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Abstract

A mechanical diamond, with the classical mechanics of a spring-mass model arrayed on a diamond
lattice, is discussed topologically. Its frequency dispersion possesses an intrinsic nodal structure in the
three-dimensional Brillouin zone (BZ) protected by the chiral symmetry. Topological changes of the
line nodes are demonstrated, associated with the modification of the tension. The line nodes projected
into two-dimensional BZ, form loops, which are characterized by the quantized Berry phases with 0 or
7. With boundaries, the edge states are discussed in relation to the Berry phases and winding numbers,
and the bulk-edge correspondence of the mechanical diamond is established.

(OMOM

1. Introduction

Topological semimetal is a system in which the band gap is finite almost everywhere in the Brillouin zone, except
in some sets of isolated points. In short, it is a system with singular gapless points [1]. Generally, the existence of a
singular gapless point leads to nontrivial topology. That is, a singularity often serves as the source of a ‘twist’ of
Bloch wave functions captured by the Berry curvature, giving rise to nontrivial topology. When a system is
characterized by a point-like singularity associated with linear dispersion—i.e. a Dirac cone—it is a Dirac/Weyl
semimetal, which is a representative topological semimetal [2—6]. Very recently, other kinds of topological
semimetals—Ilike nodal line semimetals where the gapless points form a line, which is typically a closed loop—
have begun to attract attention as a new stage for playing with topology [7]. Just as in the case of fully gapped
topological insulators, topological semimetals are characterized by topologically protected edge modes as a
consequence of the bulk-edge correspondence [8].

There have also been intensive efforts to export the idea of topological insulators and topological semimetals
to the classical world [9—-14]. In particular, classical mechanical systems are interesting playgrounds because of
their simplicity and flexibility for tuning parameters [11-13, 15-22]. In fact, we have already seen topological
edge modes in various mechanical systems, including photonic and opto-mechanical systems [11-13, 16—

19, 23-26]. One specific example which shows this easy-to-tune feature is mechanical graphene, which is a
honeycomb spring-mass model [17, 19, 27-29]. In mechanical graphene, Dirac cones are known to exist, and
their number and position in the Brillouin zone can be controlled by simply changing the tension of the springs
in equilibrium [28]. It is worth noting that the effect of the equilibrium tension can be interpreted as spin—orbit
coupling ifitis clockwise, and the counterclockwise motion of the mass point is mapped to the spin [30, 31].

In this paper, we perform an analysis on a spring-mass model with a diamond structure, namely, a
mechanical diamond, which is a natural extension of mechanical graphene to three-dimensions [28]. A
mechanical diamond is a typical classical nodal line semimetal counterpart. It is revealed that the equilibrium
tension induces the unique evolution of the structure of the gapless line nodes. The topological properties of the
mechanical diamond are also investigated by relating the edge modes, the quantized Berry phase, and the
winding number. In accordance with the unique line node structure, the edge modes also show unique
distribution on the surface of the Brillouin zone, including situations with an edge mode multiplicity of 2 or 3.
We confirm that these features are well captured by the quantized Berry phase and the winding number,
establishing the bulk-edge correspondence in the mechanical diamond. Note that we are dealing with in-gap flat

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) A schematic picture of a mechanical diamond. The unit translation vectors are also shown as a;; (b) the nearest-neighbor
vectors Ré’); (c) the definitions of Ry, x’ and x”.

band edge modes in a chiral symmetric model, not with quantum-Hall-like dispersive edge modes connecting
lower and upper bands [32].

The paper is organized as follows: in section 2, the basic notions of the mechanical diamond are explained;
then, the frequency dispersion is shown in section 3. Section 4 is devoted to the topological arguments, and the
paper is summarized in section 5.

