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Chapter 1

Introduction

This paper defines the Bookshelf problem to model a problem of dividing a given set of data

items into groups without information sufficient to solve the problem at the beginning, and pro-

poses a human-in-the-loop method that uses microtasks. The Bookshelf problem is easy to under-

stand with the following example. We have a set of four books that are tagged as in Figure 1 and

are going to put the four books into a book cabinet with two shelves. Since it has two shelves, we

need to divide them into two groups. For easy access, books on the same shelf have to have at

least one common tag and the number of the books on a shelf needs to be balanced. Notice that

there is no group that satisfies all the conditions above with the given tags. Usually, a person who

is putting the books on the cabinet implicitly adds tags to them so that she can obtain an intended

result (Figure 1).

The Bookshelf problem is defined as follows. Given a set I of books (or items), a set T of tags, a

relation R that connects items in I to tags in T , and the number N of shelves, construct a set G of

groups satisfying the following three conditions. (1) |G| = N . (2) Each group consists of at most

�|I|/N� items. (3) Items in a group share at least one common tag. An important characteristic of

the Bookshelf problem is that there may not be such a G with the given T and R because they are

incomplete and we have to find the missing tags and connections.

The Bookshelf problem is interesting for the following three reasons. First, it has a wide range

of applications. For example, making a session program of a large academic conference is an

application of the Bookshelf problem. Here, N is the prefixed number of sessions, and papers

presented in the same session must share some common interests. Another example is to make

a set of groups of participants in a travel tour. In this case, N is the number of groups, and it is

preferable for people who act together to have some common properties.

Second, the Bookshelf problem cannot be solved by computers alone. The problem assumes

that there is no solution with the given T and R since they are not complete and we need to

complement the tags and connect them to items. In addition, it is often the case that we cannot

compute such new tags from book contents. “My favorite” is an example of such a tag. Therefore,
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Figure 1.1 Example of tagged books

Figure 1.2 Creating two groups with an added tag

solving the problem requires the human power anyway.

Third, how to solve the Bookshelf problem is not trivial. The following simple two methods are

not practical.

Enumeration Method We enumerate all possible sets of groups (i.e., solution candidates) and

ask humans to judge whether each set is a solution that satisfies the constraints posed by

the Bookshelf problem. Given I and N , the number of all possible sets is more than
∏N−2

k=0 ((|I| − k · n)Cn)) where n = �(|I|/N)�. If I is large, it is not realistic for hu-

mans to judge all solution candidates.

Two-Phase Method The method consists of two phases. In Phase 1, we ask humans to add tags

and connect them to items so that they are sufficient to construct a solution. In Phase 2,

we use the new T and R to compute a solution for the Bookshelf problem. However, as

we explain later, deciding whether T and R are sufficient to construct a solution is NP-

complete.

In this paper, we propose a complete, human-in-the-loop method that uses two types of mi-

crotasks to solve the Bookshelf problem. By using the two types of microtasks, we use human

intelligence to (1) reduce the search space, and (2) supply new tags and connect them to items.

The method is complete, in the sense that the method always gives a solution, if any, for the

Bookshelf problem.

The contributions of the paper are as follows.

Microtask-based solution for a common problem. To the best of our knowledge, this is the

first paper to propose a microtask-based method to solve the problem of grouping items with

incomplete information at the beginning. Our method defines microtasks to be performed by

humans and how to integrate the results to construct a solution. We believe that this is a significant
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contribution, because our method allows the people, who know the domain well but do not know

how to solve the problem, to join the process to solve the problem. For example, in constructing a

session program for a large academic conference, the speakers of the conference, who are expert

in the domain but do not have the skill to make the program, can help construct the program. In

addition, although we assume workers are reliable in this paper, the proposed method gives us

an opportunity to use microtask-based crowdsourcing platform such as Amazon Mechanical Turk

[1] to solve our problem. This is an interesting issue, but we need to incorporate techniques for

improving data quality in crowdsourcing (such as voting) into our algorithm and is out of the scope

of this paper.

Experiment with a real set of data. We conducted an experiment using a real dataset on a

large academic conference. We used the results of our microtasks to estimate the total number of

tasks required to produce the solution that is the same as the actual sessions of the conference. We

found that the human intelligence is effective to avoid the worst case scenarios where the number

of required microtasks is too large.

