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Abstract

Mini block construction is a kind of block construction representing a 3D model in a highly
abstracted way, i.e., in the way of using only a small number of blocks. Due to this abstract
representation, there are two distinctive characteristics that not only differ from previous
LEGO constructions, but also make the creation (design and assembly) of mini block con-
struction challenging.

Firstly, mini block construction has a nature and challenge of being designed in low-resolution
space. Basically, LEGO construction is resolution-free, i.e., being able to be designed in any
satisfying resolution. However, if allowing voxel-like blocks only to be used, previous LEGO
constructions are prone to be designed in relatively high-resolution space in order to achieve an
accurate representation. For mini block constructions, rather than an increase in resolution,
to make up for the inaccuracy in low-resolution space, a challenge of finding a reasonable
abstract representation in low-resolution space should be considered.

Secondly, mini block construction has a relatively high probability of suffering from fragile
assembly. Compared with previous LEGO constructions, parts in a mini block construction
are much more fragile because these parts are composed of much fewer blocks which cause
much fewer interconnections as well. To enjoy the assembly of mini block construction, a
well-designed set of instructions is crucial because fragile constructions of blocks might easily
fall to pieces.

For the challenge of being designed in low-resolution space, we propose a method to auto-
matically generate low-resolution voxel model by downsampling from a high-resolution voxel
model. To optimize downsampled model in shape, a voxel attribute of density is calculated
for each voxel in low-resolution voxel space. By employing voxel density in our method, we
achieve our goal in two steps. Firstly, we have observed some objective laws in efficiently
generating accurate shape features. Secondly, we move a step forward to further integrate
reasonably abstracted shape features into the accurate results. We also conducted a user
study and some experiments to evaluate low-resolution voxel models generated in different
methods. Statistics showed that, models generated by our method were comparatively highly
evaluated and won a common sense among different users.

During the design of mini block construction, we not only automatically abstract shape details
from an original input (e.g., 3D mesh model, 2D sketch), but also integrate quantization of
colors into abstracted shape if original color details are given. After generating low-resolution
voxel model, we further explore generation and beautification of block layout to support our
prototype design system for aesthetically pleasing mini block artwork.

For the assembly of mini block construction, we prefer a building guide which not merely
solves the problem of fragmentation, but also is user-friendly by well considering users’ assem-
bly habits. A simple layer-by-layer, bottom-up assembly does not work well, especially when
over-hanging regions exist. We propose a method for generating component-based building
instructions aiming at supporting users to assemble block models efficiently. Our method
contains two independent segmentations: segmentation at weakly-connected blocks and seg-
mentation for avoiding floating blocks. Based on these segmentations, the whole model is
divided into components. A set of building instructions is generated by deciding the assembly
order of components. The effectiveness of our method is demonstrated through a user study.
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Chapter 1

Introduction

Playing with LEGOr, in most cases, like young children’s block game, is enjoyed

freely and requires no cautious design in advance. Another popular way of enjoying

LEGO is assembling blocks following the guidebook of a commercial design.

By contrast, some LEGO players, not a few as well, are keen on assembling their

original LEGO designs. Such a LEGO player initially decides a prototype (e.g., a type

of animal or architecture) as what to be designed, and then starts to consider how to

present the prototype with LEGO blocks. When considering the representation, one

can choose to use many blocks to simulate the prototype as exactly as possible, or

choose to use as few blocks as possible to abstract the prototype. The second choice,

i.e., representing a prototype using as few blocks as possible, requires a skillful capture

of features in the prototype. Actually, it is extremely challenging to achieve a well-

represented design using only a small number of blocks for abstraction.

Back to the root problem of abstraction, predecessors’ way of exploring widely-

accepted abstraction approach was not smooth at all. The impressionist movement

in the history of western art is full of rebellion and courage. When reacting against

neoclassicism and romanticism, despite strong oppositions from critics, impressionist

painters (e.g., Claude Monet, Camille Pissarro, Pierre-Auguste Renoir) finally put

into practice their innovative ideas: recording an instantaneous impression of what

they saw in front of them, often working quickly in a sketch-like manner which blurred

the visual field. However, with the increasing acceptance by the public and by many

of the critics, the unified momentum of impressionist movement was becoming to

halfway, e.g., the impressionist’s lack of emphasis on drawing became to be doubted.

Many artists began to seek answers to their own questions about art. For some of

these artists (e.g., Georges Seurat, Paul Czanne, Paul Gauguin, Vincent van Gogh),

their subtly different approach such as the regularity in dots and strokes, the pure

colors, eventually lead to their art being described as Post-Impressionist.

1



Our abstract block representation shares some similarities with the abstraction

approach of Post-Impressionist: a regularly-shaped block corresponds to a dot or

a stroke; a colorful block has a pure color. However, to automatically design an

abstract block representation is still challenging, because even using the same ab-

straction approach, different paintings created by different painters are still different.

In this paper, we will present our way of exploring an abstract block representation

considering a common sense among different users.

1.1 Building Blocks of LEGO

As we all know, LEGO, is the world’s most famous block brand. The LEGO group

reported the following data in 2014 [40] that:

1. Globally over 15 million people visit the site of LEGO.com every month, the

majority returning every day.

2. The LEGO Club (for children aged four to 11 years) has a global membership

of nearly 5 million.

3. LEGO User Groups set up by “AFOLs” (“Adult Fans of LEGO”) have a total

of more than 200,000 registered members, and have their own websites, blogs

and discussion forums. The most popular LEGO fan blogs have more than

300,000 unique visitors each month.

4. The LEGO Group has actively developed relations with approximately 200

LEGO User Groups.

5. 12 LEGO Certified Professionals have been officially recognized by the LEGO

Group as trusted business partners.

LEGO is able to be as popular as mentioned above, because the LEGO Group

has done an amazing job creating interchangeable pieces simply snap together and

apart with no need for glue. A global LEGO subculture has developed since 1949,

a year when the LEGO Group began manufacturing the initial interlocking LEGO

bricks. Since the 1950s, to make LEGO more versatile, the LEGO Group has released

thousands of sets allowing pieces with more diversified usages, from telling story of

LEGO minifigures [38], to programming a multifunctional robot [37]. Over the years,

approximately 700 billion LEGO elements [40] have been manufactured, which is

enough for every person on earth to have an average of 94 LEGO elements [40]. Of
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course, some person might not need any; However, millions of LEGO fans hope to get

“one more piece”. Website like BrickRecycler.com [4] can accept new or used LEGO

pieces, sometimes might either donate or sell pieces to help pay for the recycling costs.

1.2 Mini Block Constructions

Building blocks of LEGO have a wide range of applications, e.g., professional LEGO

sculptures, entertainment activities, and rapid prototyping [57] that combines LEGO

pieces with customized 3D printing.

Building a professional LEGO sculpture might be a tough work for general people.

In most cases, professional LEGO sculptures are built by enthusiastic LEGO funs,

or by members of LEGO Certified Professional which is a community-based program

made up of adult LEGO hobbyists who have turned their passion for building and

creating with LEGO bricks into a full-time or part-time profession. Professional

LEGO sculptures can be very large and detailed. In May 2013, the largest model

ever created [11] was a 1:1 scale model of an X-wing fighter, displayed in New York,

made of over 5 million bricks.

Aiming at an entertainment for non-professional block players, instead of the

professional LEGO sculpture, we focus on the creation of a customized, small-scale

LEGO sculpture, which we called mini block construction. During the creation, we

prefer the use of block pieces exampled by LEGO bricks, i.e., pieces assumed to be

cuboid-like solids having the same height, as used in the first row of Fig.1.1. When

the scale of the LEGO sculpture becomes smaller, reducing the number of bricks helps

to save on cost and workload. Typical examples of mini block construction can be

found in a series of designs called “Nanoblock mini collection” [48], which appears in

a Japanese block brand called Nanoblock. Each design in this collection is assembled

with approximately 200 pieces. The average voxel resolution we have observed is

around 20 along the longest axis and around 4 along the depth axis. Brick length of

Nanoblock in each dimension is almost half of LEGO brick, making a design more

compact, portable and space-saving. Moreover, designs in this collection emphasize

regularity in layout, making products aesthetically pleasing as well as facilitating an

easy building using real block pieces. A basic regularity is that block pieces are placed

symmetrically for symmetrical parts.
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Figure 1.1: Mini block constructions commercially designed using cuboid-like bricks
(1st row, object of our study) or using free shape pieces (2nd row). (a) Nanoblock
NBC 082 [48]; (b) Nanoblock NBC 064 [48]; (c) Nanoblock NBC 034 [48]; (d) LEGO
40136 [39]; (e) LEGO 40093 [39]; (f) LEGO 30021 [39].

1.3 Motivations of Our Research on Mini Block

Constructions

The traditional way for a user to manually explore a well-designed block construction

is, try-and-error, by repeatedly assembling and disassembling tangible blocks, until

finally realizing an expected design. However, the problem is that, such a repeated

assembly experiment should be a time-consuming labor work, as well as making it

difficult to predict required block resources in advance.

In academic area, creation of block constructions using a computer-aided tool

solves above problems. For the creation in this way, available blocks are generally

LEGO bricks with their originally defined sizes. Typical research topics include,

1) the automatic/semi-automatic design of virtual block constructions, and 2) the

automatic generation of building instructions to guide the assembly using tangible

blocks.

Research on creating an ideal block construction is much more complicate than

child’s play. For an input object, a creation tool initially generates a voxel model

composed of cubic voxels monotone or colorful, then calculates a block layout (i.e.

block arrangement) telling how to replace voxel/voxels into LEGO bricks, and finally

shows building instructions step-by-step. For a long time, for professional LEGO
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players, designing a constructable, and strong, block model has been the mainstream.

Constructability tells whether all blocks are interconnected as one. Stability measures

whether a block model is weak, throughout the whole model, or at certain spots. Up

to now, as far as we know, optimization of block layout optionally accounts for objects

shape, colors, symmetry, pose, and external load sometimes.

