
Mobile Robot Navigation Based on

Difference Visual Streams

September 2016

HELIO PERRONI FILHO



Mobile Robot Navigation Based on

Difference Visual Streams

Graduate School of Systems and Information Engineering

University of Tsukuba

September 2016

HELIO PERRONI FILHO



Abstract

Self-location is defined as the ability to recognize one’s surroundings and reli-
ably keep track of current position relative to a known environment. It is a
fundamental cognitive skill for entities biological and artificial alike: living be-
ings rely on it for performing key behaviors such as nest homing and predator
evasion, whereas mobile robots require it to realize autonomous navigation.

At a minimum, self-location requires the ability to match current sensory in-
put to memories of previously visited places, and to correlate perceptual changes
to physical movement. Humans and other mammals rely mainly on visual cues
for place identification, hinting at the possibility of robot systems using cam-
eras and computer vision algorithms for the same task. However, visual input,
while rich, is notoriously hard to interpret algorithmically, and is subject to
large variations from factors such as lighting conditions, changes to environ-
ment composition, and the presence of moving obstacles.

This thesis proposes a new architecture for vision-based robot self-location,
dubbed the Difference Image Correspondence Hierarchy, or DICH for short.
DICH is inspired by research in biological cognition, constituting a self-location
model that is perception-based instead of metric. Places, and robot location
among them, are defined not in terms of geometric coordinates, but as memory
and sensory patterns consistently correlated over time.

At the same time, DICH has from the beginning been conceived as a prag-
matic approach to autonomous navigation, intended to work under real-world
conditions. Accordingly, a DICH implementation based on well-known software
libraries and off-the-shelf hardware is also presented. A variety of experiments
demonstrate the architecture’s features, its strengths and weaknesses. The the-
sis concludes with a discussion on results achieved and directions for further
research.

i



Acknowledgments

When one has finished building one’s house, one
suddenly realizes that in the process one has
learned something that one really needed to know
in the worst way – before one began.

Friedrich Nietzsche

Thanks to my advisor Akihisa Ohya for guiding and supporting my research,
to Claus Aranha for introducing me to him, and to my M.Sc. advisor Alberto
Ferreira de Souza, who encouraged and helped me in my efforts to pursue a
Ph.D. degree. Thanks also to Michael Cesare Gianturco for sharing several
intriguing ideas, the practical implementation of which has been the drive to
much of my work; Olivier Georgeon, for his insightful course on Developmental
AI that directed me to the larger field of cognitive architectures.

Thanks to the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
(CNPq) for financing my Ph.D. studies. Thanks to the University of Tsukuba
for providing my wife and I with our living quarters, and for being a nice place to
work and live. Also thanks to my colleagues in the Intelligent Robot Laboratory,
in particular Ryan Pratama and Matsuzaki Sango.

These years in Japan would have been a lot tougher to get by, if not for some
wonderful people. Kohei Hattori helped me a great deal as I was settling down
to life in Japan, and I am forever indebted to Naoko Ohya’s generosity. Alvaro
Kanasiro and Kelly Tsutiya too supported me through many a bureaucratic
conundrum, besides being good friends. And I will always fondly remember my
conversations with Wagner Schmidt and Rafael Munia – though the subjects
we debated were often grim, those were some of the best times of my life.

Thanks to my parents Helio and Diana for always supporting me through
life, providing me a good education, and generally putting up with my difficult
self.

Last but not least, I want to thank my wife Juliana. It is sometimes said
that “behind every great man lies a great woman”; I’d hardly count myself as
“great” and would rather have women stand besides men, but it’s true that her
support has been indispensable for the success of this little enterprise. This is
in every sense as much your work as mine, my love.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 1
1.1 Autonomous navigation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Self-location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Difference Image Correspondence Hierarchy (DICH) . . . . . . . 5
1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 8
2.1 Autonomous navigation . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Appearance-based navigation . . . . . . . . . . . . . . . . . . . . 9
2.3 Visual Teach & Repeat . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Perception models . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Environments . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 DICH and VT&R . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Difference Image Correspondence Hierarchy (DICH) 16
3.1 Difference images . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Difference image pairing . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Regions-of-Interest . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Difference image similarity . . . . . . . . . . . . . . . . . 24
3.2.3 Similarity trends . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Shift estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Implementation 31
4.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Software Components . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Teach network . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Repeat network . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Ground truth network . . . . . . . . . . . . . . . . . . . . 33

5 Experiments 37
5.1 Localization Experiments . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Indoors Experiments . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Outdoors Experiments . . . . . . . . . . . . . . . . . . . . 45

5.2 Navigation Experiments . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Extremis Experiments . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



5.3.3 Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4 Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Discussion 84
6.1 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Strengths and Weaknesses . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Extensions and Further Research . . . . . . . . . . . . . . . . . . 86

7 Conclusion 88

A Mathematical Constructs 90
A.1 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B Images 94
B.1 Multi-channel images . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 Integral images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.3 Image correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

List of Figures

1.1 Place cell and grid cell . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Egocentric and allocentric reference frames . . . . . . . . . . . . 2
1.3 Cognitive map elements . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Visual Teach & Repeat navigation . . . . . . . . . . . . . . . . . 10
2.2 Monocular camera . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Omnidirectional camera . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Stereo camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 DICH abstract diagram . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Difference image computation . . . . . . . . . . . . . . . . . . . . 20
3.3 Difference image and salience map . . . . . . . . . . . . . . . . . 22
3.4 Difference image similarity . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Similarity map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Image shift example . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Yamabico M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Teach network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Repeat network setup . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Repeat network offline mode . . . . . . . . . . . . . . . . . . . . 35

iv



4.5 Repeat network online mode . . . . . . . . . . . . . . . . . . . . 35
4.6 Ground truth network . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Indoors environment and localization sessions . . . . . . . . . . . 39
5.2 Outdoors environment and localization sessions . . . . . . . . . . 39
5.3 Indoors “straight” similarity map . . . . . . . . . . . . . . . . . . 41
5.4 Indoors “straight” shift map . . . . . . . . . . . . . . . . . . . . . 42
5.5 Indoors “turn right” similarity map . . . . . . . . . . . . . . . . . 43
5.6 Indoors “turn right” shift map . . . . . . . . . . . . . . . . . . . 44
5.7 Outdoors “direction” similarity map . . . . . . . . . . . . . . . . 46
5.8 Outdoors “direction” shift map . . . . . . . . . . . . . . . . . . . 47
5.9 Outdoors “speed” similarity map . . . . . . . . . . . . . . . . . . 48
5.10 Outdoors “speed” shift map . . . . . . . . . . . . . . . . . . . . . 49
5.11 Navigation environment and teach routes . . . . . . . . . . . . . 51
5.12 Navigation experiment “maintain” similarity map . . . . . . . . . 52
5.13 Navigation “maintain” shift map . . . . . . . . . . . . . . . . . . 53
5.14 Navigation experiment “maintain” odometry results . . . . . . . 53
5.15 Navigation experiment “converge” similarity map . . . . . . . . . 54
5.16 Navigation experiment “converge” shift map . . . . . . . . . . . . 55
5.17 Navigation experiment “converge” odometry results . . . . . . . 55
5.18 Navigation experiment “evening” similarity map . . . . . . . . . 56
5.19 Navigation experiment “evening” shift map . . . . . . . . . . . . 57
5.20 Navigation experiment “evening” odometry results . . . . . . . . 57
5.21 Navigation experiment “afternoon” similarity map . . . . . . . . 58
5.22 Navigation experiment “afternoon” shift map . . . . . . . . . . . 59
5.23 Navigation experiment “afternoon” odometry results . . . . . . . 59
5.24 Contrast deviation test examples . . . . . . . . . . . . . . . . . . 61
5.25 Contrast deviation test results . . . . . . . . . . . . . . . . . . . . 61
5.26 Contrast difference c = 0.6 similarity map . . . . . . . . . . . . . 62
5.27 Contrast difference c = 0.6 shift map . . . . . . . . . . . . . . . . 63
5.28 Contrast difference c = 0.8 similarity map . . . . . . . . . . . . . 64
5.29 Contrast difference c = 0.8 shift map . . . . . . . . . . . . . . . . 65
5.30 Occlusion test examples . . . . . . . . . . . . . . . . . . . . . . . 66
5.31 Occlusion test results . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.32 Occlusion w = 0.1 similarity map . . . . . . . . . . . . . . . . . . 68
5.33 Occlusion w = 0.1 shift map . . . . . . . . . . . . . . . . . . . . . 69
5.34 Occlusion w = 0.6 similarity map . . . . . . . . . . . . . . . . . . 70
5.35 Occlusion w = 0.6 shift map . . . . . . . . . . . . . . . . . . . . . 71
5.36 Angle deviation test setup . . . . . . . . . . . . . . . . . . . . . . 72
5.37 Angle deviation test results . . . . . . . . . . . . . . . . . . . . . 73
5.38 Angle difference 1o similarity map . . . . . . . . . . . . . . . . . 74
5.39 Angle difference 1o shift map . . . . . . . . . . . . . . . . . . . . 75
5.40 Angle difference 30o similarity map . . . . . . . . . . . . . . . . . 76
5.41 Angle difference 30o shift map . . . . . . . . . . . . . . . . . . . . 77
5.42 Direction deviation test setup . . . . . . . . . . . . . . . . . . . . 78
5.43 Direction deviation test results . . . . . . . . . . . . . . . . . . . 79

v



5.44 Direction deviation 1o similarity map . . . . . . . . . . . . . . . . 80
5.45 Direction deviation 1o shift map . . . . . . . . . . . . . . . . . . 81
5.46 Direction deviation 30o similarity map . . . . . . . . . . . . . . . 82
5.47 Direction deviation 30o shift map . . . . . . . . . . . . . . . . . . 83

6.1 Branching paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1 Basic matrix notation . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1 Luminance image computation . . . . . . . . . . . . . . . . . . . 95

List of Tables

2.1 Appearance-based VT&R navigation methods . . . . . . . . . . . 10

3.1 Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 DICH parameters and default values . . . . . . . . . . . . . . . . 38

vi



Chapter 1

Introduction

This chapter discusses the subjects this thesis is concerned with, as well as its
objectives. First it defines the problem of autonomous navigation, discussing
its attendant parts and possible approaches. It is noted that self-location is
a central requirement for effective navigation. Biologic self-location strategies
are then described, and proposed as a template for the development of robotics
solutions, helping select methods among the excess of available options. The
Difference Image Correspondence Hierarchy (DICH) is presented as an effort in
that direction, and its main features are briefly summarized. DICH is contrasted
to similar projects in the field of Biologically Inspired Cognitive Architectures
(BICA’s), and shown to lie towards a more pragmatic philosophy. The chapter
concludes with a statement of the objectives intended to be achieved with the
architecture.

1.1 Autonomous navigation

Autonomous navigation refers to the process by which a robot determines and
then traverses a path between its current position and a specified destination.
It is easily the most challenging topic in mobile robotics, as it demands domain
of five distinct competencies: perception of the surrounding environment and
its representation in a map of some sort, localization of the robot relative to
it, path planning from current location to a specified destination, and finally
motion control to execute the plan [1].

Generally speaking, path planning and motion control are relatively easy to
perform, so long as it’s assumed environment structure and robot position are
known with certainty. Therefore, successful navigation is highly dependent on
reliable perception, representation and localization, which are hard to achieve
consistently. The fundamental problem is that those tasks depend on sensor
readings, which by definition are only proxies to the actually relevant environ-
ment states, and imperfect ones at that. So it is that, for example, a laser
scanner takes the time between a pulse is emitted and a reflection detected as a

1



(a) Place cell (b) Grid cell

Figure 1.1: Activations (grey circles) of a single place cell (a) and a single grid
cell (b) in a test subject at different locations within an enclosure. Whereas
the place cell’s activation is closely correlated to the animal’s presence at a
specific environment location, the grid cell is active at multiple, regularly-spaced
locations.

      1 2

3      

(a) Egocentric frame

      1 2

3      

(b) Allocentric frame

Figure 1.2: Difference between egocentric and allocentric reference frames. In
an egocentric frame, distances between landmarks are evaluated relative to the
individual’s own location; in an allocentric frame, landmark distances are eval-
uated relative to each other’s location.

2



proxy for distances from obstacles – but not only are such measures subject to a
degree of uncertainty, they may not always correlate at all with object distance,
e.g., if a reflective object deflects laser pulses away from the sensor.

Responses to this fundamental sensor unreliability issue can be broadly di-
vided between attempts at extracting more reliable invariant representations
from raw input, and devising robust inference methods to derive environment
state information from knowingly noisy readings. Most autonomous navigation
methods will do some degree of both, while leaning more heavily on one or the
other. Beyond this basic characterization, however, a wide variety of approaches
exist, many based on completely different paradigms. For example, Simultane-
ous Localization and Mapping (SLAM) methods typically employ statistical
inference methods to produce a probability distribution of current location over
a Cartesian plane or 3D space [2], while appearance-based methods use invariant
representations and similarity measures to represent current location as the sim-
ilarity between present sensor inputs and collected records of previously visited
places [3].

The large methodological differences among autonomous navigation meth-
ods may seem all but irreconcilable. This is unfortunate, since an overarching
conceptual framework or design philosophy can provide important guidance to
research and development programs, helping define problems and suggesting
ways to find solutions. In such cases it can be useful to look into nature: living
beings often face challenges not dissimilar to those addressed by engineering dis-
ciplines, and can therefore provide inspiration and insights into how they can be
approached. In this case, studying how humans and other animals locate our-
selves in space can help uncover general principles for describing and improving
robot navigation.

1.2 Self-location

Humans constantly maintain a sense of our own location in space, updating
it continuously as we move. This is also true for most mammals and many
other animals. Self-location is the skill of relating sensory input to current
position [4]. Psycho-physiologically, animal self-location is computed in two
distinct brain regions. In the hippocampus, place cells fire in response to specific
locations within an environment, encoding a seemingly egocentric (centered on
the individual itself) representation of spatial location. Meanwhile, grid cells
in the entorhinal cortex combine visual and self-moving cues to produce overall
repeating activation patterns thought to encode allocentric (based on landmark
locations relative to each other) spatial location [5]. Figure 1.1 shows example
activation patterns for place and grid cells, and Figure 1.2 illustrates egocentric
and allocentric reference frames.

3



a
b

c

(a, b) (b, c)

      1
2

3      

Figure 1.3: Common elements of a cognitive map. Space is divided in places (a,
b, c) identified by landmarks (1, 2, 3) and connected through paths.

Spatial cognition is the field of study concerned with our ability to acquire,
organize, and use spatial knowledge about environments. Current spatial cogni-
tion research asserts that biologic self-location is mainly supported by cognitive
maps, mental representations of our physical environments, adapted for tasks
such as place recognition and route planning [6]. Several cognitive map models
exist [7], however most of them, in one way or another, incorporate landmarks
as perceptual elements, places as physical locations characterized by particular
landmarks, and paths as associations between places. Figure 1.3 illustrates the
concepts.