The reminder of this paper is as follows. Chapter 2 gives related work. Chapter 3 defines the

Bookshelf problem. Chapter 4 explains our proposed method. Chapter 5 explains an experiment

and its results. Chapter 6 is the conclusion.
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Chapter 2

Related Work

This chapter shows related work.

Data Classification and Clustering involving the Crowd. There are different researches on

classification and clustering involving the crowd in some way. For example, crowdsourcing has

been used for data classification. A typical approach is to give labels to data items to construct a

set of training data supplied to classifiers [13] [6] [7]. Another approach is to allow workers to

evaluate the results of classifiers to improve them [12]. Although the Bookshelf problem can not

be solved by such classifiers alone, we can use them to compute some of missing tags from the

content of data items. Note, however, that the tags in our context are not necessarily computed by

the content of data items (such as “Favorite”). Other related researches include semi-supervised

learning and label propagation [2] [15], recommender systems [11] [10], community detection

[5], and crowdsourced taxonomy creation [4]. However, none of them can compute solutions that

satisfy the constraints posed by the Bookshelf problem.

Crowd solutions for making conference sessions. Making conference sessions is one of the

applications of our proposed method. There are several researches on human-in-the-loop ap-

proaches for making conference sessions. Cobi [14] is a tool to allow the expected participants to

collaboratively revise the shown sessions so that the program can satisfy session constraints and

participants’ preferences. An example of participants’ preference is “Sessions A and B should not

be scheduled at the same because I am interested in both sessions.” Our proposed method can be

used to make the first version of the session program. Frenzy [3] is another tool that breaks the ses-

sion making into two sub-problems: metadata elicitation and global constraint satisfaction. In the

second phase, a small number of volunteers who are co-located and can communicate easily with

one another solve the global constraints. Our approach is unique in that we break the problem of

making sessions into self-contained small microtasks and do not require workers to communicate

easily to each other.

Solving Difficult Problems by Human Computation. There have been researches on human-

powered approaches for solving many other problems that are difficult to solve with computers
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alone. CrowdPlanr [8] proposes a crowdsourcing approach to assist in solving planning problems

such as a vacation trip planning, where the goal of the problem is hard to formalize. On the other

hand, we deal with a problem with a clear goal, but the first input is incomplete. To the best of our

knowledge, our paper is the first to address such a problem.
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Chapter 3

Bookshelf Problem

This chapter defines the Bookshelf problem.

Definition 1 (Bookshelf problem). Assume that there is a model M that defines RM : IM ×
TM where IM and TM are the complete set of items and the complete set of tags in the world,

respectively. Assume that we are given M , a set I ⊆ IM of items, a set T ⊆ TM of tags, a relation

R ⊆ I × T , and the number N of groups. Then, a solution of the Bookshelf problem, denoted by

(R′, G) = Bookshelf(M, I, T,R,N), is defined as follows.

• R′ is a relation s.t. R ⊆ R′ ⊆ RM , and

• G = {g1, . . . , gN} is a set of groups that satisfies all the following conditions.

1. g1 ⊕ g2 ⊕ ...⊕ gN = I

2. ∀gk (|gk| ≤ �|I|/N�)
3. ∀gk (∃tgk ∈ πtag(R

′)∀il ∈ gk (R′(il, tgk)))

The first condition states that every item belongs to exactly one group. The second condition

defines the number of items in each group. The third condition states that there exists a common

tag that is connected to all items in the same group. Here, πtag(R
′) is the set of tags that appear in

R′.

The reason we need a model M in the definition is that we want to find solutions other than

meaningless solutions. A meaningless solution is a solution having fabricated tags, such as “a

book on the first shelf of this solution,” that do not exist in the original world.

Note that the Bookshelf problem always has trivial solutions utilizing a tag t like “item,” which

satisfies ∀i ∈ I RM (i, t).

When (R′, G) = Bookshelf(M, I, T,R,N), we call πtag(R
′) − T the hidden tags in the

solution. We also call the connections among items and tags represented by R′ − R the hidden

connections. We need to add the hidden tags and connections to T and R to obtain the solution

(R′, G).
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When T = TM and R = RM are given as the input, we say that R (thus the associated set T of

tags) is complete. If there is at least a solution s.t. R′ = R, R (and T ) is said to be sufficient. The

Bookshelf problem does not require R to be sufficient. However, deciding whether R is sufficient

or not is NP-complete.

