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The bacterial transcription factor IclR (isocitrate lyase regulator) is a member of

a one-component signal transduction system, which shares the common motif of

a helix–turn–helix (HTH)-type DNA-binding domain (DBD) connected to a

substrate-binding domain (SBD). Here, the crystal structure of an IclR

homologue (Mi-IclR) from Microbacterium sp. strain HM58-2, which catabo-

lizes acylhydrazide as the sole carbon source, is reported. Mi-IclR is expected to

regulate an operon responsible for acylhydrazide degradation as an initial step.

Native single-wavelength anomalous diffraction (SAD) experiments were

performed in combination with molecular replacement. CRANK2 from the

CCP4 suite successfully phased and modelled the complete structure of a

homotetramer composed of 1000 residues in an asymmetric unit, and the model

was refined to 2.1 Å resolution. The overall structure of Mi-IclR shared the same

domain combination as other known IclR structures, but the relative geometry

between the DBD and SBD differs. Accordingly, the geometry of the Mi-IclR

tetramer was unique: the putative substrate-binding site in each subunit is

accessible from the outside of the tetramer, as opposed to buried inside as in the

previously known IclR structures. These differences in the domain geometry

may contribute to the transcriptional regulation of IclRs.

1. Introduction

Bacteria change their metabolic systems in response to

environmental changes for their survival. In order to adapt

their response, bacteria mainly use sensing mechanisms such

as two-component systems (Stock et al., 2000) and one-

component systems (Ulrich et al., 2005). IclR (isocitrate lyase

regulator) is a member of a one-component system which

regulates transcription. It was originally discovered and

studied in Escherichia coli (Sunnarborg et al., 1990). When

E. coli grows in media with acetate or fatty acids as the sole

carbon source, the glyoxylate bypass is induced. The aceBAK

operon is expressed and regulated by the repressor IclR (Gui

et al., 1996). Currently, members of the IclR family have been

identified in many bacteria. KdgR from Erwinia chrysanthemi

and GylR from Streptomyces coelicolor as well as IclR from

E. coli are known to be repressors, and an excess of specific

substrate releases the repression of transcription (Molina-

Henares et al., 2006).

IclRs consist of 250–270 amino-acid residues, with a helix–

turn–helix (HTH)-type DNA-binding domain (DBD) at the

N-terminus connected by a short �-helix linker to a substrate-

binding domain (SBD) at the C-terminus (Krell et al., 2006).
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Full-length crystal structures have been reported from

Thermotoga maritima (TM0065; PDB entry 1mkm; Zhang et

al., 2002), Rhodococcus sp. RHA1 (PDB entries 2ia2, 2o0y

and 2g7u; Midwest Center for Structural Genomics, unpub-

lished work) and Silicibacter sp. TM1040 (PDB entry 3r4k;

Joint Center for Structural Genomics, unpublished work).

Their structures were homodimers or homotetramers. Two

subunits cross at connected linker helices to form an X-shaped

homodimer. The homotetramer is formed of a dimer of

dimers. In relation to its role in one-component signal trans-

duction systems, structures of complexes of IclR with specific

substrates have also been reported, such as structures of the

SBD from E. coli IclR complexed with pyruvate (PDB entry

2o9a) and glyoxylate (PDB entry 2o99) (Lorca et al., 2007).

However, no structures of complexes of full-length IclR have

been reported to date.

