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We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions
based on density functional theory including van der Waals interactions. We apply it to the transport properties
of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally
activated behaviors as a function of the magnitude of external static disorder. We compare the results with those
obtained by the conventional band and hopping models and experiments.
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I. INTRODUCTION

Recently, understanding of the quantum transport of flexible
materials, such as organic crystals, DNA, and biomaterials, has
attracted considerable attention [1,2]. In contrast to covalently
bonded inorganic materials, such as silicon where the crystal
structure is fixed, flexible materials at room temperature
can change their structures significantly, and their transport
properties are determined by strong scattering with phonons
due to time-dependent structural deformation. In this respect,
a computational approach in which both the electronic states
and the dynamical material structures are treated on an equal
footing, is crucial for the understanding of intrinsic transport
properties. For the charge transport calculation, we previously
reported a wave-packet approach where the transport prop-
erties are evaluated using the Kubo formula on the basis
of the quantum-mechanical calculations of electron wave-
packet dynamics [3–5]. In this paper, we present an extended
formulation of the time-dependent wave-packet diffusion
(TD-WPD) method based on both density functional theory
(DFT) including a recently developed formalism for van der
Waals forces and the maximally localized Wannier functions
(MLWFs) located on each molecule [6–10]. The intrinsic
transport of flexible materials depends on the magnitudes of
the intermolecular transfer energy γ and reorganization energy
λ. Ideal band transport and hopping transport are realized
in the cases of γ � λ and γ � λ, respectively. Recently
reported high-mobility flexible organic semiconductors have
transfer energy comparable to the reorganization energy [11]
and exhibit a crossover from the hopping to bandlike transport
regimes [12]. Observation of the Hall effect implies the phase
coherence of carriers in organic materials [13,14]. Since γ is
strongly dependent on the electron-phonon (e-ph) interaction,
it is essential to obtain accurate e-ph coupling parameters.
Here we present the TD-WPD method to treat strong e-ph
couplings from ab initio calculations using MLWFs in detail.
It is important to note that transport properties of flexible
materials observed in experiments are not only explained from
the intrinsic effects, but also explained from the the extrinsic
effects, such as static disorder or trap potentials, and cannot be
ignored [15]. The TD-WPD approach enables us to carry out

transport calculations including the strong e-ph couplings and
static disorder on equal footing without perturbative treatment.
In previous papers, we discussed the temperature dependence
of the mobility and Hall effect in competition among thermal
structural fluctuations, polaron formation, and static disorder
[4,5] by using the dimer approach with DFT-D formalism [16]
for van der Waals interactions where the electronic state of a
dimer is projected to the molecular orbitals of single molecules
[17]. Here, using a more rigorous calculation method based on
DFT, we obtain the intermolecular transfer energy without any
fitting or projection in the most natural way.

As a demonstration, we apply the present TD-WPD method
to pentacene and rubrene single crystals, organic semiconduc-
tors which are promising flexible materials [18–20] for plastic
electronics fabricated by a large-area low-cost printing process
[21,22]. We evaluate the temperature-dependent behavior of
the hole mobility and the effects of the static disorder then
compare the results with those obtained by the experiments
and the conventional band and hopping models.

II. CALCULATION METHOD

In the TD-WPD approach, we compute the mobility of a
charge q along the ξ direction for a material with volume �

using the following Kubo formula:

μξ = lim
t→+∞

q

n

∫ +∞

−∞
dE

(
− df

dE

)

×
〈
δ(E − Ĥe)

�

{ξ̂ (t) − ξ̂ (0)}2

t

〉
, (1)

where n is the concentration of charge carriers n =∫
dE f (E)〈δ(E − Ĥe)〉/�. We note that the effects of

strong e-ph couplings in transport are introduced in Ĥe

through thermal structural fluctuations of molecules and
are obtained by combining with a classical real-time
molecular-dynamics simulation [23]. The Heisenberg picture
of the position operator is defined by ξ̂ (t) = Û †(t)ξ̂ Û (t),
where Û (t = Nt�t) ≡ �

