = E

[(
Ŷ0 exp

{(
ν̂ − σ̂2

2

)
T + σ̂B2,T

}
−K

)+
]
. (22)

2We use the same notation ĝ1 as that in (18) with i = 1, because these functions are actually equivalent.
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The first term in (· · · )+ of (22) is a geometric Brownian motion with mean rate of return ν̂, volatility σ̂, and an
initial value Ŷ0. Therefore, we can compute the right hand side of equation (22) using the Black-Scholes-Merton
formula (Black and Scholes (1973), Merton (1973)) without discounting as

ĝ1 (w1) = eν̂T Ŷ0N (d1) −KN (d2)

to conclude that condition (19) holds, where

d1 :=
ln
(
Ŷ0/K

)
+
(
ν̂ + σ̂2/2

)
T

σ̂
√
T

= d1 (w1)

d2 :=
ln
(
Ŷ0/K

)
+
(
ν̂ − σ̂2/2

)
T

σ̂
√
T

= d2 (w1) .

Similarly, we can get equation (20) for European put options.

With the similar argument to the derivation of condition (9), we can construct the following set of linear
equations by discretizing pj|i (wj |wi), f̂i (wi) := f∗i

(
Si,0e

νiT+σiwi
)
, and ĝi (wi) for wi and wj dimensions:

IN×N Φ1,2 · · · Φ1,m

Φ2,1 IN×N · · · Φ2,m

...
. . . . . .

...
Φm,1 Φm,2 · · · IN×N




f̂ 1

f̂ 2

...
f̂ m

 =


ĝ1

ĝ2

...
ĝm

 . (23)

Then, optimal smooth functions f∗i , i = 1, . . . ,m are obtained using cubic splines.

3.2 Optimal hedging of multivariate derivatives

Next, we will consider the case of multivariate derivatives, where GT is given by a function of general m0 assets,
S1,T , . . . , Sm0,T , i.e.,

GT := g (S1,T , . . . , Sm0,T ) , (24)

for a given m0-variate function g, where each asset price is assumed to follow the SDEs in (12). The minimum
variance hedging problem (1) is to find smooth payoff functions for terminal values of individual assets, Si,T , i =
1, . . . ,m, that approximate the terminal payoff of the multivariate derivative as close as possible in the minimum
mean square sense. Note that the number of individual assets, m, may be greater than the dimension of
multivariate assets, m0, but usually, is selected to satisfy m ≤ m0. Because it does not make any mathematical
difference and the same result may be obtained by replacing m with m0 in GT or related variables/functions,
here we assume m = m0 for simplicity.

Recall that optimal smooth functions of (1), denoted by f∗i (wi), i = 1, . . . ,m, need to satisfy
m∑

j=1

E
[
f∗j (Sj,T )

∣∣Wi,T

]
= E [GT |Wi,T ] , i = 1, . . . ,m. (25)

or using the conditional PDFs in (16), it holds that

f∗i
(
Si,0e

νiT+σiwi
)

+
∑
j 6=i

∫ ∞

−∞
f∗j
(
Sj,0e

νjT+σjwj
)
pj|i (wj |wi) dwj = ĝi (wi) , i = 1, . . . ,m,

with f∗i and ĝi, where ĝi is now defined by the following conditional expectation:

ĝi (Wi,T ) = E [g (S1,T , . . . , Sm,T )|Wi,T ] , i = 1, . . . ,m.

The following theorem shows that the function ĝi may be represented using unconditional expectation and
thus be computed efficiently:
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Theorem 1 For each i ∈ [1, m] and a (nonrandom) dummy variable wi ∈ <, there exists a function hi

satisfying
ĝi (wi) = E [hi (wi, Z1, . . . , Zm−1)] , (26)

where Z1, . . . , Zm−1 are (F-measurable) independent normal random variables s.t.

Zi ∼ N (0, T ) , i = 1, . . . ,m.

Proof: Here we consider the case i = 1, although the same technique may be applied for i = 2, . . . ,m.
Let the covariance matrix of [

dS1,t

S1,t
, . . . ,

dSm,t

Sm,t

]>
be decomposed as LL>dt, where L is a lower triangular matrix defined by

L :=


σ11 0 · · · 0

σ21 σ22
. . .

...
...

...
. . . 0

σm1 σm2 · · · σmm

 ∈ <m×m, σ11 = σ1

based on the Cholesky decomposition. Then, we obtain the following equivalent representation to (12):
dS1,t/S1,t

...
dSm,t/Sm,t

 =


µ1

...
µm

dt+ L


dB1,t

...
dBm,t

 . (27)

where B1,t, . . . , Bm,t are independent Brownian motions with B1,t ≡W1,t. Since Si,T is expressed as

Si,T = Si,0 exp

νiT +
i∑

j=1

σijBj,T

 , i = 1, . . . ,m,

there exists a function h1 such that

g (S1,T , . . . , Sm,T ) = h1 (W1,T , B2,T , . . . , Bm,T ) , (28)

and we have

E [g (S1,T , . . . , Sm,T )|S1,T ] = E [g (S1,T , . . . , Sm,T )|W1,T ]

= E [h1 (W1,T , B2,T , . . . , Bm,T )|W1,T ] . (29)

We further examine the conditional expectation of (29) below.
First, we note that S1,T is a function of W1,T and is independent of the other factors, B2,T , . . . , Bm,T .

