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1. Introduction

Light-cone gauge superstring field theory (Refs. [1–6]) was proposed to give a nonperturbative
definition of closed superstring theory with only three-string interaction terms. However it is known
that the Feynman amplitudes of the theory are plagued with various divergences. Even the tree
amplitudes are ill defined because of the so-called contact term divergences (Refs. [7–10]) caused
by the insertions of world sheet supercurrents at the interaction points.

In our previous works Refs. [11–19], we have proposed dimensional regularization to deal with
the contact term divergences of the light-cone gauge superstring field theory in the RNS formalism.
Since the light-cone gauge theory is a completely gauge fixed theory, it is possible to formulate it
in d-dimensional Minkowski space with d �= 10. Although Lorentz invariance is broken, the theory
corresponds to a conformal gauge world sheet theory with nonstandard longitudinal part. The world
sheet theory for the longitudinal variables turns out to be a superconformal field theory with the
right central charge so that we can construct nilpotent BRST charge. The contributions from the
longitudinal part of the world sheet theory, or equivalently the anomaly factors that appear in the
light-cone gauge Feynman amplitudes, have the effect of taming the contact term divergences and
the tree amplitudes become finite when −d is large enough. It is possible to define the amplitudes
as analytic functions of d and take the limit d → 10 to get the amplitudes for critical strings. The
results coincide with those of the first quantized formalism.

We expect that the dimensional regularization or its variant also works as a regularization of the
multiloop amplitudes. In order to generalize our results to the multiloop case, there are several things
to be done. We need to study how divergences of multiloop amplitudes arise in light-cone gauge
perturbation theory and check whether they are regularized by considering the theory in noncritical
dimension. Another problem to be considered is how to deal with the spacetime fermions. Naive
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dimensional regularization causes problems with spacetime fermions because the number of gamma
matrices is modified in the regularization.

In this paper, we propose superstring field theory in a linear dilaton background to regularize the
divergences of the multiloop amplitudes. With the linear dilaton background keeping the number of
transverse coordinates at eight, we can tame the divergences without having problems with fermions.
A Feynman amplitude is given as an integral over moduli parameters and the integrand is written in
terms of quantities defined on the light-cone diagram. The divergences originate from degenerations
of the world sheet and collisions of interaction points. We prove that with the Feynman iε (ε > 0)
and the background charge Q satisfying Q2 > 10, the amplitudes become finite. It should be
possible to define the amplitudes as analytic functions of Q for Q2 > 10 and take the limit Q →
0 to obtain those in the critical dimension. What happens in the limit is the subject of another
paper (Ref. [20]).

The organization of this paper is as follows. In Sect. 2, we construct the superstring theory in a linear
dilaton background and present the perturbative amplitudes obtained from the theory. In Sect. 3, we
study the light-cone diagrams that contain divergences. Divergences originate from degeneration of
the world sheet and collisions of interaction points. We study what light-cone diagrams corresponding
to degenerate Riemann surfaces look like. In Sect. 4, we examine the singular contributions to the
amplitudes from the light-cone diagrams in which degenerations and collisions of interaction points
occur. In Sect. 5, we show that the amplitudes are finite for the theory with the Feynman iε (ε > 0)
and the background charge Q satisfying Q2 > 10. Section 6 is devoted to discussions.

2. Superstring field theory in a linear dilaton background
2.1. Light-cone gauge superstring field theory

In light-cone gauge closed superstring field theory, the string field

|�(t,α)〉

is taken to be an element of the Hilbert space of the transverse variables on the world sheet and a
function of

t = x+,

α = 2p+.

In this paper, we consider superstring theory in the RNS formalism; |�(t,α)〉 should be GSO even
and satisfy the level matching condition

(L0 − L̄0) |�(t,α)〉 = 0, (2.1)

where L0, L̄0 are the Virasoro generators of the world sheet theory.
In type II superstring theory, the Hilbert space consists of (NS,NS), (NS,R), (R,NS), and (R,R)

sectors and the string fields in the (NS,NS) and (R,R) sectors are bosonic and those in the (NS,R) and
(R,NS) sectors are fermionic. In the heterotic case, there are NS and R sectors of the right-moving
modes, which correspond to bosonic and fermionic fields respectively. In the following, we will
consider the case of type II theory based on a world sheet theory for the transverse variables with
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central charge

c = 3
2(d − 2).

The heterotic case can be dealt with in a similar way.
The action of the string field theory is given by (Refs. [11,21])

S =
∫

dt

[
1

2

∑
B

∫ ∞

−∞
α dα

4π
〈�B (−α)|

(
i∂t − L0 + L̄0 − d−2

8 − iε

α

)
|�B (α)〉

+ 1

2

∑
F

∫ ∞

−∞
dα

4π
〈�F (−α)|

(
i∂t − L0 + L̄0 − d−2

8 − iε

α

)
|�F (α)〉

− gs

6

∑
B1,B2,B3

∫ 3∏
r=1

(
αr dαr

4π

)
δ

(
3∑

r=1

αr

) 〈
V3

∣∣�B1(α1)
〉 ∣∣�B2(α2)

〉 ∣∣�B3(α3)
〉

−gs

2

∑
B1,F2,F3

∫ 3∏
r=1

(
αr dαr

4π

)
δ

(
3∑

r=1

αr

) 〈
V3

∣∣�B1(α1)
〉
α

−1/2
2

∣∣�F2(α2)
〉
α

−1/2
3

∣∣�F3(α3)
〉⎤⎦.

(2.2)

The first and second terms are the kinetic terms with the Feynman iε, and 〈�(−α)| denotes the BPZ
conjugate of |�(−α)〉. The third and fourth terms are the three-string vertices and gs is the string
coupling constant. The sums over bosonic and fermionic string fields are denoted by

∑
B and

∑
F

respectively.
By the state-operator correspondence of the world sheet conformal field theory, there exists a

local operator O�(ξ , ξ̄ ) corresponding to any state |�〉. We define 〈V3|�(α1)〉 |�(α2)〉 |�(α3)〉
with

∑3
r=1 αr = 0 to be

〈V3|�(α1)〉 |�(α2)〉 |�(α3)〉

=
〈

lim
ρ→ρ0

|ρ − ρ0|3/2 T LC
F (ρ) T̄ LC

F (ρ̄) h1 ◦ O�(α1)(0, 0)h2 ◦ O�(α2)(0, 0)h3 ◦ O�(α3)(0, 0)
〉



,

(2.3)

in terms of a correlation function on
 which is the world sheet describing the three-string interaction
depicted in Fig. 1. On each cylinder corresponding to an external line, one can introduce a complex
coordinate

ρ = τ + iσ ,

whose real part τ coincides with the Wick rotated light-cone time it and imaginary part σ ∼ σ+2παr

parametrizes the closed string at each time. The ρ’s on the cylinders are smoothly connected except
at the interaction point ρ0 and we get a complex coordinate ρ on 
. The correlation function 〈·〉
 is
defined with the metric

ds2 = dρ dρ̄,
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Fig. 1. The three-string vertex for superstrings. Here we consider the case α1, α2 > 0, α3 < 0.

on the world sheet. The map hr(ξ) is from a unit disk |ξ | < 1 to the cylinder corresponding to the
rth external line so that

ξ = exp
(

1

αr
(hr(ξ)− ρ0)

)
,

and T LC
F , T̄ LC

F are the supercurrents of the transverse world sheet theory.
It is convenient to express the right-hand side of Eq. (2.3) in terms of a correlation function on the

sphere as

〈V3|�(α1)〉 |�(α2)〉 |�(α3)〉

= exp
(

−d − 2

16


) 〈 ∣∣∂2ρ (z0)
∣∣−3/2

T LC
F (z0) T̄ LC

F (z̄0)

× ρ−1h1 ◦ O�1(α1)(0, 0)ρ−1h2 ◦ O�2(α2)(0, 0)ρ−1h3 ◦ O�3(α3)(0, 0)
〉
C∪∞. (2.4)

Here ρ(z) is given by

ρ(z) =
3∑

r=1

αr ln(z − Zr),

which maps the complex plane to 
, and z0 denotes the z-coordinate of the interaction point, which
satisfies

∂ρ(z0) = 0.

The correlation function 〈·〉C∪∞ is defined with the metric

ds2 = dz dz̄,

on the world sheet. The salient feature of light-cone gauge string field theory is that the central charge

of the world sheet theory is nonvanishing even in the critical case. The term exp
(
−d−2

16 
)

is the

4/39



PTEP 2017, 033B01 N. Ishibashi

anomaly factor associated to the conformal map z → ρ(z) and its explicit form is given as

exp
(
−d−2

16 
)

=
⎛
⎝exp

(
−2

∑
r
τ̂0
αr

)
α1α2α3

⎞
⎠
(d−2)/16

,

where

τ̂0 ≡
3∑

r=1

αr ln |αr| .

2.2. Linear dilaton background

The Feynman amplitudes of light-cone gauge superstring field theory suffer from contact term
divergences. As we pointed out in Ref. [11], these divergences are regularized by formulating the
theory in d �= 10 dimensions. However, if one simply considers superstring field theory in noncritical
dimensions, fermionic string fields cannot satisfy Eq. (2.1) (Ref. [15]). In type II superstring theory,
naive dimensional continuation implies that the level-matching condition for the (NS,R) sector
becomes

N + d − 2

16
= N̄ ,

where N and N̄ denote the left and right mode numbers of the light-cone gauge string state. For
generic d, there exists no state satisfying it. The same argument applies to the (R,NS) sector. We
have the same problem in the R sector of the heterotic string theory. Therefore we cannot use the
naive dimensional regularization to regularize superstring amplitudes, although it may be used to
deal with the type 0 theories. Another drawback of the naive dimensional regularization is that there
is difficulty in dealing with odd spin structure,1 as anticipated from the problems with γ 5 in the
dimensional regularization in field theory.