Acylhydrazides, which are acylated derivatives of hydra-

zine, have the formula R1R2N—N(R3)C( O)R4 and are

organic compounds that are widely used to produce various

materials in industrial applications, including for medicinal

and agricultural uses. For example, they can act as anti-

tuberculosis agents (isonicotinic acid hydrazide; Scior et al.,

2002) or as antidepressants (isocarboxazid; López-Muñoz et

al., 2007). On the other hand, some natural compounds of this

type are also known, such as agaritine from the commercial

mushroom Agaricus bisporus (Levenberg, 1964) and gyro-

mitrin from the poisonous false morel Gyromitra esculenta

(Michelot & Toth, 1991). Despite the importance and the wide

availability of acylhydrazide compounds, detailed analyses of

the biological mechanism of the metabolic system of these

compounds have not yet been performed. Recently, Micro-

bacterium sp. strain HM58-2 was isolated using the acyl-

hydrazide 4-hydroxybenzoic acid 1-phenylethylidene hydrazide

(HBPH) as the sole carbon source, and hydrazidase was

isolated as a key enzyme exhibiting hydrazide degradation

(Oinuma et al., 2015). Furthermore, expression of the hydra-

zidase gene was induced by HBPH when used as the sole

carbon source. In the course of the elucidation of the hydra-

zide metabolic pathway in Microbacterium sp. HM58-2, the

whole genome sequence of the bacterium was obtained, and it

was revealed that the hydrazidase gene is located in an operon

with an IclR-type transcription factor, which is expected to

control the gene expression of the operon (Akiyama et al.,

2016).

In order to elucidate how IclR controls gene expression in

this operon, we determined the crystal structure of IclR from

Microbacterium sp. HM58-2 (Mi-IclR).

2. Materials and methods

2.1. Cloning, expression and purification of Mi-IclR

The IclR gene from Microbacterium sp. HM58-2 was

amplified from its genomic DNA as a template using a primer

set with forward primer 50-CATATGGCCAATTCTCCGAG-

CGGC-30 and reverse primer 50-GAATTCCTACCAGCGC-

GAAGCGCGCA-30; these sequences were obtained from

the genome sequence (DDBJ/EMBL/GenBank accession

No. BDCY01000009, locus tag MHM582_3486). Amplified

fragments were cloned into pET-28b(+) using NdeI and

EcoRI sites. Cloned vectors were transformed with the E. coli

strain Arctic Express (DE3) and cultured in LB broth with

25 mg ml�1 kanamycin. After a 3 h culture at 37�C, the broth

was cooled to 16�C and 100 mM IPTG was added followed by a

further 16 h culture. The purification of recombinant Mi-IclR

was performed using an Ni–NTA column (Qiagen) equili-

brated with buffer A (20 mM Tris–HCl pH 7.5, 100 mM NaCl,

10% glycerol) with 20 mM imidazole and eluted with buffer A

with 500 mM imidazole. After dialysis against buffer A, the

protein was concentrated to 10 mg ml�1 using Amicon Ultra-4

centrifugal filter units with molecular-weight cutoff 30 kDa

(Merck Millipore).

2.2. Crystallization

Crystallization was performed by the hanging-drop vapour-

diffusion method at 20�C using drops consisting of 1 ml protein
solution and reservoir solution. Rhombic-shaped crystals were

obtained with a reservoir solution containing only 1 M

(NH4)2HPO4 after one week. However, they were very thin

plates and produced poor diffraction patterns. Therefore, we

tried the counter-diffusion method using the Granada Crys-

tallization Box (Hampton Research). After three weeks, thick

rhombic-shaped crystals were obtained in a capillary, which

were suitable for data collection. For data collection, the
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Table 1
Data-collection and refinement statistics.

Data collection
Beamline PF-1A PF-17A
Wavelength (Å) 2.700 1.038
Temperature (K) 95 95
Detector EIGER X4M PILATUS3 S6M
Space group P21212
Unit-cell parameters (Å, �) a = 90.4, b = 154.2, c = 82.7, � = � = � = 90
Resolution range (Å) 48.2–2.74 (2.81–2.74) 50.0–2.1 (2.14 2.10)
No. of unique reflections 56880 (2432) 69549 (3426)
Multiplicity 5.8 (1.4) 6.7 (6.9)
Completeness (%) 95.0 (55.2) 98.9 (98.0)
hI/�(I)i 16.56 (3.3) 24.9 (2.5)
Rmerge 0.086 (0.214) 0.070 (0.529)

Refinement
Resolution range (Å) 43.6–2.1 (2.14–2.10)
Completeness (%) 98.4 (92.1)
No. of reflections 66018 (4732)
Rwork 0.217 (0.271)
Rfree 0.231 (0.301)
No. of non-H atoms
Protein 7342
Water 125
Phosphate 5

R.m.s. deviations
Bonds (Å) 0.010
Angles (�) 1.462

Average B factors (Å2)
Protein 38.6
Water 39.3
Phosphate 48.5

Ramachandran plot
Favoured (%) 98.4
Allowed (%) 1.6
Disallowed (%) 0
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reservoir buffer was replaced with the same buffer containing

25% glycerol and left to diffuse for one week.

