
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017
167

PAPER Special Section on Cryptography and Information Security

Malware Function Estimation Using API in Initial Behavior∗

Naoto KAWAGUCHI†, Nonmember and Kazumasa OMOTE††a), Member

SUMMARY Malware proliferation has become a serious threat to the
Internet in recent years. Most current malware are subspecies of existing
malware that have been automatically generated by illegal tools. To con-
duct an efficient analysis of malware, estimating their functions in advance
is effective when we give priority to analyze malware. However, estimating
the malware functions has been difficult due to the increasing sophistication
of malware. Actually, the previous researches do not estimate the functions
of malware sufficiently. In this paper, we propose a new method which esti-
mates the functions of unknown malware from APIs or categories observed
by dynamic analysis on a host. We examine whether the proposed method
can correctly estimate the malware functions by the supervised machine
learning techniques. The results show that our new method can estimate
the malware functions with the average accuracy of 83.4% using API in-
formation.
key words: malware, function estimation, risk evaluation, supervised ma-
chine learning, dynamic analysis

1. Introduction

Malware is rapidly increasing with the spread of the Inter-
net, and the damage caused and the potential damage by
malware has become a serious matter. For example, Sony
Pictures Entertainment was hacked using multiple malware
[1]. To prevent malware infection, installation of the an-
tivirus software is essential. However, malware is gradu-
ally increasing in sophistication not to be detected by an-
tivirus software. Most malware use various techniques such
as encryption or obfuscation in order to evade detection by
antivirus software. Furthermore, sophisticated malware is
generated in bulk by malware generating tools. As a result
of sophistication and mass generation of malware, a previ-
ous signature-based pattern matching technique, tradition-
ally used to detect malware, has already reached its limit,
and thus developing a statistically-meaningful method of de-
tection is becoming necessary.

To overcome this challenge, recently, many researchers
have conducted a large number of studies using malware
analysis approaches. Malware analysis approaches can be
separated into the static and dynamic analysis methods. The

Manuscript received March 22, 2016.
Manuscript revised August 26, 2016.
†The author is with Japan Advanced Institute of Science and

Technology, Nomi-shi, 932-1292 Japan.
††The author is with the Faculty of Engineering, Informa-

tion and Systems, University of Tsukuba, Tsukuba-shi, 305-8573
Japan.

∗The preliminary version of this paper was presented at AsiaJ-
CIS’15 [9].

a) E-mail: omote@jaist.ac.jp
DOI: 10.1587/transfun.E100.A.167

static analysis method analyzes the assembly code obtained
by disassembling the malware executable file; its advantage
is that we can investigate malware in detail. However, the
code of most malware is increasingly becoming more ob-
fuscated, so analysis requires expertness and a lot of time.
On the other hand, the dynamic analysis method analyzes
the behavior of malware executed in a closed environment.
Its advantage is that we can observe the malware’s behav-
ior without advanced expertise since dynamic analysts can
use many analysis tools. However, we cannot estimate the
amount of time required observing the behavior of malware
in the dynamic analysis. Also, the malware may not work
properly in the analysis environment.

Most current malware are subspecies of existing mal-
ware that have been automatically generated by illegal tools.
To conduct an efficient analysis of malware, estimating their
functions in advance is effective when we give priority to
analyze malware. However, the previous researches do not
estimate the functions of malware.

For an efficient analysis regarding time and the size of
log, the short time for analysis is required. It is desirable
that the malware function can be estimated in the early stage
of dynamic analysis even if all the behavior of malware is
not analyzed. Although bot-type malware executes many
malicious functions for the long term, it may be able to be
estimated only in the early stage of dynamic analysis. Note
that performance such as accuracy may worsen when only
the information in the early stage is used.

Contribution. The purpose of our study is to esti-
mate the functions of unknown malware. To the best of our
knowledge, there was only the one research [3] which ap-
propriately estimates the malware functions. However, it is
different from our method which tries to estimate the func-
tions only in the early stage of dynamic analysis. We use
malware activity information such as API or category ob-
tained by dynamic analysis (i.e., FFRI Dataset 2015 [7]).
We estimate the malware functions by such API or cat-
egory information using the supervised machine learning
techniques. Such dataset includes the results of malware dy-
namic analysis obtained within the first 90 or 120 seconds
of malware execution on a host, and thus we use only the
initial behavior of malware. It is our challenge that we try
to estimate the functions only in the early stage of dynamic
analysis. From the experimental results, we can see that our
method is able to estimate the malware functions with the
average accuracy of 83.4% using API information.

The rest of the paper is organized as follows: Section 2

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers

168
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017

introduces related works. Section 3 describes the dataset,
the supervised machine learning algorithms, and the mal-
ware functions as preliminaries. Section 4 describes the
proposed method, Sect. 5 shows our experiment and Sect. 6
discusses our results. Finally, we concludes this paper in
Sect. 7.

2. Related Work

As the researches relevant to our method, we summarize the
estimation methods of malware functions and the malware
classification methods. Most of these studies used the static
[3], [5], [10], [11], [13], [14], [17], [18], [21], [22], dynamic
[4], [19] or hybrid [6] analysis methods. Actually, static
analysis is becoming difficult because of the increasing so-
phistication of malware, and thus we focus on dynamic anal-
ysis approach. Two kinds of methods are described in the
following paragraphs.

2.1 Estimation Methods of Malware Functions

The estimation of malware functions is not sufficiently stud-
ied. Okubo et al. [13] proposed a function estimation
method for malware, but it evaluated only a small number
of malware. Furthermore, a statistical result such as accu-
racy, FPR and FNR is not derived in the paper.

