技術報告

UAVによる空中写真測量技術を用いた河床形状測量における 精度検証 -東河内沢本川における事例-

上治雄介^{1*}·山川陽祐^{1,2}

¹ 筑波大学農林技術センター井川演習林 428-0504 静岡県静岡市葵区井川1621-2 ² 筑波大学生命環境系 305-8572 茨城県つくば市天王台1-1-1

要 旨

山地河川において河床形状測量を行う上で無人航空機(UAV)および多視点ステレオ写真測量(SfM)を組 み合わせた手法(UAV-SfM手法)によって作成される数値表面モデル(DSM)およびオルソ画像の精度を、全 地球測位衛星システム(GNSS)およびレーザー距離計を用いた実測値との比較により検証した。GNSSを 用いて測量した地上基準点(GCP)を真値としてオルソ画像から読み取った推定値との差分を平均二乗誤差 (RMSE)で表すと緯度方向で0.036 m、経度方向で0.039 m、標高方向で0.045 m、3方向で0.070 mであった。 レーザー距離計を用いて測量した検証点では同様に緯度方向で0.03 m、経度方向で0.05 m、標高方向で0.06 m、3方向で0.09 mであった。平野部におけるUAV-SfM手法を用いた先行研究と同程度の精度が得られ、 本手法が山地河川の河床形状測量にも十分に有効な手法であることが示された。

キーワード:河床変動、山地河川、多視点ステレオ写真測量(SfM)、無人航空機(UAV)

緒 言

山地河川における土砂移動は、流量や河床勾 配の条件に加え、それ以前の土砂移動によって 形成された土砂堆積の影響を大きく受けるため に非常に複雑な現象であり、未解明な部分が多 い。山地河川における土砂移動現象の実態を把 握するためには、洪水時および平水時に生じる 侵食・堆積によって時間的・空間的に変動する 河床形状を捉える必要がある。

河床形状を把握する上で最も基本的な手法は 縦・横断測量であろう。砂田(1985)は台風の前 後に行った横断測量によって洪水時における河 床変動特性の把握を試みた。真板(1989)は渓流 において1980~1985年までに計9回行った縦・

*連絡者: 上治雄介 筑波大学農林技術センター井川演習林 静岡県静岡市葵区井川1621-2 E-mail: ueji.yusuke.fn@un.tsukuba.ac.jp 横断測量によって、山腹の斜面から生産された 土砂が一度には下流へ運搬されず、一時的に河 床に滞留することを示した。この他に航空写真 から洪水前後の河床変動を読み取った既往研究 (釣谷・五十嵐1971、中山ら1967)がある。これら は測量に用いる道具あるいは材料の違いであっ て、測線上にある地形変化点間の距離と比高を 計測するという点で同じである。

近年、主流となったのがレーザープロファイ ラ地形測量技術による航空レーザー測量であ る。航空機に搭載したレーザープロファイラに よって地上の形状を計測する手法であり、植生 などの影響を除去して地表面の計測が可能であ る。測量成果はメッシュと呼ばれる等間隔の格 子からなり、格子ごとに河床の標高が与えられ る(数値標高モデル、Digital Elevation Model、 以下DEMと略する)。縦・横断測量では困難で あった面の情報を持つことが大きな特徴の一つ である。中村ら(2006)、吉田ら(2015)は同一河川 に対し横断測量と航空レーザー測量を行い、従 来の横断測量に比べて土砂移動による河床部の 変動を高精度に再現している。なお、メッシュ サイズはそれぞれ1~1.5 mと0.5 mである。

