
An Improved Approximation Algorithm for the Edge-Disjoint

Paths Problem with Congestion Two∗

Ken-ichi Kawarabayashi† Yusuke Kobayashi‡

Abstract

In the maximum edge-disjoint paths problem, we are given a graph and a collection of
pairs of vertices, and the objective is to find the maximum number of pairs that can be routed
by edge-disjoint paths. An r-approximation algorithm for this problem is a polynomial-time
algorithm that finds at least OPT/r edge-disjoint paths, where OPT denotes the maximum

possible number of pairs that can be routed in a given instance. For a long time, an O(n
1
2)-

approximation algorithm has been best known for this problem even if a congestion of two is
allowed, i.e., each edge is allowed to be used in at most two of the paths1. In this paper, we
give a randomized O(n

3
7 · poly(log n))-approximation algorithm with congestion two. This

is the first result that breaks the O(n
1
2)-approximation algorithm. In particular, we prove

the following.

1. If we have a (randomized) polynomial-time algorithm for finding Ω(OPT
1
p /polylog(n))

edge-disjoint paths for some p > 1, then we can give a randomizedO(n
1
2−α)-approximation

algorithm for the edge-disjoint paths problem by using Rao-Zhou’s algorithm for some
α > 0.

2. Based on the Chekuri-Khanna-Shepherd well-linked decomposition, we show that there

is a randomized algorithm for finding Ω(OPT
1
4 /

√
log n log n) edge-disjoint paths con-

necting given terminal pairs with congestion two.

Our framework for this algorithm is more general in the following sense. Indeed, the above
two ingredients also work for the maximum edge-disjoint paths problem (with congestion

one) if there is a (randomized) polynomial-time algorithm for finding Ω(OPT
1
p) edge-disjoint

paths connecting given terminal pairs for some p > 1.

Key words: Disjoint paths problem, Rao–Zhou algorithm, Chekuri–Khanna–Shepherd
well-linked decomposition.

∗An extended abstract of this paper appears in STOC 2011 [17].
†National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan. JST, ERATO,

Kawarabayashi Large Graph Project. Supported by KAKENHI Grant Number 24106003. E-mail:
k keniti@nii.ac.jp

‡University of Tsukuba, Tsukuba, 305-8573, Japan. Supported by JST, ERATO, Kawarabayashi Large Graph
Project, and by KAKENHI Grant Number 24106002, 24700004. E-mail: kobayashi@sk.tsukuba.ac.jp

1After the extended abstract [17] of this paper appeared, a poly-logarithmic approximation algorithm was
proposed in [9]. However, we believe that it is worth publishing the full version of [17].

1 Introduction

1.1 Background of the disjoint paths problem

In the edge- (vertex-) disjoint paths problem, we are given a graph G and a set of k pairs of
vertices in G, and we have to decide whether or not G has k edge- (vertex-) disjoint paths
connecting given pairs of terminals. This is certainly a central problem in algorithmic graph
theory and combinatorial optimization. See [13, 34] for previous works on the disjoint paths.
It has attracted attention in the contexts of transportation networks, VLSI layout and virtual
circuit routing in high-speed networks or Internet. A basic technical problem is to interconnect
certain prescribed “channels” on the chip such that wires belonging to different pins do not touch
each other. In this simplest form, the problem mathematically amounts to finding vertex-disjoint
trees or vertex-disjoint paths in a graph, each connecting a given set of vertices.

Let us give previous known results on the edge-disjoint paths problem. Early work on this
problem focused on characterizing classes of instances for which the edge-disjoint paths problem
can be solved in polynomial time. For example, the seminal work of Robertson and Seymour
says that there is a polynomial-time algorithm for the edge-disjoint paths problem when the
number of terminals, k, is fixed. Note that the running time of this algorithm is O(n3), where n
is the number of vertices of an input graph G, and it is improved to O(n2) in [20]. Actually, this
algorithm is one of the spin-offs of their groundbreaking work on graph minor project, spanning
23 papers, and giving several deep and profound results and techniques in discrete mathematics.
Note that the running time of their algorithm contains a huge hidden constant depending on
k. If k is a part of the input of the problem, the edge-disjoint paths problem is known to be
NP-complete [12], and it remains NP-complete even if an input graph G is constrained to be
planar [26].

The focus has recently shifted to find approximation algorithms for the problem of finding
maximum number of disjoint paths, which we call the maximum edge- (vertex-) disjoint paths
problem. The maximum edge- (vertex-) disjoint paths problem receives considerable attention in
view of approximation algorithms and hardness results. An r-approximation algorithm for this
problem is a polynomial-time algorithm that on every given instance connects at least OPT/r
terminal pairs using edge-disjoint paths, where OPT denotes the maximum possible number of
pairs that can be routed in a given instance.

Despite a significant research in the recent years, there are wide gaps in understanding
of the approximability of the maximum edge-disjoint paths problem. For directed graphs, no
polynomial-time algorithm can achieve an approximation guarantee of O(m

1
2
−ϵ) for any ϵ > 0,

where m is the number of edges of an input graph, unless P = NP [14]. But this result is
based on the fact that the directed two disjoint paths problem is NP-hard, which does not
hold for the undirected case. Currently, the strongest hardness result is due to [2], which

gives a lower bound of Ω((logm)
1
2
−ϵ) for any ϵ > 0. Constant factor and poly-logarithmic

factor approximation algorithms for the maximum edge-disjoint paths problem are known for
restricted classes of graphs such as trees, meshes, and highly connected graphs, Eulerian planar
graphs [16, 23, 24, 22]. Here, we say that a function f(n) is poly-logarithmic if f(n) = O((log n)c)
for some constant c, and such a function is denoted by poly(log n). Currently, the best known
approximation is due to Chekuri, Khanna and Shepherd [7] who gave an O(

√
n)-approximation

algorithm.
There are many studies on the maximum edge-disjoint paths problem in which we allow

routable set to use each edge up to γ times for some positive integer γ. This setting appears
when we would like to find a unit unsplittable flow between each terminal pair and each edge is
endowed with some capacity γ, which is called congestion. Concerning approximation algorithms
for the maximum edge-disjoint paths problem with congestion γ, there is still a hardness result

1

[2]. It says that no polynomial-time algorithm can achieve an approximation guarantee of

O(log
1

γ+1
−ϵ

n) for any ϵ > 0 with congestion γ (up to o(log log n/ log log log n)), unless P = NP .

On the positive side, there exists an O(n
1
γ) approximation algorithm for congestion γ [35],

and when the congestion is allowed to be O(log n/ log log n), there is an O(1)-approximation
algorithm via randomized rounding [28]. However, the best known algorithm for the congestion

two case has been an O(n
1
2)-approximation algorithm [35] for a long time2.

1.2 Our main results

As we see here, an O(
√
n)-approximation has been best known for the maximum edge-disjoint

paths problem even for the congestion two case. Our main contribution is to give the first
approximation algorithm that breaks an O(

√
n)-approximation algorithm for the congestion

two case (Theorem 1.3). Actually, the approximation ratio of our algorithm is Õ(n
3
7), where we

denote f = Õ(g) if f = O(g logt(g)) for some t. Let us observe that the congestion two case has
been well-studied by many researchers. Indeed there are some important results in this context,
see [15, 19, 21, 25]. We have two ingredients for the proof of this result.