Self-location seems to mostly rely on visual cues for sensory input, though
it was also found to adapt well to changes in environment perception and even
composition [8, 9]. Self-motion cues have also been implicated in the process [5].
These stimuli are employed to derive three kinds of knowledge useful for cogni-
tive map construction and use:

• Landmark knowledge of the presence and configuration of particular fea-
tures at each place [10];

• Survey knowledge of estimated shortest-distances between landmarks [11];

• Route-road knowledge of pathways between places [11].

Moreover, cognitive map construction is influenced by several heuristics that
generally contribute to make representations more “regular” than reality – e.g.,
intersections such as street crossings are recorded as forming a 90o angle more
often than they really do [12, 13], and the relative positions of landmarks and
place boundaries are distorted so as to better fit overall conceptual knowledge
of the contexts in which they are located [14].

4



1.3 Difference Image Correspondence Hierarchy
(DICH)

The Difference Image Correspondence Hierarchy (DICH) is an effort to solve
the robot localization problem using biologic self-location as a template. It
represents environments as collections of places arranged across paths and char-
acterized by landmarks detected from visual input, while current location is
inferred both from visual input cues (by searching for signals representative of
landmarks) and a history of previous location inferences.

DICH is designed to enable localization in the context of Visual Teach
and Repeat (VT&R) navigation. It assumes a differential drive mobile robot
equipped with a single monocular camera. DICH builds upon previous work on
template matching [15] and experiments in mobile robotics [16, 17], assimilating
additional ideas from spatial cognition, embodied cognition [18] and computa-
tional neuroscience [19].

DICH takes difference images as its basic percept: these encode changes to
visual input over short time intervals, an approach inspired in how our senses
are dependent on change to work properly – for example, if our eyes are kept
fixated onto a static image, vision starts to fade out [20]. Difference images are
further processed by searching for fixation points, and then extracting Regions-
of-Interest (ROI’s) from them. When images have to be compared, these ROI’s
are searched over each other using cross-correlation, a biologically-plausible op-
eration. Finally, models of working memory are used for keeping track of and
detecting trends over match results, which enables the system to reliably com-
pare stored and real-time inputs to estimate current location. These operations
are detailed in Chapter 3.

DICH has a close relationship to the field of Biologically Inspired Cognitive
Architecture (BICA’s). BICA’s combine results from cognitive science, com-
puter science and neuroscience to both advance the understanding of human
and animal cognition, and provide novel solutions to complex computational
problems [21]. They exploit the observation that living systems can be used as
a template to help define vague problems (e.g., “intelligence”) as well as suggest-
ing possible solutions and validation metrics. They can also provide inspiration
for architectures and algorithms not necessarily targeted at “biological” prob-
lems. The opposite is also possible – results from computer science and robotics
being used to assess theories on biologic cognition, suggesting new models or
avenues of investigation.

Human vision and spatial cognition are both widely studied fields with a
wealth of knowledge to offer, therefore a case can be made for the development
of a biologically inspired vision-based autonomous navigation system. In fact,
BICA research has repeatedly approached the problem of self-location; however,
it tends to be taken as a test case to validate proposed cognitive models, rather
than as an objective to be achieved in its own right. Methods are not developed
to match task or environment requirements, but the opposite: given a BICA
implementation, a task and (usually simulated) environment are selected that

5



demonstrate its capacities while abstracting away its limitations. Consequently,
there is no convergence towards a common approach dictated by what works
best under recurring real-world conditions, as is the case in mobile robotics.
Instead, competing interpretations of psychophysiological data lead to diverging
solutions. Such efforts include:

• The Enactive Cognitive Architecture (ECA) [22] can learn complex be-
haviors by chaining together (action, result) pairs. This is demonstrated
by implementing an agent that learns its way across a very simplified 2D
world where movement is atomic (the agent advances in “cell” units and
turns in increments of 90o) and perception is binary (the agent can ei-
ther see an obstacle ahead or not). The agent moves of its own volition,
without an externally specified destination;

• The Learning Intelligent Distribution Agent (LIDA) [23] is based on the
Global Workspace Theory (GWT) [24] of functional consciousness in brains.
Experiments demonstrating its ability for self-location were performed in
an elaborate 3D environment, however the architecture was allowed to
acquire data on landmarks (e.g., their distances from the agent) directly,
rather than having to estimate it from visual observations;

• The Soar/SVS architecture [25] combines symbolic reasoning and prototype-
based visual filters to infer environment state from computer-generated
images depicting a simulated environment. This at least enforces a proper
separation between environment and agent, as the later must parse its
perceptions in order to infer the former’s state, but the idealized environ-
ments are still far removed from the complexity of the real world.

In contrast, mobile robotics regards self-location as a requirement for imple-
menting target applications such as autonomous navigation. Therefore, research
focus on how the problem can be best solved in real-world conditions. These
approaches are not irreconcilable, though – in fact, BICA research could gain
novel insights from approaching the practical challenges inherent to the real
world, while a more architectural and model-driven approach could open the
way for novel solutions to autonomous navigation problems.

DICH, therefore, also constitutes an effort to apply the principles of BICA
development to real-world requirements. While it draws extensively from re-
sults in neuroscience and cognition to build a biologically plausible self-location
model, it has been developed from the beginning to operate in physical robots
and environments, relies exclusively on visual data, and implements a learning
model accommodating of goal-directed training and operation. It is expected
that requiring BICA’s to cope with real-world constraints will promote a con-
vergence towards a set of best practices and methods, as seen in mobile robotics.

6



1.4 Research objectives

Research objectives can be roughly divided across three axes: technical, theo-
retical and social.

From a technical standpoint, my objective was to develop a visual naviga-
tion system that was robust while comparatively low-cost in terms of hardware
and complexity. For that reason I decided to focus on monocular vision and
similarity-based input analysis over time, which can be achieved with minimal
resources and setup. I also wanted an architecture that could be easily adapted
to run on multiprocessing platforms, since parallel programming is an ongo-
ing challenge in computer science, and algorithms that can work efficiently in
highly-parallel hardware are widely sought after.

Theoretically, I sought to apply concepts from neuroscience and cognition
to create an autonomous navigation architecture that is perceptual rather than
metric. This is commonplace among appearance-based navigation methods; yet,
as will be discussed in Chapter 2, DICH application of time-consistent estimates
to monocular visual input occupies a very restricted field in that field.

Finally, the availability of an intuitive, low-cost autonomous navigation sys-
tem could have important social ramifications, as non-specialist users could find
new and interesting applications for it. Autonomous cars are currently on the
cusp of entering the consumer market, and are expected to have a tremendous
influence in the transportation industry, enabling a variety of new businesses
and upsetting the old. However these will in all likelihood be closed systems,
whose owners will be discouraged (if not outright forbidden) to tinker with.
DICH opens the possibility of offering consumers an open, low-cost autonomous
navigation solution that would allow free experimentation.

7



Chapter 2

Related Work

This chapter discusses other works in mobile robotics with similar objectives
and/or approaches. It starts with an overview of autonomous navigation ap-
proaches, in particular the SLAM paradigm. The following section makes the
case for appearance-based navigation as a complement to SLAM, as well as an
alternative in its own right. Visual Teach and Repeat (VT&R) is then proposed
as the ideal scenario for appearance-based navigation, and past approaches to
appearance-based VT&R navigation are discussed. Finally, the contributions of
DICH relative to other navigation methods are discussed.

2.1 Autonomous navigation

Arguably the central topic in mobile robotics [1], autonomous navigation is,
in its simplest formulation, the problem of getting a robot to drive from an
origin point to a destination without human intervention. This obviously incurs
a series of attendant problems, from purely physical constraints of autonomy
or terrain traversability, to higher-level cognitive issues such as path planning,
environment representation and sensor data interpretation.

The broad category of navigation methods refers to these later concerns:
given a robot equipped with appropriate sensors and powertrain, such that
the ability to physically perceive and move across the environment is assured,
how can it be driven between specified and destination points without further
human intervention. Navigation methods can be roughly divided into map-
based and mapless, according to whether they depend on globally consistent
environment representations. Map-based methods can be further divided into
metric, which represent the environment geometrically relative to a predefined
coordinate system, and topological, which break down the environment as a set
of discrete nodes connected by relations of reachability [26].

Most navigation methods rely at some level on the existence of landmarks,
enduring environment features that produce consistent, identifiable patterns in
the sensor stream. To estimate robot location, methods assert the presence

8



and / or location of particular landmarks by cataloging and searching such
patterns in sensor readings; this usually involves several preprocessing steps to
attenuate the effects of noise or otherwise remove unimportant data. Different
sensors and navigation methods will demand diverse landscape selection and
recognition algorithms.

Simultaneous Localization and Mapping (SLAM) is a popular autonomous
navigation paradigm. In the typical SLAM scenario, a robot, initially without
any knowledge of its surroundings, must explore and construct a metric map-
based representation of the environment, while at the same time keeping track
of its location within it. SLAM methods commonly rely on laser or other range-
finder sensors for input, and employ probabilistic approaches such as particle
filters or the Extended Kalman Filter (EKF) to relate egocentric landmark
location to robot movement across time. However, the operation range of filter-
based SLAM systems is limited by the need to continuously keep track of all
landmarks to ensure estimate convergence, causing computation requirements to
grow steadily as the traversed area increased, and eventually overwhelming the
system [27]. Moreover, as environment scale grows, range-finder sensor readings
become increasingly sparse and unreliable.

2.2 Appearance-based navigation

The limitations of metric map-based navigation systems have motivated work
in topological methods. In particular, appearance-based navigation methods
avoid the limitations of range-finder sensors by employing cameras, and use
image data to construct place representations according to an appearance model.
Environments are represented as collections of places, and current location is
determined in terms of appearance similarity between known places and current
input, which incidentally is closer to how we humans navigate our surroundings.

Several appearance-based methods have been advanced as localization mod-
ules to probabilistic SLAM backends. FAB-MAP and its variants [28] effectively
lifted the operation range restriction of filter-based approaches, but have been
found vulnerable to large appearance variations, as undergone by outside envi-
ronments across seasons or weather conditions. Further research has addressed
this limitation, either by employing image-based appearance models that do
away with features, as in SeqSLAM [29], or by compensating for their weak-
nesses in some way – e.g., the plastic map model [30] repeatedly records features
for the same environments over repeated trips, thus keeping track of appearance
changes over time.

While effective under their prescribed scenarios, these hybrid appearance
/ SLAM methods are computationally expensive, and suffer from accuracy
shortcomings that make them inadequate for some applications, e.g., route-
following [31]. Moreover, they often demand external modules such as visual
odometry [30] (or alternatively, assume the robot was moving at constant speed
for the duration of data records [29]) and expensive omnidirectional [28] or
stereo [30] cameras.

9



Table 2.1: Summary of recent appearance-based Visual Teach & Repeat navi-
gation methods, characterized by sensors, test environments, and environment
variations allowed between teach and repeat steps.

Method Sensors

Environments

Types

Variations

Lights Moving
elements

Monocular depth
estimation [31]

Monocular camera
Indoors,
Outdoors

No No

Homography estimation [32] Monocular camera
Indoors,
Outdoors

Yes No

Monte Carlo localization [33] Monocular camera Indoors No No

Hybrid feature / segmentation
path finding [34]

Monocular camera
Indoors,
Outdoors

No Yes

SURFnav [35] 360o camera Indoors No No

Scale-based visual servoing [36] 360o camera Indoors No Yes

Min-warping [37] 360o camera Indoors Yes No

Depth-feature learning [38] Stereo camera Indoors No No

Multi-stereo [39] Pair of stereo
cameras

Outdoors Yes No

Color-constant images [40] Stereo camera Outdoors Yes No

I1 I2

I4

I3

L1

L2

L3

L4

(a) Teach step path

I1 I2 I3 I4

(b) Teach step images

I'1 I'2 I'3 I'4

L1

L2

L3

L4

(c) Repeat step path

I'1 I'2 I'3 I'4

(d) Repeat step images

Figure 2.1: Visual Teach & Repeat (VT&R) navigation. In the teach step
(a), a robot is driven over a route, collecting visual records (b) of landmarks
[L1, . . . ,L4] (field of view indicated by dashed lines). In the repeat step (c),
the robot retraces the route autonomously, orienting itself by the differences
between teach (b) and repeat (d) image records.

10



1

2

3

4

(a) Monocular camera (b) Monocular image

Figure 2.2: Monocular camera (a) and example image (b). A digital monocular
camera is composed of optic parts (1) for focusing light on an imaging sensor
(2) which an electronic system (3) uses to collect images and send them across
an external connection (4) to a processing system.

1

2

3

4

(a) 360o camera (b) 360o image

Figure 2.3: Omnidirectional camera (a) and example image (b). A catadioptric
omnidirectional camera is composed of a base convex mirror (1) that projects
light from all around the system into a top concave mirror (2), sensing it across
an aperture (3) and into a base-mounted monocular camera (4).

11



1 2

3
4 5

(a) Stereo camera

(b) Stereo image

Figure 2.4: Stereo camera (a) and example image (b). Stereo cameras are
composed of two monocular cameras (1, 2) sharing a common field of vision
and relaying images to the same control unit (3). They can be implemented as
an integrated setup (4) or by mounting a pair of standalone cameras on a rig
(5).

2.3 Visual Teach & Repeat

Appearance-based methods can also be valuable on their own. They are per-
fectly suitable for Visual Teach and Repeat (VT&R) navigation, where a robot
is first led through a route by a guide (the teach step), and must later au-
tonomously retrace the original path (the repeat step), orienting itself by sensor
readings gathered during the guided stage [41]. See Figure 2.1 for a graphical
example.

A variety of appearance-based methods have been proposed over the years.
Table 2.1 provides a summary of recent contributions. They can be roughly
classified in terms of employed sensors, the perception model used to process
and reason about inputs, and environment conditions evaluated in experiments.

2.3.1 Sensors

Cameras are the main sensor solution in any VT&R system. According to their
optics and output, cameras can be categorized as monocular, omnidirectional
and stereo.

Monocular cameras are composed of optics elements focusing light on an
imaging sensor, controlled by electronics that collect and relay images across
a connection for processing (Fig. 2.2). They remain a popular choice [31, 32,
33, 34] due to their size, cost and simplicity. Moreover, monocular vision ap-

12



proaches can be promptly applied to the many already existing robots equipped
with monocular cameras (typically for teleoperation purposes), making them
appealing from a practical standpoint [31].

Omnidirectional cameras are characterized by a 360o field of view in the
horizontal direction. For this reason they are also occasionally called “360o

cameras”. They are typically based on a catadioptric setup [42] that uses mirrors
and lenses to direct light from all around the system into an upward-looking
monocular camera (Fig. 2.3). Because views from all directions are recorded
at once, omnidirectional VT&R methods [35, 36, 37] can potentially navigate
between any two arbitrary points within a known environment, not just along a
recorded route. In practice this is appealing in indoors environments, but not so
much outdoors, where traffic rules and conventions usually restrict movement
to the length of streets and sidewalks.

Finally, stereo cameras are composed of two monocular units sharing a com-
mon field of view, relaying images to a single controller (Fig. 2.4). Image dis-
parities between cameras enable scene depth inference. Accordingly, VT&R
methods based in stereo input [38, 39, 40] can make use of depth values to-
gether with image and feature data for recognizing places.