このように航空レーザー測量は優れた手法で あるが、1回あたりの測量が高額なため高頻度 に測量することが容易ではない。そこで注目 されてきたのが無人航空機(Unmanned aerial vehicle、以下UAVと略する。通称ドローン)に よる空撮と多視点ステレオ写真測量(Structure from Motion、以下SfMと略する)技術による数 値表面モデル(Digital Surface Model、以下DSM と略する)の作成技術である。DEMは樹木や建 築物があってもそれらを除いた地表面の形状を 表すのに対して、DSMは樹木や建築物がある 場合にはそれらの表面を表している。小花和ら (2014a)は従来の航空測量を比較した時の利点 について、非常に低コストで運用できることを 挙げている。初期投資としてUAV本体と解析用 ソフトおよびPCが必要だが、その後の運用コス トはほとんどがUAV用バッテリーと解析用PC の電気代である。また、UAVは小型のため運搬 が容易で現場における機動性が高い。この機動 性を活かして土砂崩れが発生した現場において 迅速に災害状況を把握するために用いられた例 もある(木下ら2013)。通常、土砂災害後は二次 崩落の恐れがあるため人間が近づくことは危険 であるが、UAVは容易に調査ができるため初期 調査には有用な方法であろう。その他に、高解 像度かつ高密度データが得られるとし、内山ら (2014)は新規崩壊地においてUAVが撮影した画 像をSfMで解析することで0.09 mメッシュの高 解像度DSMおよび地上解像度0.02 mのオルソ 画像を作成している。国土地理院が発行してい る5mメッシュのDEMと比較して、崩壊跡地の 表面が細かく観察できることから崩壊時の土砂 移動について考察している。

このようにUAVとSfMの組み合わせによって 作成される、安価で高解像度なDSMの普及が進 んでいる。しかしDSMと実地形との間にどの程 度誤差が含まれているのか先行研究が少なく知 見が十分には得られていない。特に山岳地は地 形が複雑で調査が困難なことから精度検証を目 的とした先行研究が少ない。SfMは画像解析に よる測量技術であり、作成されるDSMの精度は 調査区の地形的特徴や撮影画像のオーバーラッ プ率、撮影高度、地上基準点(Ground Control Point、以下GCPと略する)の数・配置・座標値の 測定精度、など多様な要素が関係している。こ れらの関係性を明らかにし、調査目的に合った 手法の確立へ向けた技術の蓄積が必要である。

本研究はUAVとSfMによって作成された DSMの精度検証を行い、山地河川における河床 形状の測量手法としての適当性を検討した。

材料および方法

調査地域は静岡県北部、大井川水系の支流で ある東河内沢の上流域に位置する筑波大学農林 技術センター井川演習林とした(図1)。本地域は 中央構造線と糸魚川静岡構造線という日本の2 大断層が交差する地域に位置することから岩盤 は脆く、平均斜度35~40°と急峻な地形のため 土砂生産が活発である。

2 GCPおよび検証点の測量

調査面積は東河内沢本流を囲う様に約1 ha、 調査地の上流と下流の比高差は約30 mである。 調査地内には砂防堰堤が4基と流路工が1基含 まれており、この構造物上面にDSM作成に必 要なGCPを15点設け、精度評価用の検証点とし て砂防堰堤間の河床にある比較的大きな自然石 に対空標識を18点設置した(図2)。なお、GCP、 検証点の実際の配置は砂防堰堤の大きさ、河床 形状や流路の位置を考慮して調整しており図2 のように均等ではない。GCPの配置は調査地を 囲う様にすること、並びに近傍のGCPとの間隔 が概ね100 m以内となることを標準とし(国土地 理院2016)、この条件を満たすことに留意した。

図2 砂防堰堤等構造物の位置およびGCP、検証点の配置の模式図

図3 GCPにおける対空標識 GCPおよび検証点にはスプレーペンキによっ て対空標識を設置した(図3)。

GCPの座標値は全地球測位衛星システム (Global Navigation Satellite System、 以 下 GNSSと略する。ヘミスフィア社製A325)にてス タティック法で求めた。なお、衛星を用いた測位