This indicates that there exists a sigma algebra G1 (⊂ F) such that both W1,T and S1,T are G1-measurable and
B2,T , . . . , Bm,T are independent of G1. Then we can apply the Independence Lemma that a function ĥ1 of a
dummy variable w1 ∈ <,

ĥ1 (w1) := E [h1 (w1, B2,T , . . . , Bm,T )] , (30)

satisfies the following condition:

ĥ1 (W1,T ) = E [h1 (W1,T , B2,T , . . . , Bm,T )|W1,T ]

= E [g (S1,T , . . . , Sm,T )|W1,T ]

= ĝ1 (W1,T ) . (31)

10



Clearly, conditions (30) and (31) indicate that the statement in the theorem holds with i = 1, h1 in (28), and

Zi ≡ Bi+1,T ∼ N (0, T ) , i = 1, . . . ,m− 1.

Similarly, we can obtain hi, i = 2, . . . ,m by reordering S1,t, . . . , Sm,t so that Si,t is the first entry when
applying the Cholesky decomposition.

We see that, for any given real number wi ∈ <, i = 1, . . . ,m, ĝi (wi) is computed by the unconditional
expectation in (26). In general, this computation involves multiple integration, but usually executed efficiently
based on the Monte Carlo method by generating independent Gaussian random numbers. Note that, once a set
of random numbers is generated, we can compute ĝi (wi) for different values of wi = w

(k)
i , k = 1, . . . , N using

the same set of random numbers to construct a real-valued vector ĝ i ∈ <N in the right hand side of equation
(23). Then, we solve the set of linear equations for f̂ i, i = 1, . . . ,m to find the optimal smooth functions using
cubic splines. We will illustrate our proposed method based on the numerical experiment in Section 6.

4 Optimal smooth functions under risk neutral measure

In the previous sections, we have discussed the minimum variance hedging problem, in which the mean square
hedging error is taken under the physical probability measure P. In this section, we take a risk neutral probability
measure instead of the physical one, and consider the following problem under the risk neutral measure P̃ with
GT defined in (24):

min
fi∈S

Ẽ

{GT −
m∑

i=1

fi (Si,T )

}2
, (32)

where Ẽ is the expectation under P̃.
Let f∗i , i = 1, . . . ,m be optimal smooth functions of problem (32). Then, based on the similar discussion to

the derivation of condition (3), it holds that

Ẽ [GT ] =
m∑

i=1

Ẽ [f∗i (Si,T )] . (33)

By multiplying the discount factor e−rT from both sides of the above equation, we have

e−rT Ẽ [GT ] =
m∑

i=1

e−rT Ẽ [f∗i (Si,T )] . (34)

where r > 0 is the risk free interest rate. Condition (34) implies that the value of basket option equals to the
sum of individual option values with payoff functions, f∗i , i = 1, . . . ,m. For brevity of the notation, we omit
the discount factor and refer to Gt defined by

Gt := Ẽ [GT | Ft] (35)

as the value of basket option. Similarly,

Vi,t := Ẽ [f∗i (Si,T )| Ft] (36)

may be thought of the value of individual option (without discounting) at time t ∈ [0, T ] having a payoff
function f∗i .

Let Si,t, i = 1, . . . ,m0 follow SDEs in (12). Then, from the Markov property (see, e.g., Shreve (2004)),
there exists a function h∗i,t such that

Vi,t = h∗i,t (Si,t) := Ẽ [f∗i (Si,T )|Si,t] , t ∈ [0, T ], i = 1, . . . ,m. (37)
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where h∗i,T = f∗i . In this case, an interesting question is to ask if h∗i,t, i = 1, . . . ,m provide optimal smooth
functions of the following problem for any given t ∈ [0, T ]:

min
hi,t∈S

Ẽ

{Gt −
m∑

i=1

hi,t (Si,t)

}2
, (38)

i.e., we would like to know if the values of options defined in (37) take optimal trajectories for any t ∈ [0, T ] to
minimize the mean square error of (38). The following lemma plays an important role to answer this question:

Lemma 2 For each i ∈ [1, m], let Fi,t, t ∈ [0, T ] be the filtration generated by the single Brownian motion
Wi,t, i.e., Fi,t is the filtration related to {Si,u}u∈[0, t] only. Then, for any given measurable function ψ, it holds
that

Ẽ [ψ (S1,T , . . . , Sm,T )| Fi,T ] = Ẽ [ψ (S1,T , . . . , Sm,T )|Si,T ] , i = 1, . . . ,m. (39)

Proof: We will show that condition (39) holds with i = 1. Note that the same argument may be applied for
i ≥ 2, although we omit to explain the detail for brevity.