In recent years, like the fast fashion, the creation of customized block constructions

seems popular among amateur LEGO players. Mini block construction is one of these

kinds. Because a mini block construction is basically designed in low-resolution space,

a main challenge is to reasonably abstract a voxel model from a target 3D object.

Moreover, because a mini block construction is generally weak in its thin parts, to

avoid a suffering from fragile assembly, a reasonable segmentation of parts based on

block layout is crucial.

These new research topics driven by mini block construction are potentially im-

portant and expected to grow. If the low-resolution abstraction from a target 3D

object can be solved, a 2D abstraction for image processing can also benefit. If an

assembly free from fragile block structure is available, more applications can be ex-

pected in the automatic assembly controlled by robots with cube-like modules, e.g.,

self-assembling robot of Roombots [71].

Currently, we aim at building a user-friendly system for the computer-aided cre-

ation of mini block constructions. Our prototype system at present is developed from

our previously built demo system [84]. The effectiveness of our method is demon-

strated through quantitative comparisons with other tools as well as several user

studies. Our main research contributions are as follows:

1. For the convenient design of mini block construction, fill a 3D low-resolution

voxelization gap by considering an automatic multi-degree abstraction.

2. For the aesthetically pleasing design of mini block construction, optimize the

block layout while additionally accounting for symmetry in shape.

3. For the efficient assembly of mini block construction, provide a novel method

for automatic generation of component-based building instructions.

4. Newly build a prototype system to facilitate the user-friendly creation (design

and assembly) of mini block construction, especially for attracting people with

few or no experience of LEGO.
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In the future, we hope to share our developed system among more users. Because

our system supports both original design and time-efficient assembly of mini block

construction, users can be increased in a way much faster. For example, users of

the first generation can explore their original designs, and rapidly assemble them as

presents for friends who might probably be users of the second generation. In the

final stage, we can also collect users’ virtual designs, to build a benchmark composed

of low-resolution block models, and to learn more data for a further improvement on

abstraction algorithm or for a more general academic usage.

1.4 Overview of Our Prototype System and Our

Approach

Previous designer systems for LEGO blocks can be roughly categorized into three

types: mouse based (e.g., LEGO Digital Designer [36], BlockCAD [3], Mike’s LEGO

CAD [34], Leo CAD [41], LSketchIt [67], Build with Chrome [20], Blocklizer [87], and

faBrickator [57]), multi-touch based [52], and immersive [23].

We have proposed a designing flow for mini block artwork [84] and have developed

a mouse-based prototype system as well. Our system automatically generates a col-

ored low-resolution voxel model from an input mesh model, as shown in Fig.1.2. The

user can also recolor the model by mapping sampled colors to block colors supported

in a block set. After that, repeated manual-editing and optimization are allowed

to generate a constructable block model considering both stability and symmetry.

During this repeated process, an interactive manual editing on the surface of a voxel

model is available for surface decoration. After new decoration, layout is re-optimized.

We also provide block layout editing, during which disconnected block groups are au-

tomatically detected and the user is notified by contrasting colors rendered for the

model. Finally, guided by our automatically generated building instructions, designed

mini block construction can be efficiently assembled using real blocks. For example,

it took us 19 minutes to build a cat in Fig.1.2(e).

There are two distinctive characteristics of mini block constructions: designed

in low-resolution space, assembled with few blocks. These characteristics make the

creation of mini block construction challenging, as well as making the computer-aided

design expected.

Designing in low-resolution space. This causes the challenge of finding a dis-

crete representation that is reasonably-abstracted from the prototype. In 3D space,
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Figure 1.2: Overview of our prototype system for mini block construction.

generating a discrete representation from a continuous input has always been the ba-

sic task of voxelization. However, it is a pity that previous voxelization methods [9]

[8] [13] [27] [29] seem good at precisely and efficiently “copy” (rather than “simplify”

or “abstract”) the shape from a continuous model to a voxelized model (usually in

high resolution). The aim of abstraction [51] is similar to that of object descrip-

tion [58]: to only provide enough information (i.e., main features of the shape) for

identifying an object as a member of some object class. At this point, abstraction is

different from two other similar tasks: simplification and non-photorealistic rendering

(NPR). Simplification aims at minimizing the deviation of the simplified object from

the original one; NPR aims at highlighting or amplifying main features. Tasks of

abstraction, simplification, and NPR have different advantages, therefore making a

masterly abstracted low-resolution voxel model tricky to generate.

We propose a low-resolution (hereinafter, low-res) voxel model generation method,

which aims at balancing accuracy and abstraction when downsampling a low-res voxel

model from a high-res one. This task is not easy for conventional downscaling meth-

ods, as shown in Fig.1.3. In our method, we assume that a high-res voxel model

is composed of features abstracted in three degrees: 1) features do not need to be

abstracted, i.e., they need to maintain accuracy in a low-res voxel model; 2) features

need to be moderately abstracted, i.e., they need to be balanced with accuracy ; 3)

features need to be deeply abstracted, i.e., they are not suitable for maintaining ac-

curacy. To distinguish and handle these features in a model’s shape, a voxel attribute

of density is calculated for each voxel in low-res voxel space at first, and then used for

deciding and generating our low-res results. To compare low-res voxel models gen-

erated in different methods, we conducted a user study to measure qualities of these

models and to further observe different users’ evaluations for the same model. Our

user study showed that although people with and without art backgrounds evaluated

abstract low-res voxel models differently, those models generated by our proposed

method received a relatively high evaluation from most users.
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Figure 1.3: Low-res voxel models generated using different downscaling methods.

Figure 1.4: Blocks floating in the air (red circles) in naive layer-by-layer building.

Assembling with few blocks. This might cause a suffering when assembling a

mini block construction fragile at extremely thin parts. Rather than a free assembly, it

is crucial to create a well-designed set of building instructions. To avoid fragmentation

during assembly, a smart strategy originating from assembling articulated objects [1]

[2] [24] is to segment a model into solid components, assemble each of them separately,

and finally combine them together. However, most block models do not have apparent

articulations. For user-friendly assembly, a block model should be divided at weakly-

connected blocks, and segmented into as few and as large components as possible to

avoid over-segmentation. Also, the preferred assembly orders among LEGO fans seem

to be “layer-by-layer and from bottom to top” [16], as these are natural orders for

building architecture. However, if building instructions are not carefully designed, as

shown in Fig.1.4, some blocks might have neither upward nor downward connections

during assembly. Such physically-impossible blocks, defined as floating blocks, are not

rare in instructions generated by existing LEGO design systems [16] [50] [73].

In line with the principles stated above, we propose a method for automatically

generating building instructions for mini block constructions. Our method initially

generates components, by masterly segmenting a model at the weakly-connected

blocks and at the incoherent spots identified by floating blocks. During this step,

it is ensured that no floating block exists in each component. For obtained compo-

nents, our method further generates a set of building instructions by deciding the

assembly order of the components based on our criteria for easy assembly. The ef-

fectiveness of our method is demonstrated through a quantitative comparison with
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other tools as well as a user study that proves users can assemble block models more

efficiently using our instructions.

1.5 Structure of Our Paper

The rest of the paper is organized as follows. In Chapter 2, we briefly introduce

our proposed method for low-res voxel model generation considering the balance of

accuracy and abstraction. In Chapter 3, focus on the block model design of mini block

construction, we summarize some state-of-the-art methods and our improvement [84]

on the automatic generation of artwork-like block model considering shape, color,

and block layout. In Chapter 4, focus on the assembly of mini block construction, we

introduce our generation of component-based building instructions [85] [86]. Finally,

in Chapter 5, we summarize the whole paper and discuss the future work.
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Chapter 2

Balance of Accuracy and
Abstraction in Generation of
Low-res Voxel Model

The low-res voxel model is a 3D model represented in a 3D raster space containing a

small number of voxels, as shown in Fig.2.1. A low-res voxel model includes only a

small number of voxels, making it beneficial for its wide use. For example, a low-res

voxel model satisfying certain physical constraints can be applied in LEGO design

that uses few blocks and takes little assembly time, therefore making playing LEGO

less expensive in terms of resources and time. Besides use in 3D, once projected to a

2D plane, a low-res voxel model generates 2D digital art that only handles a few pixels

on 2D canvas. Such art is less expensive in terms of display, making it similar with a

pixel art [31], which has been used in various graphics like those of characters in the

first of the Super Mario series of games, or those icons in older desktop environments

and in small-screen devices like mobile phones. Furthermore, volumetric graphics

like 3D low-res voxel model and its 2D versions are also quite beneficial to give full

play to the spatiotemporal resolution of volumetric displays using some emerging

techniques. For example, we can expect many of these volumetric graphics to be

displayed simultaneously in the air, when using emerging techniques like 3D midair

laser plasma display (using nanosecond laser [5] or the safer femtosecond laser [61]

to induce plasma in air for rendering), or pixie dust [60] (using acoustic beams of

standing waves to levitate small particles for graphics).

Driven by the requirement of designing a mini block construction, in this chapter,

we will introduce our automatic generation of low-res voxel model. Given a 3D mesh

model as the input prototype, we aim at outputting a low-res voxel model, which is

on the one hand similar to the input due to the expression of the same subject, and
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Figure 2.1: Example of manually edited low-res voxel model.

on the other hand different to the input due to the limited expressiveness in low-res

space. The requirement of similarity hopes for accuracy, while the requirement of

difference has necessity for abstraction. Therefore, we need a good balance between

accuracy and abstraction.

The rest of this chapter is organized as follows. In Section 2.1, we will introduce the

background of the research on voxel model generation, by reviewing some methods

and some previous theories related to the accuracy and abstraction of objects. In

Section 2.2, we summarize our main idea of optimizing accuracy. In Section 2.3,

we further discuss how to improve optimized shapes for abstraction. In Section 2.4

and 2.5, we introduce our user study and compare low-res voxel models generated by

different methods. In Section 2.6, we discuss some possible applications for using the

low-res voxel models.