It is possible to regularize the divergences by formulating the theory based on world sheet theory
with a large negative central charge, instead of changing the number of spacetime dimensions.
Therefore, in order to have a theory without the aforementioned problems, we need a world sheet
theory in which we can change the central charge keeping the number of the world sheet fermions
fixed. A convenient way to obtain such a theory is to take the dilaton background to be� = −iQX 1,
proportional to one of the transverse target space coordinates X 1. Then the world sheet action of X 1

and its fermionic partners ψ1, ψ̄1 on a world sheet with metric ds2 = 2ĝzz̄ dz dz̄ becomes

S
[
X 1,ψ1, ψ̄1; ĝzz̄

] = 1

16π

∫
dz ∧ dz̄ i

√
ĝ
(

ĝab∂aX 1∂bX 1 − 2iQR̂X 1
)

+ 1

4π

∫
dz ∧ dz̄ i

(
ψ1∂̄ψ1 + ψ̄1∂ψ̄1), (2.5)

1 The world sheet theory proposed in Ref. [15] has this problem.
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and the energy–momentum tensor and the supercurrent are given as

T X 1
(z) = −1

2(∂X 1)2 − iQ(∂ − ∂ ln ĝzz̄)∂X 1 − 1
2ψ

1∂ψ1,

T X 1

F (z) = − i
2∂X 1ψ1 + Q(∂ − 1

2∂ ln ĝzz̄)ψ
1.

In this paper, we take Q to be a real constant.
In order to construct string field theory and calculate amplitudes we need the correlation functions

of the linear dilaton conformal field theory. Since the fermionic part is just a free theory we concentrate
on the bosonic part. Let us consider the correlation function of operators exp

(
iprX 1

)
(r = 1, . . . , N )

on a Riemann surface of genus g with metric ds2 = 2gzz̄ dz dz̄, which is given as

∫ [
dX 1]

gzz̄
exp

(−S
[
X 1; gzz̄

]) N∏
r=1

exp
(
iprX 1) (Zr , Z̄r), (2.6)

where

S
[
X 1; gzz̄

] = 1

16π

∫
dz ∧ dz̄ i

√
g
(

gab∂aX 1∂bX 1 − 2iQRX 1
)

.

We would like to express Eq. (2.6) in terms of the correlation function on the world sheet with a
fiducial metric ds2 = 2ĝzz̄ dz dz̄. It is straightforward to show

∫ [
dX 1]

gzz̄
exp

(−S
[
X 1; gzz̄

]) N∏
r=1

exp
(
iprX 1) (Zr , Z̄r)

= exp
(

−1 − 12Q2

24

[
σ ; ĝzz̄

]) ∫ [
dX̂ 1

]
ĝzz̄

exp
(
−S

[
X̂ 1; ĝzz̄

])

×
N∏

r=1

[
exp

(
iprX̂ 1

) (gzz̄

ĝzz̄

)−Qpr
]
(Zr , Z̄r),

where

σ ≡ ln gzz̄ − ln ĝzz̄,


[
σ ; ĝzz̄

] = − 1

4π

∫
dz ∧ dz̄ i

√
ĝ
(

ĝab∂aσ∂bσ + 2R̂σ
)

,

X̂ 1 ≡ X 1 − iQσ . (2.7)

The anomaly factor exp
(
−1−12Q2

24 
[
σ ; ĝzz̄

])
is exactly what we expect for a theory with the central

charge

c = 1 − 12Q2

of the linear dilaton conformal field theory. The correlation functions with the fiducial metric ds2 =
2ĝzz̄ dz dz̄ can be calculated by introducing theArakelov Green’s function GA(z, w) (Ref. [22]) which
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satisfies

∂z∂z̄GA(z, w) = −πδ2(z − w)− ĝzz̄R̂

4(g − 1)
,∫

dz ∧ dz̄ i
√

ĝR̂GA(z, w) = 0,

and the result is∫ [
dX̂ 1

]
ĝzz̄

exp
(
−S

[
X̂ 1; ĝzz̄

])∏
exp

(
ip1

r X̂
)
(Zr , Z̄r)

= 2πδ
(∑

pr + 2Q(1 − g)
)

ZX [
ĝzz̄

]
×

∏
r>s

exp
(−prpsG

A(Zr , Zs)
)∏

r

exp
(

−1
2p2

r lim
z→Zr

(GA(z, Zr)+ ln |z − Zr|2)
)

.

Here ZX
[
ĝzz̄

]
denotes the partition function of a free scalar on the world sheet with metric ds2 =

2ĝzz̄ dz dz̄. Taking the fiducial metric to be theArakelov metric gA
zz̄ (Ref. [22]), for which theArakelov

Green’s function GA(z, w) satisfies

lim
w→z

(
GA(w, z)+ ln |z − w|2) = − ln

(
2gA

zz̄

)
,

the correlation function becomes

2πδ
(∑

pr + 2Q(1 − g)
)

ZX [
gA

zz̄

]∏
r>s

exp
(−prpsG

A(Zr , Zs)
)∏

r

(
2gA

ZrZ̄r

)(1/2)p2
r

.

From these calculations, we can see that it is convenient to define

X̃ 1 ≡ X 1 − iQ ln(2gzz̄),

so that the correlation function of exp
(

iprX̃ 1
)
(Zr , Z̄r) (r = 1, . . . , N ) is expressed as

∫ [
dX 1]

gzz̄
exp

(−S
[
X 1; gzz̄

]) N∏
r=1

exp
(

iprX̃ 1
)
(Zr , Z̄r)

= 2πδ
(∑

pr + 2Q(1 − g)
)

exp
(

−1 − 12Q2

24

[
σ ; gA

zz̄

])
ZX [

gA
zz̄

]
×

∏
r>s

exp
(−prpsG

A(Zr , Zs)
)∏

r

(
2gA

ZrZ̄r

)(1/2)p2
r +Qpr

. (2.8)

On the sphere, this becomes

∫ [
dX 1]

gzz̄
exp

(−S
[
X 1; gzz̄

]) N∏
r=1

exp
(

iprX̃ 1
)
(Zr , Z̄r)

= 2πδ
(∑

pr + 2Q
)

exp
(

−1 − 12Q2

24

[
σ ; gA

zz̄

])∏
r>s

|Zr − Zs|2prps . (2.9)
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The operator exp
(

ipX̃ 1
)

thus defined turns out to be a primary field with conformal dimension

1

2
p2 + Qp = 1

2
(p + Q)2 − Q2

2
. (2.10)

Notice that X̃ 1 satisfies

∂∂̄X̃ 1 = 0

if there are no source terms and i∂X̃ 1(z), i∂̄X̃ 1(z̄) can be expanded as

i∂X̃ 1(z) =
∑

n

α1
nz−n−1, i∂̄X̃ 1(z̄) =

∑
n

ᾱ1
nz̄−n−1,

where α1
n and ᾱ1

n satisfy the canonical commutation relations. The states in the CFT can be expressed
as linear combinations of the Fock space states

α1−n1
· · ·α1−nk

ᾱ1−n̄1
· · · ᾱ1−n̄l

|p〉 . (2.11)

It is straightforward to show

〈p1|p2〉 = 2πδ(p1 + p2 + 2Q),(
α1

n

)∗ = (−1)n+1(α1−n + 2Qδn,0),(
ᾱ1

n

)∗ = (−1)n+1(ᾱ1−n + 2Qδn,0),

where 〈p|, (α1
n

)∗
,
(
ᾱ1

n

)∗
are the BPZ conjugates of |p〉, α1

n , ᾱ1
n respectively.

2.3. Light-cone gauge superstring field theory in a linear dilaton background

Now let us construct the light-cone gauge superstring field theory based on the world sheet theory
with the variables

X i,ψ i, ψ̄ i (i = 1, . . . , 8),

where the action for X 1, ψ1, ψ̄1 is taken to be Eq. (2.5) and that for other variables is the free one.
The world sheet theory of the transverse variables turns out to be a superconformal field theory with
central charge

c = 12 − 12Q2.

Therefore we can make −c arbitrarily large, keeping the number of the transverse fermionic variables
fixed. From the correlation functions (2.9) of the conformal field theory, it is straightforward to
construct the light-cone gauge string field action Eq. (2.2) with

d − 2 = 8 − 8Q2.

The Feynman amplitudes are calculated by the old-fashioned perturbation theory starting from the
action Eq. (2.2). Each term in the expansion corresponds to a light-cone gauge Feynman diagram for
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Fig. 2. Propagator and vertex.

Fig. 3. A string diagram with 3 incoming strings, 2 outgoing strings and 3 loops.

strings that is constructed from the propagator and the vertex presented in Fig. 2. A typical diagram
is depicted in Fig. 3.

A Wick rotated g-loop N -string diagram is conformally equivalent to an N -punctured genus g
Riemann surface 
(g)N . A light-cone diagram consists of cylinders that correspond to propagators
of the closed string. On each cylinder, one can introduce a complex coordinate ρ as we did for the
three-string vertex. The ρ’s on the cylinders are smoothly connected except at the interaction points
and we get a complex coordinate ρ on 
(g)N . Note that ρ is not a good coordinate at the punctures
and the interaction points.

The coordinate ρ can be given as a function of a local coordinate z on 
(g)N as (Ref. [16])

ρ(z) =
N∑

r=1

αr

[
ln E(z, Zr)− 2π i

∫ z

P0

ω
1

Im�
Im

∫ Zr

P0

ω

]
,

N∑
r=1

αr = 0, (2.12)

up to an additive constant independent of z. Here E(z, w) is the prime form, ω is the canonical basis
of the holomorphic abelian differentials, and � is the period matrix of the surface.2 The base point
P0 is arbitrary. There are 2g − 2 + N zeros of ∂ρ and we denote them by zI (I = 1, . . . , 2g − 2 + N ).
They correspond to the interaction points of the light-cone diagram.

A g-loop N -string amplitude is given as an integral over the moduli space of the string diagram as

A(g)N = (2π)2 δ

(
N∑

r=1

p+
r

)
δ

(
N∑

r=1

p−
r

)
(igs)

2g−2+N C
∑

channels

∫
[dT ] [α dθ ] [dα] F (g)N , (2.13)

where
∫ [dT ][α dθ ][dα] denotes integration over the moduli parameters and C is the combinatorial

factor. In each channel, the integration measure is given as (Ref. [24])

∫
[dT ][α dθ ][dα] =

2g−3+N∏
a=1

(
−i

∫ ∞

0
dTa

) g∏
A=1

∫
dαA

4π

3g−3+N∏
I=1

(
|αI |

∫ 2π

0

dθI
2π

)
. (2.14)

2 For the mathematical background relevant for string perturbation theory, we refer the reader to Ref. [23].
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Here Ta denotes the height of a cylinder corresponding to an internal line,3 αA denotes the width of
a cylinder corresponding to the + component of a loop momentum, and αI and θI are respectively
the string-lengths and the twist angles of the internal propagators. Summing over channels, with the
natural range of these coordinates, the moduli space4 of the Riemann surface is covered exactly once
(Ref. [31]).