2.3. Data collection, processing and model building

Diffraction data were obtained on BL-1A (Liebschner et al.,

2016) equipped with an EIGER X4M pixel-array detector and

on BL-17A (Igarashi et al., 2007) equipped with a PILATUS3

S6M (Dectris) at the Photon Factory, High Energy Accel-

erator Research Organization, Tsukuba, Japan. Data sets were

collected at 95 K in helium-gas and nitrogen-gas cryostreams

on BL-1A and BL-17A, respectively. A 2.1 Å resolution data

set was collected on BL-17A and was processed using HKL-

2000 (Otwinowski & Minor, 1997). Molecular replacement

was carried out usingMoRDa (A. Vagin & A. Lebedev; http://

www.biomexsolutions.co.uk/morda), but only a partial model

was obtained which corresponded to the substrate-binding

domains. For a native SAD data collection, diffraction data

consisting of 3600 images were collected from a single crystal

with a wavelength of 2.7 Å on BL-1A, with an oscillation
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Figure 1
Overall structure of Mi-IclR. (a) A subunit consists of a DNA-binding domain (DBD) at the N-terminus and a substrate-binding domain (SBD) at the
C-terminus. Secondary structures are coloured cyan and magenta for �-helices and �-sheets, respectively. (b) Front view (top) and top view from the
SBD side (bottom) of the homodimer conformation of Mi-IclR. One of the subunits in the dimer is coloured blue, cyan and pink for the SBD, the linker
and the DBD, respectively. (c) Top view (left) and side view (right) of the homotetramer structure of Mi-IclR. The four subunits are shown in different
colours, and the DBDs are indicated in the cognate pale colours.
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width of 0.1� and 0.1 s exposure per image. The collected data

were merged and scaled using the XDS package (Kabsch,

2010). To obtain a complete structure, the MR-SAD technique

was applied using CRANK2 (Skubák & Pannu, 2013) running

with SFTOOLS, REFMAC5, PEAKMAX, Parrot and

Buccaneer in the CCP4 suite (Winn et al., 2011). Iterative

refinement and model building were performed by REFMAC5

(Murshudov et al., 2011) and Coot (Emsley et al., 2010),

respectively. Figures were prepared using PyMOL (Schrö-

dinger). The atomic coordinates and structure factors have

been deposited in the RCSB Protein Data Bank with acces-

sion code 5h1a.

3. Results and discussion

3.1. Structure determination

The crystal of Mi-IclR belonged to space group P21212, with

unit-cell parameters a = 90.4, b = 154.2, c = 82.7 Å. Initially, we

obtained a thin plate-shaped crystal using the hanging-drop

vapour-diffusion method. This crystal only produced weak

diffraction patterns with high anisotropy. We then tried the

counter-diffusion method and succeeded in obtaining thicker

crystals, which produced diffraction to 2.1 Å resolution,

although it was difficult to obtain this resolution for all crys-

tals. The amino-acid sequence identity between Mi-IclR and
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Figure 2
Superposition of Mi-IclR with four known IclR structures. Superposition of four IclRs (coloured cyan, pink, yellow and blue for PDB entries 1mkm,
2g7u, 2ia2 and 3r4k, respectively) with Mi-IclR (coloured green) was performed and C� traces are presented. Superpositions on the DBD (a) and the
SBD (b) were performed using LSQKAB and Chimera, respectively. (c) The dimer structures were compared by superposition of the DBDs in chains A.
The DBDs are shown as a C�-trace model and the SBDs as a cartoon model. Only the C-terminal helix of each SBD is presented. The same colours are
used as in (a) and (b).
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structurally determined IclRs is 21, 22, 22 and 25% for PDB