2.1 Background Knowledge

Voxelization algorithms have long been researched for generating a set of voxels that

approximates a continuous geometric model. Previously published algorithms [9] [8]

[13] [27] [29] [42] [12] have mainly addressed various conventional issues: geometrical

accuracy, topological preciseness (e.g., separability between inside and outside of the

model), and fast calculation.

The goal of previous voxelization methods can be summarized as to precisely and

efficiently “copy” the shape from a continuous model to a voxelized model (usually

in high resolution, rather than in low resolution). Note that “copy” is used here

instead of “simplify”, and also instead of “abstract” which aims at a representation

of the shape to highly prioritize feature preservation. In fact, there is a profound

reason for this. Voxelization was born in the research area of volume graphics [30].
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In this area, voxelization is mainly used as a “pre-processing step” [13] that aims at

pre-converting a 3D geometry into a prototype volume representation to store data

in a 3D raster space. Prototype volume representation can be further handled by

volume visualization in “post-processing steps”, such as abstraction, interpretation,

and re-rendering. For this reason, abstraction for low-res representation has barely

been addressed during voxelization.

Compared with applying voxelization in an unusual way to the generation of low-

res voxel model, resolution reduction from high-res voxel model seems to be paid

more attention. To generate a low-res voxel model by resolution reduction, a general

solution mentioned in recent research [88] is to find a high-res discrete representation

of input mesh to facilitate the calculation of error metrics, unlike the classical nearest-

neighbor method [8] comparing directly with the input mesh. However, these two

types of methods are similar at maintaining accuracy (i.e., low error in shape) to a

target shape as much as possible. We call this rule accuracy first. On the other hand,

to make a low-res voxel model seem like a pixel art, methods must not mechanically

downsample for accuracy but move forward a step for representing the main shape

features in input. We call this feature-considering rule abstraction first.

Accuracy is generally maintained by minimizing a well-designed error metric in

shape, when shape details are simplified from original input. For example, a quadric

error metric is widely used in surface simplification [17] [26] to produce high quality

approximations of polygonal models. In a similar way, voxelized results are generally

evaluated by a distance metric describing shape variation in Euclidean space [8], or

by an objective function describing shape difference in voxel space [88].

Abstraction has been studied in many fields and disciplines. A thorough review

of abstraction has been given by Mehra et al. [51]. On the one hand, capturing the

main features is doubtlessly important for abstraction. Important shape features in

the input can be the large protrusions [46], and the characteristic curves or contours

[51]. However, as illustrated by Fig.1.3 in Chapter 1, important shape features are not

guaranteed when using conventional downscaling methods. On the other hand, over

abstraction should be avoided. For example, although some abstractive voxel models

(e.g., manually designed PolyCube [72] and automatically simplified PolyCube [46])

guarantee the existence of voxels for main features, these models are too abstractive

to be recognized as results resembling those original designs because even those basic

poses have been changed, not to mention those important curves.

To abstract masterly is no less tricky than a pixel art. Pixel art is proposed as a

metaphor, but pixel art was clearly, and strongly, justified by a concrete scenario (low
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resolution screens), which sets the rules and determined the objectives. In classical

pixel art, which was once manually designed by artists rather than by mechanically

downscaling higher resolution artwork, every pixel is carefully arranged, so such art

is marked by its minimalism and inherent modesty [31], i.e., ultimate simplicity and

strictness. Therefore, pixel art is not equivalent to a simple task of reducing resolution

for 2D image.

Our research aims at balancing accuracy and abstraction when downsampling

a low-res voxel model from a high-res one. To facilitate the design of mini block

construction, a low-res voxel space of 16 × 16 × 16 is considered. A high-res voxel

model of 128 × 128 × 128 is used because it is an empirical resolution [53] allowing

adequate accuracy to a mesh input.

2.2 Main Idea of Optimizing Accuracy

Given a surface model as the input mesh, generation of a low-res voxel model cor-

responds to a task of selectively marking voxels as 1 in an all-zero low-res 3D raster

space. In this paper, we assume the low-res 3D raster space to be 16×16×16. Voxels

in this 3D raster space can be divided into three types (intersecting-voxel exam-

pled by the red rectangle in Fig.2.2, inside-voxel exampled by the green rectangle in

Fig.2.2, and outside-voxel exampled by the blue rectangle in Fig.2.2) separately, with

each intersecting the surface model, or being completely inside or outside the surface

model. We make it a rule that all outside-voxels should be unmarked, i.e., being 0,

and all inside-voxels should be marked, i.e., being 1. The problem is whether each

intersecting-voxel should be 0 or 1. Each marking selection for all the intersecting-

voxels in 3D raster space corresponds to a possible output, i.e., a low-res voxel model

that allows a binary value assigned to each voxel. When choosing from all the possibil-

ities, accuracy is a basic requirement because the output voxel model should roughly

resemble the input mesh model in shape.

To summarize, our task is for an input mesh I, choosing an optimal (most accurate

in shape) output O among all possible low-res voxel models VLs generated in a

prescribed low-res 3D raster space of 16 × 16 × 16. The number of VLs, noted as

N , is decided by the number of intersecting-voxels. In low-res 3D raster space of

16× 16× 16, the number of intersecting-voxels for general inputs is not small and is

thought to be 100 here. It will make N larger than 2100, which is too large to find O

efficiently. To simplify the problem, we suggest a parameterization of VLs based on

a concept of density.
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Density of a voxel, as an important voxel attribute, was originally proposed for

reducing the aliasing when rendering a discrete model. A discrete model can be

generated from a continuous model using different methods [59] [69] [73], and will

then be used for different volume graphics applications (e.g., the collision detection

in flight simulations by discrete ray tracing, and the discrete normal estimation during

shading). However, between the discrete model and the continuous model, there is

always an aliasing which might cause maladies of voxel-based graphics. To solve

this problem, Wang and Kaufman [78] proposed a technique of “volume sampling”:

sampling and filtering the voxels in 3D space to calculate a continuous scale attribute

(e.g. a value ranging from 0 to 1) instead of a binary attribute (e.g. a value of 0

or 1) for each voxel. A voxel model generated with this grey scale voxel attribute is

named an alias-free volume model. This voxel attribute in an alias-free volume model

is able to reflect important shape characteristics in the original model and therefore

can be directly used in many volume graphics applications. Zhou et al. [88] recently

calculated a voxel attribute of “fullness” to satisfy low-res voxelization constraints

arising from the fabricability and geometric-fit objectives in an application of folding

3D objects into boxes. In this paper, we further discuss the possibility of using a

voxel attribute for obtaining a low-res voxel model satisfying not only geometric-fit

objectives for accuracy but also subjective requirements for abstraction.

Density of a voxel v in low-res 3D raster space tells us the proportion of v that is

contained by the input mesh I. It is defined as:

density(v) =
volume(VH ∩ v)

volume(v)
, (1)

where 0 ≤ density(v) ≤ 1, and VH is a high-res voxel model that can be treated

as a good representation of I. This concept is introduced as fullness in the research

of Zhou et al. [88], but it is calculated slightly differently here. Their resolution of

VH is not fixed, ranging from 60 × 80 × 80 to 100 × 100 × 100. However, due to

the fixed size (16× 16× 16) of our low-res 3D raster space, we generate VH fixed as

128 × 128 × 128, with a magnification equaling 8 as implemented in another widely

used voxelization tool [53]. To generate VH, a general voxelization method supporting

a high resolution will work. In this paper, we choose the solution of Binvox [53], which

combines a parity count method and the ray stabbing method described by Nooruddin

and Turk [59]. Generated VH is used to replace the I to efficiently calculate density

as shown in Fig.2.2.

When density is calculated for each v in low-res 3D raster space, we mark voxels by

setting a threshold t to filter intersecting-voxels with the same density, implemented
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Figure 2.2: Calculation of density illustrated in 2D.

as:

vox(v, t) =

{
0 if density(v) < t,
1 otherwise,

(2)

where 0 ≤ t ≤ 1. In this case, one t generates one VL, i.e., VLs are parameterized.

Note that, similar to Fig.2.2, each density(v) calculated in 3D is a multiple of 1/(8×
8× 8), i.e., 0/512, 1/512, 2/512, ..., 512/512. Therefore, t can be chosen from these

discrete values. In this paper, we discretize t as a multiple of 1/128 to encourage a

slight clustering of neighboring voxels with similar but probably different values of

density(v). Therefore, the total number of parameterized VLs is limited as (128+1).

Due to the parameterization of VLs, it becomes much more efficient to find the

output voxel model O optimized for accuracy (i.e., low error in shape). To find O,

each VL(t) should be compared with VH for error calculation. We treat difference

in shape as error. Difference obtained at each low-res voxel is called Evoxel, while

difference obtained throughout the whole low-res model is called Emodel. We define

Evoxel and Emodel as:

Evoxel(v, t) =

{
density(v) if vox(v, t) = 0,

1− density(v) otherwise,
(3)

Emodel(t) =
83
∑

v∈VL(t) Evoxel(v, t)

volume(VH)
, (4)

where 83 is the ratio of low-res voxel size to high-res voxel size, volume(VH) equals

the number of marked voxels in VH. For each VL(t) generated by filtering using a t
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as Eq.(2), we can calculate the Emodel as Eq.(4). Finally, the VL(t) with the minimal

Emodel is treated as our accuracy optimized output O.

2.3 Combination of Accuracy and Abstraction

In the section above, we have introduced our main idea of optimizing accuracy in

low-res voxel model. However, we still have no intuitive feeling of what the most

accurate result looks like. Moreover, generating a high-quality low-res voxel model

should take into account abstraction as well. Currently, it is still ambiguous for which

part and to what degree an abstraction is required. To make these both clear, in this

section, we raise three assumptions (including one lemma and one theorem) step by

step and further explain and develop them one by one.