The integrand F (g)N in Eq. (2.13) is given as

F (g)N =
∫ [

dX idψ idψ̄ i]
gzz̄

exp
(−S

[
X i,ψ i, ψ̄ i; gA

zz̄

])

×
2g−2+N∏

I=1

(∣∣∂2ρ (zI )
∣∣−3/2

T LC
F (zI ) T̄ LC

F (z̄I )
) N∏

r=1

V LC
r (Zr , Z̄r).

Here V LC
r (Zr , Z̄r) denotes the vertex operator (Ref. [11]) for the rth external line and the insertions

of the world sheet supercharges T LC
F (zI ), T̄ LC

F (z̄I ) originate from those in the three-string vertex
Eq. (2.4). The path integral is defined with the world sheet metric

ds2 = 2gzz̄ dz dz̄ ≡ ∂ρ ∂̄ρ̄ dz dz̄. (2.15)

Since gzz̄ is singular at z = zI , Zr , we need to rewrite the path integral in terms of that defined
with a metric which is regular everywhere on the world sheet. Taking the world sheet metric to be
the Arakelov metric, we get

F (g)N = exp
(

−1 − Q2

2

[
σ ; gA

zz̄

]) ∫ [
dX idψ idψ̄ i]

gA
zz̄

exp
(−S

[
X i,ψ i, ψ̄ i; gA

zz̄

])

×
2g−2+N∏

I=1

(∣∣∂2ρ (zI )
∣∣−3/2

T LC
F (zI ) T̄ LC

F (z̄I )
) N∏

r=1

V LC
r (Zr , Z̄r). (2.16)

It is possible to calculate the quantities that appear on the right-hand side of Eq. (2.16). Substituting
Eq. (2.15) into Eq. (2.7) yields a divergent result for 

[
σ ; gA

zz̄

]
. We can obtain exp

(− [
σ ; gA

zz̄

])
up

to a divergent numerical factor by regularizing it as was done in Ref. [32]. The divergent factor can be
absorbed in a redefinition of gs and the vertex operator. For higher genus surfaces, exp

(− [
σ ; gA

zz̄

])
is calculated in Ref. [16] to be

exp
(− [

σ ; gA
zz̄

]) ∝ exp (−W )
∏

r

exp
(−2 Re N̄ rr

00

)∏
I

∣∣∂2ρ (zI )
∣∣−3

,

3 Heights of the cylinders in a light-cone diagram are constrained so that only 2g − 3 + N of them can be
varied independently.

4 The amplitude Eq. (2.13) for d = 10 can formally be recast into an integral over the supermoduli space
(Refs. [25–30]).
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up to a numerical constant that can be fixed by imposing the factorization condition (Ref. [16]).
Here,

−W ≡ −2
∑
I<J

GA (zI ; zJ )− 2
∑
r<s

GA (Zr; Zs)+ 2
∑
I ,r

GA (zI ; Zr)

−
∑

r

ln
(

2gA
ZrZ̄r

)
+ 3

∑
I

ln
(
2gA

zI z̄I

)
,

N̄ rr
00 ≡ lim

z→Zr

[
ρ(zI (r) )− ρ(z)

αr
+ ln(z − Zr)

]

= ρ(zI (r) )

αr
−

∑
s �=r

αs

αr
ln E(Zr , Zs)+ 2π i

αr

∫ Zr

P0

ω
1

Im�

N∑
s=1

αs Im
∫ Zs

P0

ω,

and zI (r) denotes the coordinate of the interaction point at which the rth external line interacts. The
correlation functions of X 1 that appear in Eq. (2.16) can be derived from Eq. (2.8), and ZX

[
gA

zz̄

]
and

the correlation functions involving other variables have been calculated on higher genus Riemann
surfaces in Refs. [33–37].

From the explicit form of these quantities, we can see that F (g)N could become singular if and only
if either or both of the following things happen:

(1) Some of the interaction points collide with each other.
(2) The Riemann surface corresponding to the world sheet degenerates.5

When the interaction points collide, F (g)N could become singular because ∂2ρ’s at these points become

0 and TF’s have singular OPEs. Since all the quantities that appear in F (g)N can be expressed explicitly

in terms of the theta functions defined on 
(g)N , possible singularities of F (g)N also originate from

degenerations of the surface. The singularities of F (g)N arise only from these phenomena, because the
world sheet theory does not involve variables like superconformal ghost.

Therefore, in order to study the possible divergences of the amplitude A(g)N , we need to investigate
the light-cone diagrams in which (1) and/or (2) above happen. Light-cone diagrams with collisions
of interaction points are easily visualized. We shall study how light-cone diagrams corresponding to
degenerate Riemann surfaces look in the next section.

3. Light-cone diagrams in the degeneration limits

There are two types of degeneration, i.e., separating and nonseparating. The expressions of various
quantities in these limits are given in Refs. [39–42] from which that of ρ(z) can be obtained. The
shape of the light-cone diagrams can be deduced from the form of ρ(z).

3.1. Separating degeneration

Let us first consider the separating degeneration in which a Riemann surface M degenerates into
two surfaces M1 and M2 with genera g1 and g2 respectively. We assume that M corresponds to a

5 The case in which a puncture and an interaction point collide is included in this category, because of the
identity (Ref. [38])

|αr|2 = exp

[
−

∑
I

GA(zI ; Zr)+
∑
s �=r

GA(Zr; Zs)+ c

]
.

With αr fixed, zI → Zr implies that there exist some punctures coming close to each other.
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light-cone diagram with N external lines, and N1 of them belong to M1 and N2 of them belong
to M2.

3.1.1. g1g2 �= 0
Let us first consider the case when both g1 and g2 are positive. The degeneration can be described
by a model Mt constructed as follows:

◦ Choose points pj ∈ Mj and a neighborhood Uj of pj for j = 1, 2. Let D be the unit disk in C

and define zj : Uj → D to be the coordinate of Uj such that zj(pj) = 0.
◦ For 0 < r < 1, let rUj be

rUj ≡ {
p ∈ Uj;

∣∣zj(p)
∣∣ < r

}
.

For t ∈ D, glue together the surfaces Mj/|t|Uj (j = 1, 2) by the identification

z1z2 = t.

The surface obtained is denoted by Mt . The degeneration limit corresponds to t → 0.

The complex coordinate ρt(z) on the light-cone diagram corresponding to Mt is given by

ρt(z) =
N∑

r=1

αr

[
ln Et(z, Zr)− 2π i

∫ z

P0

ωt
1

Im�t
Im

∫ Zr

P0

ωt

]
,

where Et(z, w),ωt ,�t denote the prime form, the canonical basis of the holomorphic abelian differen-
tials, and the period matrix of Mt respectively. The base point P0 is taken to be included in M1/

√|t|U1.
We take the punctures Z1, . . . , ZN1 to belong to M1/

√|t|U1 and the punctures ZN1+1, . . . , ZN to
belong to M2/

√|t|U2. Using the formulas of various quantities for |t| � 1 given in Refs. [39–42],
it is possible to show that ρt(x1), ρt(x2) for xj ∈ Mj/

√|t|Uj become

ρt(x1) = ρ(1)(x1)+
N∑

r2=N1+1

αr2 ln E2(p2, Zr2)− αp1

2
ln(−t)+ · · · ,

ρt(x2) = ρ(2)(x2)+
N1∑

r1=1

αr1 ln E1(p1, Zr1)− αp2

2
ln(−t)

+ 2π i
∫ p2

P′
0

ω(2)
1

Im�2
Im

⎛
⎝ N∑

r2=N1+1

αr2

∫ Zr2

p2

ω(2) + αp2

∫ p2

P′
0

ω(2)

⎞
⎠

− 2π i
∫ p1

P0

ω(1)
1

Im�1
Im

⎛
⎝ N1∑

r1=1

αr1

∫ Zr1

P0

ω(1) + αp1

∫ p1

P0

ω(1)

⎞
⎠

+ · · · , (3.1)
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Fig. 4. Light-cone diagram corresponding to a separating degeneration with αp1 �= 0.

for |t| � 1. Here the ellipses denote the terms of higher order in t, and

ρ(1)(x1) =
N1∑

r1=1

αr1 ln E1(x1, Zr1)+ αp1 ln E1(x1, p1)

− 2π i
∫ x1

P0

ω(1)
1

Im�1
Im

⎛
⎝ N1∑

r1=1

αr1

∫ Zr1

P0

ω(1) + αp1

∫ p1

P0

ω(1)

⎞
⎠,

ρ(2)(x2) =
N∑

r2=N1+1

αr2 ln E2(x2, Zr2)+ αp2 ln E2(x2, p2)

− 2π i
∫ x2

P′
0

ω(2)
1

Im�2
Im

⎛
⎝ N∑

r2=N1+1

αr2

∫ Zr2

P′
0

ω(2) + αp2

∫ p2

P′
0

ω(2)

⎞
⎠,

αp1 =
N∑

r2=N1+1

αr2 = −αp2 = −
N1∑

r1=1

αr1 ,

with P′
0 ∈ M2/

√|t|U2. In these formulas, Ej(z, w), ω(j), �j denote the prime form, the canonical
basis of the holomorphic abelian differentials, and the period matrix of Mj (j = 1, 2).

From Eq. (3.1), we can see how the light-cone diagrams corresponding to the separating
degeneration should look. They are classified according to the values of αp1 , N1, N2 as follows:

◦ αp1 �= 0
If αp1 �= 0, then ρ(1), ρ(2) can be considered as the coordinates defined on light-cone diagrams
with N (1) + 1, N (2) + 1 external lines respectively. Equation (3.1) implies that the limit t → 0
corresponds to the one in which the length of an internal line with α = αp1 becomes infinite in
the light-cone diagram. A light-cone diagram of this type is presented in Fig. 4. The surfaces
M1 and M2 correspond to light-cone diagrams with the coordinates ρ(1) and ρ(2) respectively.