entries 1mkm, 2g7u, 3r4k and 2ia2, respectively (Supplemen-

tary Fig. S1). The overall structures of the IclRs are almost

identical to each other and are composed of a DNA-binding

domain (DBD) at the N-terminus and a substrate-binding

domain (SBD) at the C-terminus, with a connecting short

�-helix. Based on the amino-acid sequence identities given

above, our first attempt to obtain an initial model used the

molecular-replacement method. Although MOLREP (Vagin

& Teplyakov, 2010) and Phaser (McCoy et al., 2007) failed to

provide solutions, MoRDa gave a solution as a collection of

domains: four SBDs and two DBDs. However, of these only

two SBDs fitted to the electron-density map. Using these

partial structures, we then applied the MR/native SAD tech-

nique using a data set collected with a wavelength of 2.7 Å.

The IclR expression construct in this study contains seven

Met residues from the IclR sequence and one from the vector

sequence, but there are no Cys residues in the 250 residues in a

subunit; the asymmetric unit contains four IclR subunits. The

two SBDs (Arg83–Arg249) obtained by MoRDa contained

two Met residues in each and were used as a partial model for

input to CRANK2; PEAKMAX found seven peaks in the

anomalous difference density map. Owing to the geometry of

the diffractometer, complete data could not be collected at a

resolution higher than 2.9 Å. However, these incomplete high-

resolution data were necessary to solve the structure. Finally,

CRANK2 automatically built the model of four subunits of

IclR in an asymmetric unit with an R and Rfree of 0.239 and

0.304, respectively, and 972 residues. The modelled structure

was further refined by REFMAC5. Data-collection and

refinement statistics are summarized in Table 1.

3.2. Overall and subunit structure

Similar to other IclRs reported in the PDB, a subunit of

Mi-IclR comprises an HTH-type DBD (residues Met1–Leu67;

coloured pink in Fig. 1b) at the N-terminus connected by a

short �-helix (Gly68–Gly78; coloured cyan) to the SBD

(Ser79–Trp250; coloured blue) at the C-terminus. There are

four subunits of Mi-IclR in the asymmetric unit, which

comprise a dimer of dimers. An X-shaped homodimer is

formed by two subunits crossing at the linker helix (Fig. 1b).

Two homodimers face each other on the SBD, which results in

exposure of the DBDs to the outside of the homotetramer

structure (Fig. 1c).

Since all full-length IclR structures in the PDB as well as

Mi-IclR adopt an identical combination of domains, we

compared the Mi-IclR structure with those of four other IclRs.

Superpositions of the DBDs of Mi-IclR and the four other

IclRs show a good fit, with root-mean-square deviations

(r.m.s.d.s) of 1.86, 1.15, 0.92 and 0.94 Å calculated by

LSQKAB (Kabsch, 1976) in the CCP4 suite for PDB entries

1mkm (residues Lys5–Arg52), 2g7u (Glu13–Gly60), 2ia2

(Ala21–Thr68) and 3r4k (Ser5–Gln52), respectively, against

Mi-IclR (residues Ala12–Arg59) (Fig. 2a). A superposition of

the SBDs also showed a good fit, with r.m.s.d.s of 1.07, 1.12,

1.00 and 1.04 Å calculated by Chimera (Pettersen et al., 2004)

for PDB entries 1mkm, 2g7u, 2ia2 and 3r4k, respectively

(Fig. 2b). Since the number of residues in the C-terminal

domains differed among the five IclRs, Chimera was used

instead of LSQKAB. Chimera creates a pairwise sequence

alignment and then calculates r.m.s.d.s for aligned residues.