2.3.1 Assumption for Accuracy

Eqs. 2-4 show this logic: t decides the value of a voxel v, further decides Evoxel of v,

and finally decides Emodel of the whole voxel model. Here a question comes up: how

does Emodel change with t? We give our answer by raising Lemma 1.

Lemma 1 When t = 0.5, Emodel obtains a global minimum. A concept map is

shown in Fig.2.3.

Proof. Let density(vi) = di where vi ∈ VL, and let f(t) =
∑

vi
Evoxel(vi, t).

When t1, t2 ∈ [0, 0.5), t1 < t2,

f(t1)− f(t2)

=
[ ∑
di<t1

di +
∑
di≥t1

(1− di)
]
−
[ ∑
di<t2

di +
∑
di≥t2

(1− di)
]

=
[ ∑
di<t1

di −
∑
di<t2

di
]

+
[ ∑
di≥t1

(1− di)−
∑
di≥t2

(1− di)
]

= −
∑

t1≤di<t2

di +
∑

t1≤di<t2

(1− di)

=
∑

t1≤di<t2<0.5

(1− 2di)

≥ 0
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Figure 2.3: Concept map for global minimum of Emodel.

=⇒When t increases from 0 to 0.5, f(t) will never increase.

When t1, t2 ∈ (0.5, 1], t1 < t2,

f(t1)− f(t2)

=
[ ∑
di<t1

di +
∑
di≥t1

(1− di)
]
−
[ ∑
di<t2

di +
∑
di≥t2

(1− di)
]

=
[ ∑
di<t1

di −
∑
di<t2

di
]

+
[ ∑
di≥t1

(1− di)−
∑
di≥t2

(1− di)
]

= −
∑

t1≤di<t2

di +
∑

t1≤di<t2

(1− di)

=
∑

0.5<t1≤di<t2

(1− 2di)

≤ 0

=⇒When t increases from 0.5 to 1, f(t) will never decrease.

In summary, when t = 0.5, f(t) obtains its global minimum. Because Emodel(t) ∝ f(t),

when t = 0.5, Emodel(t) also obtains its global minimum.

Lemma 1 tells that, theoretically, the optimally accurate output O can be obtained

by Eq.(2) when assigning t a value of 0.5. We call this threshold value Tdensity. By

knowing such a threshold value Tdensity, i.e., 0.5, optimization for accuracy becomes

extremely simple. Some examples generated in this way are shown in Fig.2.4.

However, as shown in Fig.2.4, we also found some unsatisfactory examples gener-

ated for models that have very thin parts. These examples explain that optimizing

merely accuracy is not all-powerful. We should also take into account abstraction.
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Figure 2.4: Low-res voxel models generated considering filtering voxels by a voxel
density threshold equaling 0.5.

2.3.2 Assumption for Moderate-Abstraction

Lemma 1 concludes that a threshold Tdensity exists and equals 0.5 when the optimiza-

tion is for accuracy. However, optimization of low-res output should take into account

abstraction as well. We want to know if there is a similar threshold T
′

density that is

useful for abstraction. To find it out, we raise Assumption 2. For Assumption 2, we

pre-generate a “voxel hull” for guiding an ingenious tradeoff between accuracy and

abstraction in shape. This idea is inspired by a previous study related to abstraction.

To preserve features at a desired level of abstraction, Mehra et al. [51] approximated

the input geometric model by embedding the input model in a user defined regular

grid and then extracting a “voxel hull”, which is the set of all grid voxels that inter-

sect any of the model triangles. This “voxel hull” is further used for extracting their

main contribution of a well abstracted vector-based representation of 3D geometry

for a man-made shape.

Assumption 2 A “voxel hull”, defined as a set of surface-voxels (i.e., voxels that

intersect any of the model triangles) in VH, includes enough shape details that are

important for recognition. Similar to using VH to find Tdensity for accuracy, we can use

“voxel hull” to find T
′

density for moderate-abstraction, which is an abstraction balanced

with accuracy. To facilitate the calculation, we extract outer visible voxels of VH to

approximate “voxel hull” of VH.
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Figure 2.5: 2D illustrations for density(v) in VH and “voxel hull”.

A simple approach to preserve features of models in Fig.2.4 is to use a t smaller

than the Tdensity and then mark voxels as Eq.(2). A proper decrease of t can increase

marked voxels moderately. At the same time, a thicker part normally gains a lower

growth rate than a thinner part, which can be explained as a feature-dependent

abstraction. However, to avoid inaccuracy, this t should not be too small because

when t is decreased, intersecting-voxels with relatively low density would be added.

Marking voxels with low density, rather than unmarking them, causes higher Evoxel

based on Eq.(3), therefore making an abstraction less accurate.

Now we know that, to balance accuracy and abstraction, the key point lies in

a proper threshold T
′

density. To further decide the value of T
′

density, an analysis of

density(v) in different models is required. Generally, a VH has at least one thick

area (see inside-voxel in Fig.2.2) causing the maximum of density(v) to equal the

highest value of 1. Besides, similar to the image of enlarged intersecting-voxel in

Fig.2.2 (i.e., the left of Fig.2.5), a VH normally includes surface-voxels with many

voxelized neighbors, which cause a relatively high average of density(v) calculated

in low-res voxel space. For these two reasons, we call this property of VH “high-

density property”. In contrast, density(v) calculated using “voxel hull” of a VH, i.e.,

density(v) calculated by changing VH in Eq.(1) into “voxel hull” of this VH, is much

lower than that directly calculated using this VH, as shown in Fig.2.5. For “voxel

hull”, after testing different mesh models, we observed that calculated density(v) is

always less than 0.5 and has a maximum that is not fixed for all models but is normally

around 0.2 or 0.3. We call this property of “voxel hull” “low-density property”. On

the basis of “low-density property”, we developed the following theorem.

19



Figure 2.6: Concept map of Emodel curve for an input voxel model with “low-density
property”.

Theorem 1 If an input model has a “low-density property” (i.e., max{density(v), v ∈
VL} < 0.5), then in the curve of Emodel calculated for this input model, the global

minimal of Emodel can be obtained when t = 0.5 (proved in Lemma 1) but not uniquely

by t = 0.5. More specifically, there is always a t1 that satisfies both t1 < 0.5 and

Emodel(t1) = Emodel(0.5) = min{Emodel(t), 0 ≤ t ≤ 1}. A concept map is shown in

Fig.2.6.

Proof. Let VH in Eq.(1) and Eq.(4) be a voxel model with “low-density property”, so

we have density(v) ≤ max{density(v), v ∈ VL} < 0.5. We can without doubt find a

d1 satisfying max{density(v), v ∈ VL} < d1 < 0.5.

∵ density(v) < d1 < 0.5 (“low-density property”)

∴ vox(d1) ≡ vox(0.5) ≡ 0 (Eq.(2))

∴ Emodel(d1) ≡ Emodel(0.5) (Eq.(3-4))

∵ Emodel(0.5) ≡ min{Emodel(t), 0 ≤ t ≤ 1} (Lemma 1)

∴ Emodel(d1) ≡ Emodel(0.5) ≡ min{Emodel(t), 0 ≤ t ≤ 1}
In summary, d1 is a qualified t1 < 0.5 that satisfies the theorem.

With Theorem 1, we can further decide the value of T
′

density for moderate-abstraction.

We have observed that “voxel hull” has a “low-density property”, therefore a thresh-

old equaling d1 (max{density(v), v ∈ VL} < d1 < 0.5) satisfies a “voxel hull” guided

accuracy (i.e., Emodel(d1) = min{Emodel(t), 0 ≤ t ≤ 1}). At the same time, a smaller

d1 (i.e., d1 → max{density(v), v ∈ VL}) contributes to an abstraction able to pre-

serve more features. Therefore, in our algorithm, we calculate T
′

density as a discrete

value of t approaching from the positive direction to the max{density(v), v ∈ VL},
which is the highest density(v) calculated considering an input of “voxel hull”. After
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Figure 2.7: Comparison between Tdensity optimized for accuracy (first row) and T
′

density

optimized for moderate-abstraction (second row). The second and third columns show
generated low-res results for two models. The first column shows calculated Tdensity

and T
′

density for two models. Tdensity (= 0.5) and T
′

density (< 0.5) are both calculated
as the first (i.e., the minimal) t resulting in the global minimal of Emodel. However,
their Emodel are calculated (see Eqs. 1-4) differently, i.e., using VH for Tdensity and
using “voxel hull” of VH for T

′

density.

calculating T
′

density on the basis of “voxel hull”, we apply T
′

density to filtering voxels in

VH again for abstracted results. Some examples obtained in this way are shown in

the second row of Fig.2.7.

2.3.3 Assumption for Deep-Abstraction

Basically, parts in a model are not constant in size: some are extremely thin like

limbs, and some are regularly thick like the body and head. Fig.2.7 shows that T
′

density

for moderate-abstraction can balance parts preserved for different sizes better than

Tdensity for accuracy. However, moderate-abstraction is still not enough for thin parts.

The horse in Fig.2.7 is such an example. In fact, because thin parts cause extremely

low density in low-res voxel space, their accuracy (low error) is almost impossible

to reasonably ensure. However, to ensure their recognizability (e.g., existence and

continuity), a thickness of one in low-res voxel space is generally enough. Therefore,
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Figure 2.8: Improving low-res voxel model by a skeleton.

we suggest a deep-abstraction that does not explicitly focus on the constraint of

accuracy but directly focuses on preserving the existence and continuity of thin parts.

Assumption 3 Optimized low-res voxel model can be further improved by append-

ing the shape of a skeleton into the output model, as illustrated in Fig.2.8.

