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Abstract
Amechanical diamond, with the classicalmechanics of a spring-massmodel arrayed on a diamond
lattice, is discussed topologically. Its frequency dispersion possesses an intrinsic nodal structure in the
three-dimensional Brillouin zone (BZ) protected by the chiral symmetry. Topological changes of the
line nodes are demonstrated, associatedwith themodification of the tension. The line nodes projected
into two-dimensional BZ, form loops, which are characterized by the quantized Berry phases with 0 or
π.With boundaries, the edge states are discussed in relation to the Berry phases andwinding numbers,
and the bulk-edge correspondence of themechanical diamond is established.

1. Introduction

Topological semimetal is a system inwhich the band gap isfinite almost everywhere in the Brillouin zone, except
in some sets of isolated points. In short, it is a systemwith singular gapless points [1]. Generally, the existence of a
singular gapless point leads to nontrivial topology. That is, a singularity often serves as the source of a ‘twist’ of
Blochwave functions captured by the Berry curvature, giving rise to nontrivial topology.When a system is
characterized by a point-like singularity associatedwith linear dispersion—i.e. aDirac cone—it is a Dirac/Weyl
semimetal, which is a representative topological semimetal [2–6]. Very recently, other kinds of topological
semimetals—like nodal line semimetals where the gapless points form a line, which is typically a closed loop—
have begun to attract attention as a new stage for playingwith topology [7]. Just as in the case of fully gapped
topological insulators, topological semimetals are characterized by topologically protected edgemodes as a
consequence of the bulk-edge correspondence [8].

There have also been intensive efforts to export the idea of topological insulators and topological semimetals
to the classical world [9–14]. In particular, classicalmechanical systems are interesting playgrounds because of
their simplicity and flexibility for tuning parameters [11–13, 15–22]. In fact, we have already seen topological
edgemodes in variousmechanical systems, including photonic and opto-mechanical systems [11–13, 16–
19, 23–26]. One specific examplewhich shows this easy-to-tune feature ismechanical graphene, which is a
honeycomb spring-massmodel [17, 19, 27–29]. Inmechanical graphene, Dirac cones are known to exist, and
their number and position in the Brillouin zone can be controlled by simply changing the tension of the springs
in equilibrium [28]. It is worth noting that the effect of the equilibrium tension can be interpreted as spin–orbit
coupling if it is clockwise, and the counterclockwisemotion of themass point ismapped to the spin [30, 31].

In this paper, we perform an analysis on a spring-massmodel with a diamond structure, namely, a
mechanical diamond, which is a natural extension ofmechanical graphene to three-dimensions [28]. A
mechanical diamond is a typical classical nodal line semimetal counterpart. It is revealed that the equilibrium
tension induces the unique evolution of the structure of the gapless line nodes. The topological properties of the
mechanical diamond are also investigated by relating the edgemodes, the quantized Berry phase, and the
winding number. In accordance with the unique line node structure, the edgemodes also showunique
distribution on the surface of the Brillouin zone, including situations with an edgemodemultiplicity of 2 or 3.
We confirm that these features are well captured by the quantized Berry phase and thewinding number,
establishing the bulk-edge correspondence in themechanical diamond.Note that we are dealingwith in-gapflat
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band edgemodes in a chiral symmetricmodel, not with quantum-Hall-like dispersive edgemodes connecting
lower and upper bands [32].

The paper is organized as follows: in section 2, the basic notions of themechanical diamond are explained;
then, the frequency dispersion is shown in section 3. Section 4 is devoted to the topological arguments, and the
paper is summarized in section 5.