2.3.2 Perception models

Different sensor solutions display particular strengths and weaknesses, motivat-
ing distinct input processing models and methods to correlate readings to robot
location.

Monocular VT&R methods have to address the fact that, on themselves,
monocular images contain much data but precious little spatial information.
One way around this limitation is to infer spatial information from image data;
this may involve making assumptions about the spatial configuration of the sys-
tem and/or the environment. For example, monocular depth estimation [31] can
be performed to compute 3D coordinates for ground features recorded by a cal-
ibrated monocular camera, provided all features are assumed to lie on a ground
plane local to the robot itself. The combination of 3D coordinates and features
can then be used to construct a locally-consistent map to support navigation.
An alternative is to do away with spatial estimates entirely – for the purposes
of route-following, simple feature matching may be sufficient. This is the ap-
proach taken by the homography estimation method [32], which uses robust
feature matching to relate visual inputs over time and construct a topological
map of the environment. Monte Carlo VT&R [33] takes a similar approach,
employing a particle filter to compensate for imprecisions of feature matching.
Pure-appearance methods may also benefit from environment assumptions, how-
ever: hybrid feature / segmentation path finding [34] uses image segmentation
to detect traversable paths where such structure can be found, complementing
feature-matching procedures and increasing performance in outdoor environ-
ments.

13



Omnidirectional VT&R methods are often based on the concept of a hom-
ing vector indicating the direction, and possibly the distance, between current
location and destination. Navigation is then reduced to the problem of com-
puting the homing vector from current input and records previously taken at
the destination. This can be done in a number of ways. SURFnav [35] collects
ans tracks SURF features over time to infer distance and direction of recorded
landmarks. This can be used to produce a series of path-correcting commands
to make the robot converge towards a destination. A similar approach is used in
scale-based visual servoing [36], where the scale component of SIFT descriptors
is used to guide a control module. In contrast, min-warping [37] takes a more
holistic approach to inputs, matching whole images in search of a discrete set
of “warping” operations (translations and scalings) that will minimize mutual
difference, and can be related to robot movements.

Stereo VT&R methods usually combine depth estimates and feature match-
ing looking to compensate for each other’s weaknesses. Depth-feature learn-
ing [38] uses stereo matching to produce feature points combining 3D coordi-
nates computed from visual odometry and a 64-dimensional SURF-based feature
vector. Features are collected in a topological map that is only locally metric-
consistent, but nevertheless enables sufficiently correct localization for naviga-
tion tasks. Outdoor performance is limited, though, since features are weak
against variations in appearance, especially general variations such as those
caused by seasonal changes. Multi-stereo [39] attempts to mitigate this issue by
adding a second stereo camera to the system: with a larger field of view and
increased number of detected features, the probability of successful matching is
increased. Color-constant images can be used to solve this problem the other
way around, ensuring stable inputs to the stereo vision pipeline and thus consis-
tent features [40]. However the algorithm that produces color-constant images
needs to be trained, which may require several trips over target environments.

2.3.3 Environments

The environments robots travel along can be categorized as “indoors” and “out-
doors”. Indoors environments are human-made and include halls, offices, rooms,
corridors and warehouses. They are generally characterized by a regular visual
structure with repetitive elements, an abundance of straight edges meeting at
right angles, and illumination that is either constant or varies among a couple of
highly recurrent states – e.g., office lights might sometimes be off, but otherwise
their positions and intensities remain the same.

In contrast, outdoors environments are dominated by changing illumination
patterns, due to seasonal changes, weather, and the daily cycle of light and
dark. Scenes may still contain the kind of structural regularities found indoors,
especially in urban areas, but often these will at least share space with the
organic shapes of plants and geographical formations. Outdoors environments
include streets, sidewalks, parks, trails and wilderness regions.

14



Both indoors and outdoors environments are also subject to change. This
can be gradual, as when ambient brightness slowly decreases in response to
sunny weather turning cloudy; sudden but unwitnessed, as when a piece of fur-
niture is added to a room between visits; or dynamic, caused by the presence of
moving entities such as vehicles or people. Environment changes have important
consequences for VT&R methods: landmarks may be removed between trips,
become unrecognizable due to light changes, or be occluded by passing pedes-
trians. Likewise, transient environment features may be unwittingly selected as
landmarks.

VT&R methods will sometimes explicitly take illumination variations into
account [32, 37, 40, 39], especially when intended to work outdoors, but few
studies give close consideration to the effects of moving elements [34, 36]. As a
result, their suitability for use along people and other vehicles remains largely
unverified.

2.4 DICH and VT&R

The Difference Image Correspondence Hierarchy (DICH) is a monocular appear-
ance-based VT&R method for indoors and outdoors environments, resilient to
illumination changes and the presence of moving elements. It can perform lo-
calization and route-following, and can deal with the kidnapped robot problem
so long as the robot is left somewhere along a known path. As Table 2.1 and the
previous sections show, it occupies a rare niche in the VT&R literature, where
all these features are seldom seen together in a single system.

DICH is image-based, avoiding weaknesses related to visual features. It is
also virtually unique among VT&R systems in its explicit use of record history to
achieve estimation consistency – ambiguous and incorrect estimates are weeded
out by selecting sequences of estimates consistent over time. In most systems
this is a consequence from other constraints (such as the probabilistic prediction-
updating of the Monte Carlo approach [33]), but in DICH it is stated explicitly
from the beginning, and is at the heart of most method parts.

Therefore, DICH constitutes a comprehensive VT&R navigation solution
for robots complying to the most general specifications. The next chapters will
expand on the DICH method and its implementation, followed by experiments
demonstrating its features.

15



Chapter 3

Difference Image
Correspondence Hierarchy
(DICH)

The DICH architecture was designed to work with a differential drive robot [1]
equipped with a single front-mounted camera, under the VT&R navigation sce-
nario. As summarized in Figure 3.1, operation is divided in a manually driven
teach step, and an autonomous repeat step.

During the teach step the robot is driven over a route, collecting a video
record as it goes. This record is used to build a visual account of the route, to
be stored in memory as a list of teach difference images. During the repeat step,
camera inputs are converted to repeat difference images on the fly, and paired
to teach images according to similarity. In this way each repeat difference image
is assigned a place along the route, in terms of positions in the teach list. Teach
/ repeat difference image pairs are also compared for shift, the apparent sliding
of visual features on one image relative to the other. Shift is used to infer
whether the robot is drifting away from the route. Both image pairing and shift
information are then forwarded to a steering module, which drives the robot
according to perceived drift and position along the teach route.

This chapter describes each of the above steps in detail. It opens with a
description of difference images, the architecture’s main percept. Next difference
image pairing is explained, including a solution to the kidnapped robot problem.
Shift estimation follows, and the chapter closes with a description of the steering
model. Table 3.1 below explains the notation used in these sections; see the
appendices for more details on the underlying theory.

16



Table 3.1: List of notational conventions used in DICH. Refer to the appendices
for more details.

Notation Description

an List or vector a of n elements.

|a| Number of elements in a list or vector a. For an, |a| = n.

0n A vector of dimension n and all cells equal to zero.

a ++ b List or vector concatenation. For am and bn, a++b = cm+n

such that c = [a0, . . . , am−1, b0, . . . , bn−1].

Am×n Matrix A of m rows and n columns. Usually dimensions are
shown only the first time a matrix is mentioned.

A[i, j]
Element at the ith row and jth column of matrix A.
Indexes start at 0 and count top-to-bottom, left-to-right.aij

ai,j

A[i, :] ith row of matrix A.

A[:, j] jth column of matrix A.

A[i0:in, j0:jn] Rectangular section of matrix A, from top-left element
A[i0, j0] to bottom-right element A[in − 1, jn − 1].∑

A Sum of all elements in matrix A.

A ◦B Hadamard (element-wise) product of matrices A and B. For
Am×n and Bm×n, A ◦B = Cm×n such that cij = aijbij .

A◦n Hadamard (element-wise) power of matrix A. For Am×n,
A◦n = Cm×n such that cij = anij .

f◦(A) Element-wise application of function f to matrix A. For
Am×n, f◦(A) = Cm×n such that cij = f(aij).

Ncc(A,B) Normalized cross-correlation between A and B. For
AmA×nA and BmB×nB such that mA ≤ mB and nA ≤ nB,
Ncc(A,B) = C(mB−mA+1)×(nB−nA+1) such that cij is the
similarity between A and B[i:i+mA, j:j + nA].

17



Shift estimation

S
ta

rt

Fi
ni

sh

Operator Robot

Guided operation

Teach step

Robot

S
ta

rt

Fi
ni

sh
Autonomous operation

Replay step

Image matching

Teach
difference
images

Replay images

Last
replay
image

Images Difference images Replay
difference
image

Image
matches

Steering command Steering controller

Shift

Video record

(a) VT&R navigation (b) DICH architecture

Figure 3.1: Difference Image Correspondence Hierarchy (DICH) working envi-
ronment and abstract diagram. (a) Visual Teach and Repeat scenario. A robot
is first guided through a route (the teach step); later, after being brought back
to the starting point, it must retrace the original path autonomously (the repeat
step), using data collected during the teach step as a guide. (b) The DICH ar-
chitecture. During the teach step, the robot collects a video record of the route,
which is used to generate a sequence of images stored in long-term memory.
During the repeat step these are compared to live visual input, to estimate the
robot’s position along the route and possible drift from it. This information is
used to steer the robot as necessary.

3.1 Difference images

A recurring problem in computer vision is the construction of invariant rep-
resentations – input transformations that consistently correlate to parameters
relevant for a certain application, while being unaffected by other factors. For
example, a visual navigation system could employ a representation that corre-
lated well to the presence of landmarks, while being invariant to other objects
or changes in brightness and viewpoint. A system’s choice of invariant repre-
sentation reflects its a-priori assumptions on environment nature, correlations
between stimuli and world states, and acceptable trade-offs on percept invari-
ance, distinctiveness and computation complexity [43].

In a dynamic context such as autonomous navigation, invariant representa-
tions can be designed by first looking not into immediate inputs themselves, but
rather into how they change over time. This approach is supported by studies
on biologic sensory organs, which have been repeatedly shown to require an ele-

18



ment of active change to work properly – e.g., visual perception fades over if eyes
are fixated on a static scene and saccadic movements are suppressed [20]. Bio-
logic senses are under strong pressure to deliver the most reliable information in
the shortest time possible, having evolved to support critical animal behaviors
such as predator evasion. Therefore, the reasoning goes, effective digital sensing
could be achieved by borrowing biologic sensory strategies.

Dynamic Vision Sensors (DVS) apply this idea by measuring luminance dif-
ferences across the visual field, and reporting the coordinates of changes that
crossed a threshold. The resulting bursts of Address-Event Representations
(AER) can be pooled to generate scene shape representations invariant to color,
brightness and surface gradients [44]. DVS are often implemented in hardware,
as banks of digital circuits on a CMOS chip [45]. It is however perfectly possible
to reproduce its dynamics in software, using camera frames as input.

DICH employs difference images as its basic percept, invariant representa-
tions computed in a manner similar to the AER’s produced by DVS devices.
First, immediate differences between luminance images It−1 and It can be de-
tected by computing relative difference between individual pixels, and then
thresholding results:

Kt = Hδ

(
log◦

(
It ◦ I◦−1

t−1

))
(3.1)

Where Hδ() is defined as:

Hδ(A) =

[
hij =

{
1 if aij > δ

0 otherwise

]
(3.2)

The use of logarithm ratio in formula 3.2 turns threshold δ into a percentage,
making values easier to interpret – reasoning in terms of “δ% difference” is more
intuitive than working with absolute luminance values. The thresholding opera-
tion itself produces a “sparse” representation with a higher signal-to-noise ratio.
Still, experiments show that individual thresholded maps Kt lack consistence
– large variations occur between successive maps at the local level, even if the
general pattern remains similar. This can be mitigated by summing together
several maps over a given range:

Jt =

t∑
l=t−τ

Kl (3.3)

Where Jt is a difference image computed over τ maps of threshold δ. Fig-
ure 3.2 illustrates the process.

Given appropriate values for parameters δ and τ , each difference image will
contain regions of high signal concentration (caused by discontinuities such as
edges) surrounded by empty areas (due to smooth object surfaces). Absent of
saturation artifacts, difference images are largely invariant to ambient bright-
ness, providing a degree of normalization across illumination conditions. Close-
by objects will generate larger difference counts than those farther away, al-
lowing a glimpse into the scene’s structure. The amount of change will vary

19



It-1

It

log/ Kt

(a) Thresholded map

+

Kt-l, …, Kt

Jt

(b) Difference image

Figure 3.2: Difference image computation. (a) Luminance differences between
images are detected by computing relative differences, then thresholding the
result. (b) Thresholded maps are summed to attenuate noise and improve con-
sistency, producing a single difference image. Darker shades of gray indicate
larger change counts.

20



depending on whether the robot is moving, which can be used as a self-motion
cue. Finally, each difference image implicitly denotes a spatial range, delimited
by the viewpoints from which the original images were captured.

3.2 Difference image pairing

As mentioned previously, the video record collected during the teach step is
transformed into a sequence of difference images J = [J0, . . . ,Jm], stored in
memory. Each difference image implicitly denotes a place along the route;
therefore, during the repeat step, it’s possible to infer the robot’s position by
computing a difference image J′j from current visual input and searching for its
most similar “pair” Ji among teach difference images. Assuming the pairing is
successful, the robot is expected to be in the vicinity of the viewpoints from
which the images used to compute Ji were captured.

Difference image pairing in DICH works by extracting Regions-of-Interest
from repeat difference images, computing similarity to teach images in terms
of such regions, and finally identifying similarity trends among teach / repeat
image pairs. These steps are detailed below.

3.2.1 Regions-of-Interest

When animals look at their surroundings, their eyes don’t take everything at
once; rather, they dart among interest points (e.g., corners or edges) to appre-
hend a set of visual Regions-Of-Interest (ROI’s), which seem to provide enough
information for effective recognition. This behavior is modeled in computer vi-
sion applications by Image Processing Algorithms (IPA’s), which are used to
select small patches called algorithmic Regions-Of-Interest (aROI’s) from input
images [46]. Image matching can be performed for aROI’s in place of whole
images, reducing resource requirements and increasing generality.

DICH extracts aROI’s from difference images in the following manner. Let
J′j be the jth difference image computed over a currently ongoing repeat step
trip. For a padding α and l = 2α+ 1, the salience map Σ′j is defined as:

Σ′j =
[
σuv =

∑
J′j [u : u+ l, v : v + l]

]
(3.4)

Where Σ′j [u, v] is the salience of an interest point of coordinates (u+α, v+α),
computed as the sum of J′j values lying inside an aROI of top-left coordinates
(u, v) and side l. Figure 3.3 illustrates the concept. It should be clear that Σ′j
can be quickly computed from the integral image of J′j (see Appendix B for
details).

21



2
α

2α

J ' j Σ ' j

1

2

3
4

1 2

3 4

Figure 3.3: Difference image (left) and corresponding salience map (right). The
dashed box around Σ′j indicates the gap (of length 2α) between the boundaries
of J ′j and its own. Dashed squares on J ′j delimit Regions-of-Interest (ROI’s);
corresponding salience values are indicated on Σ′j by small circles. Darker shades
of gray indicate higher values.