Usui et al. [18] proposed the estimation methods of
malware functions using API information. APIs give a func-
tion into the program, so observing their behavior can be
used to identify the function of malware. They estimate
malware functions by SVM using the API call frequency
as a feature. However, this method has three drawbacks;
(1) It classifies the malware function into one function by
force. As a result, the malware function cannot be classified
correctly if it has multiple functions since the label corre-
sponds to a single function, (2) It does not evaluate FPR and
FNR, and (3) The number of samples may not be sufficient.
More specifically, this paper uses 50 malware samples as a
training and 15 malware samples as a test. Therefore, this
method has many drawbacks although it is the closest to our
research.

Comparetti et al. [3] proposed a solution to determine
the capabilities (malicious functionality) of malware. This
solution statically identifies dormant functionality (func-
tionality that is not observed during dynamic analysis) in
malicious programs. Most dynamic malware analysis has a
problem that only a small subset of all possible malicious
behaviors is observed within the short time. This method
solves the above problem, but our method does not solve
this. We dare to use only the initial behavior of malware and
show that our method can estimate the malware functions in
the early stage of dynamic analysis.

Kolbitsch et al. [10] presented a approach to extract
from a given malware binary the instructions that were re-
sponsible for a certain activity of the malware sample. It
isolates and extracts these instructions and generate a so-
called gadget, i.e., a stand-alone component that encapsu-

lates a specific behavior. This method can extract gadget
which constructs the group of some malware functions, al-
though it is different from our approach of the function esti-
mation of malware.

2.2 Classification Methods of Malware

Although the classification of malware is a little different
from our research, we explain it as a similar research. The
classification method of malware by Sami et al. [14] extracts
only the frequent API sequences from a large number of
APIs used in their evaluation. These APIs are divided into
the function categories defined by Microsoft Developer Net-
work [12], thereby, feature vector is reduced from 44,605 to
95 dimensions. Furthermore, in order to improve the clas-
sification accuracy of malware, they have chosen 4 dimen-
sions by high Fisher score. However, the unpacking method
in this method [14] cannot deal with handmade packers and
the extracted APIs are numerous, so this method is unprac-
tical.

As a method of classifying a malware family, Zhong
et al. [21] classified unknown malware into a known mal-
ware family. They use several features such as the cyclo-
matic complexity used by software test, the number of func-
tions that call a function, the number of functions that are
called in a function, the number of instructions, the number
of arguments, and the number of local variables. In addi-
tion, they visualized this classification results. This work
shows that (1) the same malware families with a high ratio
of common functions are the same author and (2) malware
in these families uses the same tool and compiler, or have
a large number of the same functions. Their method can
detect obfuscated APIs even if their Import Address Tables
are destructed. However, the classification accuracy of their
method is only 61.6%.

Kong et al. [11] presented a framework that can clas-
sify malware variants into their corresponding families. It
extracts the function call graph from each malware program,
and collects various types of features at the function level,
such as opcode, memory, register, I/O, Flag and API. It fur-
ther learns discriminant malware distance metrics that eval-
uate the similarity between the function call graphs of two
malware programs. Experimental results show that the av-
erage F-1 measures is over 94.80% when distance learning
is performed by SVM.

Park et al. [8] proposed a method to derive the com-
mon execution behavior of a family of malware instances.
For each instance, a graph is constructed that represents ker-
nel objects and their attributes, based on system call traces,
i.e., a kernel object behavioral graph. Hu et al. [6] proposed
a system by exploiting the complementary nature of static
and dynamic clustering algorithms to partition malware into
families. It compares the performance in terms of cluster-
ing precision, recall and coverage with individual static and
dynamic clustering component.

Tian et al. [17] learned a string set from extracted mal-
ware’s code as a feature using 1362 malware samples, and

KAWAGUCHI and OMOTE: MALWARE FUNCTION ESTIMATION USING API IN INITIAL BEHAVIOR
169

classified malware samples into 11 families. The classifi-
cation accuracy is claimed to be 97%. However, according
to experiments conducted by [21], the accuracy was found
to be only 21.2%. Therefore, this method may not be able
to support the recent sophisticated malware, or may use the
inadequate dataset.

Higashi et al. [5] focused on each functions in malware
code, and classified malware by calculating the similarity
among each malware’s function codes. However, the cal-
culation cost may become large since the similarity calcu-
lation depends on the file size. Furthermore, this method
has to calculate the similarity against all functions by brute
force. In addition, unpacking will be necessary if malware is
packed, but this research has a strong assumption that mal-
ware is already unpacked.

2.3 Detection Methods Using System Call Sequences

Xiao et al. [20] proposed a supervised Topic Transition
Model in which Markovian dependence is integrated to
model the sequential nature of the system call data. Any
system call sequence can be characterized by a set of latent
topics. It can predict class labels of unseen system call se-
quences. Canali et al. [2] presented a systematic approach
to measure how the choice of behavioral models influences
the quality of a malware detector. It focus on using system
calls, with and without parameters, as the atomic operations
that models can use to characterize program behavior. It
evaluates system call sequences for malware detection us-
ing n-grams, tuples and bags.

3. Preliminaries

3.1 FFRI Dataset 2015

FFRI Dataset 2015 is one of the research datasets contained
in MWS Datasets 2015 [7], in which FFRI, Inc.† col-
lected the dynamic analysis logs of malware samples. FFRI
Dataset 2015 includes previous datasets, FFRI Dataset 2013
and FFRI Dataset 2014. These logs are operated for 90
seconds in 2013 and 2014 and 120 seconds in 2015 per
malware sample. FFRI Dataset 2015 provides 3,000 json-
formatted malware samples collected from Jan. 2015 to Apr.
2015. FFRI Dataset 2014 provides 3,000 json-formatted
malware samples collected from Jan. 2014 to Apr. 2014.
FFRI Dataset 2013 provides 2,644 JSON-formatted mal-
ware samples, which includes 2,641 malware samples and
remote access malware, SpyEye malware, and MBR de-
struction malware collected from Sep. 2012 to Mar. 2013.
These datasets are dynamic analysis logs of malware sam-
ples collected by Cuckoo Sandbox††, which is a malware
analysis tool. This analysis log includes “api” and “cate-
gory” names used by malware on Cuckoo Sandbox. In ad-
dition, FFRI Dataset 2014 provides analysis logs collected

†http://www.ffri.jp/
††http://www.cuckoosandbox.org/

by FFR yarai analyzer Professional†††.