First, we use the algorithm of a very important result by Rao and Zhou [29] to show the
following.

Theorem 1.1. If we have a (randomized) polynomial-time algorithm that on every instance can

route Ω(OPT
1
p /β(n)) pairs with congestion γ for some p > 1, where OPT is the optimal value

of the maximum edge-disjoint paths problem and β is some function, then there is a random-

ized Õ(n
p−1
2p−1β(n))-approximation algorithm for the maximum edge-disjoint paths problem with

congestion γ that runs in polynomial time. In particular, if β(n) is a poly-logarithmic function,

then we obtain a randomized Õ(n
p−1
2p−1)-approximation algorithm.

The second ingredient is that using Chekuri–Khanna–Shepherd well-linked decomposition
[8, 6], we can find Ω(OPT

1
4 /
√
log n log n) paths when congestion is two.

Theorem 1.2. In any instance of the maximum edge-disjoint paths problem, we can find
Ω(OPT

1
4 /
√
log n log n) edge-disjoint paths with congestion two.

By combining Theorems 1.1 and 1.2, we have the main result as a corollary.

Theorem 1.3. There is a randomized Õ(n
3
7)-approximation algorithm for the maximum edge-

disjoint paths problem with congestion two.

Our framework for the algorithm in Theorem 1.3 is more general in the following sense.
Indeed, since Theorem 1.1 holds for the maximum edge-disjoint paths problem (with congestion
one), we can break an O(

√
n)-approximation algorithm for the maximum edge-disjoint paths

problem if the following conjecture is true.

Conjecture 1.4. There is a polynomial-time algorithm for finding Ω(OPT
1
p /β(n)) edge-disjoint

paths connecting given terminal pairs for some p > 1, where OPT is the optimal value of the
maximum edge-disjoint paths problem and β is a poly-logarithmic function.

Let us observe that, unfortunately, the method we have developed for the proof of Theorem
1.2 would NOT work for the congestion one case. Indeed, the Chekuri–Khanna–Shepherd well-
linked decomposition [8, 6] depends on the LP based algorithm, while the integrality gap of the
LP-relaxation is Ω(

√
n). For more details, see the next subsection.

2After the extended abstract of the present paper appeared, a poly-logarithmic approximation algorithm was
proposed in [9].

2

Understanding the tractability of the disjoint paths problem is a fundamental problem in
graph algorithms and combinatorial optimization, and progress in seeking for the boundary
between approximability and inapproximability is certainly a crucial issue in this light. We
believe that Theorem 1.3 gains us knowledge concerning these issues.

1.3 Overview of our algorithms

As we mentioned above, our technical contribution consists of two ingredients.

1. Using Rao–Zhou’s result [29] to obtain large number of edge-disjoint paths.

2. Using Chekuri–Khanna–Shepherd well-linked decomposition to prove Theorem 1.2.

Let us look at the first ingredient. Rao–Zhou’s result says that if the minimum cut in a
given graph is Ω(log5 n), then there is a poly(log n)-approximation algorithm for the maximum
edge-disjoint paths problem. This result was also used by Andrews [1] to give a poly(log n)-
approximation algorithm with congestion poly(log log n). We note that the algorithm that can

route Õ(OPT
1
p /β(n)) pairs already gives a good solution when OPT is not so large. When

OPT is large, we expect the graph to be well connected, and so Rao–Zhou’s algorithm comes
as a natural alternative.

Of course, we cannot directly use Rao–Zhou’s algorithm because there may be a small cut
in a given graph. However, we shall show the following.

1. If there is a cut of small size, which separates a given graph G into two parts A,B such
that both A and B contain a terminal pair, then we can recursively apply our algorithm
to A and B, respectively. Then the solutions of A and B give rise to a solution in the
original graph G.

2. Alternatively, there is no such cut. In this case, we can select a set of edges that are
incident on “small degree vertices” such that if we add Ω(log5 n) parallel “dummy” edges
to each of the edge set then the resulting graph G′ is Ω(log5 n)-edge-connected.

In the second case, we shall apply Rao–Zhou’s algorithm [29] to the resulting graph G′. Thus
we get edge-disjoint paths P of size OPT/poly(log n). We then do the following procedure:

Step 1. We pick up a path P from P that goes through the minimum number of vertices with
“small-degree” in the original graph.

Step 2. Remove all paths sharing a “small-degree” vertex with P from P, and go to Step 1.

When we have an algorithm that can route Õ(OPT
1
p /β(n)) pairs, at the end, we shall show

that this procedure would give a randomized Õ(n
p−1
2p−1 /β(n))-approximation algorithm for the

edge-disjoint paths problem that runs in polynomial time, in the original graph G.
Let us now look at the second ingredient. We first adapt very interesting work by Chekuri,

Khanna and Shepherd [8, 6]. The crucial ingredient of their work is the following. For a vertex
set Z, we say that Z is edge-well-linked if for every vertex set S of G containing at most
half of the vertices of Z, |δ(S)| ≥ |S ∩ Z|, where δ(S) is the set of edges connecting S and
V (G) \ S. Chekuri et al. showed that for any input graph G with the set of terminal pairs T ,
one can compute vertex disjoint subgraphs G1, . . . , Gr of G and their corresponding disjoint
sets of vertex pairs T1, . . . , Tr of T such that (a) each Ti consists of the pairs of terminals and
Ti belongs to Gi; (b) the members of the terminal pairs in Ti are edge-well-linked in Gi; (c) the
total size of the sets Ti is at least OPT/β(n), where β(n) is bounded by O(

√
log n log n). Then,

3

we reduce each instance (Gi, Ti) to the vertex-disjoint case by considering the line graph. We
will refer to each obtained instance as a well-linked instance, and denote it by (Gi, Ti) by abuse
of notation. This well-linked instance allows us to find a “crossbar” to route the paths with
terminals of Ti in Gi with large congestion [8]. However, so far, no construction for a large size

crossbar that allows us to route the paths of size O(|Ti|
1
p) for p > 1 with constant congestion,

has been known until this paper. In [8, 6], Chekuri et al. used a grid minor as a “crossbar”.
They used the fact that if the graph has a large grid minor and the terminals are well-connected
to it, then we can route many paths connecting terminal pairs by using the grid minor. This
method works well if we consider a planar graph [6]. However, the best known result for a
general graph is that if G has well-linked set of size 2O(t2 log t) (equivalently, tree-width at least
2O(t2 log t)), then G has a t × t grid minor [18] (see also [11, 30, 33]), which only allows us to
route at most t = O(log(OPT)) terminals. So we cannot use this result.3

In order to find a larger crossbar structure, we shall use a “grid-like minor” as a crossbar
instead, which is introduced by Reed and Wood [31], and investigated further by Kreutzer and
Tazari [27]. Roughly, we say that G has a grid-like minor of order r if the graph G□K2, i.e.,
Cartesian product of G and K2 (consisting of two vertices and one edge between them), has a
clique minor of order r. It is shown in [27] that graphs with tree-width at least Ω(poly(t)) has
a grid-like minor of order t.