Theorem 1. Deciding whether R is sufficient or not is NP-complete.

Proof 1. Given G = {g1, g2, . . . , gN}, whether G satisfies all the conditions (1) - (3) can be

verified in polynomial time. Therefore, this problem is in NP.

In the following, we show the NP-hardness of this problem. Let us consider the following Exact

Cover by 3-Sets (X3C) problem.

Input: A set X = {x1, x2, . . . , x3q} and a family C = {C1, C2, . . . , Cn} of sets s.t. Ci ⊆ X

and that |Ci| = 3 for i = 1, 2, . . . , n.

Problem: Is there an exact cover C ′ ⊆ C of X?, i.e., a family C ′ = {Ci1 , Ci2 , ..., Ciq} s.t. each

element of X belongs to exactly one Cij ∈ C ′.

It is known that the X3C problem is NP-complete. We reduce the X3C problem to the problem

of determining whether R is sufficient or not. We construct an instance of the Bookshelf problem

from the instance of X3C problem as follows.

• A set of items: I = {x1, x2, . . . , x3q}
• A set of tags: T = {c1, c2, . . . , cn}
• A relation R: (xi, cj) ∈ R ⇔ xi ∈ Cj , i.e., a tag cj is connected to each item xi in Cj .

• The number of groups: N = |X|/3 = q

We show that there exists an exact cover of X if and only if there exists an answer of the Bookshelf

problem for R.

(⇒) Suppose that there exists an exact cover C ′ = {Ci1 , Ci2 , . . . , Ciq} of X . Let g1, g2 . . . , gq

be q groups s.t. gj = Cij for j = 1, 2, . . . , q. Then G = {g1, g2, . . . , gq} satisfies the Bookshelf

problem’s conditions (1)-(3).

(⇐) Suppose that there exists an answer G = {g1, g2, . . . , gq} of the Bookshelf problem for

R. Since N = q, by the Bookshelf problem’s condition (2) each shelf is of size three. Let

gj = {xj1 , xj2 , xj3} for j = 1, 2, . . . , q. By the Bookshelf problem’s condition (3), xj1 , xj2 , xj3

share the same tag, say cij . Without loss of generality, we can assume that cij = cik when-

ever i = k. Now let Cij = {xj1 , xj2 , xj3} for j = 1, 2, . . . , q. By the definition of R, C ′ =

{Ci1 , Ci2 , . . . , Ciq} is an exact cover of X . �
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Chapter 4

Proposed Method

This chapter explains a microtask-based, human-in-the-loop method to solve the Bookshelf

problem. The features of the method are as follows. First, because microtasks are automatically

generated during the process, humans can focus on the localized problems posed by microtasks.

Second, our microtasks try to utilize the human intelligence to reduce the search space, by asking

the humans what items are likely to be difficult to get together with other items. As we will show

later, the human intelligence is proved to be effective to avoid the worst case in searching for the

solution. Third, the method is guaranteed to give a solution, if any, for the Bookshelf problem.

This chapter first explains the overview of the method. Then, it explains two types of microtasks,

namely, Global Human Computation Task (GHCT) and Local Human Computation Task (LHCT),

used in the proposed method. Finally, it explains the method in detail.

4.1 Overview

In short, the method works as follows. First, the method initializes the set G of groups to an

empty set. Then, it constructs item groups one by one and adds them to G by repeatedly applying

the following two steps (Figure 4.1).

1. It picks up a tag t from T .

2. Let I(t) be a set of items that are connected to t and have not belonged to any group yet.

Let maxsize = �|I|/N�. Then, it performs one of the followings according to I(t).

• If |I(t)|%maxsize = 0, divide the items in I(t) into |I(t)|/maxsize groups.

• If |I(t)|%maxsize = 0, choose maxsize− |I(t)|%maxsize items from items out-

side I(t) that have not belonged to any group yet. If they can be merged to I(t) by tag-

ging them with t, divide the items in I(t) plus the chosen items into �I(t)/maxsize�
groups of items. If not, do nothing.
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Figure 4.1 Overview of the proposed method

During the repetition, if the algorithm finds an item that cannot belong to any group, it backtracks.