◦ αp1 = 0, N1N2 �= 0
When αp1 = 0, N1N2 �= 0, higher-order terms in Eq. (3.1) with respect to t become important.
We get

∂ρt(x1) ∼ ∂ρ(1)(x1)− t∂p1∂x1 ln E1(x1, p1)∂ρ
(2)(p2)+ · · · , (3.2)

∂ρt(x2) ∼ ∂ρ(2)(x2)− t∂p2∂x2 ln E2(x2, p2)∂ρ
(1)(p1)+ · · · , (3.3)

where ρ(1), ρ(2) in this case are given by those above with αp1 = αp2 = 0. Since N1N2 �= 0,
neither of ρ(1) and ρ(2) is identically 0. For x1 ∼ p1, x2 ∼ p2, the coordinates z1 = z1(x1),
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Fig. 5. Light-cone diagram corresponding to a separating degeneration with αp1 = 0.

z2 = z2(x2) can be used to describe the region and we get

∂ρt(z1) = c1 − c2t

z2
1

+ · · · , (3.4)

∂ρt(z2) = c2 − c1t

z2
2

+ · · · , (3.5)

where

c1 = ∂ρ(1)(z1)

∣∣∣
z1=0

, c2 = ∂ρ(2)(z2)

∣∣∣
z2=0

.

Defining

z ≡ √
tz1, (3.6)

which is a good coordinate of the region z1 ∼ z2 ∼ √
t,

ρt(z) ∼ constant + √
t
(

c1z + c2

z

)
.

A degeneration of this type can be represented by the light-cone diagram depicted in Fig. 5.
There are two interaction points in the light-cone diagram corresponding to Mt that come close
to each other and the surface develops a narrow neck in the limit t → 0. They are included in
a region that has coordinate size of order

√
t in the light-cone diagram and shrinks to a point

in the limit t → 0. The case c1c2 = 0 corresponds to the case where some of the interaction
points on M1, M2 come close to p1, p2 respectively.

◦ N1N2 = 0
For example, when N2 = 0, Eqs. (3.2) and (3.3) become

∂ρt(x1) ∼ ∂ρ(1)(x1)+ · · · ,

∂ρt(x2) ∼ −t∂p2∂x2 ln E2(x2, p2)∂ρ
(1)(p1)+ · · · . (3.7)

Therefore M2/
√|t|U2 corresponds to a tiny region in the light-cone diagram corresponding to

Mt , which shrinks to a point in the limit t → 0 and the collapsing neck has coordinate size of
order t on the light-cone diagram. An example of such a situation is shown in Fig. 6. In this
case ∂ρ(1)(p1) = 0 can be regarded as the situation in which some of the interaction points on
M1 come close to p1.
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Fig. 6. Light-cone diagram corresponding to a separating degeneration with N2 = 0.

3.1.2. g1g2 = 0
The case where g1 or g2 vanishes corresponds to the situation in which some of the punctures
Z1, . . . , ZN come close to each other. Let us consider the separating degeneration in which a Riemann
surface M degenerates into two surfaces M1 and M2 with genera g1, g2 = 0 respectively. We assume
that the punctures Z1, . . . , ZN1 belong to M1 and ZN1+1, . . . , ZN belong to M2. Such a degeneration
can be described as follows. Choose a point p ∈ M and a neighborhood U of p such that the
punctures ZN1+1, . . . , ZN are included in U . Let D be the unit disk in C and define z1 : U → D to
be the coordinate of U such that z1(p) = 0. We take

z1(Zr2) = tzr2 (r2 = N1 + 1, . . . , N ),

and consider the limit t → 0 with zr2 fixed. When |t| � 1, ρ(x1) for x1 ∈ M/
√|t|U becomes

ρ(x1) ∼
N1∑

r1=1

αr1 ln E(x1, Zr1)+ αp1 ln E(x1, p1)

− 2π i
∫ x1

P0

ω
1

Im�
Im

⎛
⎝ N1∑

r1=1

αr1

∫ Zr1

P0

ω(1) + αp1

∫ p1

P0

ω(1)

⎞
⎠

≡ ρ(1)(x1).

For x2 ∈ U such that z1(x2) = O(|t|), defining z2 ≡ z1(x2)
t ,

ρ(x2) ∼ ρ(2)(z2)− αp2

2
ln t + lim

x→p1
(ρ(1)(x)− αp1 ln(x − p1)),

ρ(2)(z2) =
N∑

r2=N1+1

αr2 ln(z2 − zr2),

where

αp1 =
N∑

r2=N1+1

αr2 = −αp2 = −
N1∑

r1=1

αr1 .

If αp1 �= 0, these formulas suggest that the limit corresponds to the one in which the length of an
internal line with circumference 2παp1 becomes infinite in the light-cone diagram. If αp1 = 0, the
collapsing neck can be described by a local coordinate z ≡ √

tz1 and

ρ(z) ∼ constant + √
t
(

c1z + c2

z

)
,
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where

c1 = ∂ρ(1)(z1)

∣∣∣
z1=0

, c2 = −z2
2∂ρ

(2)(z2)

∣∣∣
z2=∞ .

Namely the light-cone diagrams are locally the same as those we encountered in the case where g1,
g2 are both positive.

3.2. Nonseparating degeneration

Next let us consider the nonseparating degeneration in which a Riemann surface of genus g + 1
degenerates into a surface M of genus g. The degeneration can be described by a model Mt constructed
as follows:

◦ Choose points p1, p2 ∈ M and their disjoint neighborhoods U1, U2. Let zj : Uj → D be the
coordinate of Uj such that zj(pj) = 0.

◦ For t ∈ D, glue together the surfaces Mj/|t|Uj (j = 1, 2) by the identification

z1z2 = t.

The surface obtained is denoted by Mt . The degeneration limit corresponds to t → 0.

The coordinate ρt(z) on the light-cone diagram corresponding to Mt is given by

ρt(z) =
N∑

r=1

αr

[
ln Et(z, Zr)− 2π i

∫ z

P0

ωt
1

Im�t
Im

∫ Zr

P0

ωt

]
.

Using the formulas given in Refs. [39–42], it is straightforward to deduce that ρt(z) can be
expressed as

ρt(z) = ρ(z)

+ αp1

[
ln E(z, p1)− 2π i

∫ z

P0

ω
1

Im�
Im

∫ p1

P0

ω

]

+ αp2

[
ln E(z, p2)− 2π i

∫ z

P0

ω
1

Im�
Im

∫ p2

P0

ω

]
,

+ constant + O(t), (3.8)

for |t| � 1. Here

ρ(z) =
N∑

r=1

αr

[
ln E(z, Zr)− 2π i

∫ z

P0

ω
1

Im�
Im

∫ Zr

P0

ω

]

gives the coordinate of the light-cone diagram corresponding to M and

αp2 = −αp1 = 1

2π
Re(ρ(p2)− ρ(p1))

1 − 2π
ln|t′| Im

∫ p2
p1
ω 1

Im�
Im

∫ p2
p1
ω

− ln|t′|
2π + 2π

ln|t′|
(

Im
∫ p2

p1
ω 1

Im�
Im

∫ p2
p1
ω
)2 ,

with

t′ = t

E(p1, p2)E(p2, p1)
.
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Fig. 7. Nonseparating degeneration with Re(ρ(p2)− ρ(p1)) �= 0.

Using Eq. (3.8), we can classify the light-cone diagrams corresponding to the nonseparating
degeneration according to the value of Re(ρ(p2)− ρ(p1)) as follows:6

◦ Re(ρ(p2)− ρ(p1)) �= 0
If Re(ρ(p2)−ρ(p1)) �= 0, we can see from Eq. (3.8) that this kind of degeneration corresponds
to a limit of light-cone diagram in which the circumference of an internal line tends to zero, as
depicted in Fig. 7.

◦ Re(ρ(p2)− ρ(p1)) = 0
When Re(ρ(p2)− ρ(p1)) = 0, ρt(x) becomes

ρt(x) = ρ(x)+ t
[
∂p1 ln E(x, p1)∂ρ(p2)+ ∂p2 ln E(x, p2)∂ρ(p1)

] + · · · .

Therefore, for x ∼ p1,

ρt(x) = constant + c1z1 + c2t

z1
+ · · · , (3.9)

where z1 = z1(x) and

c1 = ∂ρ(z1)|z1=0 , c2 = ∂ρ(z2)|z2=0 .

Similarly, for x ∼ p2,

ρt(x) = constant + c2z2 + c1t

z2
+ · · · , (3.10)

where z2 = z2(x). Hence the ρt has the same expression as Eqs. (3.4) and (3.5). When c1c2 �= 0,
degenerations of this type can be represented by the light-cone diagrams depicted in Figs. 8
and 9. There are two interaction points in the light-cone diagram corresponding to Mt that come
close to each other and the surface develops a narrow neck in the limit t → 0. They are included
in a region that has coordinate size of order

√
t on the light-cone diagram and shrinks to a point

in the limit t → 0. The condition c1c2 = 0 corresponds to the case in which some interaction
points on M come close to p1 or p2.

6 Here we assume that Re(ρ(p2)− ρ(p1)) is fixed in the limit t → 0.
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Fig. 8. An example of nonseparating degeneration with Re(ρ(p2)− ρ(p1)) = 0.

Fig. 9. Another example of nonseparating degeneration with Re(ρ(p2)− ρ(p1)) = 0.

Fig. 10. A combination of degeneration limits.

3.3. Combined limits

In the discussions above, we have implicitly assumed that the parameters αp1 = ∑
αr2 or Re(ρ(p2)−

ρ( p1)) are fixed in taking the degeneration limit t → 0. This is true if the degeneration considered
is the only one that occurs on the surface. If we consider the situation where several degenerations
happen simultaneously, these parameters are not necessarily fixed and we encounter new classes of
light-cone diagrams corresponding to degeneration.