Global marking by T
′

density fails to well present certain shape details because the

complexities in all parts crowded together on the surface. To solve this, many tech-

niques for simplification can be employed to handle the complexities. Here, we choose

to simplify them as a skeleton. We generate a skeleton in low-res voxel space in two

steps. First, a high-res skeleton is obtained from VH by using a topology-preserving

thinning method [54] [64] that ensures a maximum 26-connectivity in the result. To

preserve topology, this method erodes voxels by matching templates in 8 subitera-

tions. Second, the high-res skeleton is downsampled synchronously with VH. To

ensure the recognizability of the skeleton, instead of using T
′

density, we use a constant

filtering threshold of t → 0 (i.e., unmarking v only if density(v) = 0) independently

for the skeleton.

2.4 User Study

Basically, a common sense of abstraction depends on a good sense of aesthetic feeling

and probably a certain amount of professional training on observation of shape. Cor-
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rectly recognizing and measuring abstraction is challenging, not only for a computer,

but also for people with different academic and professional backgrounds. Therefore,

we conducted a user study to explore people’s recognition of abstract shapes. Our

user study is designed as follows. We asked 20 test users to obtain their answers

and feedback on questions involving some voxel models abstracted automatically.

Considering that abstraction might be affected by users’ professional training in art

(painting, sketching, sculpting, etc), we found 10 users with a background in art and

10 without. For input mesh models, we selected three typical ones from those com-

monly used in research of shapes. For each input, we generated low-res voxel models

viewed differently, by using six values of t for differences in thicknesses, and by ap-

pending a skeleton to each to ensure important parts. All tested models are shown

in Fig.2.9: the bunny is a common watertight shape requiring moderate-abstraction;

the cow is also a common watertight shape but requiring deep-abstraction; and the

fertility is a torus-like watertight shape. Each of the six low-res voxel models for a

input mesh model were graded by choosing a score from A(0.9− 1.0), B(0.8− 0.89),

C(0.7−0.79), D(0.6−0.69), and E(0−0.59). Considering the difficulty in evaluating

a low-res voxel model, we asked each test user to give three scores on the basis of

different criteria:

1. The number of features preserved.

2. The extent to which preserved features are similar to original sizes.

3. The total score compared with user’s ideal design.

As expected, we observed that different users evaluated the same low-res voxel

model differently. However, statistics revealed some interesting findings. We used

statistical hypothesis test, T-test, to help us make more reasonable predictions.

2.4.1 t-related Good Zone

As shown in Fig.2.10 for users’ ideal designs (criterion 3), although there are various

changes in shapes of six low-res voxel models, a similar trend is found throughout

test users’ average scores shown in the first row. Moreover, what is surprising is that

this trend well coincides with the curve of Emodel for T
′

density: users’ highest scores

in the first row of Fig.2.10, and the calculated minimal Emodel in the second row of

Fig.2.7, both mainly distribute at a t-related good zone. For the former, i.e., the first

row of Fig.2.10, t-related good zone is approximately [0.25, 0.5]. For the latter, i.e.,

the second row of Fig.2.7, t-related good zone equals [T
′

density, Tdensity], where Tdensity
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Figure 2.9: Test models used in user study. The first column of low-res voxel models
is generated using a widely used voxelization tool of Binvox [53]. The other columns
of low-res voxel models are downsampled from V H (voxelized from mesh model) in
two steps: 1) calculating density(v) as Eq.(1) and filtering density(v) as Eq.(2) using
the given t; and 2) appending skeleton extracted from V H.

always equals 0.5, T
′

density is not fixed for all our tested models but is coincidently

around 0.2 or 0.3. Due to this coincidence, we have reason to believe that [T
′

density, 0.5]

might be an ideal approximation of t-related good zone decided by test users. It also

means that we can suggest automatically generated low-res voxel models to a user by

considering this t-related good zone.

Because standard deviations shown in the second row of Fig.2.10 are not small, we

are not sure whether the coincidence above about average scores can be found among

more people or can only be found among our test users. To find the answer, we did

T-test to help infer whether the t-related good zone, i.e., [T
′

density, 0.5], works for more

people. T-test is normally used for statistically checking if two means (averages) are

reliably different from each other. In Fig.2.9, V L1 corresponds to Binvox (coincidently

being the same with a V L using t→ 0), V L5 uses t = 0.5, and V L6 uses t = T
′

density.

We hope to demonstrate that, test users’ average score for V L6, is not only reliably

higher than test users’ average score for V L1, but also not reliably different from

test users’ average score for V L5. Suppose Xi(i = 1, 2, ..., 6) to be a user’s score for

V Li(i = 1, 2, ..., 6), and X̄i to be a value averaged among different users’ Xi. We

expect our T-test results to be: X̄6 is reliably higher than X̄1, but is not reliably

different from X̄5.
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Figure 2.10: Statistics involving users’ ideal designs (criterion 3).

For each of the two user-groups (10 art users, 10 non-art users), we did a paired-

samples T-test to check the effectiveness of changing filtering threshold t in generating

low-res voxel models. As shown in Table 2.1, p-values and t-values colored in red (in

line with our expectation) pass our T-test, i.e., p-value < 0.05, t-value(9) > 1.8331.

We can find that, a change from t = T
′

density (for V L6) to t = 0.5 (for V L5) does

not significantly change users’ average score. However, in most cases, a change from

t = T
′

density (for V L6) to t→ 0 (for V L1) does lower the users’ average score, although

lowering in vary degrees considering different input mesh models and different users.

The only exception is the input mesh model of cow for non-art users, with a reduction

of average score not significant at all. Actually, it is caused by the larger standard

deviations of non-art users’ scores for cow, probably due to the difficulty in judging a

low-res voxel model losing important features like cow’s horns. In the next subsection,

we will further discuss the variation between two user-groups.

2.4.2 Variation between Two User-Groups

Now let us focus on the variation between two user-groups, which is shown in the

second row of Fig.2.10. Standard deviations of scores can be mostly observed as being

smaller among users with a background in art (the yellow bars) than among users
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Table 2.1: T-test results involving users’ ideal designs (criterion 3). For all the ob-
tained p-values and t-values, those colored in red pass our T-test, i.e., with significant
difference between the two scores of X̄i; and those colored in black fail in our T-test,
i.e., without significant difference between the two scores of X̄i.

Criterion3
X6-X1 X6-X5

Art Non-Art Art Non-Art

Bunny
t-value 4.557991 4.741079 1 0.480384
p-value 0.000685 0.000529 0.171718 0.321208

Cow
t-value 2.747787 1.568983 0.688247 0.490990
p-value 0.011279 0.075549 0.254323 0.317592

Fertility
t-value 3.938645 5.546414 0.612372 1
p-value 0.001706 0.000179 0.277723 0.171718

without a background in art (the green bars), especially for the cow which requires

deep-abstraction. This means that users with a background in art tend to evaluate the

same model more similarly. Considering that scores involved in this figure are given

on the basis of users’ ideal designs, we can also say that users with a background in

art have a better common aesthetic sense for ideal designs. It also means that we can

suggest automatically generated low-res voxel models highly evaluated by users with

a background in art, but leave more spaces for customized requirements from users

without a background in art.

The reason for the better common aesthetic sense of users with art backgrounds

can be found from scores for criteria 1 and 2. For criteria 1 and 2, we would like

to know which criterion, or whether both criteria, is/are responsible for the better

common aesthetic sense of users with art backgrounds. To find the answer, the T-test

for criteria 3 in Section 2.4.1 was done for each of the criteria 1 and 2. As shown in

Table 2.2, p-values and t-values colored in red pass our T-test.

Firstly, for art users’ group and non-art users’ group, T-test results are colored

identically in case of criterion 1, but sometimes differently in case of criterion 2.

Secondly, to further analyze the difference between t-values calculated for two user-

groups, as shown in Table 2.3, compared with criterion 1, criterion 2 results in relative

larger differences between two user-groups. These two evidences show that, the crite-

rion 2, i.e., recognition of proportion among features, rather than the criterion 1, i.e.,

recognition of features’ existences, should be more responsible for the better common

aesthetic sense of users with art backgrounds. This is not difficult to explain. Similar

scores can be given by users with art backgrounds probably due to their professional

training in observation of shapes.
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Figure 2.11: Statistics involving users’ recognitions of important parts (criterion 1)
and their sizes (criterion 2).
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Table 2.2: T-test results involving users’ recognitions of important parts (criterion
1) and their sizes (criterion 2). For all the obtained p-values and t-values, those
colored in red pass our T-test, i.e., with significant difference between the two scores
of X̄i; and those colored in black fail in our T-test, i.e., without significant difference
between the two scores of X̄i.

Criterion1 Criterion2
X6-X1 X6-X5 X6-X1 X6-X5

Art Non-Art Art Non-Art Art Non-Art Art Non-Art

Bunny
t-value 3.119120 3.793688 0.428571 0.801784 5.709971 4.071725 1.152332 2.236068
p-value 0.006168 0.002129 0.339155 0.221666 0.000145 0.001396 0.139436 0.026089

Cow
t-value 1.958679 3.077403 2.25 1.956984 2.104784 0.210905 1.768519 0.181237
p-value 0.040909 0.006598 0.025502 0.041021 0.032307 0.418830 0.055382 0.430099

Fertility
t-value 4.088311 5.400422 0.612372 0 2.631799 4.364309 1.463850 0.557086
p-value 0.001362 0.000216 0.277723 0.5 0.013639 0.000906 0.088634 0.295526

Table 2.3: Two user-groups’ differences calculated by t-values in Table 2.2.∣∣t-value(Art)− t-value(Non-Art)
∣∣ X6-X1 X6-X5

Criterion1 Criterion2 Criterion1 Criterion2

Bunny 0.674568 1.638246 0.373213 1.083736

Cow 1.118724 1.893879 0.293016 1.587282

Fertility 1.312111 1.73251 0.612372 0.906764

2.5 Results

We tested 9 models widely used in computer graphics. Values of T
′

density calculated

for these models are circled in Fig.2.12. For an intuitive comparison, in Fig.2.13,

we show low-res voxel models generated by a widely used voxelization tool Binvox

[53], as well as using three possible abstraction methods, i.e., accuracy (Tdensity =

0.5), moderate-abstraction (T
′

density < 0.5), and our proposed method that combines

moderate-abstraction with deep-abstraction. For each marked voxel in a low-res voxel

model, the calculated value of voxel error Evoxel (Eq.(3)) is associated with a specific

color in a color map varying from red (1) to blue (0).