システムとして良く知られている全地球測位シ ステム(Global Positioning System、以下GPSと 略する)はアメリカ合衆国が開発したGNSSの 一種である。その後、国土地理院が提供する「電 子基準点提供サービス」の情報を利用し、VGI Solutions社製EZSurv2.96によって後処理補正 を行った。なお、GNSSの観測時間は1時間30分 とした。観測時間の決定にあたっては事前に同 一の点において観測時間を10分から3時間まで 変えて17回計測し、1計測ごとに観測時間、座標 値、標準偏差を記録した。なお、標準偏差は緯 度(以下xと表す)、経度(以下yと表す)、標高(以 下zと表す)それぞれについて記録した。結果は 図4のようになり、1計測の観測時間が1時間30 分を超えるあたりから標準偏差のばらつきが小 さくなった。

検証点の座標値は砂防堰堤上に設置した GCPを基準点としてレーザー距離計(Laser Technology社 製TruPulse200X、MAPSTAR TruAngle)を用いて求めた。計測は精度向上の ため検証点1点につき全て異なる4つのGCPか ら1回ずつ計4回計測した。検証点における座標 値(x、y、z)の最確値(X_0)は次式で求めた(長谷川・ 川端2014)。

$$X_0 = \frac{p_1 x_1 + p_2 x_2 + p_3 x_3 + p_4 x_4}{p_1 + p_2 + p_3 + p_4} \quad \cdot \quad \cdot \quad (1)$$

また、最確値の精度(の)は次式で求めた。

$$\sigma_0 = \pm \sqrt{\frac{\sum_{i=1}^{n} p_i v_i v_i}{\sum_{i=1}^{n} p_i \cdot (n-1)}} \quad \cdot \quad \cdot \quad \cdot \quad (2)$$
$$v_i = x_i - X_0 \quad \cdot \quad \cdot \quad (3)$$

ここで、 p_i は重みを表し、各GCPから対象となる検証点までの水平距離の逆数である。 x_i は各GCPから測定した検証点の座標値である。 v_i は各検証点の座標値と最確値の残差である。nは検証点の計測に用いたGCPの数なので、ここでは4である。

3 UAVによる空撮とDSMの作成

UAVはDJI社 製Phantom4を 用 い、SfMソ フトはAgisoft社製PhotoScan1.2.6とした。等 高線の作成、その他の解析はEsri社製ArcGIS for Desktopを構成するソフトの1つである ArcMap10.0を使用した。 DSMおよびオルソ画像の地上分解能はUAV の撮影高度が上がる(下がる)につれて粗く(細か く)なる。このため、UAVの操縦者はDSMおよ びオルソ画像の利用者が求める地上分解能に基 づいて撮影高度を決定し、UAVを飛行させなけ ればならない。撮影高度は次式により求めるこ とができる(国土地理院2016)。

撮影高度(m)=

ここで、地上分解能とは、DSMを形成する 各格子の一片の長さを表す。使用カメラの1画 素あたりのサイズは、イメージセンサー(外界 からの情報(光)を取り入れて電気信号に変換す る半導体)を形成する各画素の一片の長さを表 す。焦点距離とは、カメラのレンズとイメージ センサーとの距離を表す。なお、デジタルカメ ラの焦点距離表記は、従来のフィルムカメラを 基準とした「35 mm換算」となっている場合があ るが、ここでは実焦点距離を用いる。

撮影間隔は当初、専用アプリ「DJI Go」で設 定できる最短間隔5秒であったが、作業効率と オーバーラップ率を考慮した結果、途中から1 秒間隔を目安に手動でシャッターを切った。カ メラアングルは通常真下に向けるが、樹木の枝 によって河床が撮影できない範囲があった。こ のような場合に限りカメラアングルを斜めに傾 け撮影した。DSMおよびオルソ画像の品質を均 ーにするためには撮影画像のオーバーラップ率 を均一にすることが重要である(早坂ら2015)。 これにはUAVをあらかじめプログラミングし た航路で飛ばすオートパイロット機能が有効だ が、本調査地は谷が深くオートパイロット機能 に不可欠なGPSの測位数が安定しない。また、 撮影範囲が河床を網羅するには樹木に近づかな ければならない場合もあり、オートパイロット 機能は使用せず手動で飛行させた。