3.2 API and Category

API (Application Programming Interface) gives a function
to program such as file manipulation, registry manipulation,
and system manipulation. On the other hand, the category
we use in this paper can roughly aggregates the APIs. From
the analysis log collected by Cuckoo Sandbox, API calls
can be map to the categories. For example, the API named
“LdrloadDll” has the function of system manipulation, so
the category of this API can be “system”.

3.3 Machine Learning Algorithms

Machine learning is largely divided into the supervised and
unsupervised learning. The supervised learning uses the
correct input-output pairs as training data. The purpose of
supervised learning is to obtain a correct output against the
input data. On the other hand, the purpose of unsupervised
learning is to find the regularity from input data. Our re-
search has a classification advantage that the answer exists,
so we use the supervised learning algorithms. In the fol-
lowing section, we explain about the five machine learning
algorithms to be used in this study.

3.3.1 Support Vector Machine (SVM)

This method looks for the hyperplane of maximization of
margin from training data. The closest distance data from
the hyperplane is called a support vector. Keeping the max-
imum margin between a support vector and hyperplane, we
can minimize the generalization error. SVM has the one-
vs-one SVM and the one-vs-all SVM. Although SVM is
a binary class classifier, the binary class problem can be
corresponded to the multiclass one called to the one-vs-all
SVM. The binary class problem is extended to multiclass
one called to the one-vs-one SVM. Our research uses Lin-
earSVC which is the one-vs-all SVM.

3.3.2 C4.5

This classifier is extension of ID3, which is one of the deci-
sion tree algorithms. C4.5 classifies data using the ratio of
information gain based on entropy. Due to the large variance
of results, the tree structure could vary largely depending on
data selection.

3.3.3 Random Forest

This is an ensemble learning algorithm, in which the mul-
tiple decision trees of weak classifier are combined to one
classifier. In each nodes of the decision tree, we randomly
select only predetermined number of predictor variables to
suppress the overfitting.

†††http://www.ffri.jp/products/yarai analyzer pro/index.htm

170
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017

3.3.4 Naive Bayes

This classifier is based on Bayes’ theorem and assumes the
independence of events. The probability that an observed
data x belongs to the class Ci is calculated by evaluating the
following likelihood P(x|Ci).

P(x|Ci) =
∏

j

P(x j|Ci) (1)

To classify the observed data into the optimal class, we find
the class Ci that likelihood is maximum, i.e., we calculate
the following formula.

arg max
i

P(Ci|x) (2)

Naive Bayes has three kinds of algorithms such as Gaussian
Naive Bayes whose feature amount is assumed to follow
Gaussian distribution, Bernoulli Naive Bayes whose fea-
ture amount has binary value whether the event occurs or
not, and Multinomial Naive Bayes whose feature amount is
the frequency of events. Our research uses Bernoulli Naive
Bayes since the label has binary value.

3.3.5 k-Nearest Neighbor

The principle behind the classifier is to find a predefined
number of training samples closest in distance to the new
point, and predict the label from these. The distance gener-
ally uses the Euclidean distance.

3.3.6 N-gram

N-gram is known as one of the natural language processing
methods. N-gram is a contiguous sequence of n items from
a given sequence of text or speech. We use the word unit N-
gram. For example, in the case of 2-gram, {Hack the Planet}
becomes {Hackthe, thePlanet}.

3.4 Malware Function

Malware function indicates the function such as “remote
control” or “copy itself”. It is necessary to investigate the
malware functions for labels of supervised machine learning
techniques. So we investigate the malware functions using
Symantec Security Response (SSR) information [16]. To
strictly refer to SSR information, we use only functions de-
scribed in the SSR information. For example, even if the
main function of malware is to enlarge the infection range
such as worm, we do not use the “copy itself” function if
SSR information does not describe “copy itself”. Scareware
is a form of malicious software that uses social engineering
to cause shock, anxiety, or the perception of a threat in or-
der to manipulate users into buying unwanted software. We
estimate the function of this malware to “display ad” since
the purpose of this makes a user purchase the product.

4. Our Method

We propose a new method which estimates the functions
of unknown malware from APIs or categories observed by
dynamic analysis on a host. Our method is divided into
two phases; the learning phase and the estimation phase.
The feature extraction, as a preprocessing step in the above
both phases, is necessary, where we extract API or category
strings from the output of malware dynamic analysis. In
the learning phase, we generate feature vectors and labels to
construct the estimation model. In order to generate labels,
we investigate the malware functions from the authorized
website of malware information such as Symantec Security
Response (SSR). In the estimation phase, we estimate mal-
ware functions using our estimation model generated in the
learning phase. In the following, we describe the detail of
each phase.

4.1 Preprocessing (Feature Extraction)

The feature extraction is a preprocessing step in both learn-
ing phase and estimation phase. We extract “API string” or
“category string” used by malware from dataset as a fea-
ture. Subsequently, we preserve the extracted APIs or cat-
egories from all malware into a database (named f eatDB).
We store APIs or categories used by all malware samples on
f eatDB and also store APIs or categories used by each mal-
ware sample on f eatArray. Note that f eatArray has two-
dimensional array. These databases are used to generate fea-
ture vectors in both phases. Algorithm 1 shows the feature
extraction algorithm which outputs f eatDB and f eatArray
from dataset. We use the following variables; dataset:
JSON format files of analysis logs, f eatDB: a database of
all APIs/categories used in dataset, f eatArray: an array of
the APIs/categories used by each malware sample, curMal:
JSON format file of each malware, and exFeat: the ex-
tracted APIs/categories.