What we shall do is the following:

(1) Starting with each well-linked instance (Gi, Ti), construct a grid-like minor M of order

Ω(|Ti|
1
4), which is “attached” to the terminal Ti in polynomial time.

(2) Then construct edge-disjoint paths with the pairs of terminals in Ti via M in Gi, with
congestion two. To do so, we first take Cartesian product G′

i = Gi□K2. By the definition

of the grid-like minor, G′
i has a clique minor M ′ of order Ω(|Ti|

1
4), because M□K2 is a

subgraph of G′
i. By using the result of Robertson and Seymour [32] (and its generalization

by Bollobás and Thomason [3, 4]), we can use M ′ as a “crossbar” to find Ω(|Ti|
1
4) vertex-

disjoint paths with terminals in Ti in G′
i. These paths clearly correspond to the disjoint

paths in Gi with congestion two.

For both steps above, we shall provide details and polynomial-time algorithms in this paper.
Since the total size of the sets Ti is at least Ω(OPT/

√
log n log n), thus we can route

Ω(OPT
1
4 /
√
log n log n) pairs of terminals. This allows us to prove Theorem 1.2, and conse-

quently, we can prove Theorem 1.3 by combining Theorems 1.1 and 1.2.
Let us observe that, unfortunately, the method we just presented to use the well-linked

instance would not work if we consider the congestion one case. To see that, the integrality gap
for the LP-relaxation used in the above arguments is O(

√
n) [7]. This means that if the number

of terminals is O(
√
n) (which is indeed the case for the known example, see [7]), then as long

as we use the same LP-relaxation (which is indeed the case for the well-linked instance), there
would be no way to prove Conjecture 1.4.

The paper is organized as follows: In Section 2, we give some notation. In Section 3, we
shall give a proof of Theorem 1.1. In section 4, we introduce Chekuri, Khanna and Shepherd’s
algorithm and the well-linked decomposition [8, 6]. In Section 5, we construct a grid-like minor
that is attached to the well-linked set. In Section 6, we shall complete the proof of Theorem
1.2.

3After the submission of this paper, it was shown in [5] that every graph of tree-width Ω(t
1
98

−o(1)) has a

t × t grid minor. This means that the grid minor approach has a potential to route t = Ω(OPT
1
p) pairs with

congestion two for some p > 98, but we will show a better result by using a “grid-like minor”.

4

2 Preliminaries

In this paper, n and m always mean the number of vertices of a given graph and the number
of edges of a given graph, respectively. For a graph H, the vertex set and the edge set of H
are denoted by V (H) and E(H), respectively. A separation (A,B) of a graph G is a pair of
disjoint induced subgraphs of G such that V (G) = V (A)∪V (B), and there are no edges between
V (A−B) and V (B−A). The order of the separation (A,B) is |V (A)∩V (B)|. For a vertex set
X in a graph G = (V,E), let ∂G(X) be the set of edges between X and V \X, and for v ∈ V ,
∂G({v}) is denoted by ∂G(v). If no confusion may arise, we simply denoted by ∂(X) or ∂(v).
For X ⊆ V , let G[X] denote the subgraph of G induced by X, and let N(X) denote the set of
vertices in V \X that are adjacent to X. For a subgraph H of G, N(V (H)) is simply denoted
by N(H).

A complete graph with p vertices is denoted byKp. For a graphH with V (H) = {v1, . . . , vh},
we say that H is a minor of a graph G or G contains a H-minor if G contains disjoint induced
subgraphs G1, . . . , Gh such that Gi is connected for every i and G contains an edge connecting
Gi and Gj whenever vivj ∈ E(H). In this case, each Gi is called a node of the H-minor. For
two graphs G1 = (V1, E1) and G2 = (V2, E2), their Cartesian product G1□G2 = (V ∗, E∗) is the
graph defined as follows:

• the vertex set V ∗ is {(v1, v2) | v1 ∈ V1, v2 ∈ V2}, and

• there exists an edge between (v1, v2) ∈ V ∗ and (v′1, v
′
2) ∈ V ∗ if and only if either v1 = v′1

and v2v
′
2 ∈ E2, or v2 = v′2 and v1v

′
1 ∈ E1.

In particular, for a graph G = (V,E), G□K2 is the graph consisting of G, its copy G′ = (V ′, E′),
and |V | edges each connecting one vertex in V and its corresponding vertex in V ′.

3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. As we mentioned above, we use the following
result.

Theorem 3.1 (Rao–Zhou [29]). There is a constant c such that a randomized O(log10 n)-
approximation algorithm exists for the maximum edge-disjoint paths problem in a graph with
edge-connectivity at least c log5 n.

Suppose that OPT = Õ(n
p

2p−1). Since we can find Ω(OPT
1
p /β(n)) edge-disjoint paths

in the assumption, the approximation ratio is O(OPT
p−1
p β(n)) which is also represented as

Õ(n
p−1
2p−1β(n)). Thus, in what follows in this section, we only consider the case of OPT =

Ω(n
p

2p−1 logt n) for any t. In particular, we may assume that OPT = Ω(n
p

2p−1 log10 n).

3.1 Reduction to graphs without small cuts

Let (X1, X2) be a partition of V (G) such that |∂(X1)| ≤ c log5 n, where c is the constant as
in Theorem 3.1. Let OPT1 (resp. OPT2) be the optimal value of the maximum edge-disjoint
paths problem when we restrict the problem to G[X1] (resp. G[X2]). Since |∂(X1)| ≤ c log5 n,
it is easy to see that

OPT ≤ OPT1 +OPT2 + c log5 n.

Let n1 = |X1| and n2 = |X2|. We reduce the problem into two small subproblems using the
following lemma.

5

Lemma 3.2. Let α be a constant with 0 < α < 1, and let n, n1, n2,OPT,OPT1, and OPT2 be
defined as above. If OPT1 ≥ 1, OPT2 ≥ 1, and OPT ≥ nα, then

OPT1

nα
1

+
OPT2

nα
2

≥ OPT

nα

holds for sufficiently large n.

Proof. We may assume that n2 ≥ n1. Let γ be a constant with 0 < γ < α (e.g. γ = α/2). We
consider the following two cases separately.

Case 1: (n2/n1 ≥ nγ) In this case, we have

OPT1

nα
1

+
OPT2

nα
2

=
OPT1 +OPT2 + (nα

2 /n
α
1 − 1)OPT1

nα
2

≥ OPT

nα
+

−c log5 n+ (nαγ − 1)OPT1

nα
2

≥ OPT

nα

for sufficiently large n.