2. Formulation

Let us introduce our model: a mechanical diamond consists of mass points aligned in a diamond structure, and
springs connecting the nearest-neighbor pairs of the mass points (see figure 1(a)). This three-dimensional model
is a natural extension of two-dimensional mechanical graphene [ 28], which is a spring-mass model with a
honeycomb structure. As in the case of 2D mechanical graphene, the parameters characterizing our model are
the mass of mass points #1 (m is fixed to a unit for simplicity), the spring constant x, the natural length of the
springs [y and the distance between the neighboring mass points Ry. Note that Ry and [y do not necessarily match
each other; i.e. Ry can be larger than [, if we apply a proper boundary condition to exert uniform outward tension
to the system. In order to investigate the dynamics of the system, we introduce a quantity xg, = ‘(Xra> Yg,> ZRa)
describing the displacement of each mass point from the equilibrium position. Here, R designates the lattice
points and a is the sublattice index.

We assume that the elastic energy U of a specific spring can be expressed as U; = %n (I — lp)*>with

I = |Ry + x' — x"|,where x/, x”, and R are two displacement vectors for two mass points, and a vector
connecting the two equilibrium positions, respectively. By expanding U; up to the second order in
6x = x' — x”, we obtain

1 ~
[]S ~ EH((RO — ZO)2 + 2(R0 — l())R() - 6x + 6.7(«';/7%’;63(:1/): (1)

where 'y;’; =(1 —n)o" + nﬁoﬂﬁoy, Ry = Ry/|Ro|and ) = 1, /R,. Here, we implicitly take the summation
over pand v, which run through the directions of the displacement x, y, and z; i.e. we apply the Einstein
summation convention. The second term that is linear in éx makes no contribution to Newton’s equation of
motion, as far as we focus on displacement from the equilibrium point, since the linear terms cancel each other
outin the equation of motion. The third term is characterized by the parameter 7). For = 1, at which the
springs have a natural length in equilibrium, the angle between R, and dx has a significant impact on the elastic
energy because of the factor Ry’ R,y . On the other hand, for 77 = 0, the limiting case of the stretched springs in
equilibrium, U, has no dependence on the direction of éx, in contrast with the case of = 1. Therefore, the
parameter 7 enables us to tune the property of the spring-mass model.

For a mechanical diamond, the equation of motion can be derived by evaluating the elastic energy
substituting R{” in figure 1(b) into equation (1). If we further assume that the system is periodic in space and
time, i.e. by introducing ¢, , (k) as uj;, = ¢, (k) and xg, = %Ek el*Ryl!  the equation of motion reduces to

—wig,, (k) + ST (k) ¢y, (k) = 0, )
b
where T (k) = (a0
I'(k) = I'i(4 — §77)i + ATO FABA(k) , (3)
3 I'yp(k) 0
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Figure 2. Band structure for (a) n = 1,(b) n = g, ©n= %, dn= %and (e)p=0.
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Figure 3. A schematic picture of drawing a line; the red surfaces indicate the Berry phase over the edge of the surface equaling 7.

and [yp(k) = —r (5, + e *kag 4 e kay 1 e-ikaqy with 4, = Are (i =1, 2, 3, 4) (see figures 1(a) and
(b)). The eigenfrequency and the eigenmodes are calculated by diagonalizing I' (k). Note that

k) =Tk — k@4 — %77) 1 anticommutes with T = diag(1, 1, 1, —1, —1, —1),i.e. [ (k) has chiral
symmetry. This Ehiral symmetry can be used to make a topological characterization of I'(k), since the shift
proportional to 1 does not modify the eigenmodes.

3. Frequency dispersion and nodal line

Figure 2 shows the frequency band dispersion of the system for several values of . Here, « is scaled by a factor
1/ ( 1 - %n) to remove the 1 dependence of the total band width. Since we have six degrees of freedom—two
from the sublattices and three from the directions x, y, and z, per unit cell—we find six bands. As in the case of
the single orbital tight-binding model with the diamond structure, the gap between the third and fourth bands is
closed on the X—W line regardless of the value of 7). (We employ the standard notation for the high symmetry
points in the fcc Brillouin zone.) Around these gapless points, the gap grows linearly in the direction
perpendicular to the X—W line. Actually, in the 3D Brillouin zone, the gapless points form line nodes, which are
protected by the chiral symmetry. This point will be discussed in detail later. Interestingly, a new gapless point,
which again forms a line node, is identified on the W—Lline for 7 < 3/4, i.e. we can generate aline node that is
absent in the single orbital tight-binding model on the diamond lattice simply by applying tension to control 7.