When all items succeed in belonging to groups, it outputs G as a solution.

Pickup and Choose operations. Note that there are two key operations that are underlined.

First, picking up a tag from T affects the number of necessary backtracks and thus the total

computation cost. We call the operation Pickup here. A straightforward implementation of the

Pickup operation is to randomly pick up a tag. Obviously, it is inefficient. Second, choosing

maxsize − |I(t)|%maxsize items from the other items than I(t) cannot be performed by com-

puters because they have no common tags with those in I(t). We call the operation Choose.

Therefore, we want to use human intelligence for the two operations, expecting that humans

are good at performing them. First, humans can help perform the Choose operation by directly

choosing items that can be merged to items in I(t).

Second, how to help perform Pickup operation is more interesting, because the operation deter-

mines the global direction in the search space and directly affects the number of backtracks. For

efficiency, we want to make the number of backtracks as small as possible. A widely-used heuris-

tic to cope with this kind of problem is to solve the most difficult problem first. In our context, it

is desirable to make groups for those items that are difficult to get together with other items in the

early stage. If such items remained in the later stage, it would be extremely difficult to find items

to get together with them. Therefore, humans can help perform the operation by picking up items

that seem difficult to get together with other items.
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We designed two types of microtasks to help the two operations, named Global Human Com-

putation Tasks (GHCTs) and Local Human Computation Tasks (LHCTs), which help us perform

the Pickup and Choose operations. The results of GHCTs are used to compute values representing

the priority of tags in the Pickup operation. LHCTs directly ask humans to perform the Choose

operation.

4.2 Microtasks

In this section, We show two types of microtasks used in the proposed method.

4.2.1 Global Human Computation Tasks (GHCTs)

A GHCT is a task to compute a numerical value between 0 and 1, named D-value, that represents

each item’s difficulty to get together with other items. We use the D-values in the Pickup operation

as follows. Let I(t) be a set of items that are connected to t and have not belonged to any group

yet. Given D-values, we can implement the Pickup operation so that it picks up t s.t. I(t) includes

the item whose D-value is larger than any other ungrouped item. This way, we try to make groups

for items that are likely to be difficult to find appropriate groups, in an early stage.

Figure 4.2 is an example of a GHCT. Each GHCT shows a fixed number of items to workers

and asks them to select items that are difficult to get together with the other items.

We generate GHCTs as follows. Let L be a fixed parameter that represents the number of

shown items in each GHCT. Similarly, let d be a fixed parameter (say, d = 3) that represents the

minimum number of occurrences of each item in GHCTs. Given the set I of items, we generate

�|I|/L� × (d+ 1) GHCTs where each item in I appears in GHCTs at least d times. For example,

assume that the number of items shown in each GHCT is ten (i.e., L = 10), the number of items

is 11 (|I| = 11), and the minimum number of occurrences of each item is three (d = 3). Then, we

create 4 GHCTs in total where all items appear at least three times in GHCTs and some of them

(in this case, L× 4 modulo (|I| × d) = 7 items) appear four times.

We ask workers to perform all GHCTs at the beginning of the proposed method. Given an item

i and the results of all GHCTs, let di be the number of workers that labeled i as “difficult to get

together with other items”. Let oi be the total number of occurrences of i in the GHCTs. Then,

the D-value of the item i is computed by di/oi.

4.2.2 Local Human Computation Tasks (LHCTs)

LHCTs ask workers to find hidden tags and connections between items and tags. An LHCT

shows workers the list of items in I(t) and another list of items, denoted by I(t̄), which contains

all items that are not connected to t and have not been decided to belong to any item group. Then, it
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Figure 4.2 A GHCT

asks them to choose (1) |I(t)|%maxsize items (denoted by S1) from I(t) and (2) maxsize−|S1|
items (denoted by S2 ) from I(t̄) so that we can generate a group for S1 ∪ S2. Figure 4.3 is an

example of an LHCT. Workers either choose the items or click on “I can’t do it” button. Then, we

can make an item group (of maxsize size) consisting of all items in S1 and S2.