2. Formulation

Let us introduce ourmodel: amechanical diamond consists ofmass points aligned in a diamond structure, and
springs connecting the nearest-neighbor pairs of themass points (see figure 1(a)). This three-dimensionalmodel
is a natural extension of two-dimensionalmechanical graphene [28], which is a spring-massmodel with a
honeycomb structure. As in the case of 2Dmechanical graphene, the parameters characterizing ourmodel are
themass ofmass pointsm (m isfixed to a unit for simplicity), the spring constantκ, the natural length of the
springs l0 and the distance between the neighboringmass pointsR0. Note thatR0 and l0 do not necessarilymatch
each other; i.e.R0 can be larger than l0 if we apply a proper boundary condition to exert uniformoutward tension
to the system. In order to investigate the dynamics of the system,we introduce a quantity = ( )x x y z, ,R R R Ra

t
a a a

describing the displacement of eachmass point from the equilibriumposition.Here, R designates the lattice
points and a is the sublattice index.

We assume that the elastic energyUs of a specific spring can be expressed as k= -( )U l ls
1

2 0
2 with

= + ¢ - ∣ ∣R x xl 0 , where ¢x , x , and R0 are two displacement vectors for twomass points, and a vector
connecting the two equilibriumpositions, respectively. By expandingUs up to the second order in
d = ¢ - x x x , we obtain

k d d g d- + - + m
mn

n (( ) ( ) ˆ · ) ( )R xU R l R l x x
1

2
2 , 1Rs 0 0

2
0 0 0 0

where g h d h= - +mn mn m n( ) ˆ ˆR R1R 0 00
, =ˆ ∣ ∣R R R0 0 0 and h º l R0 0. Here, we implicitly take the summation

overμ and ν, which run through the directions of the displacement x, y, and z; i.e. we apply the Einstein
summation convention. The second term that is linear in dx makes no contribution toNewton’s equation of
motion, as far aswe focus on displacement from the equilibriumpoint, since the linear terms cancel each other
out in the equation ofmotion. The third term is characterized by the parameter η. For h = 1, at which the
springs have a natural length in equilibrium, the angle between R0 and dx has a significant impact on the elastic
energy because of the factor

m nˆ ˆR R0 0 . On the other hand, for h = 0, the limiting case of the stretched springs in
equilibrium,Us, has no dependence on the direction of dx , in contrast with the case of h = 1. Therefore, the
parameter η enables us to tune the property of the spring-massmodel.

For amechanical diamond, the equation ofmotion can be derived by evaluating the elastic energy
substituting ( )R i

0 infigure 1(b) into equation (1). If we further assume that the system is periodic in space and

time, i.e. by introducing f m ( )ka as f=m w
m ( )ku eka

t
a

i and = åm m·x ueR k
k R

ka N a
1 i , the equation ofmotion reduces to

åw f f- + G =m
mn

n( ) ( ) ( ) ( )k k k 0, 2a
b

ab b
2

where G = Gmn
m n( ) ( ˆ )k kab a b; ,

k hG = - +
G

G
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( ) ˆ

ˆ ˆ ( )
ˆ ( ) ˆ

( )†k
k

k
4

8

3
1

0

0
, 3

AB

AB

Figure 1. (a)A schematic picture of amechanical diamond. The unit translation vectors are also shown as ai; (b) the nearest-neighbor
vectors ( )R i

0 ; (c) the definitions of R0, ¢x and x .
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and k g g g gG = - + + +- - -ˆ ( ) ( ˆ ˆ ˆ ˆ )· · ·k e e ek a k a k a
AB 4

i
1

i
2

i
3

1 2 3 , with g gºˆ ˆ ( )
Ri

i
0

=( )i 1, 2, 3, 4 (see figures 1(a) and

(b)). The eigenfrequency and the eigenmodes are calculated by diagonalizing Ĝ( )k . Note that
k hG¢ = G - -ˆ ( ) ˆ ( ) ( ) ˆk k 4 18

3
anticommutes with ¡ = - - -ˆ ( )diag 1, 1, 1, 1, 1, 1 , i.e. G¢ˆ ( )k has chiral

symmetry. This chiral symmetry can be used tomake a topological characterization of Ĝ( )k , since the shift
proportional to 1̂ does notmodify the eigenmodes.