Consider the equivalent representation (27) for Si,t, i = 1, . . . ,m0 based on the independent Brownian
motions, B1,t, . . . , Bm,t, where B1,t ≡W1,t. In this case, the left hand side of (39) may be rewritten as

Ẽ [ψ (S1,T , . . . , Sm,T )| F1,T ] = Ẽ [ψ1 (W1,T , B2,T , . . . , Bm,T )| F1,T ] (40)

using some function ψ1. Since F1,t is the filtration generated by W1,t and the other factors are independent of
W1,t, i.e., W1,T is F1,T -measurable and B2,T , . . . , Bm,T are independent of F1,T , we can apply the Independence
Lemma that a function ψ̂1 given as

ψ̂1 (w1) := E [ψ1 (w1, B2,T , . . . , Bm,T )]

satisfies the following condition:

ψ̂1 (W1,T ) = E [ψ1 (W1,T , B2,T , . . . , Bm,T )| F1,T ] .

Therefore, we can write the left hand side of (40) as

Ẽ [ψ (S1,T , . . . , Sm,T )| Fi,T ] = ψ̂1 (W1,T ) (41)

By taking the conditional expectation given S1,T for both sides of (41), we have

Ẽ
[
Ẽ [ψ (S1,T , . . . , Sm,T )| F1,T ]

∣∣∣S1,T

]
= Ẽ

[
ψ̂1 (W1,T )

∣∣∣S1,T

]
⇒ Ẽ [ψ (S1,T , . . . , Sm,T )|S1,T ] = ψ̂1 (W1,T ) . (42)

Conditions (41) and (42) indicates that (39) holds with i = 1. Similarly, we can show that (39) holds for i ≥ 2.

We are now in a position to show the following theorem for the solution to problem (38):

Theorem 2 For any given t ∈ [0, T ], the smooth functions h∗i,t, i = 1, . . . ,m of (37) provide minimizers for
the problem (38).

Proof: Because f∗i , i = 1, . . . ,m are optimal smooth functions of the problem (32), the following equations
are satisfied:

Ẽ [GT |Si,T ] −
m∑

j=1

Ẽ
[
f∗j (Sj,T )

∣∣Si,T

]
= 0, i = 1, . . . ,m. (43)
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Then, condition (43) may be rewritten as

Ẽ [GT | Fi,T ] −
m∑

j=1

Ẽ
[
f∗j (Sj,T )

∣∣Fi,T

]
= 0, i = 1, . . . ,m, (44)

by using Lemma 2.
From the tower property, we have

Ẽ
[
Ẽ [GT | Fi,T ]

∣∣∣Si,t

]
−

m∑
j=1

Ẽ
[
Ẽ
[
f∗j (Sj,T )

∣∣Fi,T

]∣∣∣Si,t

]
= 0

⇒ Ẽ [GT |Si,t] −
m∑

j=1

Ẽ
[
f∗j (Sj,T )

∣∣Si,t

]
= 0

⇒ Ẽ
[
Ẽ [GT | Ft]

∣∣∣Si,t

]
−

m∑
j=1

Ẽ
[
Ẽ
[
f∗j (Sj,T )

∣∣Ft

]∣∣∣Si,t

]
= 0

⇒ Ẽ [Gt|Si,t] −
m∑

j=1

Ẽ
[
Ẽ
[
f∗j (Sj,T )

∣∣Ft

]∣∣∣Si,t

]
= 0. (45)

Noting that

Ẽ
[
f∗j (Sj,T )

∣∣Ft

]
= Ẽ

[
f∗j (Sj,T )

∣∣Sj,t

]
= h∗j,t (Sj,t) = Vj,t, j = 1, . . . ,m

from the Markov property, we finally obtain

Ẽ [Gt|Si,t] −
m∑

j=1

Ẽ
[
h∗j,t (Sj,t)

∣∣Si,t

]
= 0, i = 1, . . . ,m, (46)

implying that h∗j,t, i = 1, . . . ,m in (37) provide optimal smooth functions of the problem (38). This completes
the proof.

Theorem 2 indicates that, if we set the optimal smooth functions, f∗i , i = 1, . . . ,m, as payoff functions of
options, the value of each individual option defined by (37) takes the optimal trajectory in the sense of minimum
mean square error of the problem (38). This fact also suggests that there exists a self-financing portfolio whose
value lies on the same optimal trajectory, i.e., there is a replicating portfolio for Vi,t by dynamically trading
Si,t, t ∈ [0, T ] and the risk free asset.