Case 2: (n2/n1 ≤ nγ) In this case, it holds that n2 ≤ n1+γ

1+nγ . Hence, we have

OPT1

nα
1

+
OPT2

nα
2

≥ OPT1 +OPT2

nα
2

≥ OPT

nα
+

(1− (nγ

1+nγ)α)OPT− c log5 n

nα
2

≥ OPT

nα
+

α
2 (1− (nγ

1+nγ))OPT− c log5 n

nα
2

≥ OPT

nα

for sufficiently large n. Here we use the fact that for a positive integer t with 1
2t−1 > α ≥ 1

2t

and for x := nγ

1+nγ , it holds that

1− xα ≥ 1− x
1
2t =

1− x

(1 + x
1
2)(1 + x

1
4) · · · (1 + x

1
2t)

≥ 1− x

2t
>

α(1− x)

2
.

This lemma shows that by combining an O(nα)-approximation solution in G1 and one in G2,
we obtain an O(nα)-approximation solution in G. Thus, if there exists a partition (X1, X2) of
V (G) such that |∂(X1)| ≤ c log5 n, OPT1 ≥ 1, and OPT2 ≥ 1, then we can reduce the problem
into two subproblems.

Lemma 3.3. Let α be a constant with 0 < α < 1, and let n, n1, n2,OPT,OPT1, and OPT2

be defined as above. Suppose that OPTi ≥ 1 and we have an Õ(nα
i)-approximation solution of

the subproblem in G[Xi] for i = 1, 2. Then, we have an Õ(nα)-approximation solution of the
original problem in G.

Proof. If n is bounded by a constant number, then we can solve the maximum edge-disjoint paths
problem in G directly. Thus, we may assume that n is sufficiently large. When OPT = Ω(nα),
by Lemma 3.3, by combining an Õ(nα)-approximation solution in G1 and one in G2, we obtain
an Õ(nα)-approximation solution in G. When OPT/Õ(nα) ≤ 1, we can easily take one path in
G to obtain an Õ(nα)-approximation solution in G.

6

3.2 Algorithm for highly connected graphs

By repeating the reduction as in Lemma 3.3, we may assume that the graph has no partition
(X1, X2) of V (G) such that |∂(X1)| ≤ c log5 n, OPT1 ≥ 1, and OPT2 ≥ 1. Note that if G[Xi] is
connected, OPTi ≥ 1 is equivalent to that Xi contains at least one terminal pair. We also note
that the edge-connectivity of the graph in this instance is not necessarily at least c log5 n. In
order to apply Theorem 3.1, we now construct a new instance, in which the edge-connectivity
of the graph is at least c log5 n. The whole algorithm will be described in Section 3.3.

First, while there exists a partition (X1, X2) of V (G) such that |∂(X1)| ≤ c log5 n, OPT1 = 0,
|X1| ≥ 2, and G[X1] is connected, we contract X1 to a single vertex. We repeat the reduction
and let G′ be the obtained graph. We say that a vertex in G′ corresponding to more than
one vertex in G is a contracted vertex, and a vertex in G′ with degree at most c log5 n is a
small-degree vertex. Then, G′ satisfies that

• if a partition (X1, X2) of V (G) satisfies that |∂(X1)| ≤ c log5 n and both G[X1] and G[X2]
are connected, then one of X1 or X2 consists of a single vertex, and

• each contracted vertex is a small-degree vertex.

Let Vsmall be the set of small-degree vertices in V (G′). For each v ∈ Vsmall, we choose one
edge e ∈ ∂(v) arbitrarily and add c log5 n − |∂(v)| parallel edges of e. By the properties of G′,
the obtained graph G′′ is c log5 n edge-connected and each vertex in Vsmall has degree at most
c2 log10 n in G′′.

Since contracting edges and adding edges do not decrease the number of edge-disjoint paths,
G′′ has at least OPT edge-disjoint paths. Hence, by Theorem 3.1, we can find OPT/O(log10 n)
edge-disjoint paths P0 in G′′ with high probability.

Now we find OPT/Õ(n
p−1
2p−1) edge-disjoint paths P ′ ⊆ P0, in which no two paths share a

vertex in Vsmall in common. Our algorithm for finding P ′ is as follows. Here, recall that we

assume that OPT = Ω(n
p

2p−1 log10 n).

Procedure A

Input. OPT/O(log10 n) edge-disjoint paths P0 in G′′, where OPT = Ω(n
p

2p−1 log10 n).

Output. OPT/Õ(n
p−1
2p−1) edge-disjoint paths P ′ ⊆ P0, in which no two paths share a vertex in

Vsmall in common.

Step 0. Set P := P0 and P ′ = ∅.

Step 1. If P = ∅, then output P ′ and stop the algorithm. Otherwise, take a path P ∈ P that
goes through the minimum number of vertices in Vsmall, and add P to P ′.

Step 2. Remove from P all paths sharing a vertex in Vsmall with P , and go to Step 1.

We show that this algorithm finds many edge-disjoint paths.

Claim 3.4. There exists a constant c1 > 0 such that the output P ′ of Procedure A satisfies that

|P ′| ≥ c1 ·OPT/(n
p−1
2p−1 log31 n) for sufficiently large n.

Proof. In this proof, we suppose that n is sufficiently large. While |P| ≥ |P0|/2, we can find a
path P ∈ P that goes through at most (n · c2 log10 n)/|P| ≤ c2n log20 n/OPT vertices in Vsmall

for some c2 > 0. Hence, P shares a vertex in Vsmall with at most c2c
2n log30 n/OPT paths in

P. Since OPT = Ω(n
p

2p−1 log10 n) implies that |P0| = Ω(n
p

2p−1), there exists a constant c1 > 0
such that

(c1 ·OPT/(n
p−1
2p−1 log31 n))(c2c

2n log30 n/OPT) = c1c2c
2n

p
2p−1 log−1 n < |P0|/2.

7

This inequality means that the algorithm adds c1 ·OPT/(n
p−1
2p−1 log31 n) paths to P ′ while |P| ≥

|P0|/2.

3.3 Algorithm description

In this section, we summarize the results in Sections 3.1 and 3.2, and describe the whole al-
gorithm for the maximum edge-disjoint paths problem. In our algorithm, we assume that we

have an algorithm for finding Ω(OPT
1
p /β(n)) edge-disjoint paths, where β is some function

and OPT is the optimal value of the maximum edge-disjoint paths problem. Recall that OPT1

(resp. OPT2) is the optimal value when we restrict the problem to the graph induced by X1

(resp. X2), and c is the constant as in Theorem 3.1.

Algorithm for the maximum edge-disjoint paths problem

Input. A graph G with terminal pairs.

Output. OPT/Õ(n
p−1
2p−1β(n)) edge-disjoint paths connecting the terminal pairs, where OPT is

the maximum number of such edge-disjoint paths.

Step 0. If the number of vertices of G is small compared with constants in Lemma 3.2 and
Claim 3.4, then we solve the problem in G directly.

Step 1. Find Ω(OPT
1
p /β(n)) edge-disjoint paths P1 connecting the terminal pairs. SetG′ := G.

Step 2. Find a partition (X1, X2) of V (G′) such that |X1| ≥ 2, |X2| ≥ 2, and |∂G′(X1)| ≤
c log5 n. If such a partition exists, then go to Step 3. Otherwise, go to Step 4.

Step 3. If both OPT1 ≥ 1 and OPT2 ≥ 1 hold, then divide the problem in the original graph G
into two subproblems according to the partition, and solve the subproblems recursively. Then,
obtain a solution of the original instance by putting two solutions together.