We can find from Fig.2.13 that large-error voxels (red voxels), which imply a pos-

sible large inaccuracy in shape, are contained most in low-res voxel models generated

by Binvox [53] but are absolutely rare in low-res voxel models generated using the

three possible abstraction methods. Moreover, middle-error voxels (yellow and orange

voxels) are extremely effective in maintaining the existence and continuity of thin fea-

tures inside low-res voxel models (e.g., limbs of examples in Fig.2.12 excluding the

bunny). It seems that our method can maintain the existence and continuity of most
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Figure 2.12: T
′

density calculated for different models in Fig.2.13. Each T
′

density is chosen
as the t (discretized between 0 and 1 by 128), which starts to converge the Emodel of
“voxel hull”.

features (except for extremely tiny ones like ears of the cow and horse) as well as

balancing the accuracy and abstraction in shape.

2.6 Discussion of Application-Oriented Low-res Voxel

Model

The automatic generation of low-res voxel model discussed in this chapter mainly con-

siders some basic requirements on an abstracted shape represented in a low-res voxel

space. However, additional requirements might be needed for different applications

using the low-res voxel models. Embedding the generation of low-res voxel models

into some better defined user scenario will make it more challenging or interesting

even from a technical point of view. We can add more elements to the picture, e.g.

per-voxel colors (starting from a colored mesh), physical constraints (constructabil-

ity of a LEGO model, or in general other constrains to allow physical fabrication of

a kind or another), imagined artistic creation (multi-resolution display, other voxel

types instead of fully covered or fully empty), or, many possibilities, as long as the

choices’ justifications are rooted in something.
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Figure 2.13: Low-res voxel models generated in different ways.
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In the next chapter, we will discuss the specific application of using low-res voxel

model for our design of mini block construction.
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Chapter 3

Generation of Artwork-like Block
Model for Mini Block Construction

Mini block construction is a kind of well abstracted low-res block construction ex-

pecting aesthetically pleasing, artwork-like appearance and block layout. Similar with

previous LEGO constructions, mini block construction requires strong interconnec-

tion among blocks, i.e., a stable layout. However, what make mini block construction

different are the new requirements on highly abstracted shapes and colors and the

regularity in block layout considering symmetry in the model itself. We focus on

these requirements by first integrating quantization and smoothness of colors into ab-

straction. We further explore generation method for constructable layout satisfying

both stability and symmetry to support our prototype design system. Mini block

construction generated using different methods are evaluated on both stability and

symmetry of the block layout. To facilitate a justified and discriminating layout com-

parison using stability, though we consider factors similar to classical heuristics, we

experimentally optimize the weight of each factor for mini block construction.

The rest of this chapter is organized as follows. In Section 3.1, we will introduce

some background knowledge on the generation of block model. In Section 3.2, we

summarize our method of improving low-res voxel model in shape and color for mini

block construction. In Section 3.3, for a low-res voxel model, we will further discuss

how to generate block layout qualified for mini block construction. In Section 3.4, we

show some results for evaluating our method.

3.1 Background Knowledge

We will introduce the background knowledge which includes the following two aspects:

low-res voxel model generation for LEGO Models; layout generation for LEGO Mod-
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els.

3.1.1 Low-res Voxel Model Generation for LEGO Models

Compared with voxelization [59] [69] [73], downsampling has more consideration for

the generation of low-res discrete representation. However, research is still not mature

in terms of downsampling in 3D low-res voxel space considering both the shape and the

color, especially the color. As far as we know, currently, most low-res voxel models in

academic use are automatically generated by the tool of Binvox [53]. However, color

information is not handled. Results generated by Binvox [53] has been compared

with our low-res voxel model generation method in Chapter 2, with our method

demonstrated to be more suitable for results with accuracy and abstraction better

considered.

A coupled handling of shape and color is preferred, but is challenging and application-

oriented. Therefore, in most cases, handling of color is separated from processing of

shape. When designing a LEGO model, basically block colors are limited. This re-

striction makes the handling of color more challenging. Quantization [18] [32] has

proved to be effective in reducing the number of colors, and has been applied in our

previous study [84] for coloring low-res voxel model. Additionally, clustering is also

a straightforward choice. In one possible approach, one can simply map each 2D

pixel (or 3D voxel) to its nearest color in the LEGO color palette [74] [73]. However,

such naive method usually causes unacceptable artificial flaws: e.g., non-smoothness

artifacts could easily be introduced when naively clustering colors in pixel art images.

To reduce artifacts, Kuo et al. [33] formulated the problem of clustering colors in

pixel art images as a color labeling that takes into account the color smoothness, and

solved it using combinatorial optimization.

In automatically abstracted voxel model, there might probably be a kind of

problematic voxel, defined as a badly placed or colored voxel resulting in a non-

constructable block layout theoretically, i.e., causing disconnected parts which are

also referred to as dangling parts [33]. These dangling parts can be inspected and

handled along common boundary between two disconnected parts. In 2D pixel space,

Kuo et al. [33] classify all the possible patterns within the local 2 × 2 window into

four categories, and a set of pixel-level operations is proposed for each category to

fix the dangling problem by altering the color of pixel(s) or adding new one(s) in the

local window. Among all possible operations exhaustively searched, Kuo et al. [33]

select the one that minimizes an energy function defined by themselves.
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3.1.2 Layout Generation for LEGO Models

Finding a good block layout is a non-trivial and challenging problem [21], while ac-

counting for not only shape and color in the given voxel model, but also constructabil-

ity and stability in block structure.

For a long time, previous research [21] [63] [65] [73] [76] [80] have mainly focused

on automatic optimization of block placement. Heuristic-driven merging which origi-

nated in a group of mathematicians [21], is a classical layout optimization method. A

more stable block layout encourages classical factors [21] [65], such as larger blocks,

more connections, less collocated block edges, and more perpendicularly placed blocks

in successive layers (long axes of two overlapped blocks toward differently). Differ-

ent from the heuristic-based metrics for stability estimation, a force-based analysis

(exampled by LEGO bricks) [50] for estimating physical stability of a given LEGO

sculpture has also been applied in optimizing the block layout. However, due to the

probable difference in block design, blocks of different brands might require different

force models, which have not been discussed. Moreover, graph theory is applied in

recent studies [57] [63] [73] and promotes another layout optimization method based

on the detection and the repairing of flaws in layout. In summary, most recent stud-

ies optimize layout considering both heuristics and graph theory. A heuristic-driven

random greedy merging algorithm [73] can be used to increase connections and larger

blocks in the initialized layout. For constructability and more stable structure, they

further use an iterative local random re-layout to cope with disconnected block groups

and weak articulation points, both of which are detected in a connectivity graph rep-

resenting the initialized layout.

However, since classical factors for stable layout are not independent, it is difficult

to maximize all these factors in a layout at the same time. In some cases, random

greedy merging algorithm fails in generating layout encouraging perpendicularity (an

indicator [21] describing how well each block covers the previous layer perpendic-

ularly). To handle this, we explore another layout merging algorithm to increase

perpendicularity, as well as encouraging larger blocks especially near the surface. For

specific model, both of these two merging algorithms are tested in our system for

an optimal choice. On the other hand, current re-layout based on random merg-

ing is too unpredictable to control the optimized layout. Considering the symmetry

in mini block artwork, we introduce a layout symmetrization algorithm and a mild

reconnection algorithm for disconnected block groups. Combining these layout pro-

cessing algorithms, we discuss a layout generation method satisfying both stability

and symmetry.
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3.2 Low-res Voxel Model Generation for Mini Block

Construction

To better preserve shape features in the original mesh model, given a 3D mesh as

input, we can use our method introduced in Chapter 2 to generate monochrome low-

res voxel model. To satisfy the abstraction needs of different users, we provide two

recommended voxel models (both with deep-abstraction appended, but filtered using

different thresholds of T
′

density, and Tdensity = 0.5), as well as allowing the user to

adjust the threshold t for more customized abstractions.

For a low-res voxel model with abstracted shape, deciding the abstracted color

is not easy. Because a low-res voxel model is largely transformed from its original

shape, as observed in the head, legs and tail in Fig.3.1, finding an appropriate color

for each surface voxel is a challenging task. We found that point sampling of a certain

triangle color based on Euclidean distance causes many unexpected colors, depending

on the quality of the mesh. To inhibit this dependence, we employ color sampling

based on Manhattan distance. We first find triangles intersecting rays emitted from

the center of a target voxel to the centers of 26 neighboring voxels. We calculate

colors of not only voxels visible from outside but also their neighbors lying one voxel

inwards; we experimentally found that regarding surface voxels as two-voxel thick

works well in the subsequent process. For each surface voxel, we select the most

common color among the triangles as a voxel color. If two or more colors have the

same counts, we randomly choose one. Due to the variation in shape, some surface

voxels can get one or more correlated triangles, but some may not get any. We refer

to the former as an occupied voxel and the latter as an empty voxel. A step of color

propagation finally assigns each empty voxel a color chosen from neighboring occupied

voxels (inside a 3×3×3 cube centered at this empty voxel). To calculate the color of

empty voxel, each neighboring voxel is initially assigned a weight w = 4d, where d is

the Manhattan distance from the voxel’s center to the cube’s center. Such a weight

is then accumulated for each color. The color weighted most is chosen. If two colors

have the same weight, we randomly choose one.

To reduce the number of colors in voxelized model, we use a color quantization.