To explain it more clearly, let t = 0 and consider to construct a set of self-financing portfolios to replicate
the terminal payoffs f∗i (Si,T ) , i = 1, . . . ,m, where the initial values of the replicating portfolios are given by
Vi,0, i = 1, . . . ,m due to the no-arbitrage condition. From condition (33),

G0 =
m∑

i=1

Vi,0 (47)

holds, and hence, we see that the mean square error from the basket option value is minimized with the sum
of initial portfolio values at t = 0. For the terminal values at t = T , the sum of payoffs determined by
f∗i (Si,T ) , i = 1, . . . ,m minimizes the mean square error of the problem (32), and each payoff is replicated
by the self-financing portfolio. Although it is not necessarily clear if we can obtain the same property in the
meantime t ∈ (0, T ), Theorem 2 guarantees that the values of individual options and their replicating portfolios
still take optimal trajectories in the sense of minimum mean square error under P̃.
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5 Further discussions

In this section, we further discuss theoretical properties of optimal smooth functions for European type basket
call/put options and their sensitivity analysis.

5.1 Put-call parity for optimal smooth functions

Let CT and PT be payoffs of European type basket call and put options given by

CT :=

(
m∑

i=1

αiSi,T −K

)+

, PT :=

(
K −

m∑
i=1

αiSi,T

)+

, (48)

where K is a strike price, and consider the following problems for the call option,

min
fi∈S

E

{CT −
m∑

i=1

fi (Si,T )

}2
, (49)

and for the put option,

min
hi∈S

E

{PT −
m∑

i=1

hi (Si,T )

}2
. (50)

For the optimal objective functions of these problems, we can obtain the following property that we state
as a theorem:

Theorem 3 For the objective functions in (49) and (50), it holds that

min
fi∈S

E

{CT −
m∑

i=1

fi (Si,T )

}2
 = min

hi∈S
E

{PT −
m∑

i=1

hi (Si,T )

}2
, (51)

i.e., both the objective functions achieve the same optimal level.

Proof: From the put-call parity, we have

CT = PT + YT −K

and the problem (49) may be rewritten as

min
fi∈S

E

{CT −
m∑

i=1

fi (Si,T )

}2
 = min

fi∈S
E

{PT + YT −K −
m∑

i=1

fi (Si,T )

}2


= min
fi∈S

E

{PT −
m∑

i=1

(
fi (Si,T ) − αiSi,T +

K

m

)}2
.

Noting that

fi (Si,T ) − αiSi,T +
K

m

is a smooth function of Si,T whereas the objective function in (50) is minimized over any smooth functions, we
have

min
fi∈S

E

{PT −
m∑

i=1

(
fi (Si,T ) − αiSi,T +

K

m

)}2
 ≥ min

hi∈S
E

{PT −
m∑

i=1

hi (Si,T )

}2
 .

14



Consequently,

min
fi∈S

E

{CT −
m∑

i=1

fi (Si,T )

}2
 ≥ min

hi∈S
E

{PT −
m∑

i=1

hi (Si,T )

}2
 (52)

holds.
On the other hand, we can use the relation

PT = CT − YT +K

to show that

min
hi∈S

E

{PT −
m∑

i=1

hi (Si,T )

}2
 ≥ min

fi∈S
E

{CT −
m∑

i=1

fi (Si,T )

}2
. (53)

Conditions (52) and (53) indicate that (51) holds.

Theorem 3 implies that, once optimal smooth functions for the call option are found, we can construct
optimal smooth functions for the put option, and vice versa. To see this, let f∗1 , . . . , f

∗
m be optimal smooth

functions for the problem (49) of call option. Then, defining h∗i by

h∗i (Si,T ) := f∗i (Si,T ) − αiSi,T +
K

m
, i = 1, . . . ,m (54)

yields

E

{CT −
m∑

i=1

f∗i (Si,T )

}2
 = E

{PT −
m∑

i=1

h∗i (Si,T )

}2
, (55)

i.e., the functions h∗1, . . . , h
∗
m in (54) provide optimizers for the problem (50) of put option.

There is another implication obtained from Theorem 3 as follows: For sufficiently large K (� Y0), the call
option is deep out-of-the-money (OTM) and the payoff tends to be zero. In fact, if K → ∞, then CT → 0 and
the optimal objective function in (49) approaches to zero from the following relation:

E
[
C2

T

]
≥ min

fi∈S
E

{CT −
m∑

i=1

fi (Si,T )

}2
 ≥ 0. (56)

For K (� Y0), the put option becomes deep in-the-money (ITM), but the optimal objective function in (50)
approaches to zero as K → ∞ due to condition (51). On the other hand, since

E
[
P 2

T

]
≥ min

hi∈S
E

{PT −
m∑

i=1

hi (Si,T )

}2
 = min

fi∈S
E

{CT −
m∑

i=1

fi (Si,T )

}2
 ≥ 0. (57)

holds, the optimal objective functions in (49) and (50) approach to zero as K → 0. In summary, both the
optimal objective functions for call and put approach to zero when K → ∞ or K → 0. Such an observation
may lead to a conjecture that the optimal objective function is maximized around at-the-money (ATM) case,
i.e., in terms of the minimum mean square error, the ATM option is the most difficult to hedge as indicated by
the usual options’ theory that the option gamma may be maximized around the ATM case. We will confirm
this based on the numerical experiment in Section 6.