Otherwise, we may assume that OPT1 = 0. Contract each connected component of G′[X1]
(the subgraph of G′ induced by X1) to a single vertex. Then, go to Step 2.

Step 4. For each vertex v ∈ V (G′) with degree at most c log5 n, i.e., for each small-degree
vertex v, choose one edge e ∈ ∂G′(v) arbitrarily and add c log5 n − |∂G′(v)| parallel edges of
e. Apply Theorem 3.1 and Procedure A to the obtained graph, and obtain edge-disjoint paths
P ′, in which no two paths share a small-degree vertex in common. Let P2 be the paths in the
original graph G corresponding to P ′, and go to Step 5.

Step 5. If |P1| ≥ |P2|, then output P1. Otherwise, output P2.

It is obvious that this algorithm runs in polynomial time if we have an algorithm for find-

ing Ω(OPT
1
p /β(n)) edge-disjoint paths. The correctness of this algorithm follows from the

arguments in Sections 3.1 and 3.2, which completes the proof of Theorem 1.1.

4 Well-linked instances – CKS Algorithm

The rest of this paper is devoted to an algorithm for finding Ω(OPT
1
4) edge-disjoint paths with

congestion two.
In our algorithm for the maximum disjoint paths problem with congestion two, we first

decompose the given instance into well-linked instances with the aid of very useful work of
Chekuri, Khanna and Shepherd (CKS) [6, 8]. Recall that a set of vertices Z in G is edge-well-
linked if for every vertex set S containing at most half of Z, |N(S)| ≥ |S ∩ Z|. By Menger’s

theorem, if Z is edge-well-linked, then for any integer q ≤ |Z|
2 and for any disjoint subsets

8

Z1, Z2 ⊆ Z with |Z1| = |Z2| = q, there exist q edge-disjoint paths connecting Z1 and Z2. Here
is the key CKS theorem [6, 8]:

Theorem 4.1 (Chekuri–Khanna–Shepherd [6, 8]). For an input graph G with the set of terminal
pairs T , one can compute vertex disjoint subgraphs G1, . . . , Gr of G and their corresponding
disjoint sets of vertex pairs T1, . . . , Tr of T such that the following holds:

(1) each Ti consists of the pairs of terminals and Ti belongs to Gi;

(2) the members of the terminal pairs in Ti are edge-well-linked in Gi;

(3) the total size of the sets Ti is at least OPT/β(n), where β(n) is bounded by O(
√
logn log n).

We now reduce each edge-well-linked instance of the maximum edge-disjoint paths problem
to an instance of the maximum vertex-disjoint paths problem by considering the line graph.
By the definition of edge-well-linked sets, the terminal set Z ′ of the obtained instance satisfies
the following property: for any integer q ≤ |Z|

2 and for any disjoint subsets Z1, Z2 ⊆ Z ′ with
|Z1| = |Z2| = q, there exist q vertex-disjoint paths connecting Z1 and Z2. Such a set Z ′ is called
a well-linked set, and an instance is called well-linked if its terminal set is well-linked.

In what follows, we give an algorithm for finding Ω(OPT
1
4) vertex-disjoint paths in a well-

linked instance with congestion two. We note that in the maximum vertex-disjoint paths prob-
lem, “congestion two” means that each vertex is allowed to be used in at most two of the paths.
Since we consider vertex-disjoint paths, in what follows, we assume that every graph has no
loops and no multiple edges. In the rest of this paper, we denote “vertex-disjoint” simply by
“disjoint”.

5 Algorithm for the disjoint paths problem with congestion two

In this section, we give a polynomial-time algorithm that finds O(OPT
1
5) disjoint paths con-

necting terminal pairs with congestion two.

Proposition 5.1. In a well-linked instance of the disjoint paths problem, we can find Ω(OPT
1
5)

disjoint paths with congestion two.

Later, in Section 6, we improve the number of disjoint paths to Ω(OPT
1
4), using the similar

line of the proof in this section.

5.1 Constructing webs from the well-linked set

In this subsection, we shall construct, what we call, a k-web from a well-linked set. To do so,
we need some definition. A k-web of order h in a given graph G is a set of h disjoint trees
T1, . . . , Th such that for any distinct i, j, there is a set of k disjoint paths connecting Ti and Tj .
A tree T is called subcubic if its maximum degree is at most three. We now prove the following
lemma.

Lemma 5.2. Given a well-linked set Z in a given graph G, there exists a subcubic tree T with
a vertex set Z ′ ⊆ Z such that Z ′ ⊆ V (T), |Z ′| ≥ |Z|

2 , and there are at most |Z ′| − 1 vertices
of degree three in T . Moreover, given a well-linked set Z, there is an O(nm) time algorithm to
construct such a subcubic tree T and a vertex set Z ′ ⊆ Z.

Proof. We inductively construct a vertex set Zi ⊆ Z and a subcubic tree Ti such that Z1 ⊂
Z2 ⊂ · · · , Zi ⊆ V (Ti), and there are at most |Zi|−1 vertices of degree 3 in Ti. When |Zi| ≥ |Z|

2 ,
we set Z ′ = Zi, and output the subcubic tree T = Ti.

9

Initially, we choose two vertices v, u in Z, and find a path between v and u in G. Since Z is
a well-linked set (and hence G is connected), clearly such a path exists. Set this path T1 with
Z1 = T1 ∩ Z that contains both u and v. Clearly this satisfies the above conditions. Thus the
base step of the induction is done.

Suppose we have constructed Ti and Zi so far with |Zi| < |Z|
2 . Let Ci be the vertices of

degree 3 in Ti, then |Ci| ≤ |Zi| − 1. By the definition of well-linked sets, there exist |Zi| disjoint
paths between Zi and Z − Zi. This implies that there is a path P between w′ ∈ Z − Zi and
Zi which avoids any vertex in Ci in G. We now follow the path P from w′, and let q be the
first vertex in V (Ti ∩ P), and let P ′ be the subpath of P between w′ and q. Then we set
Ti+1 = Ti ∪P ′ and Zi+1 = Zi ∪ (P ′ ∩Z). Clearly Ti+1 is a tree, and there is no vertex of degree
four or more in Ti+1 since the path P ′ does not hit any vertex in Ci. It is also clear that q is the
only vertex in Ti+1 which could have degree three in Ti+1 − V (Ci). Thus Ti+1 and Zi+1 satisfy

our assumption. If |Zi+1| ≥ |Z|
2 , we stop, otherwise, we go to the next iteration.

This proof can be clearly converted into a polynomial-time algorithm (actually O(nm) time

algorithm) since in each step, we just need to find a path in G− Ci, and there are at most |Z|
2

steps. This completes the proof.

This lemma implies the following corollary, which is of independent interest.

Corollary 5.3. For a well-linked set Z in a given graph G, there exists a tree T such that
Z ⊆ V (T) and the maximum degree of T is at most four.