In order to obtain a global mapping of the geometry of the line nodes in the 3D Brillouin zone, we employ the
Berry phase. This is because the direct assessment of degeneracy in the eigenfrequency spectrum requires some
care, and it is safer to detect a ‘twist’ in the eigenmodes associated with the singular degeneracy, which is
captured by the Berry phase. In the numerical calculation of the Berry phase, we follow the ideain [33]. In the
following, we describe the procedure to map the line nodes in order.

First, the Brillouin zone is decomposed into small cubes whose corners are specified by k; = (k;, ki, ki)
wherel = (I, b, ), kj, = 27, /Np,and [, = 0,...,Ns — 1. Wealso introduce a triplet

3
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Figure 4. Line nodes for (a) = 0.7, (b) n = 0.5 and (c) » = 0.3 viewed from a certain direction, and (d) = 0.7, (e) = 0.5 and
(f) n = 0.3 with k, and k; set parallel to the paper plane.

W(k) = (Im(k)), |ny(k)), |ns(k))), where |n; (k) ) is the eigenvector of the ith band at k. Here, itis a ‘triplet’
because we are focusing on the gap between the third and fourth bands. Then, we define a U(1) link variable by

1 ¢
Uy (k) = detyf (k)| k + == |. 4
15, (k) Neo (0 et ( w( ND) (4)

Here, we have introduced a shorthand notation &, = (27 /Np) (614> 02> 63,,) and

Nﬁ“ (k) = |detyf (k)2 (k + I%p) |, where Np, refers to the number of discretized mesh points on each edge of

each of the small cubes. Now, we can assign the Berry phase to each square surface of a small cube by taking the
edge of the square as an integration path to define the Berry phase. For instance, for the square spanned by k;,
ki + &, ki + é,,and k; + é, + &, (u = v), theassigned Berry phase is computed as

~ Np—1 Np—1
O (k) = Z Arg Us, | k1 + iéﬂ + Z Arg Us, | ki + &, + ié,,
ND ND

a=0 a=0
Np—1 a Np—1 a

+ Z Arg Uféu (kl + éﬂ + é\1/ - _é,u) + Z Arg Ufél/ (kl + él/ - _él/) (5)
a=0 ND a=0 ND

In our case, the Berry phase Q,,, (k) is quantized into 0 or 7 (modulo 27), owing to the chiral symmetry.
Furthermore, 9;11/ (k;) = 7 implies that there exist an odd number of Dirac points on the associated square
[28, 34, 35]. From a 3D point of view, a Dirac cone on a square patch means that a line node threads through that
patch. Now, if we set N large enough so that the possibility of multiple line nodes threading one square patch is
excluded, we can follow each line node by following the Berry phase 7; i.e. as far as the square patches are
sufficiently small, we can draw a reasonably smooth line node by connecting the central points of the nearby
patches with the Berry phase 7. Note that we can always find a nearby patch with the Berry phase 7 when we
have a certain patch with the same Berry phase, since a line node cannot be terminated abruptly.

Figure 4 illustrates the mapping of the line nodes in the 3D Brillouin zone obtained with Ny = 151 and
Np = 5. There are two classes of line nodes: the line nodes in the first class exist for any 1), and their shapes are
fixed and identical to those in the single orbital tight-binding model on the diamond lattice; on the other hand,
the line nodes in the second class appear when 7becomes smaller than a critical value 7). = 3/4. The shapes of
the line nodes in the second class depend on 7, and they are eventually absorbed into the line nodes in the first
classatthe 7 = 0limit.
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Before moving onto the next topic, we explain why the gapless points in our model form aline, i.e.a 1D
object. Although our model is a six-band model, here we focus on a two-band effective model that is valid in the
vicinity of the gap closing point. The most generic form of the effective Hamiltonian with particle-hole
symmetry can be written as

H(k)-( . x_ly)—r(k)'a, ©
X + 1y —z

where r (k) is a three-dimensional vector consisting of real quantities x, y and z, and o is a vector with the Pauli
matrices as components. In our case, the chiral symmetry induces a constraint on r (k). For simplicity, we
choose o3 as a chiral operator, or assume { H, 03} = 0, which restricts the Hamiltonian to the form

H (k) = x(k)oy + y (k)o,. The condition of having a gap closing pointis |r (k)| = 0, which in fact gives two
conditions, x (k) = 0and y (k) = 0. That s, we have two conditions and three parameters, ky, k,, and k3.
Therefore, a manifold satisfying the zero gap condition has a dimension 3 — 2 = 1, which supports the
existence of the line nodes [36]. Note that the choice of 73 as a chiral operator does not mean loss of generality,
since it is merely a matter of the basis choice.