5.2 Computation of Greeks and sensitivity analysis

Since payoff functions are non-differentiable for standard calls and puts, it is usually difficult to compute Greeks
such as delta or gamma. For example, when GT is defined as in (24), the computation of delta on asset i may
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involve3

∂Ẽ [GT ]
∂Si,0

, (58)

where Ẽ is the expectation under the corresponding risk neutral probability measure. Since GT depends on
the terminal prices of m0 assets, S1,T , . . . , Sm0,T , Ẽ [GT ] may require multiple integration and is difficult to
compute even numerically. Although we might be able to apply the Monte Carlo method to compute Ẽ [GT ],
the numerical differentiation of Ẽ [GT ] combined with Monte Carlo seems to be unrealistic.

On the other hand, in the case of smooth functions, delta may be computed efficiently. To see this, let f be
a smooth function, and consider the following partial derivative:

∂Ẽ [f (Si,T )]
∂Si,0

. (59)

If f = f∗i , (59) provides delta on Si,0 when approximating the payoff of basket option using optimal smooth
functions, f∗i , i = 1, . . . ,m. Assume that the price dynamics of Si,t is given as in (12), i.e., Si,t satisfies

Si,t = Si,0 exp [νit+ σiWi,t] .

Let h (x, y) be a function of (x, y) defined by

h (x, y) := f
(
x exp [νiT + σiy]

)
, (60)

and rewrite (59) as
∂Ẽ [h (Si,0, Wi,T )]

∂Si,0
.

Since h is differentiable with respect to (x, y), we can apply the Leibniz’s rule to switch the integration and
differentiation as

∂Ẽ [h (Si,0, Wi,T )]
∂Si,0

= Ẽ
[
∂h (Si,0, Wi,T )

∂Si,0

]
= Ẽ

[
∂f (Si,T )
∂Si,0

]
. (61)

Condition (61) may be written as

Ẽ
[
∂f (Si,T )
∂Si,0

]
= Ẽ

[
f ′ (Si,T )

∂Si,T

∂Si,0

]
= Ẽ

[
f ′ (Si,T ) exp (νiT + σiWi,T )

]
. (62)

where f ′(x) stands for the first order derivative of f(x). In the case of cubic splines in (11), f ′(x) is given as

f ′(x) = c1 +
1
4

N∑
k=1

θk

(
x− x

(k)
i

)2

sign
(
x− x

(k)
i

)
(63)

where sign(·) is the sign function. Therefore, we see that the delta in (59) may be computed efficiently using
the common technique such as the standard finite difference method (Hull and White (1990)). Similarly, we
can compute other Greeks efficiently.

Computational tractability for delta is not only important for sensitivity analysis but also for constructing
replicating portfolio. For hedging basket options by trading the underlying stocks, a standard approach is to

3We omit the discount factor for brevity.
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try to work on the formula (58), but this approach can not be used in practice due to the reasons described at
the beginning of this subsection. Another approach is to approximate the payoff by smooth functions using our
proposed methodology and compute delta using (59) with f = f∗i , i.e.,

∂Ẽ [f∗i (Si,T )]
∂Si,0

, i = 1, . . . ,m. (64)

It should be mentioned that each delta in (64) can be computed separately from the other variables Sj,t, j 6= i.
This fact may be the most advantage over the original delta in (58), i.e., we can compute delta in (64) off-line
using the two dimensional finite difference method (Hull and White (1990)). Off course there is a gap between
the payoff of basket option and the sum of smooth functions, our numerical experiment in Section 6 suggests
that this gap is not significant on average.

6 Numerical experiment

6.1 Case 1: Hedging market index using several stocks

In this numerical experiment, we first consider a problem of hedging an option whose underlying is a market
index (being nontraded) using several stocks, where each asset dynamics is modeled as a geometric Brownian
motion as in (12) and (13). We will formulate the minimum variance hedging problem and solve it by applying
the proposed methodology.

We use the empirical data from the Tokyo Stock Exchange (TSE) in the period of 2003-2005 for estimating
the volatility and correlation parameters of stock returns, where the market index is assumed to be TOPIX
and five stocks, S1, . . . , S5, are chosen from those listed in the TSE. The correlation and volatility parameters
of stock returns are estimated as in Table 1, whereas we assume that each expected stock return corresponding
to the drift parameter has the same sharp ratio (= 0.25) with risk free interest rate r = 0.05.