Proof. By Lemma 5.2, there exists a subcubic tree T ′ with a vertex set Z ′ ⊆ Z such that
Z ′ ⊆ V (T ′) and |Z ′| ≥ |Z|

2 . By the definition of well-linked sets, there exist |Z − Z ′| disjoint
paths between Z ′ and Z −Z ′. By combining these paths with T ′, we obtain a desired tree.

We are now ready to state our main result in this subsection.

Lemma 5.4. Let h and k be positive integers. Given a well-linked set Z with |Z| ≥ 4hk, there
is a polynomial time algorithm to construct a k-web of order h. Moreover, the k-web of order
h consists of h disjoint trees T1, . . . , Th such that each Ti contains at least k vertices in Z, and
there are k disjoint paths connecting Ti ∩ Z and Tj ∩ Z in G for any i, j.

Proof. We adapt Lemma 5.2 to obtain a subcubic tree T with a vertex set Z ′ ⊆ Z such that
Z ′ ⊆ V (T) and |Z ′| ≥ 2hk. In [10, Lemma 12.4.6], the following was shown:

Let k ≥ 1 be an integer. Let T be a tree of maximum degree at most three and
X ⊆ V (T). Then T has a set F of edges such that every component of T − F has
between k and 2k − 1 vertices in X, except that one such component may fewer
vertices in X.

For the algorithmic purpose, we just give a sketch of proof, which is algorithmic. If |X| ≤
2k − 1, there is nothing to do. So we may assume |X| ≥ 2k. Let e be an edge of T such that
some component T ′ of T − e contains at least k vertices of X and |T ′| is as small as possible
(such a choice can be clearly found in polynomial time). Since the maximum degree of T is at
most three, the end of e in T ′ has degree at most two in T ′. Thus the minimality of T ′ implies
|X ∩V (T ′)| ≤ 2k− 1. We just recursively apply this argument to T −T ′. Thus we can find the
above edge set F in polynomial time.

Therefore, in polynomial time, we can find a set F of edges in T such that: (1) there are h
subtrees T1, . . . , Th of T −F , and (2) k ≤ |V (Ti)∩Z| ≤ 2k−1 for each subtree Ti. Furthermore,
for any 1 ≤ i < j ≤ h, there are k disjoint paths between Ti ∩ Z ′ and Tj ∩ Z ′ the definition
of well-linked sets. This completes the proof, because such paths can be found in polynomial
time.

10

5.2 Using a grid-like minor connecting terminal pairs

In this subsection, we construct a large grid-like minor from a k-web, and use it in order to
connect terminal pairs.

We now give some definitions. Let P1 and P2 be a set of disjoint connected subgraphs in a
given graph G. We denote by I(P1,P2) the intersection graph of P1 and P2 defined as follows:
I(P1,P2) is the bipartite graph with partite sets P1 and P2, which has one vertex for each
element of P1 and P2, and an edge between two vertices exists if the corresponding subgraphs
in P1 and in P2, respectively, intersect. Thus there are |P1| vertices in one partite set of the
bipartite graph, and |P2| vertices in the other partite set. For sets P1 and P2 of disjoint paths
in G, we say that a pair (P1,P2) is a half-integral H-minor if I(P1,P2) contains the graph H as
a minor. If G contains such a pair (P1,P2), we say that G has a half-integral H-minor. In the
special case when H is the complete graph Kℓ, we call it a grid-like minor of order ℓ. Note that
if a graph G = (V,E) has a half-integral H-minor, then G□K2 contains H as a minor (see [31,
Lemma 3.4]).

We construct a large grid-like minor with the aid of the following result of [27].

Theorem 5.5 (Kreutzer–Tazari [27, Lemma 4.2]). Let G be a graph and let T1, . . . , Th be given
to be the disjoint trees of a k-web of order h in G with k ≥ ch2p2 for some constant c. Then
there is a randomized polynomial-time algorithm to find either a grid-like minor of order p (thus
there is a Kp-minor in G□K2) or a set of

(
h
2

)
disjoint paths Qi,j in the k-web, 1 ≤ i < j ≤ h,

such that Qi,j connects Ti and Tj (thus there is a Kh-minor). Furthermore, if each of the k
disjoint paths between Ti and Tj contains a terminal for any i, j, then every node of the obtained
minor (the Kp-minor in G□K2 or the Kh-minor in G) contains a terminal or its copy.

Although the latter half of Theorem 5.5 is not stated in [27], it is immediately derived from
the construction (see the proof of Theorem 6.2). We also note that a k-web in this paper means
a weak k-web in [27], but as mentioned in [27, Lemma 4.7], it still works.

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. Let Z be the terminal set. We apply Lemma 5.4 and Theorem 5.5 in
which p = h = Θ(|Z|

1
5) and k = Θ(|Z|

4
5). Then, we have a Kp-minor in G□K2 whose each

node contains a terminal or its copy. Note that a Kh-minor of G is also a Kh-minor of G□K2.
Suppose that G□K2 consists of G, its copy G′ = (V ′, E′), and edges each connecting one vertex
in V and its corresponding vertex in V ′. Now we use the following theorem.

Theorem 5.6 (Robertson–Seymour [32, Theorem (5.4)]). Let s1, . . . , sq, t1, . . . , tq be terminals
in a given graph G. If there is a clique minor of order at least 3q in G, and there is no separation
(A,B) of order at most 2q − 1 in G such that A contains all the terminals and B −A contains
at least one node of the clique minor, then there are disjoint paths Pi with two ends in si, ti for
i = 1, . . . , q. Furthermore, given the above clique minor, desired disjoint paths can be found in
O(qm) time.

We take q = max{⌊p/6⌋, 1} terminal pairs in Z and let Z0 be the set of such terminals.
Note that these terminals are contained in the original graph G. In what follows, we show that
the terminals can be connected by disjoint paths in G□K2 by applying Theorem 5.6. Since the
case of q = 1 is obvious, we suppose that q = ⌊p/6⌋.

Assume that there is a separation (A,B) of order at most 2q − 1 in G□K2 such that A
contains Z0 and B − A contains at least one node of the clique minor. By connectivity of
the clique minor, at least p − (2q − 1) ≥ 4q nodes are contained in B − A. Then, we have
|(Z ∪ Z ′) ∩ V (B −A)| ≥ 4q, where Z ′ is the copy of Z in G′. Since v′ ∈ Z ′ ∩ V (B −A) implies
that the corresponding vertex v is in Z ∩ V (B), B contains at least 2q terminals in Z. By

11

setting A1 = A ∩G and B1 = B ∩G, we have a separation (A1, B1) of G such that its order is
at most 2q − 1, A1 contains Z0, and B1 contains 2q terminals, which contradicts the definition
of well-linked sets.

Therefore, there is no such a separation (A,B), and hence we can connect Z0 by q disjoint
paths in G□K2 by Theorem 5.6. These paths correspond to the disjoint paths in G with
congestion two, which completes the proof.

We note that we improve the number of disjoint paths to Ω(OPT
1
4) in the next section.

6 Improving the algorithm

In this section, we improve the number of disjoint paths in Proposition 5.1 to Ω(OPT
1
4) and

prove Theorem 1.2. For the improvement, we use a graph with large minimum degree instead
of a clique minor. We denote the minimum degree of a graph H by δ(H).