Taking such situations into account, the light-cone diagram in the degeneration limits are classified
by the behavior of the parameter αp1 = −αp2 in the limit t → 0. For z1, z2 � 1, t � 1, we have

∂ρt(z1) ∼ αp1

z1
+ higher-order terms in t,

∂ρt(z2) ∼ αp2

z2
+ higher-order terms in t,

irrespective of whether the degeneration is separating or nonseparating. If αp1 tends to a finite
nonvanishing value in the limit t → 0, these imply that the light-cone diagram develops an infinitely
long cylinder with finite width. The diagrams depicted in Figs. 4 and 10 are in this class. If αp1 tends
to 0 as t → 0, the light-cone diagram develops a cylinder with vanishing width, provided

αp1
z1

,
αp2
z2

dominate the higher-order terms in t. For example, if ∂ρ1(p1)∂ρ2(p2) �= 0, defining z = t1/2z1 as in
Eq. (3.6) we have

ρt(z) ∼ αp1 ln z + t1/2
(

c1z + c2

z

)
+ · · · . (3.11)
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Therefore if αp1 goes to 0 slower than t1/2 in the limit t → 0, the surface develops a cylinder with
vanishing width. If t−1/2αp1 tends to a finite value in the limit t → 0, we have

ρt(z) ∼ t1/2
(

c1z + c2

z
+ α ln z

)
+ constant,

where α = limt→0 t−1/2αp1 . Degeneration of this type can be represented by the light-cone diagrams
depicted in Figs. 5, 8, and 9, but this time∮

neck
dz ∂ρt ∼ 2π it1/2α �= 0,

namely the coordinate ρ can be multivalued around the neck. If αp1 goes to 0 faster than t1/2, the
first term in Eq. (3.11) can be ignored and we have ρ single valued around the neck. The case
∂ρ1(p1) ∂ρ2(p2) = 0 corresponds to the situation in which some interaction points come close to p1,
p2.

3.4. Classification of the light-cone diagrams in the degeneration limits

To summarize, what happens to a light-cone diagram in the degeneration limit can be classified by
the behavior of the degenerating cycle as follows:

(1) The light-cone diagram develops an infinitely long cylinder with nonvanishing width.
The diagrams in Figs. 4 and 10 belong to this class.

(2) The light-cone diagram develops an infinitely thin cylinder.
The diagram in Fig. 7 belongs to this class.

(3) The light-cone diagram develops a narrow neck included in a region which shrinks to a point.
The diagrams in Figs. 5, 6, 8, and 9 belong to this class.

A diagram of the first type includes a long cylinder and can definitely be considered as corresponding
to the infrared region of the integration over the moduli space. The divergent contributions from such
diagrams can be made finite by the Feynman iε as will be shown in the next section. On the other
hand, that of the third type appears to correspond to the ultraviolet region with respect to the world
sheet metric ds2 = dρ dρ̄, although the collapsing neck is conformally equivalent to a long cylinder.
We need to introduce a linear dilaton background to regularize the divergences coming from the
diagrams in this category and the Feynman iε plays no role in this case. The second type is something
in between and we need both iε and a linear dilaton background to deal with the divergence coming
from such a configuration.

4. Divergences of the amplitudes

Divergences of the amplitudes arise from the diagrams in which degenerations and/or collisions of
interaction points occur. In this section, we examine the divergences of the amplitude Eq. (2.13)
corresponding to these configurations.

4.1. Diagrams that involve cylinders with infinite length and nonvanishing width

Let us first consider the first type of degeneration limit in the classification in Sect. 3.4, in which
the diagram develops a cylinder with height T → ∞ and nonvanishing circumference. In the light-
cone gauge perturbation theory, such cylinders appear as follows. Let us order the interaction points
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Fig. 11. Cylinders in a light-cone diagram.

zI (I = 1, . . . , 2g − 2 + N ) so that

Re ρ(z1) ≤ Re ρ(z2) ≤ · · · ≤ Re ρ(z2g−2+N ),

and define the moduli parameters corresponding to the heights as

TI ≡ Re ρ(zI+1)− Re ρ(zI ) (I = 1, . . . , 2g − 3 + N ).

Long cylinders appear in the limit TI → ∞. In studying the divergence from this region of the
moduli space, the relevant part of the amplitude is of the form

∫ ∞

0
dTI exp

⎡
⎣−TI

⎛
⎝∑

j

L(j)0 + L̄(j)0 − 1 + Q2 − iε

αj
−

∑′

r

p−
r

⎞
⎠
⎤
⎦, (4.1)

where j labels the cylinders that include the region Re ρ(zI ) ≤ Re ρ ≤ Re ρ(zI+1) (see Fig. 11)
and αj, L(j)0 , L̄(j)0 denote the α, L0, L̄0 defined on the jth cylinder respectively. The external lines are
labeled by r, and

∑′ denotes the sum over those with p−
r > 0. The degeneration limit corresponds

to the one in which TI goes to infinity. Since the lowest eigenvalue of L(j)0 + L̄(j)0 is 1 − Q2 for the
GSO even sector, the integral Eq. (4.1) could diverge because of the contribution from the limit.

The divergence coming from this kind of degeneration can be dealt with by deforming the contour
of integration over TI (Refs. [43–45]). As is suggested in Ref. [43], we take the contour to be(∫ T0

0
+

∫ T0+i∞

T0

)
dTI , (4.2)

with T0 � 1. Since∣∣∣∣∣∣exp

⎡
⎣−(T0 + ia)

⎛
⎝∑

j

L(j)0 + L̄(j)0 − 1 + Q2 − iε

αj
−

∑′

r

p−
r

⎞
⎠
⎤
⎦
∣∣∣∣∣∣

=
∣∣∣∣∣∣exp

⎡
⎣−T0

⎛
⎝∑

j

L(j)0 + L̄(j)0 − 1 + Q2 − iε

αj
−

∑′

r

p−
r

⎞
⎠
⎤
⎦
∣∣∣∣∣∣ exp

⎛
⎝−aε

∑
j

1

αj

⎞
⎠,

the second integral in Eq. (4.2) yields a finite result for ε > 0. Thus the integral over TI is essentially
cut off at TI = T0 and the degeneration becomes harmless.

In order to get the amplitudes, we need to take the limit ε → 0. Notice that the divergences asso-
ciated with the tadpole graphs correspond to the separating degeneration with N1N2 = 0 described
in Sect. 3.1.1. As we will see in the following subsections, they are regularized by taking Q2 large
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enough and the Feynman iε is irrelevant. The modified momentum conservation law of p1 for a
g-loop two point function is given by

p1
1 + p1

2 + 2Q(1 − g) = 0.

Therefore if pμ1 is on-shell, pμ2 is generically off-shell, for g �= 0. This implies that the divergences
associated with mass renormalization are also regularized by taking Q �= 0. Therefore the procedures
given in Refs. [46–49] will be relevant in taking the limit Q → 0 rather than ε → 0. Possible
divergences in the limit ε → 0 can be analyzed as in the usual field theory and we expect that they
cancel each other if one calculates physical quantities.

4.2. Singular behavior of F (g)
N

Since the first type of degeneration in the classification in Sect. 3.4 is taken care of, what we
should grapple with are other types of singularities, namely the degenerations of types 2 and 3 and
the collisions of interaction points. The integration variables in the expression (2.13) are given by
differences of the coordinates ρ, ρ̄ of the interaction points and magnitudes of jump discontinuities
of ρ, ρ̄. Let xj ∈ R (j = 1, . . . , n) denote these integration variables. The calculation of the amplitude
boils down to that of an integral

∫
dnxF (g)N (�x), (4.3)

where F (g)N (�x) denotes the F (g)N as functions of the variables x1, . . . , xn. The singularities we are
dealing with occur when interaction points collide and/or cylinders become infinitely thin. Therefore
a necessary and sufficient condition for �x to correspond to such singularities can be expressed as

�vk · �x = 0, (4.4)

for some �vk ∈ R
n (k = 1, . . .). In order to study the behavior of F (g)N (�x) at these singularities, it is

convenient to express F (g)N (�x) as

F (g)N (�x) = exp
(

−1 − Q2

2

[
σ ; gA

zz̄

]) 〈
O(g)

N

〉
,

where

〈O〉 ≡
∫ [

dX idψ idψ̄ i]
gA

zz̄
exp

(−S
[
X i,ψ i, ψ̄ i; gA

zz̄

])
O,

O(g)
N ≡

2g−2+N∏
I=1

(∣∣∂2ρ (zI )
∣∣−3/2

T LC
F (zI ) T̄ LC

F (z̄I )
) N∏

r=1

V LC
r .

The integrals over the lengths of cylinders are essentially cut off by taking ε > 0. Therefore we
should worry about the singularity of F (g)N (�x) at finite values of the coordinates xj. Such singularities

can be studied by calculating the derivatives of F (g)N (�x) with respect to x1, . . . , xn, which can be
expressed by contour integrals of the correlation functions with energy–momentum tensor insertions:

exp
(

−1 − Q2

2

[
σ ; gA

zz̄

]) 〈
T (ρ)O(g)

N

〉
, exp

(
−1 − Q2

2

[
σ ; gA

zz̄

]) 〈
T̄ (ρ̄)O(g)

N

〉
.
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Fig. 12. Fig. 6 embedded in a light-cone diagram.

Fig. 13. Contours C1, C2.

As we will see in the following, these correlation functions become singular when ρ, ρ̄ coincide with
those of the interaction points. Therefore the contour integrals diverge when the interaction points
pinch the contour. This is exactly what happens in the situations we are dealing with. Away from the
singularities, F (g)N (�x) is a differentiable function of the parameters xj.

4.2.1. Singular behavior of F (g)N (�x) associated with the configuration depicted in Fig. 6

As an example, let us study the singular behavior of F (g)N (�x) in the limit illustrated in Fig. 6. We here
consider the situation where the tiny cylinder is embedded in a light-cone diagram as depicted in
Fig. 12.

We would like to calculate the variation of F (g)N (�x) under a change of the shape of the tiny cylinder
fixing the other part of the diagram. Such a change corresponds to a change of the moduli parameters
and it induces a variation

ρ(z) → ρ(z)+ δρ(z),

of the function ρ(z) in Eq. (2.12). The change is parametrized by the variation of the circumference
of the cylinder, i.e., 2π δα, and δT1, δT2 defined by

δT1 =
∫

C1

dz′ ∂δρ(z′), δT2 =
∫

C2

dz′ ∂δρ(z′),

where the contours C1, C2 are those shown in Fig. 13. It is also possible to express δα as

δα =
∮

CT1

dz

2π i
∂δρ(z) = −

∮
CT2

dz

2π i
∂δρ(z),

where the contours CT1, CT2 are those depicted in Fig. 14.
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Fig. 14. Contours CT1, CT2, Cα , CR, CL.