Table 1: Volatility and correlation of the stock returns with drift having the same sharp ratio (= 0.25)

INDEX S1 S2 S3 S4 S5

INDEX 1
S1 0.552 1
S2 0.636 0.298 1
S3 0.615 0.476 0.346 1
S4 0.557 0.291 0.406 0.341 1
S5 0.604 0.315 0.457 0.287 0.389 1

Volatility 0.176 0.549 0.227 0.421 0.307 0.232
Drift 0.094 0.187 0.107 0.155 0.127 0.108

We solve the problem (1) to find the minimizers f∗1 , . . . , f
∗
5 for hedging an at-the-money European call option

with maturity T = 1/4, where the initial prices (or initial values) are set to be Y0 = 100 and Si,0 = 100, i =
1, . . . , 5. Figure 1 illustrates the minimizers, where the thin line refers to S1,T vs. f∗1 (S1,T ), the solid line to
S2,T vs. f∗2 (S2,T ), the broken line to S3,T vs. f∗3 (S3,T ), the dashed line to S4,T vs. f∗4 (S4,T ), and the dotted
line to S5,T vs. f∗5 (S5,T ).

The correlation coefficient between GT and
∑5

i=1 f
∗
i (Si,T ) may provide a hedge effect, which is computed

as 0.805. We see that a high hedge effect is obtained in this numerical experiment.
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Figure 1: Optimal smooth functions for the minimum variance

6.2 Case 2: Hedging basket options

Next, we consider the problems of hedging basket call/put options described in (49) and (50). Assume that the
payoff depends on the weighted sum of five stocks, S1, . . . , S5, having the same parameter values in Table 1. To
investigate the effect of moneyness (ATM, OTM, or ITM) more explicitely, we assume that the mean rate of
return for each asset and the risk free rate are zero, i.e., µi = 0, i = 1, . . . ,m and r = 0. We set Si,0 = 100 and
αi = 1/5, i = 1, . . . , 5 so that the initial value of the underlying of basket option is given by

∑5
i=1 αiSi,0 = 100.

At first, we solve the minimum variance hedging problems for different values of strike prices and estimate
their hedge errors. Here we generated 5 dimensional random numbers from independent normal distributions,
and used the first 4 dimensions for computing each ĝi (wi) , i = 1, . . . ,m based on the formula in Theorem 1.
Then we simulated

CT −
5∑

i=1

f∗i (Si,T ) , (65)

and

PT −
5∑

i=1

h∗i (Si,T ) , (66)

for the optimal smooth functions f∗i , i = 1, . . . ,m and h∗i , i = 1, . . . ,m, using all the outcomes of random
numbers, where the number of samples for each dimension is N = 100, 000 in our simulation.

The left and the right hand sides of Figure 2 show the relation between the standard deviations of hedging
errors vs. strike prices for the call and the put options, respectively. The vertical axis refers to the strike
price divided by the initial price (= 100), whereas the horizontal axis to the standard deviations of hedging
errors (65) in the case of call option and (66) in the case of put option. From these figures, we have two
important observations: First, we see that both plots are exactly the same as indicated by Theorem 3, where
the mean square errors (or the corresponding standard deviations) for the call and the put are equal. Second,
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this numerical result suggests that the mean square error is maximized around the ATM case, i.e., as far as the
mean square error is concerned, the ATM option seems to be the most difficult to hedge on average.
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Figure 2: Standard deviations of hedging errors for call option (left) and put option (right)

The left hand side of Figure 3 shows the scatter plot of CT vs.
∑5

i=1 f
∗
i (Si,T ) for the ATM call option,

whereas the right hand side that of PT vs.
∑5

i=1 f
∗
i (Si,T ) for the ATM put option. Similar to the first numerical

experiment, we can evaluate the hedge effects by the correlation coefficients of CT vs.
∑5

i=1 f
∗
i (Si,T ) and PT

vs.
∑5

i=1 f
∗
i (Si,T ), respectively for the call and the put options, and in this numerical experiment, they are

computed as 0.969 and 0.955. We see that the payoffs of the basket options may be approximated with high
accuracy using those of individual options.

Figure 3: Scatter plots for the ATM call option (left) and the ATM put option (right)

6.3 Case 3: Comparison with super-hedging strategy

Finally, we compare our methodology with a super-hedging strategy in Su (2008), which provides a tighter upper
bound than usual Jensen’s inequality by optimizing a set of parameters related to strike prices of individual
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options. The basic idea is the same as the earlier work of Hobson et al. (2005) that bases on the following
relation in the case of basket call option:

CT =

(
m∑

i=1

αiSi,T −K

)+

=

[
m∑

i=1

αi

(
Si,T − βi

αi
K

)]+

≤
m∑

i=1

αi

(
Si,T − βi

αi
K

)+

,
m∑

i=1

βi = 1 (67)

The least upper bound problem on C0 = e−rT Ẽ [CT ], providing the minimum cost of super-hedging, is then
formulated as

C0 := min
β1,...,βm

{
m∑

i=1

αie
−rT Ẽ

[(
Si,T − βi

αi
K

)+
]∣∣∣∣∣

m∑
i=1

βi = 1

}
. (68)

On the other hand, by defining ᾱ and ϕ(x) as

ᾱ :=
m∑

i=1

αi, ϕ(x) :=
[
ᾱ

(
x− K

ᾱ

)]+
,

an upper bound from Jensen’s inequality may be derived from the following relation:

CT = ϕ

(
m∑

i=1

αi

ᾱ
Si,T

)
≤

m∑
i=1

αi

ᾱ
ϕ (Si,T ) =

m∑
i=1

αi

(
Si,T − K

ᾱ

)+

.