3. Frequency dispersion andnodal line

Figure 2 shows the frequency band dispersion of the system for several values of η. Here,κ is scaled by a factor

h-( )1 1 2

3
to remove the η dependence of the total bandwidth. Sincewe have six degrees of freedom—two

from the sublattices and three from the directions x, y, and z, per unit cell—wefind six bands. As in the case of
the single orbital tight-bindingmodel with the diamond structure, the gap between the third and fourth bands is
closed on theX–Wline regardless of the value of η. (Weemploy the standard notation for the high symmetry
points in the fcc Brillouin zone.)Around these gapless points, the gap grows linearly in the direction
perpendicular to the X–Wline. Actually, in the 3DBrillouin zone, the gapless points form line nodes, which are
protected by the chiral symmetry. This point will be discussed in detail later. Interestingly, a new gapless point,
which again forms a line node, is identified on theW–L line for h < 3 4, i.e. we can generate a line node that is
absent in the single orbital tight-bindingmodel on the diamond lattice simply by applying tension to control η.

In order to obtain a globalmapping of the geometry of the line nodes in the 3DBrillouin zone, we employ the
Berry phase. This is because the direct assessment of degeneracy in the eigenfrequency spectrum requires some
care, and it is safer to detect a ‘twist’ in the eigenmodes associatedwith the singular degeneracy, which is
captured by the Berry phase. In the numerical calculation of the Berry phase, we follow the idea in [33]. In the
following, we describe the procedure tomap the line nodes in order.

First, the Brillouin zone is decomposed into small cubeswhose corners are specified by = ( )k k k k, ,l l l l1 2 3

where = ( )l l l l, ,1 2 3 , p= mmk l N2l B, and = ¼ -ml N0, , 1B .We also introduce a triplet

Figure 2.Band structure for (a) h = 1, (b) h = 4

5
, (c) h = 3

4
, (d) h = 2

3
and (e) h = 0.

Figure 3.A schematic picture of drawing a line; the red surfaces indicate the Berry phase over the edge of the surface equalingπ.
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y = ñ ñ ñ( ) (∣ ( ) ∣ ( ) ∣ ( ) )k k k kn n n, ,1 2 3 , where ñ∣ ( )kni is the eigenvector of the ith band at k . Here, it is a ‘triplet’
becausewe are focusing on the gap between the third and fourth bands. Then, we define aU(1) link variable by


y yº  m




m

m

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

ˆ
( )ˆ

ˆ

†k
k

k kU
e

N

1
det . 4e

e D

Here, we have introduced a shorthand notation p d d d=m m m mˆ ( )( )e N2 , ,B 1 2 3 and

 y yº  m
m( )( ) ∣ ( ) ∣ˆ

† ˆ
k k kdete

e

ND
, whereND refers to the number of discretizedmesh points on each edge of

each of the small cubes. Now,we can assign the Berry phase to each square surface of a small cube by taking the
edge of the square as an integration path to define the Berry phase. For instance, for the square spanned by kl,

+ m̂k el , + nˆk el , and + +m nˆ ˆk e el (m n¹ ), the assigned Berry phase is computed as

å å

å å

q º + + + +

+ + + - + + -

mn m m n

m n m n n

=

-

=

-

=

-

-
=

-

-

m n

m n

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ( )

ˆ ˆ

ˆ ˆ

k k k

k k

U
a

N
e U e

a

N
e

U e e
a

N
e U e

a

N
e

Arg Arg

Arg Arg . 5

l l l

l l

a

N

e
D a

N

e
D

a

N

e
D a

N

e
D

0

1

0

1

0

1

0

1

D D

D D

In our case, the Berry phase qmn˜ ( )kl is quantized into 0 orπ (modulo p2 ), owing to the chiral symmetry.