Theorem 6.1. In a well-linked instance of the disjoint paths problem, we can find Ω(OPT
1
4)

disjoint paths with congestion two.

To prove Theorem 6.1, we begin with the modification of Theorem 5.5. Our proof essentially
follows the proof given in [31] (see also [27, Lemma 4.7]).

Theorem 6.2. Let G be a graph and let T1, . . . , Th be given to be the disjoint trees of a k-web
of order h in G with k ≥ ch2p for some constant c. Then there is a randomized polynomial-time
algorithm to find either a half-integral H-minor, where H is some graph satisfying 2δ(H) ≥
|H| + 4p − 2 or a set of

(
h
2

)
disjoint paths Qi,j in the k-web, 1 ≤ i < j ≤ h, such that Qi,j

connects Ti and Tj (thus there is a Kh-minor).
Furthermore, if each of the k disjoint paths between Ti and Tj contains a terminal, then every

node of the obtained minor (a H-minor in G□K2 or a Kh-minor in G) contains a terminal.

Proof. Starting with a k-web of order h with k ≥ ch2p for some constant c, we consider the
disjoint paths Pi,j between the pairs of trees Ti and Tj from the k-web. Note that these paths
can be found by a max-flow computation in polynomial time. For each pair of these paths Pi,j ,
i.e, consider Pi,j and Pi′,j′ with i ̸= j, i′ ̸= j′ and (i, j) ̸= (i′, j′), we construct the intersection
graph I(Pi,j ,Pi′,j′). For each (i, j, i′, j′), we check if the graph I(Pi,j ,Pi′,j′) is 22p-degenerate,
where we say that a graph G is d-degenerate if each induced subgraph of G has a vertex of
degree at most d. It can be checked in polynomial time by removing a vertex of degree at most
22p, repeatedly. We now need to consider the two cases:

Case 1. I(Pi,j ,Pi′,j′) is not 22p-degenerate for some (i, j, i′, j′).
In the case, we have a subgraph H0 of I(Pi,j ,Pi′,j′) such that |E(H0)| > 11p|V (H0)|. Then,

the following well-known result of Bollobás and Thomason [4] implies that the intersection graph
I(Pi,j ,Pi′,j′) contains some graph H as a minor such that 2δ(H) ≥ |V (H)|+ 4p− 2.

Theorem 6.3 (Bollobás–Thomason [4, Lemma 3], see also [3, 36]). There exists a constant
α > 0.37 satisfying the following. Let ℓ ≥ 3 be an integer and let G be a simple graph with
|E(G)| > ℓ|V (G)|. Then G contains some simple graph H as a minor such that |H| ≤ ℓ + 2
and 2δ(H) ≥ |V (H)|+ ⌊αℓ⌋ − 1.

We note that, since the proof of [4, Lemma 3] is constructive, such a H-minor can be found
in polynomial time. Thus, by applying Theorem 6.3 in which ℓ = 11p, we can find a H-minor
in G□K2 such that 2δ(H) ≥ |V (H)|+ 4p− 2.

Case 2. I(Pi,j ,Pi′,j′) is 22p-degenerate for any (i, j, i′, j′).

12

In this case, we consider the intersection graph I of all the r =
(
h
2

)
sets of the paths, i.e., I

is an r-partite graph having a vertex for each path out of Pi,j for 1 ≤ i < j ≤ h, and an edge
between two vertices if the corresponding paths intersect. Now we can use the following lemma
in [27].

For r ≥ 2, let V1, . . . , Vr be the color classes in an r-partite graph G0. Suppose
that |Vi| ≥ 2e(2r − 3)d + 1 (where e = 2.718 . . .) for all 1 ≤ i ≤ r, and assume
that any subgraph of G0 induced by Vi ∪ Vj is d-degenerate for 1 ≤ i < j ≤ r.
Then there exists a randomized polynomial-time algorithm to find an independent
set {x1, . . . , xr} of G0 such that xi ∈ Vi for i = 1, . . . , r.

By the above lemma in which d = 22p, G0 = I, and c is an appropriate constant, we get a
clique minor whose nodes correspond to {x1, . . . , xr}.

Furthermore, in either case, if each of the k disjoint paths between Ti and Tj contains a
terminal, then every node of the obtained minor contains a terminal by the construction of the
minor.

We use the H-minor or the Kh-minor obtained in Theorem 6.2 to construct our routing,
and give a proof of Theorem 6.1. Our proof of Theorem 6.1 basically follows the same line with
that of Proposition 5.1, and we use the following theorem instead of Theorem 5.6.

Theorem 6.4 (Bollobás–Thomason [3, Theorem 3]). Let s1, . . . , sq, t1, . . . , tq be the terminals in
a given G. If G contains H as a minor, where H is some graph satisfying 2δ(H) ≥ |H|+4q−2,
and there is no separation (A,B) of order at most 2q − 1 in G such that A contains all the
terminals and B − A contains at least one node of the H-minor, then there are disjoint paths
Pi with two ends in si, ti for i = 1, . . . , q.

We note that the proof of [3, Theorem 3] implies that given the above H-minor, desired
disjoint paths can be found in polynomial time. We are now ready to give our proof for
Theorem 6.1.

Proof of Theorem 6.1. Let Z be the terminal set. We apply Lemma 5.4 and Theorem 6.2
in which p = h = Θ(|Z|

1
4) and k = Θ(|Z|

3
4). Then, we have a H-minor with 2δ(H) ≥

|V (H)|+4p− 2 in G□K2 whose each node contains a terminal or a Kh-minor in G whose each
node contains a terminal. If we have a Kh-minor, then we can connect h terminal pairs by the
same arguments as the proof of Proposition 5.1. Hence, we assume that we have a H-minor
with 2δ(H) ≥ |V (H)|+ 4p− 2 in G□K2.

We take q = max{⌊2p/3⌋, 1} terminal pairs in Z and let Z0 be the set of such terminals.
Note that these terminals are contained in the original graph G. We also note that 2δ(H) ≥
|V (H)|+4p−2 ≥ |V (H)|+4q−2. In what follows, we show that the terminals can be connected
by disjoint paths in G□K2 by applying Theorem 6.4. Since the case of q = 1 is obvious, we
suppose that q = ⌊2p/3⌋.

Assume that there is a separation (A,B) of order at most 2q − 1 in G□K2 such that A
contains Z0 and B − A contains at least one node of the H-minor. Since δ(H) ≥ 4p − 1 +
(|V (H)|−δ(H)−1) ≥ 4p−1, at least δ(H)− (2q−1) ≥ 4q nodes are contained in B−A. Then,
we have |(Z ∪Z ′)∩ V (B −A)| ≥ 4q, where Z ′ is the copy of Z in G′. Since v′ ∈ Z ′ ∩ V (B −A)
implies that the corresponding vertex v is in Z ∩ V (B), B contains at least 2q terminals in Z.
By setting A1 = A∩G and B1 = B ∩G, we have a separation (A1, B1) of G such that its order
is at most 2q−1, A1 contains Z0, and B1 contains 2q terminals, which contradicts the definition
of well-linked sets.