PhotoScanによるDSMの作成にあたっては 可能な限り地上分解能を小さくするため精度 に関するパラメーターを原則「最高」とした。 PhotoScanではステレオペア写真に共通する特 徴点を抽出する上限値を指定できるが、今回 は「0」とし上限値を設けなかった。その他のオ プションの設定はPhotoScanが推奨するものを 選択した。PhotoScanにはUAVで撮影した画像 の品質を推定するコマンドがあり、品質は0~1 で表され1に近いほど高品質な画像と評価され る。品質が0.8を下回ると画像のブレが肉眼でも 認識できるため、0.8未満の画像を全て削除し た。

解析に用いたPCの諸元を表1に示す。画像 解析には膨大な演算が必要になるためCPUや RAMは可能な限り高性能なものを選択した。

OS	Windows10 Pro		
CPU	インテル® Core [™] i7-6700 (3.4GHz)		
RAM	$\begin{array}{c} 64 \mathrm{GB} \ \mathrm{PC4}\text{-}2133 \ \mathrm{DDR4} \\ \mathrm{SDRAM} \end{array}$		
グラフィックカード	$\begin{array}{c} \text{NVIDIA} \textcircled{R} \ \text{GeForce} \textcircled{R} \ \text{GTX}^{\text{TM}} \\ 960 \ \text{2GB} \end{array}$		
補助記憶装置	256GB シリアルATA 600MB/s対応SSD		

表1 解析用PCの諸元

PhotoScanは一部の演算にGPUを使用して処理 を高速化することができるため、GPUも高性能 なものを用意した。補助記憶装置にはアクセス 速度を優先し、HDDではなくSSDを選択した。

4 SfMにより作成されたDSMおよびオルソ 画像の精度評価

DSMおよびオルソ画像の精度評価は、ま ずGCPにおいてはGNSSで計測した値を真値 として、オルソ画像上に写るGCPの座標値を ArcMapから読み取り、各点の差分を求める。 検証点においても同様にレーザー距離計で計測 した値を真値として、オルソ画像上に写る検証 点の座標値をArcMapから読み取り、各点の差 分を求める。次に、差分を取っただけでは精度 を示す指標としては不十分なので、平均二乗誤 差(Root Mean Squared Error、以下RMSEと略 する)を求めDSMおよびオルソ画像の精度とす る。RMSEは次式により求めることができる。

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (x_i - X_i)^2}{n}} \cdot \cdot \cdot (5)$$

ここで、 x_i はオルソ画像から読み取った座標値 (x、y、z)で、 X_i はGNSSまたはレーザー距離計 で計測した値(x、y、z)である。nはGCPまたは 検証点の総数である。

ステレオペア写真から自動抽出された特徴点 の点群密度を図化し、点群密度と撮影時のカメ ラ位置との関連を検討する。点群密度の図化に はArcMapの「カーネル密度」を用いた。なお、パ ラメーターは初期値のままとした。

結果と考察

1 UAVによる空撮

約1 haの調査地を30分かけて514枚の画像を 撮影した。撮影日は安全性を確保するため筆者 ら以外には調査区付近に他の業務従事者がいな い日を選択した。

撮影高度を式(4)より求める。まず、地上分解 能はDSM利用者の用途に応じて決定されるの で、ここでは次のように仮定する。

地上分解能=0.01(m)・・・(6)

次に、焦点距離を求める。UAV搭載カメラの 諸元は表2のとおりである。式(4)に用いる焦点 距離は実焦点距離であるが、UAVの取扱説明書

表2 UAV (Phantom4) 搭載カメラの仕様

イメージセンサー	1/2.3型
有効画素数	12 Mピクセル
レンズ	FOV94°20 mm (35 mm換算) f/2.8、 ∞フォーカス

表3 1/2.3型イメージセンサー搭載コンパクトデジタ ルカメラの実焦点距離と35 mm換算焦点距離の例

商品名	実焦点距離	35 mm換算焦点距離
Canon IXY650	4.5-54.0 mm	25-300 mm
Nikon COOLPIX S9900	4.5-135 mm	25-750 mm
Olympus STYLUS TG-4 Tough	4.5-18 mm	25-100 mm