In the proposed method, an LHCT is generated every time the Choose operation is executed for

a tag t ∈ T when |I(t)|%maxsize = 0 (Figure 4.1). The idea behind this is that we can make

�|I(t)|/maxsize� item groups for I(t) but we have to find items that can get together with the

remaining items.

If a worker thinks that there is a better tag t′ than t for the group of items containing both S1

and S2, she can enter the tag in the task window. Then, the new tag is connected to items in S1

and S2. Otherwise, the algorithm connects t to items in S2.

Given the results of LHCTs, we can create �|I(t)|/maxsize� item groups in total. Here,

�|I(t)|/maxsize� groups have t as their common tag and one group has t or t′ as its common

tag.

Note that each LHCT used for performing the Choose operation guarantees that the obtained

item group satisfies the constraint that all items in it share at least one common tag.

4.3 Algorithm

SearchWithGLHCTs (Algorithm 1) shows the algorithm of our proposed method. The algorithm

assumes that we have already submitted GHCTs we explained in Chapter 4.2 and obtained D-

values for the items in I . On the other hand, LHCTs are generated and issued during the execution.

Lines 1 to 3 define three variables used in the algorithm. In Line 1, maxsize is the max number

of items in each group defined by the Bookshelf problem. In Line 2, G is the list of generated

groups. G is initially an empty list but we incrementally add new groups to its tail. We call each

intermediate state of G, denoted by [g1, . . .], a state of G. In Line 3, Tavailable is a variable that
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Figure 4.3 An LHCT

always keeps a set of tags s.t for every tag t in Tavailable there are items connected to t that do

not belong to any item group yet. Note that the number of tags in Tavailable decreases when we

make items groups.

Lines 4 to 21 implement the logic explained in Chapter 4.1. The loop (lines 4 to 16) applies the

steps illustrated in Figure 4.1. The loop ends when there is no tag in Tavailable.

In each iteration, the algorithm performs the followings. In Line 5, it picks up a tag t from

Tavailable according to D-values s.t. I(t) contains the item whose D-value is larger than any

other ungrouped item. In Lines 6 to 7, if |I(t)|%maxsize = 0, it divides items in I(t) into

|I(t)|/maxsize groups and adds the groups to G.

When adding groups to G, we check whether the result is not included in the list of prohibited

states, to avoid repeating the same process. If the list includes the new state generated by adding

the new groups to the current state, the algorithm does not add them to G, and removes t from

Tavailable. How to maintain the list of prohibited states is explained later when we explain how

the algorithm backtracks.

If |I(t)|%maxsize = 0 (Line 8), we issue LHCTs to execute the Choose operation (Line 9).

If workers cannot find an appropriate set of items, the algorithm concludes that t is not useful for

making groups and removes it from Tavailable. Removed tags are restored when it backtracks

because they may be useful after the backtrack. If workers find items to get together, it concludes

that t is useful (Lines 12 to 13). Different from what we explained with Figure 4.1, the algorithm

does not generate item groups immediately in this case. Instead, it restarts the search process with

the obtained tag t′ included in T (Line 13). Note that workers have the option of not entering a
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Algorithm 1 SearchWithGLHCTs
Require: N, I, T,R

Ensure: G = φ

1: maxsize ← �|I|/N�
2: G ← φ

3: let Tavailable = {t|t ∈ T, I(t) = φ}
4: while Tavailable = φ do

5: pickup t ∈ Tavailable
6: if |I(t)|%maxsize == 0 then

7: generate |I(t)|/maxsize groups and add them to G

8: else

9: choose S1(⊆ I(t)) and S2(⊆ I(t̄)) s.t. |S1 ∪ S2| = maxsize and items in S1 ∪ S2 has

a common tag t′

10: if S1 ∪ S2 = φ then

11: Tavailable ← Tavailable − t

12: else

13: restart with G = φ, T = T ∪ {t′} and R = R ∪ {(t′, i)|i ∈ S1 ∪ S2}
14: end if

15: end if

16: end while

17: G′ ← G ∪Groups4Leftovers(I, T,R,G)

18: if |G′| == N then

19: return G′

20: end if

21: restart with G = backtrack(I, T,R,G) and restore Tavailable

new tag (Figure 4.3) to argue that there is no better tag than t in an LHCT and then t′ = t. The

reason for restarting the process is that we want to do the best to obey the principle of making item

groups for items with the highest D-value first.