Nt−1
n=0 exp {iĤe(n�t)�t/h̄} is the

time-evolution operator. The quantity 〈· · · 〉 is evaluated as
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∑Nwp

m=1〈	m(0)| · · · |	m(0)〉/Nwp, where Nwp is the number
of random-phase wave-packet |	m(0)〉. Note that, when
the Fermi distribution function is approximated as f (E) 	
e−β(E−EF ), we can reproduce the well-known Einstein relation
μξ = qDξ/kBT from Eq. (1) where the diffusion coefficient
Dξ is defined as

Dξ ≡ limt→+∞(1/t)[
∫

dE f (E)〈δ(E−Ĥe){ξ̂ (t)−ξ̂ (0)}2〉]/
[
∫

dE f (E)〈δ(E − Ĥe)〉].
A general Hamiltonian for electrons interacting with lattice

phonons (intermolecular vibrations) is given as

Ĥtot =
∑
n,m

γnmâ†
nâm +

∑
λ,q

h̄ωλq

(
b̂
†
λqb̂λq + 1

2

)
, (2)

where â
†
n and b̂

†
λq represent the creation operator of electrons at

the nth site and the creation operator of phonons with mode λ,
wave-vector q, and the vibration frequency ωλq. The transfer
energies including the e-ph coupling are defined by

γnm = γ 0
nm +

∑
λ,q

h̄ωλqg
λq
nm(b̂†λq + b̂λ−q), (3)

with the dimensionless e-ph coupling constant g
λq
nm ≡∑

k,s(2h̄MNω3
λq)−1/2eiqRk (∂γnm/∂Rks)e

λq
s , where eλq

s is an
eigenvector of the lattice phonons and M and N , respectively,
represent the mass of a single molecule and the number of unit
cells [24,25]. Here γ 0

nm is the transfer energy at the equilibrium
position of molecules.

In the present TD-WPD method, we extract the electron
(hole) Hamiltonian matrix of any flexible material by calcu-
lating MLWFs centered on a site Rn as follows:

WαRn
(r) = V

(2π )3

∫
BZ

⎧⎨
⎩

∑
β

U
(k)
αβ ψβk(r)

⎫⎬
⎭e−ikRnd3k, (4)

where V is the volume of the unit cell and the Bloch
states ψαk(r) with band index α and wave-vector k are
obtained by DFT including van der Waals interactions for
the Kohn-Sham Hamiltonian ĤKS . The unitary matrix U(k)

is determined so that it minimizes the spread function S =∑
α{〈Wα0|r2|Wα0〉 − |〈Wα0|r|Wα0〉|2} [26]. Since the MLWF

is located on each molecule, the transfer energies including
e-ph couplings in Eq. (3) between molecules are obtained as

γnm = 〈WαRn
|ĤKS |WαRm

〉. (5)

To reduce the calculation cost, we adopt the semiclassical
approximation to evaluate the lattice phonons. The phonon
operators in Eq. (3) are replaced by the displacements of
molecules [4,23] where the displacement of the sth molecule in
the kth unit cell is defined as �Rks = ∑

λ,q Xλqe
iqRk eλq

s with

Xλq = √
h̄/2MNωλq(b̂†λq + b̂λ−q). Furthermore, we assume

that the transfer energy γnm depends solely on the relative
coordinate Rnm ≡ Rm − Rn, then the transfer energy in Eq. (3)
is rewritten as γnm 	 γ 0

nm + (∂γnm/∂Rnm)�Rnm, where �Rnm

represents the change in Rnm due to intermolecular vibrations;
(∂γnm/∂Rnm) is hereafter called the e-ph coupling constant.
The motion of the nth molecule is given by the canonical
equation of motion M �R̈n = −∂Etot({�Rij })/∂ �Rn, where
Etot is the total energy within a rigid molecule approximation
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FIG. 1. (a) Structure of a single crystal of pentacene with a
calculated MLWF generated from the HOMO band states in a
3 × 2 × 1 supercell. The pairs of intermolecular interactions are
indicated by arrows labeled A–D. (b) Energy bands obtained from
DFT using the plane-wave basis set with symmetry points of
�(0,0,0), X(1/2,0,0), Y (0,1/2,0), Z(0,0,1/2), and S(1/2,1/2,0).
The HOMO bands obtained from MLWFs are shown by green lines.
The red lines represent the bands when considering only the transfer
energies labeled A–D. The broken line represents the Fermi energy.