4.2 Learning Phase

We generate feature vectors and labels in this phase. In
the example of feature vectors shown in Table 1, MalB has
Feat2 and Feat3, where ℓ is the number of malware species
and m is the number of variety of features in the feature
vectors. “1” shows that malware has a corresponding fea-
ture but “0” shows that malware does not have it. Note that
Featm corresponds to m-th API or category string. Further-
more, in order to aim at improving performance, we gen-
erate the detailed feature vectors of frequency in the use of
APIs/categories such as Table 2. The frequency approach
can have much amount of information rather than the exis-
tence approach. We can easily count the number of func-
tions stored in f eatArray.

We create a label as a supervisor against the malware
functions. In the example of labels shown in Table 3, MalC
has Func2 and Func3, where n is the number of variety of

KAWAGUCHI and OMOTE: MALWARE FUNCTION ESTIMATION USING API IN INITIAL BEHAVIOR
171

Table 1 Example of feature vectors (existence).

Feat1 Feat2 Feat3 ... Featm
MalA 1 0 0 ... 1
MalB 0 1 1 ... 0
MalC 0 1 1 ... 0

...
Malℓ 0 1 1 ... 1

Table 2 Example of feature vectors (frequency).

Feat1 Feat2 Feat3 ... Featm
MalA 5 0 0 ... 2
MalB 0 12 1 ... 0
MalC 0 8 2 ... 0

...
Malℓ 0 3 3 ... 2

Table 3 Example of labels.

Func1 Func2 Func3 ... Funcn
MalA 0 1 0 ... 0
MalB 1 1 1 ... 0
MalC 0 1 1 ... 0

...
Malℓ 0 1 0 ... 1

Algorithm 1 Feature extraction (existence)
Input: dataset
Output: f eatDB, f eatArray
1: f eatDB = ()
2: for each curMal ∈ dataset do
3: if curMal.S ymantec detected == True then
4: f eatArray.curMal = ()
5: for all exFeat ∈ curMal do
6: if this feature is not exists in f eatArray then
7: f eatArray.curMal += exFeat
8: if this feature is not exists in f eatDB then
9: f eatDB += exFeat

10: end if
11: end if
12: end for
13: end if
14: end for

malware functions in the labels. Note that Funcn corre-
sponds to n-th malware function such as “copy itself”. This
should be correct output data corresponding to input data
since it is the answer (supervisor) of malware function. We
use the supervised machine learning techniques to generate
the estimation model. Algorithm 2 shows the algorithm of
feature vector generation, which outputs f eatVec: the fea-
ture vector of malware.

We investigate the functions about extracted malware
in order to generate the label. We refer to malware name
from “result” key in the JSON file of dataset, and we iden-
tify the malware functions from the authorized website of
malware information.

4.3 Estimation Phase

We estimate the malware functions based on our estimation

Algorithm 2 Feature vector generation (existence)
Input: f eatArray, f eatDB
Output: f eatVec
1: f eatVec = ()
2: for i = 0; i < ℓ; i + + do
3: for each x ∈ f eatArray[i] do
4: if x ∈ f eatDB then
5: f eatVec += 1
6: else
7: f eatVec += 0
8: end if
9: end for

10: end for

model generated in the learning phase. The input is new fea-
ture vector of unknown malware and the estimation model,
and the output is “1” or “0”, where “1” shows that unknown
malware has a corresponding function but “0” shows that
unknown malware does not have it. This means that new
feature vector is evaluated by the estimation model. Thus,
this model stochastically identifies whether unknown mal-
ware has a certain function or not.

5. Experiment

In order to evaluate the effectiveness of estimation of mal-
ware functions using machine learning algorithms, our
method uses only API or category information from dy-
namic analysis logs of FFRI Dataset 2013, 2014 and 2015.
While FFRI Dataset 2013 and 2015 provide with analysis
results by Cuckoo Sandbox, FFRI Dataset 2014 provides
with analysis results by Cuckoo Sandbox and FFR yarai an-
alyzer Professional. Our research uses analysis the results
by Cuckoo Sandbox in 2013, 2014 and 2015.

The problem of malware dynamic analysis is the mal-
ware operating time for analysis. The experiment shows that
our method can estimate the malware functions in short time
for 90/120 seconds per malware sample.

5.1 Experimental Procedure

We evaluate our estimation of malware functions using our
method described in Sect. 4. In the following, we explain the
experimental procedures of the feature extraction, learning
and estimation.

5.1.1 Feature Extraction

We extract only the APIs/categories of malware detected by
Symantec Antivirus Software on FFRI dataset. More specif-
ically, we extract only the APIs/categories in malware’s ac-
tivity logs of such dataset, in which API or category infor-
mation can be extracted from “API” key or “category” key.
Furthermore, we focus on malware only that the value of
“detected” key in the “Symantec” key is “True”. Note that
we extracted APIs/categories from FFRI dataset using the
regular expression. As a result, we extracted 155 APIs and
15 category types in total.

172
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017

Table 4 Detail of extracted malware in our experiment.