13

Therefore, there is no such a separation (A,B), and hence we can connect Z0 by q disjoint
paths in G□K2 by Theorem 6.4. These paths correspond to the disjoint paths in G with
congestion two, which completes the proof.

Finally, we give a proof for Theorem 1.2.

Proof of Theorem 1.2. By Theorem 4.1, we obtain instances (G1, T1), . . . , (Gr, Tr) with edge-
well-linked terminal sets. Let OPTi be the optimal value of the instance (Gi, Ti), then we have∑

iOPTi ≥ OPT/β(n), where β = O(
√
log n log n). After reducing the maximum edge-disjoint

paths problem to the maximum vertex-disjoint paths problem by considering the line graph, we

apply Theorem 6.1 to obtain Ω(OPT
1
4
i) disjoint paths in each well-linked instance. Then, we

can find Ω(OPT
1
4 /
√
log n log n) disjoint paths in total.

References

[1] M. Andrews, Approximation algorithms for the edge-disjoint paths problem via Räcke de-
compositions, Proc. 51st IEEE Symposium on Foundations of Computer Science (FOCS),
2010, 277–286.

[2] M. Andrews, J. Chuzhoy, S. Khanna and L. Zhang, Hardness of the undirected edge-disjoint
paths problem with congestion, Proc. 46th IEEE Symposium on Foundations of Computer
Science (FOCS), 2005, 226–244.

[3] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica, 16 (1996), 313–320.

[4] B. Bollobás and A. Thomason, Proof of a conjecture of Mader, Erdös and Hajnal on
topological complete subgraphs, European Journal of Combinatorics, 19 (1998), 883–887.

[5] C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem, Proc. 46th
ACM Symposium on Theory of Computing (STOC), 2014, 60–69.

[6] C. Chekuri, S. Khanna and B. Shepherd, Multicommodity flow, well-linked terminals, and
routing problems, Proc. 37th ACM Symposium on Theory of Computing (STOC), 2005,
183–192.

[7] C. Chekuri, S. Khanna and B. Shepherd, An O(
√
n) approximation and integrality gap for

disjoint paths and unsplittable flow, Theory of Computing, 2 (2006), 137–146.

[8] C. Chekuri, S. Khanna and B. Shepherd, The all-or-nothing multicommodity flow problem,
SIAM Journal on Computing, 42 (2013), 1467–1493.

[9] J. Chuzhoy and S. Li, A polylogarithmic approximation algorithm for edge-disjoint paths
with congestion 2, Proc. 53rd IEEE Symposium on Foundations of Computer Science
(FOCS), 2012, 233–242.

[10] R. Diestel, Graph Theory, 3rd Edition, Springer-Verlag, 2005.

[11] R. Diestel, T.R. Jensen, K.Y. Gorbunov and C. Thomassen, Highly connected sets and the
excluded grid theorem, J. Combin. Theory Ser. B, 75 (1999), 61–73.

[12] S. Even, A. Itai and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SIAM Journal on Computing, 5 (1976), 691–703.

14

[13] A. Frank, Packing paths, cuts and circuits – a survey, in Paths, Flows and VLSI-Layout,
B. Korte, L. Lovász, H. J. Promel and A. Schrijver (Eds.), Springer-Verlag, Berlin, 1990,
49–100.

[14] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related prob-
lems, J. Comp. Syst. Science, 67 (2003), 473–496.

[15] K. Kawarabayashi and B. Reed, A nearly linear time algorithm for the half integral disjoint
paths packing, Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008, 446–
454.

[16] K. Kawarabayashi and Y. Kobayashi, An improved algorithm for the half-disjoint paths
problem, SIAM J. Discrete Mathematics, 25 (2011), 1322–1330.

[17] K. Kawarabayashi and Y. Kobayashi, Breaking O(n1/2)-approximation algorithms for the
edge-disjoint paths problem with congestion two, Proc. 43rd ACM Symposium on Theory
of Computing (STOC), 2011, 81–88.

[18] K. Kawarabayashi and Y. Kobayashi, Linear min-max relation between the treewidth of H-
minor-free graphs and its largest grid minor, Proc. 29th Symposium on Theoretical Aspects
of Computer Science (STACS), 2012, 278–289.

[19] K. Kawarabayashi and Y. Kobayashi, An O(log n)-approximation algorithm for the disjoint
paths problem in Eulerian planar graphs, ACM Transactions on Algorithms, 9 (2013),
Article 16.

[20] K. Kawarabayashi, Y. Kobayashi and B. Reed, The disjoint paths problem in quadratic
time, J. Combin. Theory Ser. B, 102 (2012), 424–435.

[21] J. Kleinberg, Decision algorithms for unsplittable flow and the half-disjoint paths problem,
Proc. 30th ACM Symposium on Theory of Computing (STOC), 1998, 530–539.

[22] J. Kleinberg, An approximation algorithm for the disjoint paths problem in even-degree
planar graphs, Proc. 46th IEEE Symposium on Foundations of Computer Science (FOCS),
2005, 627–636.

[23] J. Kleinberg and É. Tardos, Disjoint paths in densely embedded graphs, Proc. 36th IEEE
Symposium on Foundations of Computer Science (FOCS), 1995, 52–61.

[24] J. Kleinberg and É. Tardos, Approximations for the disjoint paths problem in high-diameter
planar networks, J. Comp. Syst. Science, 57 (1998), 61–73.

[25] S. Kolliopoulos and C. Stein, Improved approximation algorithms for unsplittable flow
problems, Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS),
1997, 426–435.

[26] M.R. Kramer and J. van Leeuwen, The complexity of wire-routing and finding minimum
area layouts for arbitrary VLSI circuits, Adv. Comput. Res., 2 (1984), 129–146.

[27] S. Kreutzer and S. Tazari, On brambles, grid-like minors, and parameterized intractabil-
ity of monadic second-order logic, Proc. ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2010, 354–364.

15

[28] P. Raghavan and C.D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), 365–374.

[29] S. Rao and S. Zhou, Edge disjoint paths in moderately connected graphs, SIAM J. Com-
puting, 39 (2010), 1856–1887.

[30] B. Reed, Tree width and tangles: A new connectivity measure and some applications, in
Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 241, Cambridge Univ.
Press, Cambridge, 1997, 87–162.

[31] B. Reed and D. Wood, Polynomial treewidth forces a large grid-like minor, European
Journal of Combinatorics, 33 (2012), 374–379.

[32] N. Robertson and P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Com-
bin. Theory Ser. B, 63 (1995), 65–110.

[33] N. Robertson, P.D. Seymour and R. Thomas, Quickly excluding a planar graph, J. Combin.
Theory Ser. B, 62 (1994), 323–348.

[34] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, number 24 in Algo-
rithm and Combinatorics, Springer-Verlag, 2003.

[35] A. Srinviasan, Improved approximations for edge-disjoint paths, unsplittable flow, and re-
lated routing problems, Proc. 38th IEEE Symposium on Foundations of Computer Science
(FOCS), 1997, 416–425.

[36] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge
Philos. Soc., 95 (1984), 261–265.

16