Clearly, the upper bound given by Jensen’s inequality, denoted by

C
J

0 :=
m∑

i=1

αie
−rT Ẽ

[(
Si,T − K

ᾱ

)+
]
. (69)

is no less than C0, since C
J

0 is a special case with βi = αi/ᾱ, i = 1, . . . ,m in the objective function of (68).
Note that βi, i = 1, . . . ,m minimizing the objective function in (68) may be found numerically by constructing
a Lagrange function as shown in Su (2008).

When applying the super-hedging strategy, one may sell the basket option at t = 0 and buy a set of call
options on individual assets so that the initial cash flow is given as

C0 − C0. (70)

Since the terminal cash flow at t = T from this position is

m∑
i=1

αi

(
Si,T − β̄i

αi
K

)+

− CT ,

the terminal hedging error, denoted by He, may be given as

He :=
m∑

i=1

αi

(
Si,T − β̄i

αi
K

)+

− CT + erT
(
C0 − C0

)
, (71)

where the risk free interest rate is compounded to the initial cost to adjust the present and the future values.
Here we compare the hedging errors between the minimum variance hedging strategy (or “optimal hedging”

for short) and the super-hedging strategy (or “super-hedging” for short) based on the same problem setting as
that in Subsection 6.2. Since we have assumed that µi = 0, i = 1, . . . ,m and r = 0, the physical probability
measure provides the risk neutral probability measure, and it holds that

E (He) = Ẽ (He) = 0.
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For optimal hedging, note the expected values of hedging errors are also zero for both under the risk and physical
probability measures. Therefore, the standard deviation of hedging error may be thought of a measure of risk
under the zero expected return.

Figure 4 compares the standard deviations of hedging errors for optimal hedging (solid line) and super-
hedging (dashed line) for different values of strikes. Similar to Figure 2, the vertical axis in each plot refers to
the strike price divided by the initial price (= 100), whereas the horizontal axis to the standard deviation of
hedging error. The top left plot is for T = 1/24 (1/2 month maturity), the top right for T = 1/12 (1 month
maturity), the bottom left for T = 3/12 (3 month maturity), and the bottom right for T = 6/12 (6 month
maturity). As expected, optimal hedging always provides a better hedge effect in terms of standard deviation,
due to the fact that optimal hedging minimizes the mean square error (or the variance with zero expected value)
directly. In particular, the difference is more emphasized with a larger strike price and a longer maturity.

To compare the worst case loss, we computed 95% Value-at-Risk (VaR) for the hedge errors and obtained
Figure 5, where the solid line refers to 95% VaR of the hedging error from optimal hedging and the dashed to
that from super-hedging. Similar to Figure 4, the top left plot is for T = 1/24 (1/2 month maturity), the top
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Figure 4: Standard deviations of hedging errors for optimal hedging (solid line) and super-hedging (dashed
line): The top left plot is for T = 1/24 (1/2 month maturity), the top right for T = 1/12 (1 month maturity),
the bottom left for T = 3/12 (3 month maturity), and the bottom right for T = 6/12 (6 month maturity).
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right for T = 1/12 (1 month maturity), the bottom left for T = 3/12 (3 month maturity), and the bottom
right for T = 6/12 (6 month maturity). In this case, super hedging tends to be better, in particular, when the
strike price is within the range of ±10–15% from the initial value of the underlying. On the other hand, for a
shorter maturity in the deep OTM and ITM cases, optimal hedging tends to be better in terms of 95% VaR.
In summary, we conclude that optimal hedging is always better if we take standard deviation as a performance
measure of the hedge, whereas in terms of the worst case error, super-hedging tends to provide a better bound
with a given confidence level, i.e., 95% VaR in this example.
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Figure 5: 95% VaR of hedging errors for optimal hedging (solid line) and super-hedging (dashed line): The top
left plot is for T = 1/24 (1/2 month maturity), the top right for T = 1/12 (1 month maturity), the bottom left
for T = 3/12 (3 month maturity), and the bottom right for T = 6/12 (6 month maturity).

Remark 2 Note that the super-hedging strategy is completely static and is constructed using individual options
with standard payoff functions. Although the optimal hedging strategy uses options with any payoff functions
and is more difficult to construct a static position, dynamic hedging strategy may be used to replicate each payoff
of individual option as demonstrated in Section 5. It should be mentioned that the optimal hedging strategy may
be applied for any payoff functions of the target derivative, whereas for applying the super-hedging strategy, the
payoff functions are restricted to be convex because of Jensen’s inequality. Using optimal hedging strategy, we
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can consider general payoff structure or general derivatives such as spread options, compound options, and some
of exiotics including digital options.