A set of disjoint aROI’s can be selected from Σ′j by iterating over the fol-
lowing steps:

1. Make p a list of all (u, v) for which Σ′j [u, v] > 0, sorted in decreasing
salience order;

2. If |p| = 0 then terminate, otherwise make (u, v) = p[0] and p = p[1:] (i.e.,
remove the first item from p);

3. If Σ′j [u, v] > 0 then record aROI (u, v, l);

4. Make Σ′j [u− l : u+ l, v − l : v + l] = 0, then return to the second step.

In practice it may be preferable to use a separate matrix to keep track
of added / discarded points instead of changing Σ′j itself. Moreover, since

difference image saliences are integers with a known upper bound of τ l2, image
coordinates can be sorted in linear time using a distribution algorithm such as
bucket sort [47], which may require p to be a data structure other than a flat
list. The overall idea, however, remains the same. Algorithm 1 works out the
details of the procedure.

22



Algorithm 1 DICH’s aROI selection algorithm. Given a difference image and
a padding value, a list of disjoint aROI’s is returned. The algorithm runs in
linear time as a function of the number of non-zero difference image pixels.

function AROIs(J′mJ×nJ
j , α, τ)

l← 2α+ 1
m← mJ − l + 1
n← nJ − l + 1
Σ′m×nj ←

[
σuv =

∑
J′j [u : u+ l, v : v + l]

]
p← [pk = [] | 0 ≤ k < τl2] . List of buckets indexed by salience
for all (u, v) | 0 ≤ u < m , 0 ≤ v < n do

σ ← Σ′j [u, v]
if σ > 0 then

k ← τ l2 − σ . Place more salient points at earlier buckets
p[k]← p[k] ++ [(u, v)] . Append coordinates (u, v) to list p[k]

end if
end for
r← [] . List of returned aROI’s
Em×n ← 0 . Matrix of selected points
for all pk ∈ p do

for all (u, v) ∈ pk do
if E[u, v] = 0 then

r← r ++ [(u, v, l)]
E[u− l : u+ l, v− l : v+ l]← 1 . Select (u, v) and all neighbors

end if
end for

end for
return r

end function

23



3.2.2 Difference image similarity

If Ji and J′j are spatially related, then both images should contain a number of
similar visual elements produced by common landmarks. This can be checked
by comparing aROI’s extracted from J′j to regions of Ji: a high proportion
of visual matches would suggest both images come from the same place, or at
least somewhere close by. A successful recognition would remain possible even
if some aROI’s from J′j or their corresponding regions in Ji were changed, as
aROI’s capturing common visual elements would compensate for the failures of
the others.

A similarity measure based on aROI’s can be defined as follows. Let rj
be a list of aROI’s extracted from J′j according to Algorithm 1. For each
rj,k = (u, v, l), the contents of J′j within rj,k are compared to those of Ji within
a neighborhood (u− β, v − β, l + 2β). This is done by defining the following
ranges:

ρj,k = (u : u+ l , v : v + l) (3.5)

φj,k = (u− β : u+ l + 2β , v − β : v + l + 2β) (3.6)

And then finding the maximum cross-correlation response between the con-
tents of ρj,k in J′j and those of φj,k in Ji:

s(i, j, k) = maxNcc(J′j [ρj,k],Ji[φj,k]) (3.7)

The similarity s(i, j, k) between individual aROI’s and neighborhoods will
be influenced by the visual elements contained in both. If Ji and J′j repre-
sent the same or close places, similar contents will be likely, leading to higher
similarity values. However even then it may not be the case: if the place was
changed between trips (e.g., furniture or other objects were added or removed),
pedestrians and other moving entities were present in either step, or viewpoint
direction diverged to a visible degree, aROI’s and neighborhoods may differ to
the point of irreconcilability. Therefore it’s important that image similarity be
defined as the sum of aROI’s similarities:

S(i, j) =
∑
k

s(i, j, k) (3.8)

Figure 3.4 illustrates the process.

24



J'jJi

(a) aROI’s and neighborhoods

=

x

y

s (i , j , k )

(b) Normalized cross-correlation

Figure 3.4: Computing similarity between an aROI and a teach difference image.
(a) A number of aROI’s are selected from a repeat difference image J ′j ; for each
patch, a larger neighborhood is extracted from teach repeat image Ji (only
a few aROI’s and corresponding neighborhoods are drawn for clarity). (b) For
each (patch, neighborhood) pair, their normalized cross-correlation is computed,
and the maximum response (indicated here by the black circle) is taken as the
similarity score for that pair. Darker shades of gray represent higher response.

25



3.2.3 Similarity trends

The robustness of normalized cross-correlation and the invariance properties of
difference images make aROI-based similarity fairly reliable on average, but not
perfect. The following factors can lead to correlation errors:

1. Repetitive features (e.g. corridors with similar doors or other architectural
elements);

2. Occlusion of neighborhoods, with next best matches being far away from
the correct pair;

3. Very noisy neighborhoods that correlate well to mostly any patch.

Therefore, instead of relying on individual results, consistent similarity trends
over whole image sequences must be identified. This is done by selecting a range
of teach images, comparing each to all repeat images collected in recent history,
and then using linear regression to identify a pairing trend l = (m, b) in the
similarity values.

First, let the history of latest wr repeat images up to current repeat image
J′j be indexed by:

jj =
[
j − wr, . . . , j

]
(3.9)

The range of teach difference images is selected in terms of previous pairing
trend lj−1 = (mj−1, bj−1):

ij =
[
jmj−1 + bj−1 −

wt
2
, . . . , jmj−1 + bj−1 + wt

]
(3.10)

The similarity map Sj is then defined as:

Swt×wr
j =

[
suv = S

(
ij [u] , jj [v]

)]
(3.11)

That is, Sj contains the similarities between each teach image in the range
indexed by ij and all recent repeat difference images indexed by jj . In a simi-
larity map, high similarity values tend to gather in roughly diagonal clusters –
the direction along which both teach and repeat map indexes increase. A diag-
onal line can be fit over such clusters by sing RANSAC [48] interpolation, thus
finding the immediate trend lh = (mh, bh) which is used to update the previous
estimate:

mj = λmj−1 + (1− λ)mh (3.12)

bj = λbj−1 + (1− λ)bh (3.13)

The use of the above formulas to update estimates, instead of taking lh
directly as the current estimate, is to avoid sudden trend changes caused by
momentarily poor similarity measures; instead, similarity changes have to be

26



10 20

20

28

15

2515

24

Replay image #

Te
a

ch
 im

a
ge

 #

Figure 3.5: A similarity map represents at each cell the similarity between repeat
(horizontal axis) and teach (vertical axis) difference images. Darker shades of
gray represent higher similarity. The white line indicates the identified matching
trend across the map. Gray lines indicate the estimated pairings between repeat
and teach images.

sustained before they register as trend changes. The image pair (Jp(j),J
′
j) can

thus be selected such that:

p(j) = mjj + bj (3.14)

Where teach difference image Jp(j) is the pair of repeat image J′j . Figure 3.5
illustrates pairing function estimation from a similarity map.

The discussion above assumed that for every repeat image J′j , a previous
trend estimate lj−1 is available, thus reducing the problem of trend estimation to
updating the previous estimate with new information. Obviously, this leaves out
the question of how an initial trend can be identified. However this can be done
simply by performing the above procedure for teach range i0 = [0, . . . , nteach−1],
where nteach is the number of difference images in the teach record; repeat range
j0 = [0, . . . , wr − 1], that is, the first wr replay images collected; and bypassing
the update steps defined in Eq. 3.12 and Eq. 3.13. In this way initial position
along the teach route can be determined, solving the kidnapped robot problem.

27



3.3 Shift estimation

Difference image pairing estimates show far the robot advanced along the teach
route. The deviation from the original route can be inferred by computing
the shift between teach and repeat images – a length of horizontal sliding of
one image over the other, such that features of both are “matched” as well as
possible. Figure 3.6 illustrates the concept.

Because scenes may change between teach and repeat trips (due e.g. to the
presence of moving elements), it’s not effective to compare images wholesale.
Instead, given a matched pair (Jp(j) = g′(J′j),J

′
j), columns of width wC are

selected from teach image Jp(j) one at a time and cross-correlated to J′j . The
resulting vectors are zero-padded and shifted to account for the different initial
positions of each column, then summed to produce a shift likelihood vector sj
for the pair (Jp(j), Jj):

sj =

nJ/wC∑
k=0

(0n ++Ncc(Jp(i)[:, wCk : wC(k + 1)],J′j)) � wCk (3.15)

A shift vector describes shift likelihoods: the central value indicates the
likelihood that no shift has taken place, while values prior to it represent the
likelihood of a shift to the right, and values following, of a shift to the left. Shift
vectors are generally consistent over extended ranges, but abrupt changes are
sometimes observed, especially if there are differences in landscape composition
(e.g. presence / absence of moving elements) between test and repeat streams.
Such occasional mismatches can be averaged out by computing summed shift
vectors such that:

sj =

wr∑
k=0

sj−k (3.16)

Finally, computing the weighted average of the summed shift vector will
produce a definite shift estimate:

hj =

kj,n∑
k=kj,0

(k − n
2 )sj [k]

kj,n∑
k=kj,0

sj [k]

(3.17)

Where kj,0 = hj−1 − ε and kj,n = hj−1 + ε demarcate a window around
the position of the previous shift (so successive shift estimates will vary more
smoothly over time), with k0,0 = 0 and k0,n = n.

28



J'jJp(j)

(a) Difference image pair

Jp(j) J'j

(b) Left offset

J'j Jp(j)

(c) No offset

J'j Jp(j)

(d) Right offset

Figure 3.6: Simplified example of image shift detection. A pair of difference
images (a) are overlaid at different offsets; the offset that produces the smallest
amount of feature mismatch between images is taken as their shift. Example
overlays at a “left” offset (b), no offset (c) and “right” offset (d) are shown. In
this case “left” and “right” are relative to the repeat image J′j – the idea is that
J′j is kept fixed and Jp(j) slides over it.

29



3.4 Steering

DICH’s steering model is simple. It assumes a differential mobile platform, that
is, one where motion is provided by a pair of left and right wheels with separate
velocities (vL,t, vR,t) such that:

vt =
vR,t + vL,t

2
(3.18)

ωt =
vR,t − vL,t

l
(3.19)

Where vt and ωt are respectively the robot’s linear and angular velocities,
and l is the distance between the wheels. Given desired values for vt and ωt,
the equations above enable the calculation of suitable values for vL,t and vR,t.

Steering assumes a constant linear velocity v. Angular velocity is varied over
time according to the following rule:

ωt = dω (3.20)

Where ω is a system parameter, and d is computed as:

d =


−1 if hj > 0

1 if hj < 0

0 otherwise

(3.21)

So that, for example, if the robot starts to drift left, a negative angular
velocity is effected so that the robot starts to steer rightwards; the opposite
would be true if the robot drifted right.

30



Chapter 4

Implementation

DICH is implemented as a collection of software modules running inside process
nodes, instantiated on a computer connected to a differential drive mobile robot.
The next sections describe each of these elements in detail.

4.1 Hardware Components

The hardware platform employed in the development of DICH includes a com-
puter platform for running the software on, and a robotics platforms for real-
world experiments. For the former, a fairly standard Lenovo X201 notebook
boarding a dual-core Intel Core i5 clocked at 2.4GHz was used [49]. Each core
can run two hardware threads simultaneously, bringing the number of possible
active execution contexts up to four.

The robotics platform employed for the whole of research was the Yamabico
M1, an original design developed by the Intelligent Robot Lab [50]. It’s a rel-
atively large differential drive robot, at 40cm height, 30cm width and 35cm
length. Yamabico robots are mostly built on milled aluminum parts and com-
modity components. The M1 model in particular boards a power electronics
module feeding two brushless motors and a T-Frog control board [51] from a
pair of 12V batteries housed at the frame’s bottom.

The T-Frog is designed to receive commands in real-time from a PC con-
nected to it through a USB interface. Accordingly, an acrylic board is mounted
at the top of the robot, so that a controller notebook or other portable device
can be placed on it. A Hokuyo URG-04LX laser scanner [52] is also mounted
to the robot’s front, but it was left unused. By default the M1 is not equipped
with a camera; this was solved by the fixation of a Logitech C920 to its top.
The C920 is a common web camera with a 52 degrees diagonal FOV, 4:3 aspect
ratio, and 30 Frames-Per-Second (FPS) frame rate [53]. Figure 4.1 shows the
complete experimental setup of robot, controller notebook and camera.

31



Logitech c920
camera

Hokuyo URG-04LX
Laser scanner

Lenovo X201
notebook

Figure 4.1: Yamabico M1 differential drive robot, mounted with control com-
puter and front-facing camera. The pre-boarded laser scanner was left unused.

4.2 Software Components

DICH’s software modules were written in C++. Modules communicate using
the Robot Operating System (ROS) message passing framework [54]. Kubuntu,
a KDE-based variation of Ubuntu, was used as the main development and ex-
ecution environment [55]. OpenCV [56] was used for most of the basic image
manipulation tasks, while Intel’s Thread Building Blocks (TBB) [57] provided
function-level parallelization.

The implementation of the DICH method itself is divided across three mod-
ules. The Difference Image module computes difference images from visual
input coming directly from a camera or replayed form a recoding. The Image
Pairing module receives repeat difference images and pairs them teach differ-
ence images from an in-memory base. Finally, the Shift Estimation module
receives repeat difference images along with pairing information, returning shift
estimates between each teach / repeat image pair. The later modules can be
made to share a common in-memory teach record base, thus reducing memory
requirements. A number of minor modules was also implemented, to deal with
assistant tasks such as user interaction.

Different module configurations can be instantiated as node networks to
realize different use cases. These include driving the robot and collecting data
during the teach step, performing localization (and optionally steering) during
the repeat step, and computing ground truth data for performance evaluations.

32



4.2.1 Teach network

The teach network is responsible for driving the robot in response to operator
commands, and recording route data as a teach record. Figure 4.2 provides
a graphical representation of the network. Two user interface modules are re-
sponsible for collecting user commands from a terminal prompt and displaying
current sensor input in a GUI window. User commands are sent to a command
translator module that communicates with the steering module, which controls
the robot’s motors. Commands are also sent to a data recorder module, to be
saved to file as teach records along with visual input. In order to avoid recording
useless data, images are saved to disk only when the robot is in movement.

4.2.2 Repeat network

The repeat network is responsible for executing the DICH method on visual
records, collect live visual input during the repeat step, and/or steer the robot.
When started, the network first instantiates a single ROS node running the main
DICH modules, responsible for difference image computation, image pairing
and shift estimation, and loads a teach record to memory (Fig. 4.3). Then, if
running in offline mode, it loads a repeat record for synchronous processing,
writing image pairing and shift estimates to a log file (Fig. 4.4). If however
the network is started in online mode, each DICH module is assigned to its
own thread within the ROS node; this is done so that real-time performance
requirements can be met. Additionally, steering and camera control nodes are
started to establish communication with the robot’s hardware (Fig. 4.5).