When the algorithm generates all item groups for Tavailable, it quits the loop. Then, it generates

item groups for those items that have not belonged to any group yet. This happens when tags

having ungrouped items are removed from Tavailable (Line 11). Groups4Leftovers(I, T,R,G)

generates such groups in a best effort fashion. The function first computes Ileftover, which is a

set of ungrouped items at the time the algorithm quits the while loop. Then, it makes groups as

follows: For every t s.t. |I(t)|/maxsize = J and |I(t)|%maxsize = K with items in Ileftover,

generate J groups containing maxsize items and one group containing K items.

Finally, if the total number of groups is N , it returns the set of group. Otherwise, the algorithm
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backtracks and restarts the search process. When backtracking, we add G to the list of prohibited

states to avoid reaching the state again*1.

The destination state of the backtrack is computed as follows. Let i′ be an item whose D-value

is the largest of the items in Ileftover that share a common tag with an item i′′ in G. Then,

let G = [g1, . . . , gj , . . . , gk] be the state when it quit the loop where gj is the last group in the

sequence that contains such an i′′. The algorithm backtracks to the state [g1, . . . , gj−1]. If we

cannot find such an i′, it backtracks to the state [g1, . . . , gk−1] (i.e., j = k). We temporarily add

any state containing gj , such as [g1, . . . , gj ], to the list of prohibited states to avoid grouping i′′

with other items than i′. If we need to backtrack later again, we remove the temporarily prohibited

states from the list because prohibiting gj did not lead to a solution.

4.4 Completeness

In order to guarantee that the algorithm generates a solution, we add nameless tags {NTi|i ∈ I}
to T and connect each NTi to i before executing the algorithm. Then, the following theorem holds.

Theorem 2. SearchWithGLHCTs gives a solution, if any, for the Bookshelf problem when

|I| modulo N = 0.

Proof 2. To prove Theorem 2, we show the following two things.

(1) SearchWithGLHCTs does not generate any state after it knew that the state is not a subse-

quence of any solution.

(2) Let a solution be [g1, g2, . . . , gN ], while each of which contains |I|/N items. For a subse-

quence of the solution [g1, . . . , gj ], SearchWithGLHCTs guarantees that gj+1 (of the solution)

can be added to the subsequence by LHCTs.

First, we explain (1). When SearchWithGLHCTs backtracks with G, G is not a subsequence

of any solution of the Bookshelf problem. In backtracking, we add G to the list of prohibited states

to avoid reaching the state again. Therefore, SearchWithGLHCTs does not generate any state

after it knew that the state is not a subsequence of any solution.

Second, we explain (2). Let a solution be [g1, g2, . . . , gN ], while each of which contains |I|/N
items. For a subsequence of the solution [g1, . . . , gj ], let us consider that whether SearchWithGL-

HCTs can add gj+1 (of the solution) to the subsequence by LHCTs.

When there are tags in T and connections in R for making gj+1, Tavailable satisfies {t|t ∈
T, ∀i ∈ gj+1((i, t) ∈ R)} ⊆ Tavailable. If the algorithm picks up a tag t ∈ {t|t ∈ T, ∀i ∈
gj+1((i, t) ∈ R)} from Tavailable, gj+1 is added to the subsequence. Therefore, gj+1 can be

*1 Note that this is not G ∪G′, since G′ is computed based on G.
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added to the subsequence.

When there are not any tags in T or any relations in R for making gj+1, Tavailable satisfies

{NTi|i ∈ gj+1} ⊆ Tavailable. If the algorithm picks up a tag NTig (ig ∈ gj+1) from Tavailable,

workers choose S1 = {ig} and S2 from I( ¯NTig ) = I − G − {ig}. In other words, in I − G

that is a set of items that do not belong to any group, all |I|/N items combinations that include

ig ∈ gj+1 can be chosen in the LHCT. Therefore, a tag and connections for making gj+1 can be

added to T and R, respectively, and gj+1 can be added to the subsequence when the algorithm

picks up the tag from Tavailable.

Therefore, for a subsequence of the solution [g1, . . . , gi], the algorithm guarantees that gi+1 (of

the solution) can be added to the subsequence by LHCTs.