7 Conclusion

In this paper, we have considered an optimal hedging problem, in which smooth functions of individual assets
are searched over to minimize the mean square error from the payoff of multivariate derivative security. At
first, we derived a set of linear equations to construct optimal smooth functions by applying a necessary and
sufficient condition for optimality and suitable discretization. It was shown that the computations involving
conditional expectations for multivariate derivatives may be reduced to those of unconditional expectations and
that the total procedure can be executed efficiently. We investigated the theoretical properties for the optimal
smooth functions and clarified the following three facts: (i) the value of each individual option takes an optimal
trajectory to minimize the mean square hedging error under the risk neutral probability measure, (ii) optimal
smooth functions for the put option may be constructed using those for the call option (and vice versa), and (iii)
delta in the replicating portfolio for multivariate option may be computed efficiently. Finally, we demonstrated
numerical experiments to show the effectiveness of our proposed methodology, where we compared our proposed
methodology with the super-hedging strategy for basket options. Based on the numerical experiment, we verified
that the optimal hedging strategy is better if we take standard deviation as a performance measure of the hedge,
whereas in terms of the worst case error, super-hedging tends to provide a better bound with a given confidence
level.

References

[1] J. Alcock and P. Gray (2005), “Dynamic, nonparametric hedging of European style contingent claims using
canonical valuation,” Finance Research Letters, 2, pp. 41–50.

[2] Y. Ait-Sahalia and A.W. Lo (1998), “Nonparametric Estimation of State-Price Densities Implicit in Fi-
nancial Asset Prices,” Journal of Finance, 52, pp. 499–548.

[3] F. Black and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political
Economy, 81, 637–654.

[4] M. Broadie, J. Detemple, E. Ghysels and O. Torres (2000), “Nonparametric estimation of American options’
exercise boundaries and call prices,” Journal of Economic Dynamics and Control, 24, 1829–1857.

[5] P. Carr and D. Madan (2001), “Optimal positioning in derivative securities,” Journal of Financial Econo-
metrics, 1(3), 327–364.

[6] T. Daglish (2003), “A Pricing and Hedging Comparison of Parametric and Nonparametric Approaches for
American Index Options,” Quantitative Finance, 1, 19–37.

[7] D. Duffie and H.R. Richardson (1991), “Mean-variance hedging in continuous time,” Annals Appl. Proba-
bility, 1, 1-15.

[8] R. Garciaa and R. Gencay (2000), “Pricing and hedging derivative securities with neural networks and a
homogeneity hint,” Journal of Econometrics, 94, pp. 93–115.

[9] P. Gray, S. Edwards and E. Kalotay (2007), “Canonical valuation and hedging of index options,” Journal
of Futures Markets, 27(8), pp. 771–790.

23



[10] T. Hastie and R. Tibshirani (1990), Generalized Additive Models, Chapman & Hall.

[11] D. Hobson, P. Laurencec and T.H. Wang (2005), “Static-Arbitrage Upper Bounds for the Prices of Basket
Options,” Quantitative Finance, 5(4), 329–342.

[12] J. Hull and A. White (1990), “Valuing Derivative Securities Using the Explicit Finite Difference Method,”
Journal of Financial and Quantitative Analysis, 25, pp. 87–100.

[13] J.M. Hutchinson, A.W. Lo and T. Poggio (1994), “A Nonparametric Approach to Pricing and Hedging
Derivative Securities via Learning Networks,” Journal of Finance, 49, pp. 851–889.

[14] R. Merton (1973), “Theory of rational option pricing,” Bell Journal of Economics and Management Science,
4, pp. 141–184.

[15] J.A. Primbs (2009), “Dynamic hedging of basket options under proportional transaction costs using receding
horizon control,” International Journal of Control, 82(10), pp. 1841–1855.

[16] E.S. Schwartz and C. Tebaldi (2006), “Illiquid Assets and Optimal Portfolio Choice,” NBER Working
Paper No. 12633, (http://www.nber.org/papers/w12633).

[17] S.E. Shreve (2004), Stochastic Calculus for Finance II: Continuous-Time Models, Springer.

[18] M. Stutzer (1996), “A Simple Nonparametric Approach to Derivative Security Valuation,” Journal of
Finance, 51, pp. 1633–1652.

[19] X. Su (2008), “Essays on Basket Options Hedging and Irreversible Investment Valuation,” Ph.D. Disserta-
tion, University of Bonn.

[20] S.N. Wood (2006), Generalized Additive Models: An Introduction with R, Chapman & Hall.

[21] Y. Yamada (2007), “Valuation and Hedging of Weather Derivatives on Monthly Average Temperature,”
Journal of Risk, 10(1), pp. 101–125.

[22] Y. Yamada (2008a), “Optimal design of wind derivatives based on prediction errors (in Japanese),” JAFEE
journal, 7, pp. 152–181.

[23] Y. Yamada (2008b), “Optimal hedging of prediction errors using prediction errors,” Asia-Pacific Financial
Markets, 15(1), pp. 67–95.

24