4. Berry phase and topological edge modes

In order to relate the nontrivial topology induced by the bulk band singularity and edge modes, we calculate the
Berry phase of a many-body system, whose definition is

0 (ky, ky) = —ifL TrdA %)

ky:fixed, k,:fixed

Here, A isa non-Abelian Berry connection A = ¢/’di, whichisa3 x 3 matrix-valued one-form associated
with the multiplet ¢ = (|m), |n,), |n5)). The integration path L is taken to be a periodic path of fixed (k;, k) and
0 < ks < 27, whichisaline along the k;-direction. Just as in the case of the previous section, the Berry phase is
quantized into 0 or 7 due to the chiral symmetry [32]. Figures 5(a-1)—(a-5) show the Berry phase as a function of
(k, k), which is obtained using the same method as in the previous section by modifying the integration path.
Blue regions indicate 6 (k;, k;) = 0, while red regions indicate 0 (k;, k;) = 7. The obtained results are consistent
with the three-fold symmetry and the reflection symmetry of the diamond lattice. The lines dividing the blue and
red regions are the line nodes (see figure 4) projected onto the surface under consideration, that is, the jumps in

0 (ky, k) are associated with the bulk singularity. The complicated structures for intermediate 1 can be
understood by relating each of the loops on the surface to each of the line nodes in the bulk. This point will be
discussed later.

If we consider a surface parallel to the plane spanned by a; and a,, on which k; and k, are good quantum
numbers, we expect at least one topologically protected edge mode for (k;, k) with 0 (k;, k) = 7. This
statement can be confirmed by investigating the edge mode explicitly. For this purpose, we consider a system
which is periodic in the a; and a, direction, but finite in the a5 direction, so as to have the surface parallel to the
a—a, plane, as in figure 6. Here, we apply a fixed boundary condition, where the last springs at the surface are
connected to the wall. This choice of fixed boundary condition is important for maintaining ‘the chiral
symmetry’ of the system [28]. Then, the frequency dispersion as a function of (k;, k) is obtained by
diagonalizing fedge (k), whose explicit form is

z Gk
INC A
Lz Tk
) £ (k)
Fugge (k) = , ®)
fi(k)
e 2 D
Lz Tk
My 2

where [} (k) = —k (3, + e *@4 + e *k@4q)) 7 = k(5 + 4, + 9, + A and [} = —#7), . Importantly, due
to the fixed boundary condition, the diagonal part is uniform, which means that the eigenvectors are unaffected
by the diagonal terms, and we still have a chiral symmetry in the same sense as the previous analysis.

Figures 5(b-1)—(b-5) show the frequency dispersion on a line in the surface Brillouin zone specified in
figure 5(a-1), obtained using a system with 300 layers in the z-direction. We find flat in-gap modes that are

5
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Figure 5. (a-1)—(a-5) A Berry phase diagram for (a-1) n = 1, (a-2) n = 0.7, (a-3) n = 0.5, (a-4) n = 0.3 and (a-5) = 0. (b-1)—(b-5)
The band structure with the surface for (b-1) n = 1, (b-2) n = 0.7, (b-3) n = 0.5, (b-4) n = 0.3 and (b-5) n = 0. The frequency
dispersion is calculated along the lines on (a-1). (c-1)—(c-5) The band structure without a surface for (c-1) n = 1,(c-2) n = 0.7,(c-3)
n = 0.5,(c-4)n = 0.3and (c-5) n = 0.

localized at the surface in contrast with the frequency dispersion without a boundary (see figure 5(c-1)—(c-5)). As
nreduces from 1 to 0, the location of the flat mode changes according to the changes in the bulk spectrum.
Notably, there is only one pair of edge modes around the T point where 6 (k;, k,) = 7 for ) = 1, while there are
three pairs of edge modes around the B point where 0 (k;, k;) =  for = 0. This means that if we remove the
degeneracy originating in the existence of two surfaces (top and bottom), i.e. focusing on one of the surfaces, the
flat edge mode for = 1is nondegenerate, while the one for = 0 is three-fold degenerate.