Interestingly, superposition of the SBDs revealed remarkable

differences between the five structures, in which the DBD of

Mi-IclR was directed in a different orientation compared with

those of the other IclRs (Fig. 2b). We then compared the

dimer structures. When the DBDs in chains A were super-

posed, only the SBD of Mi-IclR showed a different geometry

from those of the other four IclRs (Fig. 2c). Although only

T. maritima IclR (TM-IclR) is known to form a tetramer in

solution (Zhang et al., 2002), and the oligomerization states of
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Figure 3
Comparison of the geometry of the homotetramer. The geometry of the homotetramer was compared between Mi-IclR (a) and IclR from Silicibacter sp.
(PDB entry 3r4k) (b). Arrows indicate the entrances to the putative substrate-binding sites, and broken-lined arrows show that the entrances open to the
back side. The region surrounded by the dotted line is enlarged and presented in Fig. 4.
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the rest of the IclRs, including Mi-IclR, are not known, if these

IclRs form tetrameric structures then the differences in the

geometry of the dimers could affect the tetramer structures

accordingly as described below.

3.3. The tetramer structure of Mi-IclR

According to the subunit structure, the geometry of the

tetramer of Mi-IclR shows distinct differences from those of

the other IclRs. As shown in Fig. 3(a), in Mi-IclR the putative

substrate-binding sites are accessible from the outside of the

tetramer. On the other hand, in the IclR structure with a

tetramer in the asymmetric unit from Silicibacter sp. TM1040

(PDB entry 3r4k), the space group of which is identical to that

of Mi-IclR, the putative substrate-binding site of one subunit

in each dimer is buried inside of the tetramer at the dimer–

dimer interface (Fig. 3b). All other IclR structures in the PDB,

PDB entries 1mkm (space group C2), 2ia2 (P212121) and 2g7u

(C2221), also adopt the same geometry of the tetramer as that

of PDB entry 3r4k, in which half of the putative substrate-

binding sites face the dimer–dimer interface.

The dimer–dimer interaction in Mi-IclR is established

mainly by Arg and Glu residues, which comprise 17 and 16 out

of 172 residues in the SBD, respectively. As shown in Fig. 4,

Arg residues form hydrogen bonds and salt bridges: Arg208 in

chain A–Glu175 in chain D, Glu210 in chain A–Arg186 in

chain D, Glu242 in chain A–Arg155 in chain D, Arg246 in

chain A–Ala150 (carbonyl) in chainD and Arg249 in chainA–

Tyr185 in chain D. Arg208 in chain A also makes hydrophobic

interactions with Glu156 and Arg178 in chain D. Arg246 in

chain B dimerizes with chain A and also interacts with the

backbone O atom of Tyr185 in chainD. When we performed a

sequence alignment based on the superposition of IclRs with

Mi-IclR using Chimera, no consensus residues were observed

amongst those involved in the dimer–dimer interaction in

Mi-IclR except for Glu156 and Arg178. Therefore, other IclRs

may be unable to adopt the geometry of the tetramer observed

for Mi-IclR. On the other hand, other IclRs use hydrophobic

interactions to form a tetramer, and the corresponding resi-

dues are conserved as Ala124, Val125, Leu128, Ala129,

Val131, Ile196 and Val199 in Mi-IclR.

Since Mi-IclR works under aqueous conditions in cells, the

ionic interactions may not be strong enough to form a stable

tetramer. The possibility of a crystal-packing effect on the

geometry of this tetramer therefore cannot be excluded.

TM-IclR is considered to be a dimer in the absence of a ligand

and DNA, but adopts a tetrameric structure when bound to

DNA in the absence of a ligand (Zhang et al., 2002). E. coli

IclR forms a stable tetramer with a small amount of dimer, and

a more stable tetramer with DNA (Donald et al., 2001).

Therefore, Mi-IclR is also expected to form a tetramer in cells.

The nucleotide sequences bound by IclRs share no

consensus but consist of palindromic, inverted or direct

repeats (Molina-Henares et al., 2006). Zhang and coworkers

modelled the DNA complex with TM-IclR, in which the two

dimeric DBDs aligned approximately linearly, based on the

geometry of the tetramer (Fig. 5a; Zhang et al., 2002). On the

other hand, the two dimeric DBDs in Mi-IclR are distant from

each other because the tetramer is composed of a head-to-

head arrangement of two dimers (Fig. 5b). Therefore, if this

structure exists in cells, Mi-IclR may bind to two DNA sites
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Figure 5
Amodel of DNA binding. A tetrameric structure was postulated on DNA
binding. (a) Based on the report by Zhang and coworkers on IclR from
T. maritima, the dimeric DNA-binding domains align side by side and
bind to DNA. (b) The two dimeric DNA-binding domains of Mi-IclR are
distant from each other; therefore, the binding targets are also located
with a long separation on the DNA. The parallel dotted lines indicate
double-helix DNA.