や製造元のWEBサイトには35 mm換算した値 しか掲載されていなかったので、実焦点距離を 計算する必要がある。表3にはUAVのカメラと 同じ1/2.3型のイメージセンサーを搭載したコ ンパクトデジタルカメラの実焦点距離と35 mm 換算された焦点距離の例を示す。なお、1/2.3型 とはイメージセンサーのサイズを表している。 いずれのデジタルカメラも35 mm換算した焦点 距離を実焦点距離で除すると約5.6となること から、UAVに搭載されているカメラの実焦点距 離は次のようになる。

焦点距離 =
$$\frac{20}{5.6}$$
 = 3.6 (mm) · · · (7)

さらに、使用カメラの1画素あたりのサイズ を求める。実焦点距離同様にイメージセンサー の各辺の長さを5.6で除すことで求められる。た だし、35 mm(フルサイズ)と1/2.3型イメージセ ンサーは縦横比がそれぞれ3:2と4:3と異なる ので対角線長を5.6で除する形で換算する。すな わち、フルサイズにおけるイメージセンサーの 大きさは縦24 mm、横36 mm、対角線長43 mm であることから、1/2.3型イメージセンサーの対 角線長は7.7 mmであり、縦は4.6 mm、横は6.2 mmと求められる。有効画素数は表2より12 Mピ クセルなので、使用カメラの1画素あたりのサ イズは次のようになる。 使用カメラの1画素あたりのサイズ= $\sqrt{\frac{4.6 \cdot 6.2}{12 \cdot 10^6}}$ = 0.0015(mm) · · · (8) 撮影高度を式(6)、(7)、(8)によって求めた値を 用いて式(4)より求める。

撮影高度=
$$\frac{0.01}{0.0000015}$$
 • 0.0036 = 24(m)

PhotoScanより各画像の撮影時におけるカメ ラの推定高度を求め、後に作成するDSMとの差 分を取ったところ、実際の撮影高度は14 m前後 ¹²⁰7

であった(図5)。

撮影時のUAV水平位置を図6に示す。撮影は 図右上から左下に向かって蛇行しながら行っ た。調査区の左上および左下に未撮影の空白が 目立つ。ここは樹木が茂っているため近づけな かった場所である。当初は5秒間隔のインター バル撮影していたため撮影位置同士に距離があ るが、後半は手動でシャッターを切ったため撮 影位置が近く画像のオーバーラップ率が高く なっていることがわかる。また、撮影コースの 間隔も前半より後半が狭くサイドラップ率も高 くなっている。撮影高度やオーバーおよびサイ ドラップ率のばらつきはDSMの精度にも影響 を与えるため、操縦者は技術向上に努めなけれ ばならない。

2 SfMによるDSMおよびオルソ画像の作成

PhotoScanによって撮影画像の品質を確認したところ、品質が0.8を下回る画像が30枚確認された。DSMおよびオルソ画像の作成にあたってはこれらを除いた484枚で実施した。

図7にPhotoScanによってステレオペア写真

から自動抽出された特徴点の点群密度を示す。 濃色部分で点群密度が高く、淡色部は点群密度 が低いことを表している。点群密度は図7の下 側、次いで上側で高くなるが、中間では最も点 群密度が薄く、ばらつきが見られる。図7中の点 は図6と同じく画像撮影時におけるUAVの水平 位置を示しており、画像枚数が多いエリアは特 徴点の点群密度が高いという関係性がうかがえ た。

PhotoScanによって作成したDSMとオルソ 画像を図8、9に示す。撮影高度が想定より低 くなったため、地上分解能は計画より細かい約 0.006 mとなった。ほとんどの場所でDSMを得 ることができたが、植生の一部や河川のうち はっきりとした落差がある部分では特徴点が得 られず、DSMは周囲の特徴点から内挿して作成 した。

DSMの左側(右岸側)にところどころ標高が急 に高くなっている部分が散見される。現地を確 認すると、DSM作成前にPhotoScan上で除去し きれなかった枝を再現したためと判断できた。 オルソ画像においても同様の場所は枝が再現さ