Type Number Type Number
Adware 12 PasswordRevealer 1

Backdoor 151 PremiumSMSScam 28
BackOrifice 1 PWS 1

Dialer 3 SecShieldFraud 63
Downloader 164 SecurityRisk 2
Gamevance 42 SecurityToolFraud 1
Infostealer 100 Spyware 4
IRC Trojan 1 Trojan 291

OptimumInstaller 4 W32 988
Total 1857

Table 5 Malware functions.
Function name Explanation
remote control remotely control the infected PC
send spam send an email spam using the stored address list on

the infected PC
display ad display advertisement on its desktop
copy itself replicate itself in order to spread to other computers
keylogger record the keys struck on a keyboard
send info send information on the infected PC to the outside
backdoor open the backdoor
downloader download files such as malware

Table 6 The number of functions of extracted malware in our experi-
ment.

Function Number Function Number
remote control 442 keylogger 253

send spam 160 send information 518
display ad 132 backdoor 422
copy itself 1257 downloader 1493

Total 4677

We randomly extract malware from dataset 2013, 2014
and 2015. As a result, we obtained 1857 malware sam-
ples shown in Table 4. The number of types of malware
extracted from these samples is 99. In these samples, we
gave type name of malware until before the first “.” in nam-
ing convention of malware by Symantec. For example, if
malware name is “Backdoor.Graybird”, this type name is
“Backdoor”.

5.1.2 Learning

We generate the feature vector and the label of malware such
as the example of Tables 1, 2 and 3. The number m of fea-
tures is 155 (API) or 15 (category), and the number ℓ of ex-
tracted malware is 1857. In this experiment, we used eight
basic functions of malware (n = 8) as described in Table 5.
In order to generate labels, we carefully investigate the mal-
ware functions using SSR information. Table 6 shows the
number of functions extracted malware samples in our ex-
periment. Note that we chose eight basic functions which
can be extracted from SSR information.

We refer to malware name in Symantec from “result”
key in the JSON file of FFRI dataset. We identify the mal-
ware functions from SSR information Note that the malware

function is not described in SSR. We examined the detail of
SSR information carefully to identify malware functions for
each extracted malware.

Note that we eliminated the following malware; (1)
malware whose information is not described in SSR infor-
mation, (2) malware whose function is not identified by SSR
information, and (3) malware detected by heuristic method
such as Bloodhound.

5.1.3 Estimation

We estimate the malware functions using feature vectors as
an input. We use five kinds of the basic supervised machine
learning algorithms, i.e., LinearSVC (LSVC), C4.5, Ran-
dom Forest (RF), Naive Bayes (NB), and k-Nearest Neigh-
bor (kNN) in order to compare with each method about
which classifier is the best. These are implemented in de-
fault settings using scikit-learn [15] of machine learning li-
brary of Python. We conduct the 5-fold cross validation to
evaluate our estimation.

We calculate the accuracy, FPR and FNR as the evalu-
ation index. The accuracy shows how much our method can
be estimated correctly, FPR shows the conditional probabil-
ity of a positive test result given an absent event, and FNR
shows the conditional probability of a negative test result
given that the event being looked for has taken place. We
show the three equations as follows.

Accuracy =
of malware of correctly classified

The total number of test data
(3)

FPR =
of malware that misclassified to True

of malware that do not have a function
(4)

FNR =
of malware that misclassified to False

of malware that have a function
(5)

The value of the label is converted from a binary string
to an integer. More precisely, the label is 1, 2, 4, . . ., 2n−1

corresponding to the order from the rightmost element, re-
spectively. For example, if the label of Malx is [0,1,0,1]
where the length of label is 4, Malx has Func2 and Func4.
If the integer value of Malx’s label is 5, Malx is correctly
estimated.

5.2 Results

While Tables 7–9 show Accuracy, FPR and FNR in case
of using API frequency, Tables 10–12 show Accuracy, FPR
and FNR in case of using category frequency. These results
show the average of 5-fold cross validation. Here we only
show the result of using only frequency since the result of
using frequency is better than using existence in our prelim-
inary experiment.

The accuracy values are 83.4% (API) and 83.6% (cat-
egory) on average from Tables 7 and 10. We found that the
accuracy was overall high. Especially, the highest accuracy
values are 89.6% (API) and 89.1% (category) by Random
Forest, and the lowest ones are 72.8% (API) and 81.8% (cat-
egory) by Naive Bayes. The accuracy of “display ad” has

KAWAGUCHI and OMOTE: MALWARE FUNCTION ESTIMATION USING API IN INITIAL BEHAVIOR
173

Table 7 Accuracy (API frequency).
remote control send spam display ad copy itself keylogger send information backdoor downloader Avg.

LSVC 0.759 0.836 0.905 0.785 0.790 0.763 0.779 0.822 0.805
C4.5 0.838 0.915 0.967 0.833 0.872 0.845 0.837 0.841 0.869
RF 0.869 0.927 0.981 0.870 0.887 0.876 0.869 0.886 0.896
NB 0.715 0.750 0.949 0.706 0.658 0.689 0.708 0.649 0.728

kNN 0.829 0.920 0.978 0.827 0.871 0.835 0.830 0.868 0.870
Avg. 0.802 0.870 0.956 0.804 0.816 0.802 0.805 0.813 0.834

Table 8 FPR (API frequency).
remote control send spam display ad copy itself keylogger send information backdoor downloader Avg.

LSVC 0.200 0.123 0.087 0.356 0.147 0.173 0.172 0.610 0.234
C4.5 0.102 0.046 0.018 0.269 0.077 0.095 0.108 0.348 0.133
RF 0.061 0.015 0.006 0.184 0.032 0.076 0.063 0.344 0.098
NB 0.325 0.234 0.026 0.179 0.357 0.365 0.340 0.276 0.263

kNN 0.108 0.010 0.010 0.300 0.045 0.108 0.092 0.402 0.134
Avg. 0.159 0.086 0.029 0.258 0.132 0.163 0.155 0.396 0.172

Table 9 FNR (API frequency).
remote control send spam display ad copy itself keylogger send information backdoor downloader Avg.