The variation δF (g)N (�x) is given by

δF (g)N (�x) = −δT1

∮
CT1

dρ

2π i

〈
T (ρ)O(g)

N

〉
exp

(
−1 − Q2

2


)

− δT2

∮
CT2

dρ

2π i

〈
T (ρ)O(g)

N

〉
exp

(
−1 − Q2

2


)

+ 2π i δα
∮

Cα

dρ

2π i

〈
T (ρ)O(g)

N

〉
exp

(
−1 − Q2

2


)
+ c.c., (4.5)

where the contours CT1, CT2, Cα are those indicated in Fig. 14. By using the transformation formula

T (ρ) = 1

(∂ρ(z))2
(
T (z)− (1 − Q2) {ρ, z}),

{ρ, z} = ∂3ρ

∂ρ
− 3

2

(
∂2ρ

∂ρ

)2

,

contour integrals of the energy–momentum tensor are expressed as∮
C

dρ

2π i
T (ρ) =

∮
C

dz

2π i

1

∂ρ(z)

(
T (z)− (1 − Q2) {ρ, z}),∮

C̄

dρ̄

2π i
T̄ (ρ̄) =

∮
C̄

dz̄

2π i

1

∂ρ̄(z̄)

(
T̄ (z̄)− (1 − Q2) {ρ̄, z̄}) .

Taking the local coordinates z, z̄ convenient for calculation, one can evaluate the right-hand side of
Eq. (4.5).

Decomposing the diagram into two pants-shaped regions and cutting them open as in Fig. 15, it is
straightforward to show that the right hand side of Eq. (4.5) is equal to∫

PL

dz

2π i

δρ(z)− δρ(zIL)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∫

PR

dz

2π i

δρ(z)− δρ(zIR )

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)
+ c.c. (4.6)

The paths PL, PR are depicted in Fig. 15. We define δρ(z)− δρ(zIL) and δρ(z)− δρ(zIR ) as

δρ(z)− δρ(zIL) =
∫ z

zIL

dz′∂δρ(z′), δρ(z)− δρ(zIR ) =
∫ z

zIR

dz′∂δρ(z′), (4.7)
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Fig. 15. Two pants and the paths PR (E → B → C → D → D → C → B → E) and PL (A → B → C →
D → D → C → B → A).

Fig. 16. Contour C.

where the paths of integration are taken to be within the regions UL and UR respectively in Fig. 15.
Deforming the contours, we can show

δF (g)N (�x) = −
∮

zIL

dz

2π i

δρ(z)− δρ(zIL)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

−
∮

zIR

dz

2π i

δρ(z)− δρ(zIR )

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∮

C

dz

2π i

δρ(z)− δρ(zIL)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

− δT2

∮
CR

dz

2π i

1

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)
+ c.c., (4.8)

where C is the contour surrounding the tiny cylinder depicted in Fig. 16.
In this expression, the right-hand side can be evaluated once we know the behaviors of ρ(z), T (z)

near the cylinder. Taking a good local coordinate z around the cylinder, the coordinate ρ(z) of the
light-cone diagram is expressed as

ρ(z) = ερ̃(z)+ constant,
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and the limit to be considered is ε → 0. In order to get the singular behavior of F (g)N (�x) in the limit

ε → 0, we consider the variation δF (g)N (�x) under ε → ε+δε. For ε � 1 and z close to an interaction
point zI ,

δρ(z)− δρ(zI ) ∼ δε

2
∂2ρ̃(zI )(z − zI )

2,

∂ρ(z) ∼ ε∂2ρ̃(zI )(z − zI ),

T (z)O(g)
N ∼

(
3
2

(z − zI )2
+ · · ·

)
O(g)

N ,

{ρ, z} ∼ −3
2

(z − zI )2
+ · · · ,

and

−
∮

zI

dz

2π i

δρ(z)− δρ(zI )

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ −3

4
(2 − Q2)

δε

ε
F (g)N (�x). (4.9)

Equation (3.7) implies that ρ̃(z) has a simple pole at the degenerating puncture and C is a contour
around it. Using these facts, we obtain

∮
C

dz

2π i

δρ(z)− δρ(zIL)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ δε

ε

∮
C

dz

2π i
z
〈
T (z)O(g)

N

〉
exp

(
−1 − Q2

2


)
∼ 0, (4.10)

because the momentum flowing through the collapsing neck is zero. The fourth term on the right-hand
side of Eq. (4.8) is of order δε. Therefore we get

δF (g)N (�x) ∼ (−6 + 3Q2) δε
ε

F (g)N (�x),

from which we can deduce that F (g)N (�x) is expressed as

F (g)N (�x) ∼ ε−6+3Q2 × constant, (4.11)

for ε ∼ 0.
In general, the behavior of F (g)N (�x) in the limit where subregions of the diagram shrink to points

can be studied in the same way. The variation δF (g)N under a change of the shape of the diagram can
be expressed as the sum of contour integrals of correlation functions with energy–momentum tensor
insertions. Decomposing the diagram into pants, expressing the integrals in terms of those around
the pants and deforming the contours of the integrations, δF (g)N (�x) can be expressed by contour
integrals in the shrinking subregions. It is possible to evaluate them taking coordinates convenient
for describing those regions and deduce the singular behavior of F (g)N (�x) in the limit.
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Fig. 17. Fig. 7 embedded in a light-cone diagram.

Fig. 18. Contours.

4.2.2. Singular behavior of F (g)N (�x) associated with the configuration depicted in Fig. 7
As another example, let us consider the degeneration in which the light-cone diagram develops a
cylinder with vanishing width. Suppose that the cylinder is embedded in the diagram as illustrated
in Fig. 17. We take the limit α → 0 with T fixed.

In order to get the singular behavior of F (g)N (�x) in the limit α → 0, we evaluate the variation of

F (g)N under α → α + δα which is given by

δF (g)N (�x) = 2π i δα
∮

Cα

dz

2π i

1

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)
+ c.c.,

(4.12)
where the contour Cα , which either closes or ends in punctures, is shown in Fig. 18. We decompose
the relevant part of the diagram into two pants which are the regions bounded by the curves CL1,
CL2, CT and CR1, CR2, CT respectively and a cylindrical region bounded by CL2, CR2 in Fig. 18.
We also introduce a local coordinate zL around the interaction point ρ(zIL) such that

ρ(zL) ∼ α(zL − 1 − ln zL)+ ρ(zIL),

and similarly zR around ρ(zIR ) such that

ρ(zR) ∼ α(−zR + 1 + ln zR)+ ρ(zIR ),

for α � 1. We take the contour CT to be along the curve

|zL| ∼ exp
(

−TL

α
− 1

)
, |zR| ∼ exp

(
−TR

α
− 1

)
,

with

TL + TR = T .
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Fig. 19. Contours CL, CR, Ccut.

Proceeding as in Eqs. (4.6) and (4.8), we get

δF (g)N (�x) = −
∮

1

dzL

2π i

δρ(zL)− δρ(zIL)

∂ρ(zL)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∫

CT

dzL

2π i

δρ(zL)− δρ(zIL)

∂ρ(zL)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∫

CL

dzL

2π i

δρ(zL)− δρ(zIL)

∂ρ(zL)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

−
∮

1

dzR

2π i

δρ(zR)− δρ(zIR )

∂ρ(zR)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

−
∫

CT

dzR

2π i

δρ(zR)− δρ(zIR )

∂ρ(zR)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∫

CR

dzR

2π i

δρ(zR)− δρ(zIR )

∂ρ(zR)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+ 2π i δα
∮

Ccut

dz

2π i

1

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)
+ c.c., (4.13)

where Ccut denotes parts of the contour Cα presented in Fig. 19, together with CL, CR. The first term
on the right-hand side of Eq. (4.13) can be evaluated in the same way as Eq. (4.9) and we get

−
∮

1

dzL

2π i

δρ(zL)− δρ(zIL)

∂ρ(zL)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ −3

4
(2 − Q2)

δα

α
F (g)N .

The second term is evaluated to be∫
CT

dzL

2π i

δρ(zL)− δρ(zIL)

∂ρ(zL)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ −
∫ 2π

0

dσ

2π

δα

−α z
2

L

(
TL

α
− iσ

)
1

z2
L

〈(
1

2
|�p|2 + Qp1 + 1

2
Q2

)
O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ D

4

δα

α
+ imaginary part, (4.14)

where we have used the fact that the states propagating through CT are projected to be GSO even and
the dominant contributions in the limitα → 0 come from the states with the momentum pi = −Qδi,1.
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The number of noncompact bosons in the world sheet theory is denoted by D, and D
4
δα
α

in the last
line originates from the momentum integral. For α � 1, taking the contour CL to be along the curve
|zL| = α−γ (0 < γ < 1), the third term on the right-hand side of Eq. (4.13) is evaluated as∫

CL

dzL

2π i

δρ(zL)− δρ(zIL)

∂ρ(zL)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ δα

α

∮
CL

dzL

2π i
zL

〈
T (z)O(g)

N

〉
exp

(
−1 − Q2

2


)
+ constant × δ(αγ )

∼ −1

2
Q2 δα

α
F (g)N , (4.15)

where we have ignored the term of order δ(αγ ). The states propagating through CL are GSO odd
and the dominant contributions to the contour integral come from the states with the momentum
pi = −Qδi,1. The fourth to the sixth terms are evaluated in the same way, taking the contour CR to
be along the curve |zR| = α−γ . The singular contributions of the integration along Ccut can come
from the regions near the contours CR, CL and

2π i δα
∮

Ccut

dz

2π i

1

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ 2π i δα
∫ α−γ

dzL

2π i

1

∂ρ(zL)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+ 2π i δα
∫
α−γ

dzR

2π i

1

∂ρ(zR)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)
∼ constant × δ(α2γ ), (4.16)

which can be ignored in the limit α → 0. Putting these together, the right-hand side is evaluated
to be (

−6 + Q2 + D

2

)
δα

α
F (g)N (�x).

From this, we can deduce that F (g)N (�x) is expressed as

F (g)N (�x) ∼ α−6+Q2+(D/2) × constant, (4.17)

for α � 1.