図7 ステレオペア写真から自動抽出された特徴点の点群密度

図9 SfMによって作成したオルソ画像

れており河床の様子を見ることができなかっ た。今回の調査地において、このように障害と なる枝を撮影しないようにUAVを操縦するこ とは困難であった。PhotoScanによるDSMの作 成はある画像から抽出した特徴点とその画像に オーバーラップした画像から抽出した特徴点の うち、二画像の中で同一の場所を示す特徴点の 点群データを基に行われる。この点群データの 状態で河床を覆う枝を表すポイントデータを除 去する必要がある。

3 GCPおよび検証点における実測値とオル ソ画像による推定値の差について

GNSSで計測したGCPの座標値とオルソ画像 から読み取ったGCPの推定座標値の差分を表4 に、GNSSによるGCP実測値の標準偏差を表5示 す。両者を比較するとx、y方向は標準偏差(表5 の結果)より実測値と推定値の差分(表4の結果) の方が値は明らかに大きいので、この差分には DSM作成過程で生じた誤差が主に影響してい ると考えられた。z方向は差分のばらつきが大 きくDSM作成過程の誤差とGNSSの計測精度 双方が関係していると考えられた。GNSSで計 測した座標値を真値としてオルソ画像から読み 取った座標値との差をRMSEで表すとx方向で 0.036 m、y方向で0.039 m、z方向で0.045 m、3 方向では0.070 mであった。

表4 GCPにおけるGNSS実測値と オルソ画像上の推定値との差分

				单位:m
GCP測点名	Х	У	Z	$(x^{^2}+y^{^2}+z^{^2})$
03L1	0.063	-0.021	-0.026	0.072
03L2	0.027	0.071	-0.012	0.077
03R1	0.041	-0.026	-0.013	0.051
03R2	-0.029	0.052	0.029	0.066
04L1	0.028	-0.013	-0.009	0.032
04L2	-0.013	-0.022	0.107	0.110
04R1	-0.008	0.010	0.027	0.030
04R2	0.041	-0.071	-0.066	0.106
05L1	-0.001	-0.023	-0.087	0.090
05L2	-0.009	-0.046	-0.038	0.060
05R1	-0.034	0.001	-0.018	0.039
05R2	-0.054	0.005	-0.002	0.055
06L2	0.060	-0.056	0.026	0.086
06R1	0.028	0.046	0.007	0.055
Ry1	-0.032	0.020	0.041	0.056

表5 GNSSによるGCP測量時の標準偏差

			単位:m
GCP測点名	х	У	Z
03L1	0.005	0.005	0.012
03L2	0.005	0.006	0.013
03R1	0.005	0.005	0.013
03R2	0.008	0.006	0.017
04L1	0.005	0.006	0.015
04L2	0.005	0.006	0.010
04R1	0.006	0.007	0.014
04R2	0.005	0.006	0.014
05L1	0.006	0.006	0.016
05L2	0.005	0.006	0.010
05R1	0.005	0.007	0.014
05R2	0.009	0.005	0.019
06L1	0.005	0.005	0.010
06R1	0.005	0.006	0.015
Ry1	0.005	0.007	0.012

レーザー距離計で計測した検証点の座標値と オルソ画像から読み取った検証点の推定座標値 の差分を表6に、レーザー距離計による検証点 実測値の標準偏差を表7に示す。なお、検証点 のうちAL10はオルソ画像上では歪んでおり認 識できなかったため対象から外した。これは対 空標識を付けた自然石が小さかったことが原因 と考えられる。両者を比較すると明らかな差は なく、誤差の原因は計測によるものかDSM作 成過程によるものか不明である。検証点17点の RMSEはx方向で0.03 m、y方向で0.05 m、z方向 で0.06 m、3方向では0.09 mであった。