4.2.3 Ground truth network

Ground truth data for test sessions (Chapter 5) was computed by manually
comparing the frames of teach and repeat step video recordings. A simple
GUI application was developed for this purpose, shown in Figure 4.6. Given
a pair of teach records representing a teach and a repeat step, the application
displays every τ th frame of the teach record; the user then chooses (using the
UP and DOWN keys) which repeat record frame best matches it, and (using
the LEFT and RIGHT keys) an optimal sliding that best matches the features
of both images. To make feature matching easier for the user, the selected
repeat record frame is superimposed to the teach frame at 50% transparency.
As matches are selected (using the ENTER key), records containing the matched
images’ indexes and sliding are simultaneously printed to console and saved to
a text file.

33



ROS Node

Steering
controller

Camera
controller

ROS Node

Differential
drive

Steering
commands

Camera
Images

Robot

ROS Node

Terminal
input

ROS Node

Data
recorder

Command
translator

ROS Node

Output
GUI

Images

User
Commands

Teach
record

Velocities

Images,
velocities

Figure 4.2: DICH teach network.

Image pairing

Shift estimation

Difference
images
(pointers)

ROS Node

Teach
difference
images

Difference images
Images Teach

record

Figure 4.3: DICH repeat network initial setup. A single ROS node is instan-
tiated to run the main DICH modules, and teach step records are loaded to a
memory area shared by the image pairing and shift estimation modules.

34



Image pairing

Replay images

Shift estimation
Last
replay
image

Image pairing parameters

Difference
image
(pointer)

ROS Node

Teach
difference
images

Difference images

Shift

Image pairing parameters

Images Repeat
record

Log file

Figure 4.4: DICH repeat network in offline mode. After the initial setup is
complete, images are read from a repeat record, localization estimates computed
and written to disk.

Image pairing

Replay images

Thread

Shift estimation
Last
replay
image

Thread

Image pairing parameters

Difference
image
(pointer)

ROS Node

Teach
difference
images

Steering

Difference images

Thread

ROS Node

Shift

Stop / go Differential
drive

Steering
commands

Camera

Images
Robot

ROS Node

Camera
controller

Figure 4.5: DICH repeat network in online mode. After the initial setup is
complete, each DICH module is assigned to its own thread, and additional
modules are started to enable communication with the robot’s hardware.

35



ROS Node

Terminal
output

ROS Node

GUI

User

Teach
record

Image
matcher Repeat

record

Ground truth
data

Images

Superimposed images

Matching commands

Image
matches

(a) Ground truth network

(b) Misaligned images (c) Aligned images

(d) Console output

Figure 4.6: Ground truth computation. (a) Network diagram. (b) For every
τ th teach record image, the user selects a repeat frame that best matches it. (c)
Then the user aligns the features of the superimposed image pair. (d) Selected
matches are printed to console and also saved to disk.

36



Chapter 5

Experiments

In order to evaluate DICH for both localization and navigation tasks, three sets
of experiments were performed. Localization experiments used DICH in offline
mode on videos collected in real-world environments, evaluating its ability to
recognize places and detect route deviation under differing environment and
viewpoint configurations. Navigation experiments used DICH in online mode
to evaluate its ability to correctly steer the robot towards a recorded route.
Finally, extremis offline experiments tested the limits of the method, matching
it against video records especially prepared to emphasize specific forms of input
variation. Unless otherwise stated, system parameters were set according to
Table 5.1 below.

A single experiment – also called test session, or simply test – is composed of
two trips over a selected route: a reference or teach step trip, and a comparison
or repeat step trip. During teach step trips the robot was always controlled
by a human operator. Repeat trips for localization and extremis experiments
were also manually driven; only in navigation experiments would the robot drive
itself. For each experiment, test results are reported as similarity maps and shift
maps, along with final estimates and manually computed ground truth data.

Similarity maps are composed by plotting all similarity values computed over
a repeat step on a global coordinate frame, where the horizontal axis represents
repeat image index, and the vertical axis, teach image index. Higher similar-
ity values are represented as darker shades of gray. A full line over the map
indicates image pairings, and a dashed line, ground truth values. Below each
similarity map an error graph shows pairing estimation error for each repeat im-
age: positive values indicate the estimated pairing was further along the teach
record than the ground truth, and negative values, estimates that were further
behind.

37



Table 5.1: List of DICH parameters and values used in experiments. Each pa-
rameter is accompanied by a short description and a reference to the Chapter 3
equation where it was first introduced.

Parameter Value Reference Description

δ 0.1 Eq. 3.2 Difference image threshold ratio

τ 5 Eq. 3.3 Difference image accumulation count

mJ 192 - Scaled difference image height

nJ 256 - Scaled difference image width

α 12 Eq. 3.4 Interest point padding

β 12 Eq. 3.7 Region-Of-Interest padding

wr 20 Eq. 3.9 Repeat image range

wt 50 Eq. 3.10 Teach image range

λ 0.98 Eq. 3.12 Image pairing trend update rate

wC 16 Eq. 3.15 Shift estimation column width

v 0.3 Eq. 3.18 Linear velocity

ω 0.1 Eq. 3.19 Angular velocity

Shift maps are constructed simply by plotting averaged shift vectors column-
wise. Higher shift likelihood values are represented as darker shades of gray. The
horizontal axis represents repeat image index, and the vertical axis, image shift.
A full line over the map indicates shift estimates, and a dashed line, ground
truth values. Positive shift values indicate left shift, and negative values, right
shift. Below each shift map an error graph shows shift estimation error for each
repeat image: positive values indicate the estimated shift was further left than
the ground truth, and negative values, estimates that were further right.

5.1 Localization Experiments

Localization experiments evaluated DICH’s performance in detecting and quan-
tifying teach route deviations. Accordingly, the robot was driven manually in
the repeat as well as teach steps, and video records were processed offline af-
terwards. Two separate environments were used for tests, one indoors, another
outdoors, described in Fig. 5.1 and Fig. 5.2 respectively.

38



A

B

C D

“Straight” session

Teach

Replay

w
in

do
w

w
in

do
w

3B

3D

“Turn right” session

Teach

Replay

Figure 5.1: Indoors experiment environment and localization test sessions. Cor-
ridor “3D” is illuminated from the outside through two windows, while “3B” is
artificially lighted. Points A, B, C and D are roughly 20m apart. Localization
sessions “straight” and “turn right” are performed in this environment.

“Direction” session

Teach

Replay

Passage
(flat terrain)

“Speed” session

Teach

Replay

Open area
(rough terrain)

Figure 5.2: Outdoors experiment environment and localization test sessions. A
relatively narrow passage between two buildings lead into a wider open area.
The passage’s floor was flat and smoother than open area’s, which was too
rough and would not allow the robot to reach very far. Localization sessions
“direction” and “speed” are performed in this environment.

39



5.1.1 Indoors Experiments

In the indoors environment, two corridors (labeled “3D” and “3B” after the
buildings hosting them) join perpendicularly at one end. Except for two win-
dows at corridor 3D, very little natural light enters the space. Movement sensors
control lighting on corridor 3B, but not on 3D. Test sessions “straight” and “turn
right” were recorded in this environment; see Figure 5.1 for an illustration.

Session “straight” started and ended in corridor 3D; it evaluates the method’s
resilience against moving elements and lighting variations within records. Trip
length was set to 20m, but in the teach step the robot started close to the left
wall and slowly drifted rightwards until stopping close to the right wall, while
in the repeat step the robot remained close to the left wall for the duration of
the route. The corridor was deserted in the teach step, but from frame 144
into the repeat step three people come from behind, staying on the right side
of the field of view until about frame 280. The corridor was initially dark, then
became brighter as the robot moved into windowed and artificially lighted re-
gions. Image pairing and shift estimation test results are shown in Figure 5.3
and Figure 5.4 respectively. Image pairing estimates agreed well with ground
truth data for the first two thirds of the route, then started to diverge; shift
estimates on the other hand remained close to ground truth values until the
end, occasionally diverging but coming back later on.

Session “turn right” emphasizes lighting changes between records and more
dynamic viewpoint changes in a restricted environment, as well as the ability to
match a shorter repeat step against a longer teach step, in a regular environment
with a higher chance of image mismatch. Both teach and repeat steps start at
the end of corridor 3D and continue through corridor 3B after a sharp turn right,
but in the teach step the robot goes much further; it also enters a initially dark
corridor 3B, with lights turning on automatically as it advances. This resulted
in sharp illumination differences between parts of the teach and repeat steps. No
moving elements were present in either step. Image pairing and shift estimation
test results are shown in Figure 5.5 and Figure 5.6 respectively. Image pairing
estimates never quite agreed with ground truth data, but never diverged either;
shift estimates deviated starkly from ground truth while the robot was turning
around the corner between corridors, but otherwise shift errors were small.

40



Image pairing

Estimated

Ground truth

Figure 5.3: Similarity map and image pairing estimate results for the indoors
“straight” localization test session. See description at beginning of the chapter
for interpretation details.

41



Image shift

Estimated

Ground truth

Figure 5.4: Shift map and image shift estimate results for the indoors “straight”
localization test session. See description at beginning of the chapter for inter-
pretation details.

42



Image pairing

Estimated

Ground truth

Figure 5.5: Similarity map and image pairing estimate results for the indoors
“turn right” localization test session.

43



Image shift

Estimated

Ground truth

Figure 5.6: Shift map and image shift estimate results for the indoors “turn
right” localization test session. See description at beginning of the chapter for
interpretation details.

44



5.1.2 Outdoors Experiments

In the outdoors environment, a relatively narrow passage between two buildings
led into a wider open area. The passage’s floor was rough enough to add a
noticeable amount of vibration to robot movement; the open area’s floor was
too rough for the robot to reach very far. Sessions “direction” and “speed” were
recorded in this environment; see Figure 5.2 for an illustration.

Session “direction” demonstrates the method’s ability to work outdoors un-
der increasing route divergence, presence of moving elements and travel length
differences. In the teach step the robot moved straight ahead for 20m, eventu-
ally reaching the patch of rough terrain in the open area. A pedestrian came
from behind the robot about from frame 49 into the step, staying on the left
side until about frame 220. In the repeat step the environment was deserted;
the robot advanced for just 15m to avoid the rough surface ahead, all the while
drifting to the right of the teach step route. Image pairing and shift estimation
test results are shown in Figure 5.7 and Figure 5.8 respectively. While neither
estimate ever quite agreed with ground truth values, errors remained low and
constant for the duration of the experiment.

Session “speed” shows how the method deals with speed differences between
steps. In the teach step the robot moved straight ahead for 15m at a speed
of 0.3m/s, whereas in the repeat step it moved at a speed 0.6m/s, while fol-
lowing essentially the same path. The environment was deserted through both
steps. Image pairing and shift estimation test results are shown in Figure 5.9
and Figure 5.10 respectively. As in the previous experiment, while a degree of
divergence between estimates and ground truth was always present, estimates
generally followed the trends indicated by ground truth data.

45



Image pairing

Estimated

Ground truth

Figure 5.7: Similarity map and image pairing estimate results for the outdoors
“direction” localization test session. See description at beginning of the chapter
for interpretation details.

46



Image shift

Estimated

Ground truth

Figure 5.8: Shift map and image shift estimate results for the outdoors “direc-
tion” localization test session. See description at beginning of the chapter for
interpretation details.

47



Image pairing

Estimated

Ground truth

Figure 5.9: Similarity map and image pairing estimate results for the outdoors
“speed” localization test session. See description at beginning of the chapter for
interpretation details.

48



Image shift

Estimated

Ground truth

Figure 5.10: Shift map and image shift estimate results for the outdoors “speed”
localization test session. See description at beginning of the chapter for inter-
pretation details.

49



5.2 Navigation Experiments

Localization experiments demonstrate DICH can correctly estimate location
relative to teach step routes despite input variations. However, steering adds a
feedback element that cannot be assessed from offline tests. Therefore indoors
and outdoors navigation experiments were also performed. An initial image
pairing trend l0 = (1, 0) was assumed in order to save time, but parameters
were otherwise the same as in localization experiments.

Indoors navigation experiments were performed in the same corridor 3D and
initial position as the “straight” localization test. Two tests were performed,
dubbed “maintain” and “converge”. Figure 5.11a illustrates the environment
and respective teach routes.

In the “maintain” experiment, for the teach step the robot was driven over
the environment keeping parallel to corridor walls until reaching a destination
point approximately 20m away from the starting position. In the repeat step
the robot set off already in the correct route, and was tasked with remaining
on it. Image pairing and shift estimation test results are shown in Figure 5.12
and Figure 5.13 respectively. Moreover Figure 5.14 shows odometry records for
teach and repeat steps. As can be seen the robot diverged a little from the teach
route towards the end, yet errors remained low for the extent of the repeat trip.

In the “converge” experiment, for the teach step the robot was driven over
the environment drawing a diagonal from a start position closer the left wall
to a destination closer to the right wall approximately 20m away. During the
repeat step the robot, initially advancing parallel to corridor walls, had to steer
itself towards the teach route, converging towards it. Image pairing and shift
estimation test results are shown in Figure 5.15 and Figure 5.16 respectively.
Moreover Figure 5.17 shows odometry records for teach and repeat steps. As
can be seen DICH guided the robot to quickly converge towards the correct
route, with errors kept to a minimum.

Outdoors experiments were performed on a bicycle parking lot behind build-
ing 3D. A single teach trip was recorded, late on the afternoon of a clear weather
day (2017-07-28 18:00 for precise date and time). Two replay trips then used this
record as reference: “evening”, early evening the next day (2016-07-29 19:00),
and “afternoon”, two days later at noon (2016-07-30 12:00). Figure 5.11b shows
a diagram of the environment and example images for each trip.

Image pairing, shift estimation and odometry results for session “evening”
are shown in Figure 5.18, Figure 5.19 and Figure 5.20 respectively. Results
were generally positive: DICH was able to correctly pair images even though
the camera automatically halved its framerate to account for the reduced illu-
mination (this is why the repeat axis of the similarity map is so shorter than the
teach axis). Shift estimates were more timid and varied more slowly than what
was found manually, but mostly it correctly followed the trend of the changes.

Image pairing and shift estimation and odometry results for session “af-
ternoon” are shown in Figure 5.21, Figure 5.22 and Figure 5.23 respectively.
Again image pairing proved very reliable, while shift estimates were compara-
tively timid but on the right track.

50



A B
Teach steps

“Converge”
window

window

3D

“Maintain”

(a) Indoors navigation environment

A

B

Teach route
07-28 18:00 07-29 19:00 07-30 12:00

(b) Outdoors navigation environment

Figure 5.11: Navigation experiments environments and teach routes. Sample
images illustrate environment appearance at various circled regions. (a) Corri-
dor 3D from indoors localization experiments was reused for indoors navigation
experiments. (b) A parking lot behind building 3D was used as outdoors nav-
igation environment. Images taken at different times of the day show how the
environment’s appearance varies in response to changes in illumination.

51



Image pairing

Estimated

Ground truth

Figure 5.12: Similarity map and image pairing estimate results for navigation
experiment “maintain”. See description at beginning of the chapter for inter-
pretation details.