[23]. By extracting �Rnm at each time step of the molecular-
dynamics calculations, we can introduce the effects of thermal
structural fluctuation as the ever-changing transfer energy and
obtain the mobility from Eq. (1). Since the calculations of the
MLWFs in the trajectory of wave packets every time step for
the fluctuating lattice are quite time consuming, we employ
the Taylor expansion forms for γnm.

III. RESULTS AND DISCUSSION

A. Transport properties of pentacene and rubrene
single crystals

As a demonstration, we apply the present TD-WPD method
to the transport of pentacene and rubrene single crystals [27]
with high mobility. The cell parameters as well as the internal
degrees of freedom are fully relaxed using the van der Waals
density functional (vdW-DF) [28–33]. After obtaining the re-
laxed structure, we calculate MLWFs constructed from Bloch
states of the highest occupied molecular orbital (HOMO) band
for a 3 × 2 × 1 supercell with the � point in k space [34].
Here we use a monolayer structure since we investigate the
conduction on the ab plane, which is shown in Figs. 1(a) and
2(a) with one of the calculated Wannier functions for pentacene
and rubrene crystals, respectively. From Figs. 1(b) and 2(b), we
can confirm that the band structure obtained from the MLWF
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FIG. 2. (a) Structure of a single crystal of rubrene with a
calculated MLWF generated from the HOMO band states in a
3 × 2 × 1 supercell. The pairs of intermolecular interactions are
indicated by arrows labeled A and B. (b) Energy bands obtained
from DFT using the plane-wave basis set with symmetry points
of �(0,0,0), X(1/2,0,0), Y (0,1/2,0), and Z(0,0,1/2). The HOMO
bands obtained from MLWFs are shown by green lines. The red
lines represent the bands when considering only the transfer energies
labeled A and B. The broken line represents the Fermi energy.

basis set (green lines) reproduces the HOMO band structure
calculated using the plane-wave basis set (black lines).

Figure 3 shows the transfer energies γnm of pentacene single
crystal calculated by Eq. (5) for pairs A–D in Fig. 1(a) as a
function of the displacement along the (a) in-plane direction
and (b) out-of-plane directions. Similarly, the transfer energies
of a rubrene single crystal for pairs A and B in Fig. 2(a) are
shown in Fig. 4. Since previous experimental data obtained
from translation-libration-screw analysis revealed standard
deviations of the molecular displacement of about 0.2 Å
at room temperature [35], which means that the maximum
amplitudes of intermolecular vibrations can reach up to three
or four times the standard deviations, we obtain the e-ph
coupling constants by fitting the change in transfer energy with
a range of displacements from −0.6 to +0.6 Å using the rigid
molecule approximation taking two different translational
directions for Rnm into account. One is the in-plane direction
along the line connecting the centers of mass. The other is
the out-of-plane direction which is along the long axis of the
single molecule for the pentacene crystal and along the c axis
for the rubrene crystal. The Taylor expansions for γnm for the
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FIG. 3. Transfer energies of pentacene single crystal calculated
using a MLWF basis set as a function of (a) �R(i) and (b) �R(o). The
directions of �R(i) and �R(o) for pair B are shown by black arrows.
(The inset) Transfer energies calculated by the dimer method.

pentacene crystal are found to be expressed as a second-order
equation in �Rnm,

γnm 	 γ 0
nm + α(i)

nm�R(i)
nm

+α(o1)
nm �R(o)

nm + α(o2)
nm

(
�R(o)

nm

)2
, (6)

where �R(i)
nm and �R(o)

nm are the displacement along the in-
plane and out-of-plane directions. Note that the second-order
term α(o2)

nm is typical for flexible organic semiconductors, not
included in the perturbative approach. For comparison, the
transfer energies γ 0 derived from the dimer method [17] and
the coupling constants α(i) in the insets of Figs. 3 and 4 show
good agreement within 10 meV, whereas α(o1) and α(o2) of
pentacene obtained by the dimer method slightly overestimate
the change in transfer energies.