表6 検証点におけるレーザー距離計実測値 とオルソ画像上の推定値との差分

				単位:m
検証点名	х	У	Z	$(x^{^2}+y^{^2}+z^{^2})$
AL40	-0.06	0.04	0.06	0.10
AL30	-0.03	0.03	0.04	0.06
AL20	-0.03	0.04	0.02	0.05
A0	-0.04	0.04	0.02	0.06
AR10	-0.03	0.01	0.01	0.03
AR20	-0.02	0.05	0.00	0.06
AR30	0.03	-0.02	0.16	0.17
BL30	-0.06	-0.01	-0.03	0.07
BL20	-0.04	0.02	-0.08	0.09
BL10	-0.03	-0.02	-0.03	0.05
B0	0.00	-0.04	-0.03	0.05
BR10	0.00	-0.05	-0.06	0.08
BR20	-0.04	-0.07	-0.11	0.14
BR30	0.00	-0.15	-0.05	0.16
CL20	-0.02	0.07	-0.02	0.07
CL10	-0.04	0.04	0.01	0.05
C0	0.00	0.03	-0.05	0.06

表7	レーザー距離計による検証点測量時の構成	票準偏差
]	単位 ∶ m

			1 1-
GCP測点名	х	У	Z
AL40	0.09	0.06	0.03
AL30	0.08	0.06	0.03
AL20	0.03	0.03	0.02
A0	0.03	0.04	0.01
AR10	0.03	0.05	0.04
AR20	0.03	0.03	0.04
AR30	0.06	0.03	0.03
BL30	0.08	0.04	0.03
BL20	0.06	0.02	0.04
BL10	0.07	0.04	0.02
B0	0.06	0.04	0.01
BR10	0.07	0.03	0.01
BR20	0.06	0.03	0.02
BR30	0.07	0.05	0.02
CL20	0.02	0.04	0.01
CL10	0.03	0.03	0.03
C0	0.03	0.04	0.02

先行研究では、測量精度について次のよう な成果を得ている。早坂ら(2015)は精度検証 のためDSM作成用の基準点の他に検証点を設 け、GNSSあるいはトータルステーションを用 いて、高精度の座標値を得た。その後、実測に より得た検証点の座標値を真値としてオルソ画 像から読み取った検証点の座標値と比較して RMSEを求めたところ、水平方向は約4 cm、垂 直方向は約8 cmという精度を得ている。小花 和ら(2014b)は同一の調査区をUAVまたは地上 レーザースキャナで測量し、地上レーザース キャナによって得た点群データを真値とした時 にUAVから得た点群データとの差分は約10 cm 以内としている。これら先行研究と本研究の精 度は単位が異なるため単純比較はできないが、 概ね同程度の精度を得ることができたと考えら れた。

これらのことからUAVおよびSfMにより作成 されるDSMおよびオルソ画像は、複雑な山地河 川における河床形状測量としても十分に有効な 手法であると考えられた。

まとめ

山地河川における河床形状測量の手法とし てUAVおよびSfM(UAV-SfM手法)によって作成 されるDSMおよびオルソ画像の精度の検証を、 GNSSおよびレーザー距離計を用いた実測値 との比較により行った。DSMとオルソ画像は GNSSおよびレーザー距離計を用いた測量結果 との間にRMSEで最大0.09 mの誤差が生じてい ることが分かった。今後、本研究と同一の手法 により作成されたDSMを用いて河床変動等の 解析を行う際は、この程度の誤差を含んでいる ことを念頭に考察しなければならない。

今後、UAVとSfMが作成するDSMおよびオル ソ画像の用途は広がっていくと考えられる。本 研究がその発展の一助になれば幸いである。

謝 辞

本研究を行うにあたり、関東森林管理局大井 川治山センターには試験区の設定にご協力いた だいた。また、筑波大学国際地縁技術開発科学 専攻の經隆悠氏にはUAVやSfMの取り扱いにつ いてご指導いただいた。ここに記して感謝いた します。