Furthermore, q p=mn˜ ( )kl implies that there exist an odd number ofDirac points on the associated square
[28, 34, 35]. From a 3Dpoint of view, aDirac cone on a square patchmeans that a line node threads through that
patch.Now, if we setNB large enough so that the possibility ofmultiple line nodes threading one square patch is
excluded, we can follow each line node by following the Berry phaseπ; i.e. as far as the square patches are
sufficiently small, we can draw a reasonably smooth line node by connecting the central points of the nearby
patches with the Berry phaseπ. Note that we can alwaysfind a nearby patchwith the Berry phaseπwhenwe
have a certain patchwith the same Berry phase, since a line node cannot be terminated abruptly.

Figure 4 illustrates themapping of the line nodes in the 3DBrillouin zone obtainedwithNB=151 and
ND=5. There are two classes of line nodes: the line nodes in the first class exist for any η, and their shapes are
fixed and identical to those in the single orbital tight-bindingmodel on the diamond lattice; on the other hand,
the line nodes in the second class appearwhen η becomes smaller than a critical value h = 3 4c . The shapes of
the line nodes in the second class depend on η, and they are eventually absorbed into the line nodes in the first
class at the h = 0 limit.

Figure 4. Line nodes for (a) h = 0.7, (b) h = 0.5 and (c) h = 0.3 viewed from a certain direction, and (d) h = 0.7, (e) h = 0.5 and
(f) h = 0.3 with k1 and k2 set parallel to the paper plane.
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Beforemoving onto the next topic, we explainwhy the gapless points in ourmodel form a line, i.e. a 1D
object. Although ourmodel is a six-bandmodel, here we focus on a two-band effectivemodel that is valid in the
vicinity of the gap closing point. Themost generic formof the effectiveHamiltonianwith particle-hole
symmetry can bewritten as

s=
-

+ -
=

⎛
⎝⎜

⎞
⎠⎟( ) ( ) · ( )k r kH

z x y

x y z

i

i
, 6

where ( )r k is a three-dimensional vector consisting of real quantities x, y and z, and s is a vector with the Pauli
matrices as components. In our case, the chiral symmetry induces a constraint on ( )r k . For simplicity, we
choose s3 as a chiral operator, or assume s ={ }H , 03 , which restricts theHamiltonian to the form

s s= +( ) ( ) ( )k k kH x y1 2. The condition of having a gap closing point is =∣ ( )∣r k 0, which in fact gives two
conditions, =( )kx 0 and =( )ky 0. That is, we have two conditions and three parameters, k1, k2, and k3.
Therefore, amanifold satisfying the zero gap condition has a dimension - =3 2 1, which supports the
existence of the line nodes [36]. Note that the choice of s3 as a chiral operator does notmean loss of generality,
since it ismerely amatter of the basis choice.

4. Berry phase and topological edgemodes

In order to relate the nontrivial topology induced by the bulk band singularity and edgemodes, we calculate the
Berry phase of amany-body system, whose definition is

òq = -( ) ( )k k, i Tr d . 7
L k k

1 2
:fixed, :fixed1 2

Here, is a non-Abelian Berry connection  y y= †d , which is a 3×3matrix-valued one-form associated
with themultiplet y = ñ ñ ñ(∣ ∣ ∣ )n n n, ,1 2 3 . The integration path L is taken to be a periodic path offixed ( )k k,1 2 and
 p<k0 23 , which is a line along the k3-direction. Just as in the case of the previous section, the Berry phase is

quantized into 0 orπ due to the chiral symmetry [32]. Figures 5(a-1)–(a-5) show the Berry phase as a function of
( )k k,1 2 , which is obtained using the samemethod as in the previous section bymodifying the integration path.
Blue regions indicate q =( )k k, 01 2 , while red regions indicate q p=( )k k,1 2 . The obtained results are consistent
with the three-fold symmetry and the reflection symmetry of the diamond lattice. The lines dividing the blue and
red regions are the line nodes (see figure 4) projected onto the surface under consideration, that is, the jumps in
q ( )k k,1 2 are associatedwith the bulk singularity. The complicated structures for intermediate η can be
understood by relating each of the loops on the surface to each of the line nodes in the bulk. This point will be
discussed later.