52



Image shift

Estimated

Ground truth

Figure 5.13: Shift map and image shift estimate results for navigation experi-
ment “maintain”. See description at beginning of the chapter for interpretation
details.

Odometry

Teach

Repeat

Figure 5.14: Odometry results for navigation experiment “maintain”. Horizon-
tal axis is position along the length of the corridor, and vertical axis, along its
width. Dashed line indicates teach step route, and full line, repeat step driving.

53



Image pairing

Estimated

Ground truth

Figure 5.15: Similarity map and image pairing estimate results for navigation
experiment “converge”. See description at beginning of the chapter for inter-
pretation details.

54



Image shift

Estimated

Ground truth

Figure 5.16: Shift map and image shift estimate results for navigation experi-
ment “converge”. See description at beginning of the chapter for interpretation
details.

Odometry

Teach

Repeat

Figure 5.17: Odometry results for navigation experiment “converge”. Horizontal
axis is position along the length of the corridor, and vertical axis, along its width.
Dashed line indicates teach step route, and full line, repeat step driving.

55



Image pairing

Estimated

Ground truth

Figure 5.18: Similarity map and image pairing estimate results for navigation
experiment “evening”. See description at beginning of the chapter for interpre-
tation details.

56



Image shift

Estimated

Ground truth

Figure 5.19: Shift map and image shift estimate results for navigation experi-
ment “evening”. See description at beginning of the chapter for interpretation
details.

Odometry

Teach

Repeat

Figure 5.20: Odometry results for navigation experiment “evening”. Horizontal
axis is position along the length of the corridor, and vertical axis, along its
width. Dashed line indicates teach step route, and full line, repeat step driving.

57



Image pairing

Estimated

Ground truth

Figure 5.21: Similarity map and image pairing estimate results for navigation
experiment “afternoon”. See description at beginning of the chapter for inter-
pretation details.

58



Image shift

Estimated

Ground truth

Figure 5.22: Shift map and image shift estimate results for navigation experi-
ment “afternoon”. See description at beginning of the chapter for interpretation
details.

Odometry

Teach

Repeat

Figure 5.23: Odometry results for navigation experiment “afternoon”. Horizon-
tal axis is position along the length of the corridor, and vertical axis, along its
width. Dashed line indicates teach step route, and full line, repeat step driving.

59



5.3 Extremis Experiments

Experiments performed on real-world scenarios demonstrate how DICH per-
forms in practice. However, such cases tend to be simultaneously affected by
several different sources of input variation, making an analysis of their relative
effects difficult. For that reason an additional set of offline experiments was
performed, using video records prepared to only (or at least, mainly) contain
specific classes of differences. These make possible to separately evaluate the
performance impact of different variations, and determine at which point they
may cause a method breakdown – a runway divergence between estimates and
ground truth.

For each of the input variation classes identified below, several test sessions
were prepared. Each session is affected by the given variation to a specific degree.
Ground truth data was computed for each session, and the Mean Absolute Error
(MAE) between ground truth and estimates for both image pairing and shift
was computed. Similarity and shift maps for the smallest and most extreme
variations are also shown for comparison. In order to give a fuller account of
variation effect, similarity values were computed for the whole range of teach
and repeat difference images. Unless otherwise noted, all trips were recorded
along the “straight” route in corridor 3D of the indoors environment.

5.3.1 Contrast

In contrast experiments, a reference trip record would be edited by reducing
the contrast in record images by a given amount. Then a localization test
would be performed between original and edited records. Contrast reduction
was performed by the following formula:

I′ = I− c(I− I) (5.1)

Where I is a record image and 0 < c < 1 is a contrast reduction constant.
This formula has the effect of compressing pixel intensity variations around the

mean I by a ratio c; Figure 5.24 shows some examples. Experiments demonstrate
it’s possible to effect a breakdown of DICH estimates by feeding it images of
sufficiently dimmed contrast, however images have to be dimmed to the point
that they become almost unrecognizable; contrast differences as high as c =
0.6 have little to no effect on the method. Experimental results are shown in
Figure 5.25, and shift and similarity maps for c = 0.6 and c = 0.8 are show in
Figures 5.26, 5.27, 5.28 and 5.29 respectively.

60



(a) Original image (b) c = 0.6 (c) c = 0.8

Figure 5.24: Contrast deviation test example inputs. (a) Original image. (b)
Reduced contrast by ratio c = 0.6. (c) Reduced contrast by ratio c = 0.8.

Figure 5.25: Contrast deviation test results.

61



Image pairing

Estimated

Ground truth

Figure 5.26: Contrast difference c = 0.6 similarity map.

62



Image shift

Estimated

Ground truth

Figure 5.27: Contrast difference c = 0.6 shift map.

63



Image pairing

Estimated

Ground truth

Figure 5.28: Contrast difference c = 0.8 similarity map.

64



Image shift

Estimated

Ground truth

Figure 5.29: Contrast difference c = 0.8 shift map.

65



5.3.2 Occlusion

In occlusion experiments, a reference trip record was edited by adding a random
mask of a certain width w (given as a fraction of the visual field’s width) at the
center of record images, then a localization test was performed between original
and edited records. Example images can be seen in Figure 5.30. As in the
previous case, experiments show it is possible to effect a breakdown of DICH
estimates through occlusion alone, but it requires most of the visual field to be
covered. Experimental results are shown in Figure 5.31, and shift and similarity
maps for w = 0.1 and w = 0.6 are show in Figures 5.32, 5.33, 5.34 and 5.35
respectively.

(a) Original image (b) Occlusion w = 0.1 (c) Occlusion w = 0.6

Figure 5.30: Occlusion test example inputs. (a) Original image. (b) Occlusion
mask of width w = 0.1 pixels. (c) Occlusion mask of width w = 0.6 pixels.

66



Figure 5.31: Occlusion test results.

67



Image pairing

Estimated

Ground truth

Figure 5.32: Occlusion w = 0.1 similarity map.

68



Image shift

Estimated

Ground truth

Figure 5.33: Occlusion w = 0.1 shift map.

69



Image pairing

Estimated

Ground truth

Figure 5.34: Occlusion w = 0.6 similarity map.

70



Image shift

Estimated

Ground truth

Figure 5.35: Occlusion w = 0.6 shift map.

71



5.3.3 Angle

In angle difference experiments, the robot was driven over a straight route sev-
eral times. Before each trip the robot’s camera would be rotated leftward, devi-
ating from the robot’s advancing direction by a set angle, as in Figure 5.36a. Ex-
ample images collected at different deviation angles are shown in Figure 5.36b-d.
DICH proved surprisingly resilient to angle differences, with average error in-
creasing steadily but no breakdown until view angle was all but completely
different. Experimental results are shown in Figure 5.37, and shift and similar-
ity maps for 1o and 30o difference angles are show in Figures 5.38, 5.39, 5.40
and 5.41 respectively.

(a) Angle deviation setup

(b) 0o deviation (c) 5o deviation (d) 10o deviation

Figure 5.36: Angle deviation test setup. (a) Before each test the camera on
top of the robot is turned a certain amount, so its gaze (gray dashed lines) will
deviate from the robots movement direction (black dashed line) by an specific
angle. (b-d) Example images collected at different deviation angles.

72



Figure 5.37: Angle deviation test results.

73



Image pairing

Estimated

Ground truth

Figure 5.38: Angle difference 1o similarity map.

74



Image shift

Estimated

Ground truth

Figure 5.39: Angle difference 1o shift map.

75



Image pairing

Estimated

Ground truth

Figure 5.40: Angle difference 30o similarity map.

76



Image shift

Estimated

Ground truth

Figure 5.41: Angle difference 30o shift map.

77



5.3.4 Direction

While in angle difference experiments the robot would always advance in the
same direction, but “look” at different angles, in direction experiments the robot
always “looked” forward, but advanced at different angles relative to the cor-
ridor’s walls; see Figure 5.42a for an illustration. Because performing this ex-
periment in a corridor would cause the robot to run into walls too quickly, a
larger environment was selected for it: the entrance hall at the 2nd floor of
building 3B. Figure 5.42b-d shows some pictures taken from it. Again DICH
proved surprisingly resilient against changes in direction, breaking down only at
the largest direction differences. Experimental results are shown in Figure 5.43,
and shift and similarity maps for 1o and 30o direction differences are show in
Figures 5.44, 5.45, 5.46 and 5.47 respectively.

(a) Angle deviation setup

(b) 0o deviation (c) 10o deviation (d) 30o deviation

Figure 5.42: Direction deviation test setup.

78



Figure 5.43: Direction deviation test results.

79



Image pairing

Estimated

Ground truth

Figure 5.44: Direction deviation 1o similarity map.

80



Image shift

Estimated

Ground truth

Figure 5.45: Direction deviation 1o shift map.

81



Image pairing

Estimated

Ground truth

Figure 5.46: Direction deviation 30o similarity map.

82



Image shift

Estimated

Ground truth

Figure 5.47: Direction deviation 30o shift map.

83



Chapter 6

Discussion

In this chapter the experimental results previously reported are discussed, being
interpreted in terms of DICH features. From this the architecture’s strengths
and weaknesses are derived. The chapter concludes with a discussion on possible
extensions and further research.

6.1 Interpretation of Results

In judging the experimental results reported in Chapter 5, it may be more con-
venient to start from the end, looking first into the extremis experiments. These
measure the effects of input variations across specific modes – namely, image
contrast, visual field occlusion, observation angle and direction of advancement.
Results show that as long as route differences are kept to a minimum, DICH can
withstand large input variations over any one mode and still produce consistent
localization estimates. Resilience against each variation mode can be linked to
specific DICH features.

Difference images are largely invariant to contrast differences, thus account-
ing for much of the robustness observed in contrast experiments. What dif-
ferences get through are further abstracted by the use of normalized cross-
correlation, which matches image elements more by their “shape” (i.e., the
phase component of the visual signal) than by their “values” (the magnitude
component). Only when contrast is reduced by 60% do the loss of visual infor-
mation starts to affect the method, and it’s not until it’s reduced by 80% that
it actually breaks down completely.

The use of Regions-of-Interest enables DICH to gracefully work around oc-
clusions: ROI’s assigned to occluding objects will fail to produce good matches,
and similarity estimates will be dominated by those ROI’s that fell on visible
landmarks. As long as the occluded area isn’t large enough to fit most ROI’s,
this remains true even if the occluding objects are more salient than the rest of
the image: what ROI’s can’t fit inside the occluded area will necessarily fall on
valid landmarks.

84



Angle differences are trivially accounted for by the use of visual search on
both the image pairing and shift estimation steps of DICH. While normalized
cross-correlation does not account for viewpoint yaw (i.e., rotation around the
vertical axis), on average its effects were insufficient to compromise the overall
method. The bias towards consistent trends in the computation of final pair-
ing and shift estimates also contributed for DICH’s robustness at times when
estimates became ambiguous.

Finally, direction differences are accounted for by the combination of Regions-
Of-Difference, visual search and trend estimation. The use of ROI’s reduce the
impact of relevant visual elements “falling off” image borders due to large view-
point differences, while visual search and trend estimation make possible to make
sense of even poor matches from landmarks recorded from different angles.

All these features contribute to enable successful localization and navigation,
as seen in the respective experiment sessions. The results for the “converge”
navigation experiment were especially positive: even after initially moving to-
wards a different direction, the robot was able to quickly converge towards the
teach route and remain close to it. This indicates that the sort of large direc-
tion differences engineered in some of the localization experiments are unlikely
to occur during navigation, since any deviation would be corrected well before
it was allowed to accumulate.

6.2 Contributions

The Difference Image Correspondence Hierarchy (DICH) is a monocular appear-
ance-based Visual Teach & Repeat (VT&R) method for indoors and outdoors
environments, resilient to illumination changes and the presence of moving el-
ements. It can perform localization and route-following, and can deal with the
kidnapped robot problem so long as the robot is left somewhere along a known
path. It occupies a rare niche in the VT&R literature, where all these features
are seldom seen together in a single system.

DICH is image-based, avoiding weaknesses related to visual features. It is
also virtually unique among VT&R systems in its explicit use of record history to
achieve estimation consistency – ambiguous and incorrect estimates are weeded
out by selecting sequences of estimates consistent over time. In most systems
this is a consequence from other constraints (such as the probabilistic prediction-
updating of the Monte Carlo approach [33]), but in DICH it is stated explicitly
from the beginning, and is at the heart of most method parts. Therefore, DICH
constitutes a comprehensive VT&R navigation solution for robots complying to
the most general specifications.

85



6.3 Strengths and Weaknesses

DICH presents several attractive features for system integrators building mobile
robotics solutions. The reliance on a single uncalibrated camera for visual input
makes it suitable to a large number of already-deployed platforms, requiring at
most a relatively inexpensive camera installation. Its ability to perform local-
ization and route following along known paths covers many useful use cases, the
teach-and-repeat approach makes it simple to configure. Its robustness makes
it applicable in a wide variety of environments. In short, DICH constitutes a
comprehensive Visual Teach & Repeat (VT&R) navigation solution for robots
with minimal specification requirements.

Moreover, DICH’s approach to the VT&R problem strikes a favorable bal-
ance between performance and theoretic principles. Starting from a few assump-
tions (consistent robot location over time, inputs correlating to movement) and
applying a set of common concepts (ROI’s, visual cross-correlation, trend esti-
mation) it manages to construct and architecture that is both computationally
light and robust. The use of concepts from human cognition and neuroscience
opens the possibility that DICH may eventually be applied to support research
in those fields.

Nevertheless DICH is not without its shortcomings. As currently defined, the
method includes a large number of free parameters, most of which lack a clear
estimation method. The current, empirically constructed value set proved suffi-
ciently accurate for experimental purposes, however it would still be preferable
if they could be optimized automatically from data sets, or at least estimated
from definite procedures. DICH also suffers from a rather limited environment
representation model. Its one-dimensional formulation may be sufficient for lo-
cation across known routes, but is unable to perform loop-closing or otherwise
locate the robot in bidimensional space.

6.4 Extensions and Further Research

DICH environment representation is purportedly modeled after human cognitive
maps, which are composed of places characterized by landmarks and connected
through paths. Difference images and their contents implicitly represent places
and landmarks respectively, while image order over a record stands in for paths.
What this model misses, however, is the possibility of branching paths: each
place can at most have one place “before” and another “after” it. This could be
addressed by stitching together trip records depending on departure and destina-
tion places, as illustrated in Figure 6.1.This would in turn require a mechanism
for managing teach records, planning paths in terms of record sequences and
combining selected records.

DICH can solve the kidnapped robot problem so long as the post-kidnapping
position is close enough to a known path. However this is a time-consuming
task; moreover, the question of path record selection hasn’t been addressed,
with records being selected manually in localization experiments. Both issues

86



teach 1

i

teach 2 iii

teach 3
ii

Figure 6.1: Implementing branching paths in DICH. Three teach records cover
intersecting paths over an environment. A repeat trip going from place (i) to
either places (ii) or (iii) could be performed by stitching either record 2 or 3 at
the end of record 1.

should be addressed in future research.
Work on DICH parameters should be a priority for further research. This

could be approached from three fronts: reducing the number of parameters,
perhaps by having some parameters be derived from others; methods for pa-
rameter optimization; and a review of human vision research to select “best”
values from psychophysiological experiments. This last option would have the
added benefit of possible new insights for further method improvements. An-
other goal for future research should be expanding environment representation
into a bidimensional model, and add the ability for performing loop-closing
detection.