引用文献

- 長谷川昌弘、川端良和(2014)観測値の処理. 大塚久雄、 小川和博、住田英二、瀬良昌憲、林久資、藤本吟藏、 道廣一利、武藤慎一. 基礎測量学. 株式会社電気書 院、東京. pp40-43.
- 早坂寿人、大野裕幸、大塚力、関谷洋史、瀧繁幸(2015) UAVによる空撮写真を用いた三次元モデリングソ フトウェアの精度検証. 国土地理院時報 127:107-116.
- 国土地理院(2016)UAVを用いた公共測量マニュアル (案).

http://psgsv2.gsi.go.jp/koukyou/public/uav/doc/ uav_manual_160330.pdf(参照2016年10月25日)

- 木下篤彦、島田徹、笠原拓造、林栄明、名草一成、小川 内良人、木村広和(2013)回転翼型マイクロUAVを用 いた深層崩壊箇所の災害調査.砂防学会誌66-3:51-54.
- 眞板秀二(1989)大井川東河内実験渓流における渓床堆積 地の動的変化.水利科学187:28-51.
- 中村良光、椎葉秀作、柏原佳明、小川紀一朗(2006)航空 レーザ計測を用いた土砂生産・流送域における河床 変動状況.砂防学会誌59-4:54-57.
- 中山政一、今村遼平、川合恒孝、吉岡良朗(1967)河床変 動調査における航空写真の利用一栃木県渡良瀬川上 流三川地区を例として一. 写真測量6-4:169-176.
- 小花和宏之、早川裕弌、ゴメス クリストファー (2014a) UAV空撮とSfMを用いたアクセス困難地の3Dモデ リング.地形35-3:283-294.
- 小花和宏之、早川裕弌、齋藤仁、ゴメス クリストファー (2014b)UAV-SfM手法と地上レーザー測量により得 られたDSMの比較. 写真測量とリモートセンシング 53-2:67-74.
- 砂田憲吾(1985)釜無川(富士川)における一洪水による河 床変動. 土木学会論文集 363/Ⅱ-4:235-243.
- 釣谷義範、五十嵐武(1971)河床縦断形の変動一常願寺川の変動について一.第3回砂防学会シンポジウム 25-36.

内山庄一郎、井上公、鈴木比奈子(2014)SfMを用いた三

次元モデルの生成と災害調査への活用可能性に関す る研究. 防災科学技術研究所研究報告 81:37-60. 吉田俊康、横山貴宏、米田一也(2015)姫川における航空 レーザー計測を活用した土砂動態の把握について. 平成27年度北陸地方整備局事業研究発表会. http://www.hrr.mlit.go.jp/library/happyoukai/h27/ A/A03.pdf(参照2016年10月27日)

Measurement Accuracy Verification of UAV-SfM Technique for River Bed Forms in a Mountain River Basin: A Case Study in Higashigouchi River

Yusuke UEJI $^{\scriptscriptstyle 1^{\star}}$ and Yosuke YAMAKAWA $^{\scriptscriptstyle 1,\,2}$

¹ Agricultural and Forestry Research Center Ikawa Forest, University of Tsukuba, Ikawa 1621-2, Aoi, Shizuoka, 428-0504, Japan

² Faculty of Life and Environmental Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan

Abstract

Accuracy of Digital Surface Model (DSM) with orthochromatic image for river bed forms in a mountain river basin by using Structure from Motion (SfM) technique based on photographs taken from Unmanned Aerial Vehicle (UAV) was verified by comparing with topographic survey using GNSS (Global Navigation Satellite System) and laser range finder. The Root Mean Squared Error (RMSE) values taking the difference between Ground Control Points (GCPs) measured using GNSS and DSM were found as 0.036 m in latitude direction, 0.039 m in longitude direction, and 0.045 m in elevation: 0.007 m in oblique distance. The RMSE values taking the difference between surveying points measured using laser range finder and DSM were found as 0.03 m in latitude direction, 0.05 m in longitude direction, and 0.06 m in elevation: 0.09 m in oblique distance. These results with same surveying accuracy as in previous studies in plain areas indicated that the UAV-SfM technique is effective for measuring river bed forms in a mountain river basin.

Key words: Mountain River, Riverbed Variation, Structure from Motion (SfM), Unmanned Aerial Vehicle (UAV)