Let us relate the edge mode and the Berry phase. Figures 7(a)—(e) show the Berry phase and the multiplicity of
the pair of edge modes. As in the case of figures 5(a-1)—(a-5), the blue and red regions correspond to
0 (k;, k) = 0and m, respectively. From these pictures, it is found that an even number of pairs exists for the
region with 6 (k;, k;) = 0, while there is an odd number of pairs for 6 (k;, k) = . Itisrelatively easy to
understand the region with the multiplicity 0 and 1. For this region, an established argument on the relation
between the Berry phase and the edge mode applies as it is. Then, the question is how to understand the region
with the multiplicity 2 and 3. Intuitively, it is understood by pulling the projected loops in the 2D surface
Brillouin zone back into the loops in the 3D bulk Brillouin zone. As we can see from figure 7(f), even when two

6
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viewed from above

a,

a,

Figure 7. (a)—(e) A Berry phase diagram and the zero mode edge states for (a) n = 1,(b) n = 0.7,(c) n = 0.5,(d) n = 0.3 and (e)
1 = 0; the numbers denote the multiplicity of zero modes. (f) A schematic illustration of lifting 2D line node loops into the 3D
Brillouin zone and deforming adiabatically; the arrows indicate the chirality of each loop, which all are the same direction.
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projected loops overlap and cross each other, there is an adiabatic way to resolve the overlap in 3D. Assuming
that each loop carries one edge mode, as in the standard argument, and any adiabatic change keeps the
topological properties intact, the multiplicity larger than one can be attributed to the overlapping loops.

So far, we have been focusing on the Berry phase so as to emphasize the role of the band singularity as a
source of the twist in the wave function—or eigenvector in our case. However, in order to capture the number of
edge modes beyond the parity of the number of edge modes, we have to introduce the other topological
invariant, which is the winding number. The definition of the winding number is made possible by the chiral
symmetry. Therefore, the constant diagonal term should be subtracted before applying the following argument
to our model. For a system with chiral symmetry, an appropriate choice of the basis set leads to a Hamiltonian of

the form
H = (f’.,. F]. ©)
I o

Then, the winding number is evaluated as [37]

N, = —Lf dArgdetf‘, (10)
2m Ji

where the path L is taken to be the same as the path used to define the Berry phase thatis (k;, k) fixed and
0 < ks < 27. With this choice of path, the winding number becomes a function of (k;, k). Then, it is expected
that N, (k;, k;) captures the number of edge modes at (k;, k). This expectation is confirmed by our numerical
calculation of N,,. Note that we have arelation §# = 7N,, (mod 27), indicating that the Berry phase has an ability
to capture the parity of the number of edge modes.

Generically speaking, the existence of more than one zero mode near the same boundary implies the opening
of a gap (a deviation from zero energy) due to the interaction among them. However, in the present example of
the nearest-neighbor spring-mass model, the edge states of each boundary have fixed chirality, x,

(Clthage) = XI¥4ge)» X = £) [38]. Then, due to the selection rule, (thegel (fedge - K (4 - gn) 1) [thedge) = 05
all of the multiple zero mode edge states remain at zero energy. It justifies that the winding number itself specifies
the number of edge states.

5. Summary

To summarize, we have investigated the topological properties of a mechanical diamond, which is a three-
dimensional spring-mass model with a diamond structure. We have shown the interesting evolution of the
gapless line nodes as a function of , which is a parameter representing the tension of the springs in equilibrium.
The structure of the line nodes in 3D is especially complicated for intermediate 7. The multiplicity of the edge
modes changes at the projected line nodes in the surface Brillouin zone. We have also established the bulk-edge
correspondence in the mechanical diamond by relating the edge modes and two kinds of bulk topological
number—the quantized Berry phase and the winding number—where the chiral symmetry plays an

essential role.
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