First, we studied the mobility of the pentacene single crystal
along the a axis as a function of temperature. As shown by
green triangles in Fig. 5, experimental data [15,36] indicate
that the appearance of thermally activated transport is in
many instances more likely due to the presence of extrinsic
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FIG. 4. Transfer energies of rubrene single crystal calculated
using a MLWF basis set as a function of (a) �R(i) and (b) �R(o). The
directions of �R(i) and �R(o) for pair B are shown by black arrows.
(The inset) Transfer energies calculated by the dimer method.

static disorder with potential depths of approximately 50 meV
than to the intrinsic signature of polaron formation [37].
To compare with experiments, we introduce the extrinsic
effects of on-site static disorder potentials with a Gaussian
distribution having energy width W from 40 to 100 meV,
which are comparable to γ 0, showing that the motion of
charge carriers is strongly disturbed by the static disorder.
The intrinsic mobility for W = 0 exhibits typical bandlike
behavior, a power-law temperature dependence as shown by
open circles. The W dependence of the mobility shows that the
intrinsic mobility of 54.4 cm2 V−1 s−1 at 300 K is decreased
to 14.9 cm2 V−1 s−1 for W = 40 meV and to 1.1 cm2 V−1 s−1

for W = 100 meV by the existence of static disorder. The
variation in the mobilities at room temperature reported in
experimental works of pentacene-single-crystal transistors are
shown by the green bar [38–42]. Furthermore, we obtained
a change in the temperature dependence from power-law
dependence to thermally activated behavior via temperature-
independent behavior with 5–10 cm2 V−1 s−1 at approx-
imately W = 50 meV. In previous experimental reports,
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FIG. 5. Calculated mobility of pentacene single crystal along the
a axis as a function of temperature for several magnitudes of static
disorder W from 0 to 100 meV. The band mobility and hopping
mobility also are shown by blue and red lines, respectively. For
comparison, the green bar represents the variation in the mobil-
ities at room temperature reported in several experimental works
of pentacene-single-crystal transistors [38–42]. Experimentally ob-
served temperature-dependent mobilities of thin-film transistors [36]
and single-crystal transistors [43] are plotted by green triangles and
crosses, respectively.

temperature-independent mobility of 0.5–1 cm2 V−1 s−1 is
often observed in pentacene-single-crystal devices as shown
by green crosses in Fig. 5 [43].

Next we investigated the transport properties of rubrene
single crystal with the highest mobility in organic semi-
conductors. Figure 6 shows the mobility as a function of
temperature for several magnitudes of static disorder W from
0 to 100 meV. The intrinsic mobility of 192 cm2 V−1 s−1 at
300 K is decreased to 75.3 cm2 V−1 s−1 for W = 40 meV
and to 3.62 cm2 V−1 s−1 for W = 100 meV. Experimentally
observed mobilities at room temperature of rubrene single-
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FIG. 6. Calculated mobility of a rubrene single crystal along the a

axis as a function of temperature for several magnitudes of static dis-
order W from 0 to 100 meV. For comparison, temperature-dependent
mobilities of rubrene-single-crystal transistors in experimental works
[12–14,52,53] are plotted by green symbols. The green bar represents
the variation in the mobilities at room temperature reported in
previous experimental works [39,41,44–51].
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crystal transistors are distributed from 0.5 to 40 cm2 V−1 s−1

as shown by the green bar [39,41,44–51]. The temperature-
dependent mobilities [12–14,52,53] also are plotted by green
symbols. These experimental results show a change in the
temperature dependence from power-law to thermally acti-
vated behavior via temperature-independent behavior with
5–10 cm2 V−1 s−1. On the other hand, we can see a similar
change in the temperature dependence of calculated mobilities
from power-law dependence to thermally activated behavior.
The temperature-independent mobility with 30 cm2 V−1 s−1 is
obtained at W = 60 meV.