According to the above two things, SearchWithGLHCTs reduces the search space that does not

contain a subsequence of any solution. And for a subsequence of the solution [g1, . . . , gj ] that

each of which contains |I|/N items, the algorithm can add a |I|/N items group of the solution

to the subsequence by LHCTs. Therefore, SearchWithGLHCTs gives a solution, if any, for the

Bookshelf problem when |I| modulo N = 0. �

In addition, we can extend SearchWithGLHCTs by (1) adding wildcard items to I when

|I| modulo N = 0 so that |I| modulo N becomes zero, and (2) prohibiting any state containing

a group of wildcard items only. Wildcard items are those that can get together with any items.

Then, the extended version, named SearchWithGLHCTs2, generates a solution for the Bookshelf

problem.

Theorem 3. SearchWithGLHCTs2 gives a solution, if any, for the Bookshelf problem. �

Note that the two theorems do not guarantee that the algorithms always give the same solution

when they run multiple times.
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Chapter 5

Experiment

We conducted an experiment to examine the effect of human computation on reducing the search

space in the Bookshelf problem. For that purpose, we investigated how D-values computed from

the results of GHCTs affected the number of LHCTs, assuming that workers perform LHCTs

without mistakes. We compared the four settings to compute D-values in the number of LHCTs

and backtracks required to give a solution.

5.1 Settings

In this section, we explain settings of the experiment.

5.1.1 Data

We applied the proposed method to make a session program for DEIM2014, a large domestic

academic conference in Japan. We obtained data from the DEIM2014 web site and constructed

the input for the algorithm as follows.

• I: All papers taken from each DEIM2014 session with six presentations. |I| = 192.

• T : All keywords associated to the papers in I and the nameless tags {NTi|i ∈ I}. |T | =
566 + 192.

• R: Connections from keywords (including the nameless tags) in T to the papers in I .

|R| = 637 + 192.

• N : 32 (equals to the number of the DEIM2014 sessions with six presentations).

Under different settings on the way to compute D-values we explain next, we counted the num-

ber of LHCTs and backtracks required to find a solution G that equals to the original sessions of

DEIM2014.
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5.1.2 Four Settings to Compute D-values

The four settings to compute D-values are as follows.

Setting 1 [Const]: We do not use the results of GHCTs. Instead, we use a constant D-value

C for all items.

Setting 2 [DR]: We do not use the results of GHCTs. Instead, we use R to compute the

D-values of each i, denoted by DR(i). DR(i) is defined as the multiplicative inverse of

(one plus) the number of other items that share at least one tag with i. The idea behind this

is that an item having many other items that share at least one tag with the item is likely to

be easy to get together with other items. DR(i) is recalculated every time new connections

are add to R in the process of the proposed algorithm.

Setting 3 [Dghct]: We used the results of GHCTs to compute D-values (Chapter 4.2). We

call such a D-value a Dghct(i).

Setting 4 [DR&Dghct]: We use a pair (DR(i), Dghct(i)) as the D-value of each i . We

define the order relation among them by the dictionary order of the components.

5.1.3 Pickup Operation

As explained, we use D-values to pick up tags in the Pickup operation. In the experiment, we

also implemented some heuristics in the operation to efficiently find appropriate solutions. Note

that the order of picking up tags does not affect Theorems 2 and 3.

The implemented Pickup operation uses the following rules to pick up tags. The rule with the

smaller number has a higher priority. If a rule picks up more than one tag, we use the next priority

rule to break the tie. Similarly, if a rule cannot pick up any tag, we use the next rule. If no rule can

pick up a tag, a tag is randomly selected.

1. If there is t s.t. |I(t)|%maxsize = 0, use t, because it would not require any LHCTs to

make groups.

2. Let DMax(t) be the highest D-value of items in I(t). Then, use t having the largest

DMax(t), because it allows us to make a group for the most difficult item.

3. Let DAvg(t) be the average of D-values of items in I(t). Then, use t having the largest

DAvg(t), because it allows us to make groups for difficult items.

4. Pick up t s.t. |I(t)|%maxsize is the largest. This increases the number of items in S1

(guaranteed to share a common tag) in each LHCT and reduces the number of items the

worker has to choose for S2 to make a group.