We implement color sampling earlier than color quantization in order to sample more

original colors. Our color quantization clusters sampled colors into an N -color set,

where N is the maximal number of colors allowed in the current design. The N -color

set is calculated according to whether the voxel color is sampled from texture or

surface color. For a textured model, N colors are extracted from the texture using
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Figure 3.1: Automatic color processing flow for the cat in Fig.1.2. The numbers of
valid colors and colored voxels in each voxel model are noted.

the method by Gerstner et al. [1]. For a mesh model with surface color, we simply

select N sampled colors processed by most voxels. Note that we select N colors as

our clustering centers, but not necessarily use all these N colors for the block artwork.

After clustering, these N colors can be remapped to any color in the block set. With

our prototype system, N is set to six by default because the standard color set for

Nanoblock contains six colors.

In summary, as shown in Fig.3.1, our color-assigning for voxelized result is com-

posed by: 1) coloring occupied voxels using color sampling ; 2) reducing the number

of colors among occupied voxels using color quantization (implemented in LAB color

space); 3) coloring empty voxels using color propagation.

3.3 Block Model Generation for Mini Block Con-

struction

Like previous studies on block layouts in LEGO constructions, we also consider a

standard LEGO brick family, consisting of bricks sized as L×W ×H(W = 1, 2;L =

1, 2, 3, 4, 6, 8;H = 1). We initially introduce some block layout processing algorithms

in Section 3.3.1. After that, in Section 3.3.2, by combining these algorithms optionally,

for a given low-res voxel model, we finally generate a block layout which is optimized

considering constructability, stability and symmetry.

3.3.1 Layout Processing Algorithms

Conventional layout processing algorithms have been summarized by Testuz et al.

[73] and Luo et al. [50]. Here we introduce our newly proposed three layout pro-

cessing algorithms: perpendicularly ordered merging, subpart connection, and layout

symmetrization.
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3.3.1.1 Perpendicularly Ordered Merging

A merging is legal if it ensures the original voxel colors visible outside and generates

a block in the block set. In a low-res voxel model, the first seed voxel chosen to be

merged (white rectangle in Fig.3.2) will greatly affect the merging trend in the entire

layer. Therefore, seed voxels need to be ordered. We introduce two ordering principles

both used in this algorithm, “surface-voxel preceding” and “layout alternating”. The

former merges surface voxels into larger blocks prior to invisible voxels. The latter

encourages perpendicularity in successive layers. For each layer, we merge voxels into

blocks as follows.

1. Store voxels in the model in an unmerged voxel list L.

2. Sort L using both principles, and choose, erase a seed voxel from top of L.

3. Find the legal set of neighbors with which the seed voxel can be merged.

4. Calculate the cost value developed by Testuz et al. [73], merge, and erase

neighbors from L.

5. Goto Step 3 unless no neighbor can be legally merged with the seed voxel.

6. Goto Step 2 unless L is empty.

In Step 2, according to our two ordering principles, the unmerged voxel list L is

sorted by considering two scores. One score is the number of neighbors able to be

merged with this voxel. Since surface voxels have fewer neighbors, the first principle

can be applied. The other score for the second principle involves a voxel’s coordinate

in a 3-dimensional array representing the voxel model. The score for voxel (x, y, z)

equals x for layer y = m and equals z for layer y = m + 1. An example of choosing

a seed voxel using these two scores is illustrated in Fig.3.2. Based on the two scores

used for the sorting, the voxel with fewer neighbors will be assigned a higher priority.

For two voxels with the same number of neighbors, we preferentially choose that

with smaller x or z. A naively ordered merging considering only the first principle is

compared with our perpendicularly ordered merging in Fig.3.2.
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Figure 3.2: A comparison of layouts in successive layers generated by naively ordered
merging (two layers on the left) and perpendicularly ordered merging (two layers on
the right). The first merging seed voxel is marked by a white square.

3.3.1.2 Subpart Reconnection

We rename disconnected block group as subpart for short. Our reconnection for sub-

parts is achieved by manipulating the separating section in the layout. A separating

section separating two blocks into disconnected subparts is a small section equivalent

to the side face shared by both blocks. Unlike the conventional method involving

locally-repeating random remerging [73], we first detect all the separating sections

in the current block layout then create a new link across each separating section to

connect the neighboring subparts. To change a separating section (orange line) into a

link (orange arrow), as shown in the local layouts in Fig.3.3, the following three steps

are required.

1. Between the two separated blocks, divide the larger block along edges of the

smaller block. Note that new edges (red lines) are created during this step.

2. Legally merge separated blocks to erase the separating section.

3. Erase new edges created in Step 1 by legally merging separated blocks.

Fig.3.3 shows that our subpart reconnection algorithm has an advantage in chang-

ing little of the original layout. This elegant manipulation is suitable for subpart

handling in a symmetric layout because fewer layout changes are preferred when

maintaining symmetry in the layout.

3.3.1.3 Layout Symmetrization

With this algorithm, symmetry in shape is automatically detected considering an as-

sumed axis of symmetry. Assumed axis of symmetry is simply calculated as the medial

axis of a bounding box for voxels in the current layer. Our layout symmetrization

algorithm for mirror symmetry can be summarized as follows.
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Figure 3.3: Combining subparts using random remerging algorithm [73] and our
subpart reconnection algorithm. To reconnect orange block, by using three steps, our
method results in less change in layout (black rectangles with dotted border).

Figure 3.4: An asymmetric layout (left) is modified to a symmetric layout (right).

1. Detect the axis of symmetry.

2. Scan and record block edges parallel to the x-axis (x-edge) or z-axis (z-edge).

3. If the axis of symmetry is parallel to the z-axis (or x-axis), for each recorded

z-edge (or x-edge), add a symmetrical z-edge (or x-edge) to split blocks.

4. If the erasing of an edge and its symmetrical edge both cause legal merging, do

it.

Our layout symmetrization algorithm can be used for beautifying layouts visible

outside and those invisible inside, as shown in Fig.3.4. It focuses mainly on mirror

symmetry; however, it may not ensure rotational symmetry. In this case, the user

must modify it manually to improve the layout.

3.3.2 Layout Generation Method for Mini Block Construc-
tion

In this subsection, we introduce our generation method for constructable layout sat-

isfying both stability and symmetry for mini block construction. The first step is

to optimize for a more stable layout. What we need is a reliable stability measure

sensitive to layout change to help make the optimal choice.
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3.3.2.1 Calculation of Stability for Mini Block Construction

To facilitate an intuitive layout evaluation, we introduce a layout stability measure

calculated as the average stability of all the blocks in the layout. The following

stability for each block is normalized to the range of 0 to 1.

Stability = 1− Cs/Ns + Co/(1 + No) + CeRe + CuRu + Cp/Rp + CnRn

Cs + Co + Ce + Cu + Cp + Cn

, (5)

Our stability measure for each block is modified from that defined by Petrovic

[65]. Petrovic defined a stability measure calculated for the block model, assuming

the shape of the model remains unchanged; therefore he minimized an index of total

number of blocks to encourage larger blocks in layout. However, since we prefer larger

blocks, we favor an index more sensitive to the change in block size. Compared with

Petrovic’s definition, indices used in Eq.(5) for each block remain almost unchanged

except for that of the total number of blocks. We define an index of block size Ns

instead, calculated as the volume of a block in voxel units. The notations Cs, Co, Ce,

Cu, Cp, and Cn are the weight parameters for the six indices of Ns, connection with

other blocks No, block edge Re, uncovered block surface Ru, perpendicularity Rp, and

alignment of neighboring blocks Rn, respectively.

Let Ci be index i’s weight parameter (i ∈ {s, o, e, u, p, n}). Here we determine

each Ci so that stability values become as discriminating as possible among different

layouts. The Eq.(5) shows that stability value is decided by the index i’s importance

which is proportional to Ci. Therefore, we define index i’s importance as the multiple

of Ci and a corresponding coefficient Ri. Because preference on each index is not

known, for fairness among indices, we simply assume that each index’s importance

is identical, i.e., CiRi = 1 for ∀i. We further define index i’s discrimination as Di,

and then have CiRi = Di, i.e., Ci = Di/Ri. From a statistical point of view, Ri

and Di are better to be averaged among different layouts. During our experiment,

we tested layouts generated for 11 low-resolution color models, considering different

merging methods (random greedy merging [73], naively ordered merging and per-

pendicularly ordered merging in Section 3.3.1). To separate the effect of each index,

we calculated the stability as Eq.(5) assuming one weight parameter as 1 and the

other five as 0. For index i, Ri and Di are selected separately as the average and

standard deviation of stabilities calculated for all the layouts. The values calculated

for Cs, Co, Ce, Cu, Cp, Cn are 0.866, 0.266, 0.850, 0.163, 1.778, 0.275 respectively. For

our tested layouts, the range of stability is widened from [0.569, 0.728] (using naive

weight parameter equaling 1) to [0.396, 0.714] (using above weight parameters).
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3.3.2.2 Proposed Layout Optimization

We use the following steps to optimize the layout based on our modified stability

measure. In the first step for layout initialization, we test for both random greedy

merging [73] and perpendicularly ordered merging and choose the layout with larger

stability. In the next step for layout constructability, we prefer a layout with fewer

subparts. However, considering the illegal voxels in the model, it is not guaranteed

that during this step all the subparts can be connected. After manually erasing the

illegality, random remerging [73] can well achieve a constructible layout. However,

due to the randomness, sometimes a great effort is needed for random remerging (e.g.,

67 loops tested for our flower model) but not for subpart reconnection. Therefore, our

optimization first iteratively performs subpart reconnection L1 times (L1 ≤ 5). If

it fails in constructability, the smaller block beside each separating section is split

smaller for extra L1 times of subpart reconnection. To further explore a constructible

layout with larger stability, we segment and remerge around weak articulation points,

the same as done by Testuz et al. [73]

Especially for a symmetric layout, we aim at a final symmetrization resulting

in less reduction of stability and fewer subparts. Subparts created in this step are

further connected using the subpart reconnection. To maintain symmetry as well,

layout change due to subpart reconnection is also handled symmetrically.