From the quantitative comparison between our calculated
mobilities and the experimentally observed mobility, it seems
that the present method overestimates the magnitude of
mobilities for pentacene and rubrene single crystals. More
accurate calculations are expected to be performed by con-
sidering various phonon modes, such as librational vibrations,
intramolecular vibrations, and polaron effects [4,25,54–57].

B. Comparison with band and hopping models

Finally, we compare the calculated results with those
obtained from two limiting conventional models, which are
classified depending on the magnitudes of the intermolecular
transfer energy γ and reorganization energy λ. One is the
band transport model, which assumes that electrons propagate
as coherent delocalized waves scattered by the lattice phonons
through crystals, which is applicable for γ � λ. The scattering
rate, obtained by the acoustic deformation potential model
[58], is inversely proportional to the temperature τ band =
h̄3BLeff/ε

2
acmdkBT , where B is the elastic modulus, Leff is

the effective width of carrier confinement, εac is the acoustic
deformation potential, and md is the density of states mass.
The diffusion coefficient along the a axis is obtained as
Dband

a = ∫ +∞
−∞ dt〈v̂a(t)v̂a(0)〉 = v2

aτ
band, where va is the group

velocity. As a result, we can obtain the power-law temperature
dependence of the band mobility as μband

a = qDband
a /kBT =

qτ band/m∗
a , where m∗

a is the effective mass along the a axis
of the HOMO band. Using the parameters obtained from DFT
calculations [11,59], we obtain the band mobility of pentacene
and rubrene single crystals shown by the blue line in Figs. 5 and
6, respectively. Ideal coherent band transport is not realized
in organic semiconductors because the HOMO band-edge
states are spatially localized owing to strong e-ph couplings
[55,60–62]. Although the TD-WPD method can introduce the
strong e-ph interactions without the perturbative approach, the
intrinsic mobility (W = 0) obtained by the TD-WPD method
becomes larger than the ideal band mobility. The possible
origin of the difference is suggested in some papers [62,63]
but still under consideration.

The other limiting conventional model is the incoherent
hopping model based on the semiclassical Marcus theory
[64,65], which assumes that a carrier creates a small polaron
state localized on a single molecule with distortion then hops
to neighbor molecules without phase coherence; this model is
generally applicable for γ � λ. The hopping rate from the nth
site to the mth site exhibits thermally activated behavior and
is given by 1/τ

hop
nm = (γ 2

nm/h̄)
√

π/λkBT exp (−λ/4kBT ). The
diffusion coefficient is obtained from the hopping rate Dhop =
(1/2nd )

∑
k a2

nkPnk/τ
hop
nk , where Pnm = (1/τ

hop
nm )/

∑
k(1/τ

hop
nk ),

a is the intermolecular distance, and nd is the dimensionality.
As a result, we can obtain the hopping mobility with thermally
activated behavior μhop = qDhop/kBT . Interestingly, the cal-
culated hopping mobility shown by the red lines in Figs. 5
and 6 exhibits temperature-independent mobility around room
temperature with a mobility of ∼1 cm2 V−1 s−1. However, we
should note that the parameter region where this perturbative
approach is applicable is λ/4 � γ , whereas γ is comparable to
λ for pentacene and rubrene single crystals [11]. This supports
the idea that the temperature-independent mobility is induced
by the presence of extrinsic disorder [66,67].

IV. SUMMARY

To summarize, we present a methodology of the wave-
packet dynamical approach to the charge transport of flexible
materials using maximally localized Wannier functions based
on the density functional theory including accurate van der
Waal interactions. The strong electron-phonon interactions
due to thermal fluctuation are appropriately included as
intrinsic effects. As a demonstration, we study the transport
properties of pentacene and rubrene organic semiconductors.
We compare the calculated temperature-dependent behavior
of mobilities with experimental results. We also find the
temperature-dependent behavior from bandlike to thermally
activated behavior due to extrinsic disorder effects, which
correspond to experimental observations.
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