If we consider a surface parallel to the plane spanned by a1 and a2, onwhich k1 and k2 are good quantum
numbers, we expect at least one topologically protected edgemode for ( )k k,1 2 with q p=( )k k,1 2 . This
statement can be confirmed by investigating the edgemode explicitly. For this purpose, we consider a system
which is periodic in the a1 and a2 direction, butfinite in the a3 direction, so as to have the surface parallel to the
a1–a2 plane, as infigure 6.Here, we apply a fixed boundary condition, where the last springs at the surface are
connected to thewall. This choice offixed boundary condition is important formaintaining ‘the chiral
symmetry’ of the system [28]. Then, the frequency dispersion as a function of ( )k k,1 2 is obtained by
diagonalizing Ĝ ( )kedge , whose explicit form is

G =

G

G G

G G

G

G

G G

G G

G

 
 

 

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

ˆ ( )

ˆ ˆ ( )
ˆ ( ) ˆ ˆ

ˆ ˆ ˆ ( )
ˆ ( )

ˆ ( )
ˆ ( ) ˆ ˆ

ˆ ˆ ˆ ( )
ˆ ( ) ˆ

( )

†

†

†

†

k

k

k

k

k

k

k

k

k

Z

Z

Z

Z

Z

Z

, 8edge

1

1 2

2 1

1

1

1 2

2 1

1

where k g g gG = - + +- -ˆ ( ) ( ˆ ˆ ˆ )· ·k e ek a k a
1 4

i
1

i
2

1 2 , k g g g g= + + +ˆ ( ˆ ˆ ˆ ˆ )Z 1 2 3 4 and kgG = -ˆ ˆ2 3 . Importantly, due
to thefixed boundary condition, the diagonal part is uniform, whichmeans that the eigenvectors are unaffected
by the diagonal terms, andwe still have a chiral symmetry in the same sense as the previous analysis.

Figures 5(b-1)–(b-5) show the frequency dispersion on a line in the surface Brillouin zone specified in
figure 5(a-1), obtained using a systemwith 300 layers in the z-direction.Wefind flat in-gapmodes that are
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localized at the surface in contrast with the frequency dispersionwithout a boundary (seefigure 5(c-1)–(c-5)). As
η reduces from1 to 0, the location of the flatmode changes according to the changes in the bulk spectrum.
Notably, there is only one pair of edgemodes around the Ḡ point where q p=( )k k,1 2 for h = 1, while there are
three pairs of edgemodes around the B̄ point where q p=( )k k,1 2 for h = 0. Thismeans that if we remove the
degeneracy originating in the existence of two surfaces (top and bottom), i.e. focusing on one of the surfaces, the
flat edgemode for h = 1 is nondegenerate, while the one for h = 0 is three-fold degenerate.

Let us relate the edgemode and the Berry phase. Figures 7(a)–(e) show the Berry phase and themultiplicity of
the pair of edgemodes. As in the case offigures 5(a-1)–(a-5), the blue and red regions correspond to
q =( )k k, 01 2 andπ, respectively. From these pictures, it is found that an even number of pairs exists for the
regionwith q =( )k k, 01 2 , while there is an odd number of pairs for q p=( )k k,1 2 . It is relatively easy to
understand the regionwith themultiplicity 0 and 1. For this region, an established argument on the relation
between the Berry phase and the edgemode applies as it is. Then, the question is how to understand the region
with themultiplicity 2 and 3. Intuitively, it is understood by pulling the projected loops in the 2D surface
Brillouin zone back into the loops in the 3Dbulk Brillouin zone. Aswe can see from figure 7(f), evenwhen two