LSVC 0.361 0.599 0.184 0.150 0.623 0.398 0.392 0.075 0.348
C4.5 0.355 0.558 0.251 0.116 0.455 0.300 0.355 0.111 0.313
RF 0.370 0.623 0.173 0.103 0.632 0.242 0.363 0.056 0.320
NB 0.169 0.420 0.391 0.348 0.246 0.173 0.123 0.369 0.280

kNN 0.378 0.712 0.216 0.114 0.697 0.312 0.434 0.062 0.366
Avg. 0.327 0.582 0.243 0.166 0.531 0.285 0.333 0.137 0.325

the highest value (i.e., 95.6% (API) and 94.2% (category)).
We found that the accuracy of tree-based algorithms such as
C4.5 and Random Forest became comparatively high.

The average values of FPR are 17.2% (API) and 16.9%
(category) and the average values of FNR are 32.5% (API)
and 40.8% (category). We found that FNR is compara-
tively higher than FPR, although in general a low FNR is
more important than a low FPR. Especially, FNR values
of “send spam” and “keylogger” were pretty higher. More
precisely, FNR values of “send spam” are 58.2% (API)
and 73.6% (category), and FNR values of “keylogger” are
53.1% (API) and 69.0% (category). This means that mal-
ware with “send spam” or “keylogger” are wrongly judged
as “not send spam” or “not keylogger”, respectively.

6. Discussion

6.1 Accuracy, FPR and FNR

The accuracy of tree-based algorithms such as C4.5 and RF
becomes comparatively high. NB has a smooth and con-
tinuous boundary for discrimination, but the tree-based al-
gorithms do not have such a smooth boundary. A smooth
boundary has a disadvantage; NB with a smooth boundary
may cause false classification near a boundary if feature vec-
tors have a distinct border. In this case, the tree-based al-
gorithms are generally better suited for our feature vectors.
Therefore, we guess that our method is suitable for the tree-
based algorithms.

6.2 API vs Category

The purpose of using category is dimension reduction. As

for the accuracy, the results using categories are almost the
same as ones using APIs. However, we found that FNR
of category became considerably worse in some functions.
More precisely, FNR of category decreases by 38% (display
ad), 23% (keylogger) and 20% (send spam). Therefore, us-
ing categories may not be suitable for our method to esti-
mate some functions.

6.3 Malware Functions

The accuracy of malware with the function of “display ad” is
very high. We consider that little malware has both “display
ad” and the other functions as described in Table 13. In
our examination, the number of “display ad” function is 132
but the number of the other functions with “display ad” is
less than 8. The accuracy may become high since there is a
difference between “display ad” and the other functions, and
thus most malware with the function of “display ad” would
have unique APIs/categories.

We found that FNR values of “send spam” and “key-
logger” were pretty high, that is, more than 50%. Although
we do not find a great tendency in particular from our exam-
ination, the results show that APIs used in “send spam” or
“keylogger” are also used in other functions of malware.

Restriction. Malware functions are referred to infor-
mation by Symantec. If SSR information is wrong or insuf-
ficient, it may affect the accuracy, FPR and FNR. Actually,
even the worm do not describe the function of “copy itself”
in our survey. Although the label of malware functions in
this experiment may be different from the actual malware
functions, we faithfully follow the SSR information.

174
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017

Table 10 Accuracy (category frequency).
remote control send spam display ad copy itself keylogger send information backdoor downloader Avg.

LSVC 0.710 0.805 0.839 0.732 0.795 0.638 0.727 0.664 0.739
C4.5 0.844 0.901 0.967 0.830 0.871 0.841 0.830 0.870 0.869
RF 0.865 0.935 0.980 0.847 0.902 0.861 0.863 0.874 0.891
NB 0.794 0.912 0.953 0.670 0.835 0.792 0.792 0.792 0.818

kNN 0.825 0.917 0.969 0.824 0.875 0.805 0.835 0.868 0.865
Avg. 0.808 0.894 0.942 0.781 0.856 0.787 0.809 0.814 0.836

Table 11 FPR (category frequency).
remote control send spam display ad copy itself keylogger send information backdoor downloader Avg.

LSVC 0.264 0.138 0.121 0.543 0.103 0.331 0.218 0.651 0.296
C4.5 0.091 0.054 0.022 0.256 0.068 0.107 0.110 0.291 0.125
RF 0.052 0.006 0.003 0.211 0.020 0.081 0.059 0.389 0.103
NB 0.156 0.025 0.017 0.349 0.066 0.137 0.145 0.594 0.186

kNN 0.101 0.014 0.009 0.270 0.037 0.129 0.094 0.440 0.137
Avg. 0.133 0.047 0.034 0.326 0.059 0.157 0.125 0.473 0.169

Table 12 FNR (category frequency).
remote control send spam display ad copy itself keylogger send information backdoor downloader Avg.

LSVC 0.363 0.833 0.704 0.144 0.886 0.444 0.477 0.261 0.514
C4.5 0.372 0.551 0.198 0.128 0.500 0.282 0.372 0.094 0.312
RF 0.411 0.671 0.243 0.126 0.607 0.292 0.389 0.066 0.351
NB 0.370 0.885 0.480 0.320 0.784 0.395 0.420 0.115 0.471

kNN 0.399 0.742 0.333 0.128 0.674 0.365 0.424 0.061 0.391
Avg. 0.383 0.736 0.392 0.169 0.690 0.356 0.416 0.119 0.408

Table 13 The total number of functions about malware with “display ad”.

remote control send spam display ad copy itself keylogger send information backdoor downloader
0 0 132 5 0 4 1 7

Table 14 Results using 1-gram and 2-gram on average.