5. Pick up t s.t. |I(t)| is the smallest. This allows us to make groups with a variety of tags
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Figure 5.1 One of the GHCTs used in the experiment

because we avoid using tags that are common to many items.

5.1.4 Performing Microtasks

We generated GHCTs with L = 10 and d = 3 (See Chapter 4.2). Since |I| = 192, we obtained

�|I|/L� × (d + 1) = 76 GHCTs in total. Figure 5.1 is one of GHCTs used in the experiment.

In each GHCT, the title, keywords, and the first author’s name and affiliation of each paper was

presented to workers.

We submitted the GHCTs to the Crowd4U crowdsourcing platform [9]. Workers for the tasks

were chosen from those who belong to laboratories of University of Tsukuba whose members

attended DEIM2014. This makes sense because a typical setting for this application is that we

ask paper authors of the conference to be workers. The average and median of times required to

perform a GHCT are 70.0 seconds and 41 seconds, respectively.

As the purpose of this experiment is to examine the effects of human computation on the search
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Dghct #papers

0 105

0.25 45

0.33 2

0.5 27

0.75 11

1 2

Total 192

Table 5.1 Distribution of Dghcts

#LHCTs #backtracks

Setting Max Min Average Max Min Average

Setting 1 [Const] 1997 107 490.8 667 0 33.9

Setting 2 [DR] 2305 95 453.8 116 2 28.3

Setting 3 [Dghct] 1234 80 515.8 186 1 38.9

Setting 4 [DR&Dghct] 324 152 211.7 10 4 6.5

Table 5.2 The number of LHCTs and backtracks with the four settings

space, we assumed that all LHCTs are performed without mistakes*2. Therefore, we implemented

an agent that works as a worker who does not make any mistakes. Given an LHCT with a set of

papers, each worker chooses papers only if they are in a correct DEIM2014 session, and she clicks

on “I can’t do it” otherwise. She always provides a correct tag to LHCTs.

Since the algorithm uses random numbers in the Pickup operation, we executed it 100 times in

each setting.

5.2 Results

Table 5.1 shows the statistics on the obtained Dghcts. From the definition, the largest number of

Dghct is 1 and the table shows that workers thought that two papers were the most difficult to get

together with other papers. On the other hand, the Dghcts of more than 50% papers are 0, which

means that they thought that many papers were easy to be grouped with other papers.

Table 5.2 summarizes the numbers of LHCTs and backtracks required to obtain the correct

session program in the executions in each of the four settings. As the table shows, we found that

*2 Note that even if workers make mistakes, Theorem 2 guarantees that the algorithm eventually generates a solution
as long as we can determine whether the item groups in the output is not a correct solution.
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the Setting 4 with (DR, Dghct)s generated the best result. In particular, the maximum number and

average number is the smallest among those of the four settings. Even if we add the number of

GHCTs (76), the maximum number and average number is the smallest.

Figures 5.2 shows the distribution of the numbers of LHCTs and backtracks in detail. Compared

to Setting 1, Setting 2 and Setting 3 reduced the average and the maximum numbers of LHCTs,

respectively. Therefore, the results suggested that the attached keywords and the results of human

computation were effective to reduce the search space in different ways. Setting 4 gave the best

results in both of the numbers of backtracks and LHCTs. The average number of LHCTs for

Setting 4 was 2.3x smaller than that for Setting 1, and more importantly, the variance was much

smaller: The maximum number of LHCTs for Setting 4 was 6.2x smaller than that for Setting 1.

Given those results, we conclude that human computation is effective to avoid the worst case in

searching for solutions of the Bookshelf problem, especially when the results of human computa-

tion are combined with those of machine computation.
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Figure 5.2 Distribution of the numbers of LHCTs and backtracks.
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Chapter 6

Conclusion

This paper defined the Bookshelf problem to model the problem of grouping data items with

incomplete information at the beginning, and proposed a complete, human-in-the-loop method that

uses two types of microtasks for solving the problem. In addition, we conducted an experiment

with a set of real data taken from a large academic conference, to investigate the effects of human

computation on the efficiency in searching for solutions. We found that human computation is

effective in avoiding the worst case and reducing the expected number of microtasks, especially

when the results of human computation are combined with the results of machine computation.

Future work includes the development of a parallel version of our algorithm to allow many workers

to process LHCTs in parallel.
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