87



Chapter 7

Conclusion

The Difference Image Correspondence Hierarchy (DICH) is a biologically in-
spired autonomous navigation method for differential drive robots operating
under the Visual Teach & Repeat paradigm. Its name comes from the use of
difference images as basic percept, searching correspondences between image
contents as main information processing operation, and a modular structure
organized as a hierarchy.

Autonomous navigation is the process by which a robot moves between de-
parture and destination points without further human control. It is subject to a
number of constraints, such as safety and effectiveness. At the bare minimum,
any robot navigation method should include some sort of environment repre-
sentation, and a way to locate robots relative to it. A wide variety of proposed
solutions to both problems exist, to the point that it may actually be difficult
to relate them all in a general model. DICH addresses this point by taking a
biologically inspired view of the localization problem. Self-location is a funda-
mental cognitive skill for living beings, therefore its study can provide relevant
insights and suggest methodological approaches for robotic localization, and by
extension autonomous navigation.

Visual processing in DICH is based on concepts from visual cognition: dif-
ference images mirror the movement bias of visual receptors, aROI’s are in-
spired in fixation points and scanpath theory, and image correlation takes after
convolution-based neural processing models. Spatial cognition meanwhile pro-
vides a basic framework for representing environments as collections of places,
characterized by landmarks, and connected through paths. Crucially, in accor-
dance to the premises of embodied cognition, none of these concepts are directly
represented in the architecture: landmarks influence the contents of difference
images, their differences ensure image pairing will correlate to robot position
along places, and image ordering in memory follows the position of respective
viewpoints along paths, but never does DICH equates these proxy inputs to the
physical quantities from which they originate. This is an important philosophi-
cal aspect, which is not aways observed as it should.

Being completely reliant on visual information for localization, DICH can be

88



classified along appearance-based navigation methods, which are ideally suited
for Visual Teach & Repeat (VT&R) navigation. VT&R navigation is performed
in two steps, called “teach” and “repeat”. During the teach step a robot is
driven over a route by a human operator, collecting a video record of the route
in the process. Then in the repeat step it must retrace the route, using the
video record as reference. DICH is a monocular image-based method shown to
be effective both indoors and outdoors. It can perform localization and route-
following along, and can deal with the kidnapped robot problem so long as the
robot is left somewhere along a known path. It occupies a rare niche in the
VT&R literature, where all these features are seldom seen together in a single
system.

DICH navigation can be divided in four steps. First, difference images are
computed from both teach step video records and live camera images: these
encode changes to visual input over time. Teach and repeat difference images are
compared to establish an image pairing trend. Image pairs are then inspected
for shift, the apparent sliding of one image’s visual elements relative to the
other. Finally pairing and shift information are used to steer the robot. These
four steps are repeated in sequence until the robot reaches its destination.

DICH was implemented in C++, as a collection of Robot Operational Sys-
tem (ROS) nodes, running atop an Intel computer connected to a differential
drive robot. It was subjected to three different kinds of experiment, dubbed
localization, navigation and extremis. Localization extremis sought to demon-
strate the method’s capacity for localization under different conditions, both
indoors and outdoors. Navigation experiments evaluated the effect of steering
feedback into the method. Finally extremis experiments checked at which point
specific forms of input variation would cause the method to break down.

Currently the method’s main weakness is the need to set parameters manu-
ally for optimal performance. However, since it assumes a record of a previous
trip is available before operation starts, it may be possible to implement analysis
methods to estimate good initial values for image matching parameters. Extend-
ing the system environment representation is also a topic for future work.

89



Appendix A

Mathematical Constructs

A.1 Lists

A list is “a linearly ordered collection of values of the same general nature” [58].
A list is denoted by a bold-faced lowercase letter, e.g., a. The contents of a list
are denoted by a sequence of comma-separated elements surrounded in square
brackets, e.g., [1, 2, 3] or [a, b, c]. Lists can contain other lists, e.g., [[1, 2], [3, 4, 5]]
is a list containing two lists, one with two and the other with three elements.
The empty list is written [ ], and the singleton list (containing just one element
a) is written [a]. Unlike a set, a list may contain the same element more than
once: the list [a, a] contains two elements of same value, and is different from
the list [a] which contains only one. Besides being denoted explicitly, lists can
also be defined as generative expressions: the expression [i | 0 ≤ i < 10] is the
list of all integer values from 0 to 9, inclusive.

The length of a list a is the number of elements it contains, and is denoted |a|.
Thus for a list a = [a0, a1, . . . , an−1] containing n elements, |a| = n. Individual
elements are referred by following the list letter with an offset enclosed in square
brackets, so for example a[k] = ak. Alternatively a list item may be referred
by the list letter followed by an offset subscript, i.e., a[k] = ak. Sublists can be
denoted using ranges: for a range u:v such that u < v, a[u:v] = [au, . . . , av−1].
An open range covers all offsets up to either end left unspecified, i.e., a[:v] =
[a0, . . . , av−1] and a[u:] = [au, . . . , an−1].

Two lists can be joined together using the concatenation operator ++. For
two lists a = [a0, . . . , am] and b = [b0, . . . , bn], a ++ b = [a0, . . . , am, b0, . . . , bn].
Individual elements can be appended to either list end by combining concate-
nation with singleton lists, e.g., a ++ [c] = [a0, . . . , am, c]. Element deletion
is not defined explicitly, but list ranges can be used to remove elements from
either end, e.g., a[1:] = [a1, . . . , am], and list concatenation can be combined
with ranges to effect deletion of middle-list elements, e.g., a[:k] ++ A[k + 1:] =
[a0, . . . , ak−1, ak+1, . . . , am].

90



A.2 Vectors

For the purposes of this thesis a vector is defined as a list of numbers. Vectors
inherit all list notations and operations, with the only remark that a vector’s
length is called its dimension. When a vector is specified for the first time its di-
mension may be denoted as a superscript, e.g., an denotes a vector of dimension
n; care must be taken however so this isn’t mistaken by an exponentiation. The
term may also be used to refer to a vector’s offset, e.g., a[0] is the “first dimen-
sion” of a. A vector where all dimensions have the same value can be specified
as a bold-faced number with the dimension as superscript, e.g., if z = 0n then
|z| = n and z[i] = 0 for all 0 ≤ i < n.

Vector addition, subtraction, product and exponentiation are defined element-
wise, i.e., for two vectors an and bn:

a + b = [ai + bi | 0 ≤ i < n] (A.1)

a− b = [ai − bi | 0 ≤ i < n] (A.2)

ab = [aibi | 0 ≤ i < n] (A.3)

ax = [axi | 0 ≤ i < n] (A.4)

Vectors can also be shifted. Intuitively, shifting a vector moves its values
“left” or “right” by a given number of positions; values moved “over the edge”
are discarded, and positions left empty are filled with zeros. Formally, the left
shift and right shift operators are defined as:

a� k = a[k:] ++ 0k (A.5)

a� k = 0k ++ a[:n− k] (A.6)

A.3 Matrices

A matrix is defined here as an extension of the vector concept into two dimen-
sions. It is a natural way to represent bidimensional structure in data sets, such
as in images. DICH makes extensive use of matrices to represent visual inputs,
store and process information.

A matrix is denoted by a bold-faced capital letter, e.g., A, B, C, etc. When
a matrix is specified for the first time, a superscript may be used to indicate
its row and column dimensions: A5×6 indicates that matrix A has 5 rows and
6 columns. Individual matrix cells are denoted by following the matrix letter
with row and column offsets enclosed in the indexing operator [·], so e.g., A[i, j]
denotes the cell at the ith row and jth column of A. Offsets start at zero and
count top-to-bottom and left-to-right, so the top-left cell of A is A[0, 0] while
e.g., A[2, 1] refers to the cell at the third row and second column of A.

Individual rows are denoted by substituting “:” for the column offset at the
index operator, so e.g. A[2, :] refers to the 3rd row of A. Individual columns
are denoted similarly, e.g. A[:, 1] denotes the 2nd column of A. Subsections of
a matrix can be denoted by ranges at the matrix operator, so e.g., A[0 : 2, 3 : 6]

91



I5×6 =

rows

0

1

2

3

4
0    1    2    3    4    5

columns

I [0,0]

I [2,1]

I [4,5]

I [ : ,1]

I [2,: ]

I [0 :2,3 :6 ]

Figure A.1: Basic matrix notation. A matrix is denoted by a capital letter
with row and column sizes indicated as a superscript. Cells can be referenced
individually or grouped as rows, columns or bidimensional ranges.

denotes a range covering rows 0 and 1 and columns 3 to 5 of A. It should be
noticed that a range a : b denotes offsets from a to b− 1, so that any two ranges
a : b and b : c are disjoint. Figure A.1 illustrates these notations with examples.

Occasionally it may be cumbersome referring to a matrix cell using the index
notation A[i, j]. In such cases a cell may be denoted by the matrix letter in
lowercase, followed by row and column offsets in subscript. For example, A[i, j]
may be denoted as aij , or ai,j if a clear separation between offsets is warranted.

Most matrices are numeric constructs, but some matrices are defined analyt-
ically in terms of a generative function. For a matrix A where every cell value
is defined as A[i, j] = f(i, j) for 0 ≤ i < m and 0 ≤ j < n, A may be defined in
analytic notation as Am×n = [aij = f(i, j)].

Addition and subtraction are defined for matrices element-wise, i.e.:

Am×n + Bm×n = Cm×n = [cij = aij + bij ] (A.7)

Am×n −Bm×n = Cm×n = [cij = aij − bij ] (A.8)

Matrix multiplication is defined as an extension of the euclidean inner prod-
uct for two dimensions:

Am×p Bp×n = Cm×n =

[
cij =

p−1∑
k=0

ai,kbk,j

]
(A.9)

Moreover, element-wise matrix multiplication, also known as the Hadamard
product, is defined as:

Am×n ◦Bm×n = Cm×n = [cij = aijbij ] (A.10)

Element-wise matrix exponentiation, also called the Hadamard power, is
defined for any Am×n as:

A◦x = Cm×n =
[
cij = axij

]
(A.11)

92



The combination of Hadamard power and product can be used in lieu of
element-wise division, i.e., for any Am×n and Bm×n:

A ◦B◦−1 = Cm×n =

[
cij =

aij
bij

]
(A.12)

The concept of element-wise operations can be generalized to arbitrary func-
tions. For a function f and matrix Am×n, the element-wise application of f to
A is denoted as:

f◦(A) = Cm×n =
[
cij = f(aij)

]
(A.13)

There are also operations involving a matrix and a scalar. For a matrix
Am×n and scalar b, the following operations are defined:

A + b = Cm×n =
[
cij = aij + b

]
(A.14)

A− b = Cm×n =
[
cij = aij − b

]
(A.15)

Ab = Cm×n =
[
cij = aijb

]
(A.16)

A

b
= Cm×n =

[
cij =

aij
b

]
(A.17)

Operations behave as expected in relation to commutativity and other arith-
metic properties, i.e., A + b = b+ A, b−A = −(A− b), etc.

Matrix operations also include some summary operations. The sum of all
elements of a matrix Am×n is defined as:∑

A =

m,n∑
i,j

A[i, j] (A.18)

The arithmetic mean (or simply the mean) is defined as:

A =

∑
A

mn
(A.19)

And the magnitude, as an extension of the euclidean norm:

‖Am×n‖ =
√∑

A◦2 (A.20)

93



Appendix B

Images

B.1 Multi-channel images

While it was previously said that DICH uses matrices to represent images, some
additional considerations are required in the case of multi-channel images, such
as color images. The main issue is that while matrices are bidimensional con-
structs, multi-channel images span three dimensions: not only picture elements
(or pixels) are disposed in a matrix-like grid, each is composed of multiple val-
ues, corresponding to image channels. For example, in an RGB image, each
pixel contains three values, corresponding to the Red, Green and Blue channels.

Matrix operations can be extended to images if pixels are represented as
vectors. For example, let I be an image such that:

Im×n =
[
iij = [rij , gij , bij ]

]
(B.1)

Where rij , gij and bij correspond to the Red, Green and Blue channel values
of pixel iij . Then by the definitions of vector arithmetic operations (Eq. A.1,
Eq. A.2, Eq. A.3 and Eq. A.4) it’s clear that matrix addition (Eq. A.7), sub-
traction (Eq. A.8), multiplication (Eq. A.9), element-wise product (Eq. A.10)
and exponentiation (Eq. A.11) can all be seamlessly extended to images.

Matrix operations work on multi-channel images channel-wise – channels
are processed independently, as if they were stored in separate matrices. This
separation can be made explicit through the use of the channel function, defined
as:

Ck(Im×n) = Cm×n =
[
cij = ik | i = I[i, j]

]
(B.2)

The channel function is useful for defining operations that work on an image’s
own channels. For example, the luminance L(I) of image I is defined (according
to the CCIR 601 specification [59]) as:

L(I) = 0.299 R(I) + 0.587 G(I) + 0.114 B(I) (B.3)

94



R

G

B

+
0.587



0.299

0.114



I L

Figure B.1: Luminance image computation. The Red (R), Green (G) and Blue
(B) channels of RGB image I are extracted and summed after being multiplied
by appropriate weights. The result is luminance image L.

For R(I), G(I) and B(I) respectively the Red, Green and Blue channels of I
defined as:

R(I) = C0(I) (B.4)

G(I) = C1(I) (B.5)

B(I) = C2(I) (B.6)

Figure B.1 illustrates the operation.

B.2 Integral images

Also known as “summed area tables”, integral images are data structures for
quickly computing the sum of a rectangular range on a matrix [60]. Given a
matrix I, its integral image IΣ is defined as:

IΣ =

[
σij =

u≤i∑
u=0

v≤j∑
v=0

I[u, v]

]
(B.7)

In practice, IΣ can be quickly computed in a single pass over I, exploring
the fact that:

IΣ[i, j] = I[i, j] + IΣ[i, j − 1] + IΣ[i− 1, j]− IΣ[i− 1, j − 1] (B.8)

Once IΣ has been computed, it can be used to evaluate several measure-
ments over arbitrary rectangular matrix ranges in constant time. First, the
sum

∑
I[i0 : in, j0 : jn] can be computed as:∑
I[i0 : in, j0 : jn] = IΣ[i0, j0]− IΣ[i0, jn]− IΣ[in, j0] + IΣ[in, jn] (B.9)

95



The magnitude ‖I[i0 : in, j0 : jn]‖ can be computed over I2
Σ, the integral

image of I◦2:

‖I[i0 : in, j0 : jn]‖ =
√

I2
Σ[i0, j0]− I2

Σ[i0, jn]− I2
Σ[in, j0] + I2

Σ[in, jn] (B.10)

The mean I[i0 : in, j0 : jn] derives naturally from the sum:

I[i0 : in, j0 : jn] =

∑
I[i0 : in, j0 : jn]

(in − i0)(jn − j0)
(B.11)

The derivation of the standard deviation std(I[i0 : in, j0 : jn]) is a little more
involved, however. First, for Rm×n = I[i0 : in, j0 : jn], standard deviation is
defined as:

std(R) =

√∑
(R−R)◦2

mn
(B.12)

Applying the binomial theorem to (R−R)◦2 gives:

std(R) =

√√√√∑(
R◦2 + R

2
− 2 R R

)
mn

(B.13)

Given the identities of the sum operator and the definition of magnitude:

std(R) =

√
‖R‖2 +mnR

2
− 2 R

∑
R

mn
(B.14)

Separating the fraction terms we get:

std(R) =

√
‖R‖2
mn

+ R
2
− 2R

∑
R

mn
(B.15)

But since R =
∑

R
mn we have:

std(R) =

√
‖R‖2
mn

+ R
2
− 2R

2
=

√
‖R‖2
mn

−R
2

(B.16)

Finally, returning R = I[i0 : in, j0 : jn], m = (in − i0) and n = (jn − j0)
gives:

std(I[i0 : in, j0 : jn]) =

√
‖I[i0 : in, j0 : jn]‖2
(in − i0)(jn − j0)

− I[i0 : in, j0 : jn]
2

(B.17)

Where ‖I[i0 : in, j0 : jn]‖ and I[i0 : in, j0 : jn] can be computed from integral
images as shown in Eq. B.10 and Eq. B.11.