4.2.3. Collisions of interaction points
The technique developed above is applicable to the situation in which the interaction points come
close to each other but no degeneration occurs. When two of the interaction points come close to
each other as shown in Fig. 20, it is possible to take a local coordinate z around the interaction points
so that ρ(z) can be expressed as

ρ(z) ∼ ε(z3 − 3z)+ constant, (4.18)

where the limit we should consider is ε → 0.
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Fig. 20. Two interaction points come close to each other without degeneration. The coordinate size of the neck
does not go to zero in the limit ρ(zI ) → ρ(zJ ).

Fig. 21. zI , zJ , C.

The variation of F (g)N (�x) under ε → ε + δε can be given as

δF (g)N (�x) ∼ −
∮

zI

dz

2π i

δρ(z)− δρ(zI )

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

−
∮

zJ

dz

2π i

δρ(z)− δρ(zJ )

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∮

C

dz

2π i

δρ(z)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)
+ c.c., (4.19)

where zI , zJ , C are depicted in Fig. 21. The terms in the first and the second lines can be evaluated
as in Eq. (4.9) and we obtain ∼ −3

4(2 − Q2) δε
ε

F (g)N . With Eq. (4.18), we get

{ρ, z} ∼ −4

z2 ,
δρ(z)

∂ρ(z)
∼ δε

3ε
z,

for z � 1 and the term in the third line is evaluated to be ∼ 4
3(1−Q2) δε

ε
F (g)N . Therefore we eventually

get

F (g)N (�x) ∼ ε−(10/3)+(1/3)Q2 × constant. (4.20)

The case in which n interaction points come close to each other can be treated in the same way.
With a good local coordinate z, ρ(z) can be expressed as

ρ(z) ∼ ε(zn+1 + · · · )+ constant,

and we get

F (g)N (�x) ∼ ε(1/(n+1))(−2n2−n+(1/2)(n2−n)Q2) × constant. (4.21)
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4.3. Divergences of the amplitudes

Using Eqs. (4.11), (4.17), (4.20), and (4.21), we can check whether the integrations around the
singularities studied in the previous subsections give divergent contributions to the amplitude A(g)N .
For example, in the case of the configuration presented in Fig. 12, the relevant part of the integration
measure is expressed as

∫
dεε2,

for ε � 1, and with Eq. (4.11) the contribution to the amplitude from the neighborhood of the
singularity goes as

∫
dεε−4+3Q2

.

This integral diverges when Q = 0 but converges if Q2 is large enough. The same happens for other
configurations discussed in the previous subsection. Notice that the infinitely thin cylinder in Fig. 17
leads to a divergence in spite of the Feynman iε, because of the contributions from the tiny regions
at the ends.

Therefore the amplitudes diverge in the superstring field theory with Q = 0, which is the theory
in the critical dimension. The Feynman iε is not enough to make them finite, partly because some
of the configurations correspond to the ultraviolet region with respect to the world sheet metric
ds2 = dρ dρ̄. The divergences are also due to the presence of TF and T̄F at the interaction points. In
order to make sense out of the string field theory, we need to regularize the divergences. As we have
seen in the examples discussed here, it seems that we can do so by taking Q2 large enough.

5. Regularization of divergences

In this section, we would like to show that by taking ε > 0 and Q2 > 10 the amplitude Eq. (2.13)
becomes finite. The singularities coming from cylinders with infinite length and nonvanishing width
are taken care of by taking ε > 0. Other types of singularities correspond to light-cone diagrams that
involve infinitely thin cylinders and/or colliding interaction points. As we have seen in the previous
section, the singularities of F (g)N can be deduced from the behavior of ρ(z), ρ̄(z̄) in tiny regions
around the relevant interaction points. The singular configuration corresponds to the limit where
these regions shrink to points.

General singular configurations we should deal with can be realized in the following way:

◦ Let G be a subregion of a regular light-cone diagram that consists of regions Ra (a = 1, 2, . . .)
connected by propagators Lb (b = 1, 2, . . .).

◦ The singular configuration corresponds to the limit in which the regions Ra shrink to points and
the cylinders Lb become infinitely thin, as illustrated in Fig. 22.

In order to study the singular behavior of F (g)N (�x) in such a limit, it is convenient to take the integration
variables �x = (x1, x2, . . . , xn) ∈ R

n in the following way. Let x1, . . . , xnG be the independent linear
combinations of differences of coordinates ρ, ρ̄ of the interaction points and magnitudes of jump
discontinuities of ρ, ρ̄ in the regions Ra so that the limit where they shrink to points and the cylinders
Lb become infinitely thin is represented by xj → 0 (j = 1, . . . , nG). We take xnG+1, . . . , xn to
represent the shape of the light-cone diagram outside G and the positions of Ra.
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Fig. 22. Regions shrinking to points connected by infinitely thin tubes.

Then the singularity in question is at

�x = (

nG times︷ ︸︸ ︷
0, . . . , 0, �y),

where

�y ≡ (ynG+1, . . . , yn).

In order to study the behavior of F (g)N (�x) at the singularity, we estimate

F (g)N (ε �w, �y)
in the limit ε → 0 with

�w = (w1, . . . , wnG ) (| �w| = (
(w1)2 + (w2)2 + · · · + (wnG )2

)1/2 = 1), (5.1)

fixed. We can do so, as in the previous section, if (ε �w, �y) itself does not correspond to a singular
configuration, i.e.,

�vk · (ε �w, �y) �= 0

for any k . This happens for a generic choice of �w. We would like to first analyze F (g)N (ε �w, �y) for
such �w in the limit ε → 0.

5.1. F (g)
N (ε �w, �y) in the limit ε → 0

For ε � 1, with a good local coordinate z on Ra, the ρ(z) is approximated as

ρ(z) ∼ ερa(z)+ constant,

where ρa(z) is a multivalued meromorphic function on Ra. Suppose that the region Ra has genus ga

and ka + la boundaries, where la of the boundaries are associated with the thin cylinders attached
to Ra, and ka of them are around the necks that connect Ra with the rest of the surface. Also, la
boundaries associated with the thin cylinders correspond to simple poles of ∂ρa(z) and the other ka

31/39



PTEP 2017, 033B01 N. Ishibashi

boundaries correspond to higher-order poles at z = z(a)i (i = 1, . . . , ka). We assume that for z ∼ z(a)i ,
∂ρa(z) behaves as

∂ρa(z) ∼ r(a)i

(z − z(a)i )n
(a)
i

+ · · · (n(a)i ≥ 2).

Since the degree of the differential ∂ρa(z) dz should be 2ga − 2, we get

N (a)
I −

ka∑
i=1

n(a)i − la = 2ga − 2, (5.2)

where N (a)
I is the number of the interaction points included in Ra. In order for the statement that Ra

shrinks to a point to make sense, N (a)
I ≥ 1.

Now let us calculate the behavior of F (g)N (ε �w, �y) in the limit ε → 0. The variation of F (g)N (ε �w, �y)
under ε → ε+ δε can be evaluated as in the examples discussed in the previous section. Expressing
the variation δF (g)N as a sum of contour integrals of correlation functions with energy-momentum
tensor insertions and deforming the contours, we eventually get

δF (g)N (ε �w, �y)

∼ −
∑
IG

∮
zIG

dz

2π i

δρ(z)− δρ(zIG )

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∑

a

∑
b

∫
C(a)b

dz

2π i

δρ(z)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∑

a

∑
i

∫
C(a)i

dz

2π i

δρ(z)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+
∑
Ccut

∫
Ccut

dz

2π i

�δρ

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

+ c.c. (5.3)

Here z = zIG (IG = 1, 2, . . .) correspond to the interaction points included in G, the contour C(a)
b

denotes the one along the boundary of Ra around Lb, and C(a)
i denotes a contour along the ith

boundary of Ra, which corresponds to the pole z(a)i of ∂ρa. The terms in the fourth line come from
the possible multivaluedness of δρ and we take δρ to have a jump�δρ along the contour Ccut. There
can be contributions from integrations along contours outside G, but they correspond to the terms in
F (g)N that vanish in the limit ε → 0.

The right-hand side of Eq. (5.3) can be evaluated as in the previous section. Each term in the first
line can be evaluated as in Eq. (4.9):

−
∮

zI

dz

2π i

δρ(z)− δρ(zI )

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ −3

4
(2 − Q2)

δε

ε
F (g)N .
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The terms in the second line can be estimated as in Eq. (4.14):

∑
a

∫
C(a)b

dz

2π i

δρ(z)

∂ρ(z)

〈(
T (z)− (1 − Q2) {ρ, z})O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ D

4

δα

α
+ imaginary part.

The terms in the third line can be calculated by using

δρa(z)

∂ρa(z)
∼ −δε

ε

z − z(a)i

n(a)i − 1
,

{ρ, z} ∼ −1

2

(n(a)i − 1)2 − 1

(z − z(a)i )2
,

〈
T (z)O(g)

N

〉
exp

(
−1 − Q2

2


)

∼ 1

(z − z(a)i )2

〈(
1

2
|�p|2 + Qp1 + · · ·

)
O(g)

N

〉
exp

(
−1 − Q2

2


)
, (5.4)

for z ∼ z(a)i . The factor that appears on the right-hand side of Eq. (5.4) can be estimated by using

1

2
|�p|2 + Qp1 ≥

{
0, ka + la = 1,

−Q2

2 , ka + la ≥ 2.

As in the examples in the previous section, the terms in the fourth line of Eq. (5.3) can give only
negligible contributions to F (g)N . From these, we can see that for ε � 1, F (g)N (ε �w, �y) behaves as

F (g)N (ε �w, �y) ∼ εγG × constant, (5.5)

where

γG =
∑

a

γRa ,

γRa ≥ −3N (a)
I +

ka∑
i=1

(
n(a)i − 1 − 1

n(a)i − 1

)
+ Q2

⎡
⎣3

2
N (a)

I −
ka∑

i=1

(
n(a)i − 1 − δka+la,1

n(a)i − 1

)⎤⎦ ,

(5.6)

if (ε �w, �y) does not correspond to a singular configuration.

5.2. Proof of finiteness of A(g)N

If γG < 0, then F (g)N (�x) is singular at �x = (0, �y). Let us show that we can make γRa > 0 by choosing
Q2 large enough.