Figure 5. (a-1)–(a-5)ABerry phase diagram for (a-1) h = 1, (a-2) h = 0.7, (a-3) h = 0.5, (a-4) h = 0.3 and (a-5) h = 0. (b-1)–(b-5)
The band structurewith the surface for (b-1) h = 1, (b-2) h = 0.7, (b-3) h = 0.5, (b-4) h = 0.3 and (b-5) h = 0. The frequency
dispersion is calculated along the lines on (a-1). (c-1)–(c-5)The band structure without a surface for (c-1) h = 1, (c-2) h = 0.7, (c-3)
h = 0.5, (c-4) h = 0.3 and (c-5) h = 0.
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Figure 6.A schematic picture of the systemwith surfaces and an illustration of the fixed boundary condition.

Figure 7. (a)–(e)ABerry phase diagram and the zeromode edge states for (a) h = 1, (b) h = 0.7, (c) h = 0.5, (d) h = 0.3 and (e)
h = 0; the numbers denote themultiplicity of zeromodes. (f)A schematic illustration of lifting 2D line node loops into the 3D
Brillouin zone and deforming adiabatically; the arrows indicate the chirality of each loop, which all are the same direction.

7

New J. Phys. 19 (2017) 035003 YTakahashi et al



projected loops overlap and cross each other, there is an adiabaticway to resolve the overlap in 3D. Assuming
that each loop carries one edgemode, as in the standard argument, and any adiabatic change keeps the
topological properties intact, themultiplicity larger than one can be attributed to the overlapping loops.

So far, we have been focusing on the Berry phase so as to emphasize the role of the band singularity as a
source of the twist in thewave function—or eigenvector in our case.However, in order to capture the number of
edgemodes beyond the parity of the number of edgemodes, we have to introduce the other topological
invariant, which is thewinding number. The definition of thewinding number ismade possible by the chiral
symmetry. Therefore, the constant diagonal term should be subtracted before applying the following argument
to ourmodel. For a systemwith chiral symmetry, an appropriate choice of the basis set leads to aHamiltonian of
the form

= G

G

⎛
⎝⎜

⎞
⎠⎟

ˆ
ˆ

( )†H
0

0
. 9

Then, thewinding number is evaluated as [37]

òp
= - Ĝ ( )N

1

2
dArg det , 10w

L

where the path L is taken to be the same as the path used to define the Berry phase that is ( )k k,1 2 fixed and
 p<k0 23 .With this choice of path, thewinding number becomes a function of ( )k k,1 2 . Then, it is expected

that ( )N k k,w 1 2 captures the number of edgemodes at ( )k k,1 2 . This expectation is confirmed by our numerical
calculation ofNw. Note that we have a relation q p= Nw (mod p2 ), indicating that the Berry phase has an ability
to capture the parity of the number of edgemodes.

Generically speaking, the existence ofmore than one zeromode near the same boundary implies the opening
of a gap (a deviation from zero energy) due to the interaction among them.However, in the present example of
the nearest-neighbor spring-massmodel, the edge states of each boundary havefixed chirality,χ,

( y c y¡ ñ = ñc c∣ ∣edge edge , c = ) [38]. Then, due to the selection rule, y k h yá G - - ñ = ( )∣( ˆ ˆ)∣4 1 0edge edge
8

3 edge ,

all of themultiple zeromode edge states remain at zero energy. It justifies that thewinding number itself specifies
the number of edge states.

5. Summary

To summarize, we have investigated the topological properties of amechanical diamond, which is a three-
dimensional spring-massmodel with a diamond structure.We have shown the interesting evolution of the
gapless line nodes as a function of η, which is a parameter representing the tension of the springs in equilibrium.
The structure of the line nodes in 3D is especially complicated for intermediate η. Themultiplicity of the edge
modes changes at the projected line nodes in the surface Brillouin zone.We have also established the bulk-edge
correspondence in themechanical diamond by relating the edgemodes and two kinds of bulk topological
number—the quantized Berry phase and thewinding number—where the chiral symmetry plays an
essential role.
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