96



B.3 Image correlation

Measuring the similarity between two images is a common task in computer
vision applications. A typical use case is template matching, where a template
TmT×nT is searched for a best match across an image ImI×nI , such that mT <
mI and nT < nI . Template matching is usually performed by using normalized
cross-correlation [61] to construct a map of similarities between T and I at every
possible offset:

Ncc(T, I) =

cij =

∑[
(T−T) ◦ (Iij − Iij)

]
std(T)std(Iij)

 (B.18)

Where Iij = I[i : i + mT , j : j + nT ]. The coordinates of the best match
between template and image are the coordinates of the highest value at the
similarity map:

(i∗, j∗) = arg maxNcc(T, I) (B.19)

As it is defined, Eq. B.18 can be expensive to evaluate, even if integral

images are used to speed up the computation of Iij and std(Iij). However, its
expression can be simplified if T is replaced with a normalized template N (T)
such that N (T) = 0 and std(N (T)) = 1:

N (T) =
T−T

‖T−T‖
(B.20)

Substituting N (T) for T in Eq. B.18 and applying appropriate summation
identities gives:

Ncc(T, I) =

[
cij =

∑
[N (T) ◦ Iij ]− Iij

∑
N (T)

std(Iij)

]
(B.21)

Which, given that
∑
N (T) = 0 , further reduces to:

Ncc(T, I) =

[
cij =

∑
[N (T) ◦ Iij ]

std(Iij)

]
(B.22)

Looking at the formula above, it’s clear that the numerator terms of all cij
could be computed as the cross-correlation N (T) ? I, whereas the denominator
terms could be given by:

D(I,mT × nT ) =
[
dij = std(I[i : i+mT , j : j + nT ])

]
(B.23)

Leading to the following definition:

Ncc(T, I) = (N (T) ? I) ◦D(I,mT × nT )◦−1 (B.24)

97



This alternate definition enables some useful optimizations – in particular,
the convolution theorem states that:

N (T) ? I = F−1(F(N (T))∗ ◦ F(I)) (B.25)

Where F(·) is the Fourier transform operator and ∗ denotes the complex
conjugate [62]. The use of fast Fourier transform algorithms and (where a
single visual input is to be cross-correlated several times, e.g. in a visual search
across a sequence of memory records) the caching of Fourier transforms can
significantly speed up computations.

98



Bibliography

[1] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Intro-
duction to autonomous mobile robots. MIT press, 2011.

[2] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT press, 2005.

[3] Iwan Ulrich and Illah Nourbakhsh. Appearance-based place recognition for
topological localization. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, volume 2, pages 1023–1029.
Ieee, 2000.

[4] Patrick Peruch, Jean Pailhous, and Christian Deutsch. How do we locate
ourselves on a map: A method for analyzing self-location processes. Acta
Psychologica, 61(1):71–88, 1986.

[5] Edvard I Moser, Emilio Kropff, and May-Britt Moser. Place cells, grid
cells, and the brain’s spatial representation system. Annu. Rev. Neurosci.,
31:69–89, 2008.

[6] Robert J Sternberg and Karin Sternberg. Cognitive psychology. Nelson
Education, 2015.

[7] Mark Wagner. The geometries of visual space. Psychology Press, 2006.

[8] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Ed-
vard I Moser. Microstructure of a spatial map in the entorhinal cortex.
Nature, 436(7052):801–806, 2005.

[9] Robert U Muller and John L Kubie. The effects of changes in the environ-
ment on the spatial firing of hippocampal complex-spike cells. J Neurosci,
7(7):1951–1968, 1987.

[10] Perry W Thorndyke. Distance estimation from cognitive maps. Cognitive
psychology, 13(4):526–550, 1981.

[11] Perry W Thorndyke and Barbara Hayes-Roth. Differences in spatial knowl-
edge acquired from maps and navigation. Cognitive psychology, 14(4):560–
589, 1982.

99



[12] Ian Moar and Gordon H Bower. Inconsistency in spatial knowledge. Mem-
ory & Cognition, 11(2):107–113, 1983.

[13] Alastair D Smith and Gillian Cohen. Memory for places: Routes, maps,
and object locations. Memory in the real world, pages 173–206, 2008.

[14] Tatjana Seizova-Cajic. The role of perceived relative position in pointing to
objects apparently shifted by depth-contrast. Spatial vision, 16(3):325–346,
2003.

[15] Helio Perroni Filho and Alberto Ferreira de Souza. On multichannel neu-
rons, with an application to template search. Journal of Network and
Innovative Computing, 2(1):10–21, 2014.

[16] H Perroni Filho and A Ohya. Mobile robot path drift estimation using
visual streams. In System Integration (SII), 2014 IEEE/SICE International
Symposium on, pages 192–197. IEEE, 2014.

[17] Helio Perroni Filho and Akihisa Ohya. Image correspondence based on
interest point correlation in difference streams: Method and applications to
mobile robot localization. Journal of Robotics and Mechatronics, 28(2):234–
241, 2016.

[18] Margaret Wilson. Six views of embodied cognition. Psychonomic bulletin
& review, 9(4):625–636, 2002.

[19] K. Pribram. Holonomic brain theory. Scholarpedia, 2(5):2735, 2007. revi-
sion #91358.

[20] K. Rayner and M. Castelhano. Eye movements. Scholarpedia, 2(10):3649,
2007. revision #126973.

[21] AV Samsonovich, ML Anderson, KV Anokhin, GA Ascoli, G Biswas,
GA Carpenter, B Chandrasekaran, A Chella, KA De Jong, S Franklin,
et al. Biologically inspired cognitive architectures. 2009.

[22] Olivier L Georgeon, James B Marshall, and Riccardo Manzotti. ECA: An
enactivist cognitive architecture based on sensorimotor modeling. Biologi-
cally Inspired Cognitive Architectures, 6:46–57, 2013.

[23] Tamas Madl, Stan Franklin, Ke Chen, and Robert Trappl. Spatial work-
ing memory in the lida cognitive architecture. In Proceedings of the 12th
international conference on cognitive modelling, pages 384–390, 2013.

[24] Bernard J Baars. The conscious access hypothesis: origins and recent
evidence. Trends in cognitive sciences, 6(1):47–52, 2002.

[25] Samuel Wintermute. Imagery in cognitive architecture: Representation
and control at multiple levels of abstraction. Cognitive Systems Research,
19:1–29, 2012.

100



[26] F. Bonin-Font, A. Ortiz, and G. Oliver. Visual navigation for mobile robots:
A survey. Journal of Intelligent and Robotic Systems, 53(3):263–296, nov
2008.

[27] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The slam
problem: A survey. In Proceedings of the 2008 Conference on Artificial In-
telligence Research and Development: Proceedings of the 11th International
Conference of the Catalan Association for Artificial Intelligence, pages 363–
371. IOS Press, 2008.

[28] Mark Cummins and Paul Newman. Highly scalable appearance-only slam-
fab-map 2.0. In Robotics: Science and Systems, volume 1, pages 12–18.
Seattle, USA, 2009.

[29] Michael J Milford and Gordon F Wyeth. Seqslam: Visual route-based
navigation for sunny summer days and stormy winter nights. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages
1643–1649. IEEE, 2012.

[30] Winston Churchill and Paul Newman. Experience-based navigation for
long-term localisation. The International Journal of Robotics Research,
32(14):1645–1661, 2013.

[31] Lee E Clement, Jonathan Kelly, and Timothy D Barfoot. Monocular visual
teach and repeat aided by local ground planarity. Proc. Field and Service
Robotics (FSR), 2015.

[32] Matthew Gadd and Paul Newman. A framework for infrastructure-free
warehouse navigation. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pages 3271–3278. IEEE, 2015.

[33] Mat́ıas Nitsche, Taihú Pire, Tomáš Krajńık, Miroslav Kulich, and Marta
Mejail. Monte carlo localization for teach-and-repeat feature-based naviga-
tion. In Advances in Autonomous Robotics Systems, pages 13–24. Springer,
2014.

[34] Pablo De Cristóforis, Matias Nitsche, Tomáš Krajńık, Taihú Pire, and
Marta Mejail. Hybrid vision-based navigation for mobile robots in mixed in-
door/outdoor environments. Pattern Recognition Letters, 53:118–128, 2015.

[35] Martin Dörfler and Libor Přeučil. Employing observation angles in pose
recognition; application for teach-and-repeat robot navigation. In Mod-
elling and Simulation for Autonomous Systems, pages 165–172. Springer,
2015.

[36] Ming Liu, Cedric Pradalier, and Roland Siegwart. Visual homing from scale
with an uncalibrated omnidirectional camera. Robotics, IEEE Transactions
on, 29(6):1353–1365, 2013.

101



[37] Ralf Möller, Michael Horst, and David Fleer. Illumination tolerance for
visual navigation with the holistic min-warping method. Robotics, 3(1):22–
67, 2014.

[38] Paul Furgale and Timothy D Barfoot. Visual teach and repeat for long-
range rover autonomy. Journal of Field Robotics, 27(5):534–560, 2010.

[39] Michael Paton, François Pomerleau, and Timothy D Barfoot. Eyes in the
back of your head: Robust visual teach &amp; repeat using multiple stereo
cameras. In Computer and Robot Vision (CRV), 2015 12th Conference on,
pages 46–53. IEEE, 2015.

[40] Michael Paton, Kirk MacTavish, Chris J Ostafew, and Timothy D Barfoot.
It’s not easy seeing green: Lighting-resistant stereo visual teach & repeat
using color-constant images. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 1519–1526. IEEE, 2015.

[41] D. Burschka and G. Hager. Vision-based control of mobile robots. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE Interna-
tional Conference on, volume 2, pages 1707–1713, 2001.

[42] Shree K Nayar. Catadioptric omnidirectional camera. In Computer Vision
and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society
Conference on, pages 482–488. IEEE, 1997.

[43] Andrea Vedaldi. Invariant representations and learning for computer vi-
sion. ProQuest, 2008.

[44] Tobi Delbruck. Frame-free dynamic digital vision. In Proceedings of Intl.
Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life
and Society, pages 21–26, 2008.

[45] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128×128 120
db 15µs latency asynchronous temporal contrast vision sensor. Solid-State
Circuits, IEEE Journal of, 43(2):566–576, 2008.

[46] Claudio M Privitera and Lawrence W Stark. Algorithms for defining visual
regions-of-interest: Comparison with eye fixations. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 22(9):970–982, 2000.

[47] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[48] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Commun. ACM, 24(6):381–395, jun 1981.

[49] Thinkpad x201, x201s. Accessed: 2016-06-20.

[50] Intelligent robot laboratory – introduction. Accessed: 2016-06-20.

[51] T-frog project (japanese). Accessed: 2016-06-20.

102



[52] Scanning range finder (sokuiki sensor) – urg-04lx. Accessed: 2016-06-20.

[53] Hd pro webcam c920. Accessed: 2016-06-20.

[54] roscpp Overview: Callbacks and Spinning. Accessed: 2015-11-13.

[55] Kubuntu. Accessed: 2016-06-20.

[56] Opencv. Accessed: 2016-06-20.

[57] Intel threading building blocks. Accessed: 2015-11-13.

[58] Richard S. Bird. An introduction to the theory of lists. In Proceedings of
the NATO Advanced Study Institute on Logic of Programming and Calculi
of Discrete Design, pages 5–42, 1987.

[59] Charles Poynton. Digital video and HD: Algorithms and Interfaces. Else-
vier, 2012.

[60] Franklin C Crow. Summed-area tables for texture mapping. ACM SIG-
GRAPH computer graphics, 18(3):207–212, 1984.

[61] John P Lewis. Fast template matching. In Vision interface, volume 95,
pages 15–19, 1995.

[62] Bernd Girod, Marcus Andreas Magnor, and Hans-Peter Seidel. Vision,
Modeling, and Visualization 2004: Proceedings, November 16-18, 2004,
Standford, USA. IOS Press, 2004.

103



List of Published Papers

1. Helio Perroni Filho and Akihisa Ohya, “Mobile Robot Path Drift Esti-
mation using Visual Streams”, IEEE/SICE International Symposium on
System Integration (SII), Tokyo, Japan, December 13-15, 2014, Proceed-
ings, pp. 192-197. DOI: 10.1109/SII.2014.7028036

2. Helio Perroni Filho and Akihisa Ohya, “Image Correspondence Based on
Interest Point Correlation in Difference Streams: Method and Applica-
tions to Mobile Robot Localization”, Journal of Robotics & Mechatronics,
Volume 28, No. 2, 2016, pp. 234-241. DOI: 10.20965/jrm.2016.p0234

3. Helio Perroni Filho and Akihisa Ohya, “A Biologically Inspired Architec-
ture for Visual Self-location”, Biologically Inspired Cognitive Architec-
tures (BICA) for Young Scientists, 2016, pp. 297-303.
DOI: 10.1007/978-3-319-32554-5 38


	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Autonomous navigation
	Self-location
	Difference Image Correspondence Hierarchy (DICH)
	Research objectives

	Related Work
	Autonomous navigation
	Appearance-based navigation
	Visual Teach & Repeat
	Sensors
	Perception models
	Environments

	DICH and VT&R

	Difference Image Correspondence Hierarchy (DICH)
	Difference images
	Difference image pairing
	Regions-of-Interest
	Difference image similarity
	Similarity trends

	Shift estimation
	Steering

	Implementation
	Hardware Components
	Software Components
	Teach network
	Repeat network
	Ground truth network


	Experiments
	Localization Experiments
	Indoors Experiments
	Outdoors Experiments

	Navigation Experiments
	Extremis Experiments
	Contrast
	Occlusion
	Angle
	Direction


	Discussion
	Interpretation of Results
	Contributions
	Strengths and Weaknesses
	Extensions and Further Research

	Conclusion
	Mathematical Constructs
	Lists
	Vectors
	Matrices

	Images
	Multi-channel images
	Integral images
	Image correlation

	Bibliography