API Category
Accuracy FPR FNR Accuracy FPR FNR

1-gram 0.842 0.163 0.316 0.840 0.168 0.432
2-gram 0.849 0.148 0.293 0.835 0.169 0.331

6.4 Experiment Using 2-gram

Most malware use plural APIs when it executes on a host.
In this experiment, we use two consecutive APIs for 2-gram
evaluation. For example, if malware X uses API1, API2
and API3 in order, 2-gram evaluation uses (API1, API2) and
(API2, API3). Note that 1-gram evaluation uses API1, API2
and API3 separately. This evaluation considers the relation
between two consecutive APIs.

We show the experimental results using 2-gram as one
of the improvement approach of accuracy. Table 14 shows
the average values of results using 1-gram and 2-gram. Ac-
cordingly, the number of feature value increases, i.e., the
number of APIs is 4164 and the number of categories is 194.
We found that the results of 2-gram was basically superior
to 1-gram. Especially, the FNR of category is improved sig-
nificantly, i.e., FNR values are improved by 7.0% (API) and
23% (category).

Table 15 Comparison of related works.
Accuracy FPR FNR Target

Our method 89.6% 9.80% 32.0% Estimation of
USTM11 [18] 66.7% N/A N/A malware functions
ZYYT13 [21] 61.6% about 25% N/A Classification of
TBIV09 [17] 21.2% N/A N/A malware family

6.5 Comparison of Related Works

To the best of our knowledge, there was only the one re-
search [3] which appropriately estimates the malware func-
tions. However, it is different from our method which tries
to estimate the functions only in the early stage of dynamic
analysis. Also, [18] has many problems as described in
Sect. 2 although it is the closest to our research.

Table 15 shows the comparison with related works
about the accuracy, FPR and FNR. Especially, we compare
the previous researches [17], [18], [21] with our method.
However, in all of three methods, both FPR and FNR are
not listed. Note that in [21] we estimate the approximately
25% FPR in the 61.6% accuracy from the graph since they
describe the graph of FPR corresponding to the accuracy.
The accuracy of [17] is the latest experimental results by
[21], i.e., 21.2%. Our method shows the average of the re-
sults of Random Forest, i.e., the accuracy is 89.6%, FPR is
9.80% and FNR is 32.0%.

Note. Each previous work in Table 15 uses different
dataset. Since the performance of methods depends on the

KAWAGUCHI and OMOTE: MALWARE FUNCTION ESTIMATION USING API IN INITIAL BEHAVIOR
175

dataset, we should not compare our method with the previ-
ous works by the performance described in the paper. As
reference, however, we just list up the performance values
described in each paper in Table 15. Also, we do not com-
pare with the previous researches [3], [8], [11] since the ac-
curacy, FPR and FNR are not described in these papers.

7. Conclusion

This paper proposes how to estimate the malware functions
by machine learning techniques against activity logs includ-
ing malware APIs/categories for the initial 90/120 seconds
per malware sample. Our method estimates the malware
functions based on eight basic malware functions by five
classifiers. The results show that our method can achieve an
accuracy of 83.4% (API) and 83.6% (category) on average
in our experiment. Especially, the accuracy values by Ran-
dom Forest are 89.6% (API) and 89.1% (category). From
our experimental results, we showed that our method was
effective in the estimation of malware functions.

Acknowledgements

This study is partly supported by the Okawa Foundation for
Information and Telecommunications.

References

[1] K. Baumgartner, “Sony/Destover: Mystery North Korean actor’s
destructive and past network activity,” https://securelist.com/blog/
research/67985/destover/

[2] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu,
and E. Kirda, “A quantitative study of accuracy in system call-based
malware detection,” Proc. 2012 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2012, pp.122–1132, 2012.

[3] P.M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel,
and S. Zanero, “Identifying dormant functionality in malware pro-
grams,” 2010 IEEE Symposium on Security and Privacy, pp.61–76,
2010.

[4] T. Hayashi, Y. Yamaguchi, H. Shimada, and H. Takakura, “Network
behavior-based malware classification method based on sequence
pattern of traffic flow,” CSS’14, 2014 (in Japanese).

[5] Y. Higashi, Studies on malware classification by the function based
on the malware’s code, Master’s Thesis, Nara Institute of Science
and Technology, 2011 (in Japanese).

[6] X. Hu and K.G. Shin, “DUET: Integration of dynamic and static
analyses for malware clustering with cluster ensembles,” Proc. 29th
Annual Computer Security Applications Conference, ACSAC’13,
pp.79–88, 2013.

[7] M. Kamizono, M. Akiyama, T. Kasama, J. Murakami, M. Hatada,
and M. Terada, “Datasets for anti-malware research∼MWS datasets
2015∼,” IPSJ SIG Technical Report vol.2015-CSEC-70, no.6, 2015
(in Japanese).

[8] Y. Park and D. Reeves, “Deriving common malware behavior
through graph clustering,” Proc. 6th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS’11,
pp.497–502, 2011.

[9] N. Kawaguchi and K. Omote, “Malware function classification us-
ing APIs in initial behavior,” 2015 10th Asia Joint Conference on
Information Security, pp.138–144, 2015.

[10] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector gad-
get: Automated extraction of proprietary gadgets from malware bi-
naries,” 2010 IEEE Symposium on Security and Privacy, pp.29–44,

2010.
[11] D. Kong and G. Yan, “Discriminant malware distance learning on

structural information for automated malware classification,” Proc.
19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD’13, pp.1357–1365, 2013.

[12] Microsoft Developer Network, http://msdn.microsoft.com/en-us/
library/aa383686

[13] R. Okubo, M. Morii, R. Isawa, D. Inoue, and K. Nakao, “Func-
tion estimation method for malwares based on part of binary code,”
CSS’12, 2012 (in Japanese).