Figure 4
The dimer–dimer interface of Mi-IclR. The interactions in the dimer
interface between chain A (coloured green) in one dimer and chain D
(coloured yellow) in the other dimer are presented. Dotted lines show
distances that are less than 3.0 Å, with the exception of 3.2 Å between
Arg246 in chain B (coloured cyan) and Tyr185 in chain D.
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which are located far apart, although no binding sequences

have yet been identified.

IclR acts as either a repressor or an activator, and is

expected to change the DNA-binding mode by its conforma-

tional change in response to the binding of a specific substrate.

Therefore, the conformational differences of the tetramers

between Mi-IclR and other IclRs may reflect two modes

corresponding to ‘on’ and ‘off’ functions of IclRs, although

Mi-IclR may be categorized into a different group to the other

IclR structures.

Additionally, when the SBD in chain A in the dimer of

Mi-IclR was superposed with that of TM-IclR, the other SBDs

in chain B was positioned quite differently (Fig. 6). This could

also suggest a conformational change on the regulation of the

transcriptional activities by IclRs.

3.4. Structure of the substrate-binding domain

When we superposed the SBD of Mi-IclR with that of

E. coli IclR complexed with pyruvate, both fitted well overall,

with an r.m.s.d. of 1.15 Å calculated by Chimera. However, a

marked difference was observed in the loop region (His122–

His138), which covers a putative substrate-binding site in

Mi-IclR. On the other hand, in E. coli IclR this region

(Thr141–Met156) adopts an open position over the substrate

(Fig. 7a). In the Mi-IclR structure in particular, the electron

density in this region was unclear, and as a result part of this

region in chain A was not modelled. This result therefore

suggests that this loop region has flexibility for substrate

binding.

The acylhydrazide compound HBPH used as the sole

carbon source for the growth of strain HM58-2 is a rather large

molecule compared with pyruvate or glyoxylate. When we
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Figure 7
Comparison of the substrate-binding domain. (a) The substrate-binding domain of IclR was superposed with that of E. coli IclR complexed with
pyruvate. Both structures fitted well except for the loop regions coloured green and cyan for Mi-IclR and E. coli IclR, respectively. Pyruvate in E. coli
IclR is presented as a sphere model. (b) The putative substrate-binding pocket of Mi-IclR. The pocket cavity was calculated by PyMOL and is presented
as a grey mesh. HBPH is represented by a stick model coloured cyan. The pyruvate molecule coloured yellow is located where the SBD of E. coli IclR
(PDB entry 2o9a) and that of Mi-IclR are superposed.

Figure 6
Superposition of SBDs in the dimer structure. The SBD in chain A in the
dimer of Mi-IclR was superposed on that of TM-IclR. The SBDs of
Mi-IclR are coloured green and cyan for chains A and B, respectively.
Those of TM-IclR are coloured magenta and pink for chains A and B,
respectively.
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placed HBPH in the putative binding site manually, the

molecule almost fits into the site (Fig. 7b). In this position, it

could be possible to make a hydrophobic interaction between

the phenyl group of HBPH and Ile196, whereas a backbone

carbonyl O atom is located in proximity. HBPH is degraded to

4-hydroxybenzoic acid (HBA) and acetophenone hydrazone

by the hydrazidase produced by strain MH58-2, and HBA is

considered to be the carbon source for bacterial growth.

Therefore, further study is necessary in order to determine the

ligand(s) of Mi-IclR.

4. Conclusion

In this study, we solved the crystal structure of an IclR

homologue from Microbacterium sp. HM58-2 using the MR/

native SAD method. The structures of the domain compo-

nents of the subunit were similar to those of known IclR

structures. On the other hand, the oligomer conformation was

significantly different. These differences may lead to the

elucidation of the function of IclR in the regulation of

bacterial metabolism.
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