When ka + la ≥ 2, we have

γRa ≥ −3N (a)
I +

ka∑
i=1

(
n(a)i − 1 − 1

n(a)i − 1

)
+ Q2

⎡
⎣3

2
N (a)

I −
ka∑

i=1

(
n(a)i − 1

)⎤⎦. (5.7)
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From Eq. (5.2), we get

3

2
N (a)

I −
ka∑

i=1

(
n(a)i − 1

)
= 1

2
N (a)

I + ka + la + 2ga − 2 > 0. (5.8)

Substituting Q2 = 6 into Eq. (5.7) yields

γRa ≥ 6N (a)
I − 5

ka∑
i=1

(
n(a)i − 1

)
−

ka∑
i=1

1

n(a)i − 1

= 5

⎛
⎝N (a)

I −
ka∑

i=1

n(a)i + ka

⎞
⎠ + N (a)

I −
ka∑

i=1

1

n(a)i − 1

≥ 5 (ka + la + 2ga − 2)+ N (a)
I − ka.

Since Eq. (5.2) implies

N (a)
I =

ka∑
i=1

n(a)i + la + 2ga − 2 ≥ 2ka + la + 2ga − 2 ≥ ka + 2ga ≥ ka,

we obtain γRa ≥ 0 for Q2 = 6. From Eq. (5.8) we can see that γRa > 0 holds if Q2 > 6.
When ka + la = 1, the only possibility is ka = 1, la = 0. Eq. (5.6) becomes

γRa ≥ −3N (a)
I + n(a)1 − 1 − 1

n(a)1 − 1
+ Q2

(
3

2
N (a)

I − n(a)1 + 1 + 1

n(a)1 − 1

)
.

If ga ≥ 1, we can prove

3

2
N (a)

I − n(a)1 + 1 + 1

n(a)1 − 1
≥ 1

2
N (a)

I + 2ga − 1 > 0,

and for Q2 = 6,

γRa ≥ 6N (a)
I − 5

(
n(a)1 − 1 − 1

n(a)1 − 1

)

> 6N (a)
I − 5

(
n(a)1 − 1

)
= 5 (2ga − 1)+ N (a)

I

> 0.

Therefore γRa > 0 for Q2 > 6. If ga = 0, Eq. (5.2) becomes

N (a)
I = n(a)1 − 2,

and γRa is given by

γRa ≥ 1

n(a)1 − 1

[
−

(
2n(a)1 − 3

) (
n(a)1 − 2

)
+ 1

2
Q2

(
n(a)1 − 2

) (
n(a)1 − 3

)]
.
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In this case, in order for the statement that Ra shrinks to a point to make sense, N (a)
I ≥ 2. Since

n(a)1 = N (a)
I + 2 ≥ 4, we get

(
n(a)1 − 2

) (
n(a)1 − 3

)
> 0.

For Q2 = 10, we obtain

γRa ≥ 3

n(a)1 − 1

(
n(a)1 − 2

) (
n(a)1 − 4

)
≥ 0.

Therefore γRa > 0 for Q2 > 10.
Thus we have proven that γG = ∑

γRa > 0 holds for any G, if we take Q2 > 10. Since

F (g)N (ε �w, �y) ∼ εγG × constant,

for generic �w, the fact that γG > 0 for any G seems to suggest that F (g)N (�x) does not have any
singularities and the amplitude is finite. We would like to prove that this is the case in the following.

Let us first prove that putting F (g)N (�0, �y) = 0, F (g)N (�x) becomes continuous at �x = (�0, �y), if Q2 > 10.

For generic �w, then F (g)N (ε �w, �y) behaves in the limit ε → 0 as

F (g)N (ε �w, �y) ∼ εγG × constant,

with γG > 0. Hence as a function of ε̃ = εγG , F (g)N (ε �w, �y) is differentiable at ε̃ = 0. It is smooth
with respect to �w, �y when ε̃ �= 0. Therefore we can find a constant M > 0 such that∣∣∣F (g)N (ε(�w + δ �w), �y + δ�y)

∣∣∣ < εγG M , (5.9)

for any δ �w, δ�y with |δ �w|, |δ�y| , ε sufficiently small. If this holds for any �w, then F (g)N (�x) is continuous
at �x = (�0, �y). Therefore we need to study the case where �w is not generic in the sense that (ε �w, �y)
corresponds to a singular configuration, in order to prove the continuity of F (g)N (�x).

Suppose that (ε �w0, �y) corresponds to a singular configuration. It should correspond to the limit in
which a subregion G′ of G shrinks to a point. With a rearrangement of the integration variables, �w0

can be expressed as

�w0 = (

nG′ times︷ ︸︸ ︷
0, . . . , 0 , �y′).

The value of F (g)N (�x) in the neighborhood of the point �x = (ε �w0, �y) can be studied by estimating

F (g)N

(
ε0(�w0 + ε′ �w′), �y), (5.10)

where

�w′ = (w′1, . . . , w′nG′ , 0 . . . 0),∣∣�w′∣∣ = 1,∣∣ε0(�w0 + ε′ �w′)
∣∣ = ε,
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and 0 < ε′ � 1. If �x = (ε0(�w0 + ε′ �w′), �y) corresponds to a light-cone diagram without any
degenerations or collisions of interaction points, it is straightforward to estimate Eq. (5.10) by
computing the variation δF (g)N under ε′ → ε′ + δε′ using the techniques presented in the previous
section and we obtain

F (g)N

(
ε0(�w0 + ε′ �w′), �y) ∼ ε

γG
0

(
ε′
)γG′ × constant. (5.11)

If Eq. (5.11) holds for any �w′, we will be able to find a constant M ′ > 0 such that∣∣∣F (g)N

(
ε0(�w0 + ε′ �w′), �y)∣∣∣ < ε

γG
0

(
ε′
)γG′ M ′,

which implies we can find M > 0 satisfying the inequality (5.9) also in the neighborhood of
�w = �w0. Therefore we need to study the case in which (ε0(�w0 + ε′ �w′), �y) corresponds to a singular
configuration, in order to prove the continuity of F (g)N (�x). The behavior of F (g)N

(
ε0(�w0 + ε′ �w′), �y) at

a possible singularity �w′ = �w1 corresponding to G′′ ⊂ G′ can be studied by estimating

F (g)N

(
ε0 �w0 + ε0ε1 �w1 + ε0ε1ε

′′ �w′′, �y),
for ε′′ � 1 with ε0, ε1, �w′′ defined in the same way.

After repeating this procedure a finite number of times, we end up with

F (g)N

(
ε0 �w0 + ε0ε1 �w1 + · · · + ε0ε1 · · · ε(n) �w(n), �y

)
∼ ε

γG
0 (ε1)

γG′ · · ·
(
ε(n)

)γG(n) × constant,

which holds for any �w(n), because G involves only a finite number of collapsing necks and interaction
points. Applying this procedure to all possible singularities in the neighborhood of (�0, �y), we can
show that Eq. (5.9) holds for any �w and therefore F (g)N (�x) is continuous at �x = (�0, �y).

Thus we have shown that F (g)N (�x) is continuous at possible singularities. Since F (g)N (�x) is a dif-

ferentiable function of �x away from these points, F (g)N (�x) is a continuous function of �x without any

singularities. Therefore the amplitude A(g)N becomes finite if we choose Q2 > 10 and ε > 0, because
the parameters TI are cut off by the iε prescription.

6. Discussions

In this paper, we have studied the divergences we encounter in perturbative expansion of the ampli-
tudes in the light-cone gauge superstring field theory. From the point of view of light-cone gauge
string field theory, they originate from both infrared and ultraviolet regions with respect to the
world sheet metric ds2 = dρ dρ̄ and collisions of interaction points. The contributions from the
infrared region can be dealt with by introducing the Feynman iε. In order to regularize other kinds
of divergences, we formulate the theory in a linear dilaton background. We have shown that the
light-cone gauge superstring field theory with Q2 > 10 and ε > 0 is free from divergences at least
perturbatively.

The theory with Q �= 0 with eight transverse directions is not a theory in the critical dimension
and the Lorentz invariance should be broken. However it corresponds to a conformal gauge world
sheet theory with nonstandard longitudinal part (Refs. [12,13,16,17]) which obviously breaks the
Lorentz invariance. Including the ghosts, the total central charge of the world sheet theory is zero
and it is possible to construct nilpotent BRST charge. Therefore the gauge invariance of superstring
theory is not broken by making Q �= 0 for regularization.
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It should be possible to obtain the amplitudes in the critical dimension by defining them as analytic
functions of Q in the region Q2 > 10 and analytically continuing them to Q = 0 as is usually done
in dimensional regularization. In a recent paper (Ref. [20]), we have compared the results with those
(Refs. [50–52]) obtained by the first quantized formalism and shown that they coincide exactly, in
the case of the amplitudes for even spin structure with external lines in the (NS,NS) sector.

In this paper, we have dealt with superstring theory in Minkowski spacetime. The results in this
paper hold also for the case where besides X 1 for the linear dilaton background the world sheet
theory consists of nontrivial conformal field theories, provided possible singularities of F (g)N arise
only from degenerations and collisions of interaction points. We expect that this is the case for
reasonable unitary world sheet theory. It is known that F (g)N can become singular7 at some regular
point in the interior of the moduli space because the correlation functions involve theta functions in
the denominator (Ref. [57]), if the world sheet theory involves nonunitary conformal field theory like
superconformal ghost. Therefore it seems difficult to formulate a Lorentz covariant generalization
of the results in this paper.

The regularization discussed in this paper looks similar to the dimensional regularization in field
theory but there are several crucial differences. First, the number of transverse directions, and accord-
ingly those of spacetime momenta and gamma matrices, is fixed in our formulation. The divergences
are regularized not by reducing the number of integration variables. We do not encounter problems
with spacetime fermions, like those in the dimensional regularization in field theory. There are no
difficulties in dealing with the amplitudes corresponding to world sheets with odd spin structure.
Since the world sheet theory involves 16 or 8 fermionic variables, it is possible to recast the string
field theory into that in the Green–Schwarz formalism (Ref. [2]). Second, we have a concrete Hamil-
tonian or action describing the theory with Q, contrary to the case of dimensional regularization in
which there does not exist any concrete theory in fractional dimensions. Hence the regularization
proposed in this paper will be useful in discussing nonperturbative questions in superstring theory,
although the Hamiltonian is complex because of the dilaton background.
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