[14] A. Sami, B. Yadegari, N. Peiravian, S. Hashemi, and A. Hamze,
“Malware detection based on mining API calls,” Proc. 2010 ACM
Symposium on Applied Computing, SAC’10, pp.1020–1025, 2010.

[15] scikit-learn, http://scikit-learn.org/stable/index.html
[16] Symantec, http://www.symantec.com/ja/jp/security response/
[17] R. Tian, L. Batten, R. Islam, and S. Versteeg, “An automated clas-

sification system based on the strings of Trojan and virus families,”
2009 4th International Conference on Malicious and Unwanted Soft-
ware (MALWARE), pp.23–30, 2009.

[18] T. Usui, K. Shigematsu, K. Takeda, and J. Murai, “Malware classifi-
cation based on SVM and labeling by API’s tendency,” MWS 2011,
2011 (in Japanese).

[19] V.P. Nair, H. Jain, Y.K. Golecha, M.S. Gaur, and V. Laxmi,
“MEDUSA: MEtamorphic malware dynamic analysis usingsigna-
ture from API,” Proc. 3rd International Conference on Security of
Information and Networks, SIN’10, pp.263–269, 2010.

[20] H. Xiao and T. Stibor, “A supervised topic transition model for
detecting malicious system call sequences,” Proc. 2011 Workshop
on Knowledge Discovery, Modeling and Simulation, KDMS’11,
pp.23–30, 2011.

[21] Y. Zhong, H. Yamaki, Y. Yamaguchi, and H. Takakura, “ARIGUMA
code analyzer: Efficient variant detection by identifying common
instruction sequences in malware families,” 2013 IEEE 37th Annual
Computer Software and Applications Conference, pp.11–20, 2013.

[22] Y. Zhong, H. Yamaki, and H. Takakura, “A malware classification
method based on similarity of function structure,” 2012 IEEE/IPSJ
12th International Symposium on Applications and the Internet,
pp.256–261, 2012.

Naoto Kawaguchi received his M.S. degree
in information science from Japan Advanced In-
stitute of Science and Technology (JAIST) in
2015.

Kazumasa Omote received his Ph.D. de-
grees in information science from JAIST in
2002. He worked at Fujitsu Laboratories, LTD
in 2002–2008, and was engaged in research and
development for network security. He was a
research assistant professor at JAIST in 2008–
2011, and was an associate professor at JAIST
in 2011–2016. He has been an associate pro-
fessor at University of Tsukuba since 2016. His
research interests include applied cryptography
and network security. He is a member of IEICE

and IPSJ.

https://securelist.com/blog/research/67985/destover/
https://securelist.com/blog/research/67985/destover/
https://securelist.com/blog/research/67985/destover/
http://dx.doi.org/10.1145/2338965.2336768
http://dx.doi.org/10.1145/2338965.2336768
http://dx.doi.org/10.1145/2338965.2336768
http://dx.doi.org/10.1145/2338965.2336768
http://dx.doi.org/10.1109/sp.2010.12
http://dx.doi.org/10.1109/sp.2010.12
http://dx.doi.org/10.1109/sp.2010.12
http://dx.doi.org/10.1109/sp.2010.12
http://dx.doi.org/10.1145/2523649.2523677
http://dx.doi.org/10.1145/2523649.2523677
http://dx.doi.org/10.1145/2523649.2523677
http://dx.doi.org/10.1145/2523649.2523677
http://dx.doi.org/10.1145/1966913.1966986
http://dx.doi.org/10.1145/1966913.1966986
http://dx.doi.org/10.1145/1966913.1966986
http://dx.doi.org/10.1145/1966913.1966986
http://dx.doi.org/10.1109/asiajcis.2015.15
http://dx.doi.org/10.1109/asiajcis.2015.15
http://dx.doi.org/10.1109/asiajcis.2015.15
http://dx.doi.org/10.1109/sp.2010.10
http://dx.doi.org/10.1109/sp.2010.10
http://dx.doi.org/10.1109/sp.2010.10
http://dx.doi.org/10.1109/sp.2010.10
http://dx.doi.org/10.1145/2487575.2488219
http://dx.doi.org/10.1145/2487575.2488219
http://dx.doi.org/10.1145/2487575.2488219
http://dx.doi.org/10.1145/2487575.2488219
http://msdn.microsoft.com/en-us/library/aa383686
http://msdn.microsoft.com/en-us/library/aa383686
http://dx.doi.org/10.1145/1774088.1774303
http://dx.doi.org/10.1145/1774088.1774303
http://dx.doi.org/10.1145/1774088.1774303
http://scikit-learn.org/stable/index.html
http://www.symantec.com/ja/jp/security_response/
http://dx.doi.org/10.1109/malware.2009.5403021
http://dx.doi.org/10.1109/malware.2009.5403021
http://dx.doi.org/10.1109/malware.2009.5403021
http://dx.doi.org/10.1109/malware.2009.5403021
http://dx.doi.org/10.1145/1854099.1854152
http://dx.doi.org/10.1145/1854099.1854152
http://dx.doi.org/10.1145/1854099.1854152
http://dx.doi.org/10.1145/1854099.1854152
http://dx.doi.org/10.1145/2023568.2023577
http://dx.doi.org/10.1145/2023568.2023577
http://dx.doi.org/10.1145/2023568.2023577
http://dx.doi.org/10.1145/2023568.2023577
http://dx.doi.org/10.1109/compsac.2013.6
http://dx.doi.org/10.1109/compsac.2013.6
http://dx.doi.org/10.1109/compsac.2013.6
http://dx.doi.org/10.1109/compsac.2013.6
http://dx.doi.org/10.1109/saint.2012.48
http://dx.doi.org/10.1109/saint.2012.48
http://dx.doi.org/10.1109/saint.2012.48
http://dx.doi.org/10.1109/saint.2012.48