3.4 Results and Discussion

We developed a prototype interactive system to facilitate the design of a mini block

artwork. The prototype system was implemented using C++ and tested on a laptop

with a 2.40-GHz, Intel Core TM i5-2430M processor, 8 GB RAM, and NVIDIA NVS

4200M GPU. We evaluated our system in different steps of the processing flow. Test

mesh models, including those with texture (e.g., cat, flower and camera) and surface

color (e.g., Lego Man, headphone, and sunglass), were taken from free sources avail-

able online. Binvox [53] was used for low-resolution voxelization. For coloring, we

compared our algorithm with naive alternatives. For layout generation, we compared

our method with a similar previous method [73].

3.4.1 Coloring

To evaluate our system based on quantization and sampling, we tested meshes with

texture and surface color. Table 3.1 shows that our quantization can efficiently de-

41



crease the number of colors in a model; therefore, contributing to a more stable

layout. When implementing the nearest-neighbor sampling, color results can vary

when considering different searching areas and different distance measures. Fig.3.5

shows the comparison of three strategies: (a) Manhattan distance/6 neighbors, (b)

Manhattan distance/26 neighbors, (c) Euclidean distance/26 neighbors. We can find

that, results of (c) contain many artifacts, which might be caused by the mesh quality

in the input model, such as the mesh difference between the left and right eyeglasses.

However, this artifact can be removed using Manhattan distance instead, as shown

in the results of (a) and (b). Compared with (a), by searching more neighbors, (b)

avoids obviously wrong samplings. Therefore, (b) is finally adopted for our system.

Table 3.1: Layouts initialized for voxel models with (w/) or without (w/o) color
quantization.

w/ quantization Color Stability Subpart w/o quantization Color Stability Subpart

cat 6 0.583 5 cat 222 0.564 21

flower 5 0.643 1 flower 37 0.576 18

camera 6 0.621 2 camera 15 0.588 3

3.4.2 Layout Merging

We used nine colored mesh models as our test models. To show the influence of color

and low-resolution, we processed test models in two ways separately for “Color/Low”

(Model ID “1-11” in Fig.3.6 for the 9 test models, voxelized in a resolution of no

larger than 16 and well corrected, with 2 test models corrected both symmetrically

and asymmetrically for comparison) and “Black/High” (Model ID “12-26” in Fig.3.6

for 5 test models, colored in black and voxelized in resolutions of 16, 24, and 32). With

these processed models, we then applied the following three merging algorithms: con-

ventional algorithm of random greedy merging [73], and two of our layout merging

algorithms (naively ordered and perpendicularly ordered introduced in Section 3.3.1).

Fig.3.6 shows the stability and number of subparts for each voxel model. We can

find that naively ordered merging greatly reduces the subparts and layout alternat-

ing further increases stability, especially for “Black/High”. For “Black/High”, our

perpendicularly ordered merging performs better than the random greedy merging

method. However, for “Color/Low”, it is difficult to judge which algorithm performs

better. Therefore, in our optimization for mini block artwork, both of these merging

algorithms are tested for choosing a more stable layout.
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Figure 3.5: Automatically abstracted voxel models without manual editing, consid-
ering three naive alternatives for color sampling strategy.
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Theoretically, the coloring of voxels should only matter for those that are visible

on the exterior. By keeping the interior color variable, there should be the greatest

number of possible block layouts. However, our experimental results (Table 3.2) show

that among layouts created for different thicknesses, layouts generated considering the

surface color (thickness 1) are not always the most stable ones. This means that if we

can find a heuristic coloring of inner voxels, there will be still room for improvement

on stability of the initialized layout.

3.4.3 Layout Optimization

In regards to a comprehensive optimization for constructability and symmetry, we

compared our layout generation method discussed in Section 3.3.2 with the method

of Testuz et al. [73]. In our experiment for the models in Table 3.3, we found

that re-layout of 50 times did not ensure the removal of all the weak articulation

points. However, the final constructability was guaranteed by ensuring one subpart

in a model. Besides stability, we calculated another index involving all the edges in

a layout, called layout symmetry, to show the percentage of edges having a paired

edge in layout symmetrical to the assumed axis of symmetry parallel to the z-axis or

x-axis. We can find that symmetry of the original input model is better maintained

in the layout optimized with our method than that with the method of Testuz et al.

[73]. Though symmetrization is normally at the cost of stability, we can also find

that almost half of our optimization results (rows in Table 3.3 from “dolphin asym”

to “dolphin sym”) exhibite larger stability than those of the method of Testuz et al.

[73]. Some intuitive layout comparison can be viewed in Fig.3.7.
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Figure 3.6: Automatically abstracted voxel models without manual editing, consid-
ering three naive alternatives for color sampling strategy.

Figure 3.7: Automatically abstracted voxel models without manual editing, consid-
ering three naive alternatives for color sampling strategy.
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Table 3.2: Statistics (stability, number of subparts) for layouts merged considering
different color restrictions (thickness of colored surface). Layout with highest stability
for each model is marked in red. Note that blank cells indicating large thicknesses
can not be set for thin models.

Thick. = 1 Thick. = 2 Thick. = 3 Thick. = 4 Thick. = 5 Avg.

nightstand 0.600, 5 0.600, 5 0.600, 5 0.600, 5 0.600, 5 0.600, 5

soccer ball 0.591, 1 0.618, 1 0.622, 1 0.616, 1 0.622, 1 0.614, 1

camera 0.555, 1 0.557, 1 0.531, 1 0.531, 1 0.531, 1 0.541, 1

Lego Man sym 0.584, 5 0.535, 2 0.535, 2 0.551, 3

Lego Man asym 0.594, 6 0.541, 2 0.541, 2 0.559, 3

dolphin sym 0.714, 3 0.714, 3 0.714, 3

dolphin asym 0.658, 1 0.658, 1 0.658, 1

flower 0.606, 3 0.646, 3 0.626, 3

headphone 0.550, 4 0.526, 1 0.538, 3

cat 0.604, 1 0.595, 1 0.600, 1

sunglass 0.439, 2 0.439, 2

Table 3.3: Comparison of stability and symmetry between two layout optimization
methods. A 2-tuple for layout symmetry is shown considering that different models
may have different degrees of symmetry along z−axis and x−axis.

Model
Stability Symmetry (z−axis, x−axis)

Our method Testuz et al. Avg. Input Our method Testuz et al.

dolphin asym 0.684 0.619 0.652 0.911, 0.862 0.739, 0.333 0.582, 0.448

nightstand 0.580 0.529 0.555 1.000, 1.000 1.000, 0.481 0.726, 0.653

cat 0.624 0.593 0.609 1.000, 0.904 1.000, 0.542 0.952, 0.649

sunglass 0.454 0.433 0.444 1.000, 0.636 1.000, 0.357 0.581, 0.387

dolphin sym 0.700 0.683 0.692 1.000, 0.910 1.000, 0.568 0.876, 0.528

camera 0.555 0.555 0.555 0.845, 0.668 0.471, 0.466 0.471, 0.466

flower 0.643 0.647 0.645 0.855, 0.773 0.643, 0.690 0.595, 0.690

headphone 0.536 0.544 0.540 1.000, 1.000 1.000, 1.000 0.632, 1.000

Lego Man asym 0.549 0.560 0.555 1.000, 0.889 0.997, 0.676 0.668, 0.732

soccer ball 0.571 0.590 0.581 1.000, 0.990 1.000, 0.782 0.746, 0.642

Lego Man sym 0.550 0.583 0.567 1.000, 0.891 1.000, 0.647 0.714, 0.684
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Chapter 4

Component-based Building
Instructions for Assembly of Mini
Block Construction

A less breakable LEGO sculpture hopes for thickness throughout the model. To

ensure enough thickness at thin part, a LEGO sculpture is prone to be designed in

high resolution. However, for mini block construction which is normally designed in

low resolution, it is easy to be fragile at some spots because only a small number of

blocks can be used.

A LEGO sculpture with fragile constructions of blocks might easily fall to pieces

during assembly. For an enjoyable assembly time, a well-designed set of building

instructions is crucial. Although several studies related to LEGO exist, most of them

are focusing on designing block structures [25] [33] [50] [73] [84]. In this chapter,

we focus on the assembling order of blocks without adding any modification to the

structures of target model.

The rest of this chapter is organized as follows. In Section 4.1, we will introduce

some background knowledge on different kinds of assembly tasks, including block as-

sembly and some other general assembly tasks. In Section 4.2, we summarize our

method proposed for the automatic generation of component-based building instruc-

tions. In Section 4.3, we show some results of our method and a user study for

evaluating our generated building instructions.

4.1 Background Knowledge

Assembly tasks are common in manufacturing industry, especially for making ma-

chines. To facilitate the manufacturing industry, traditional design for products ba-
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sically ensures that, a multigraph data structure [22] for parts is maintained in the

conceptual product model. Such a data structure is powerful for generating smart

views to uncover occluded but important parts, therefore can effectively reduce the

burden of assembly. Generation of smart views (e.g., cutaway views [44], ghosted

views [14], or exploded views [43]) belongs to illustration techniques [77]. Beside of

smart views, other illustration techniques for assembly can also produce step-by-step

illustrations [2] , or illustrations displayed by projector [15] or AR equipment [79].

With the development of automatic or semi-automatic fabrication-aware design,

fabrication becomes less limited in manufacturing industry, but more in daily life.

Most of these designs have no clearly defined multigraph data structure. Typical

fabrication targets can be furniture [35], interlocking 3D puzzles [47] [82], papercraft

toys [55], plush toys [56], beady toys [28], and LEGO constructions [73] as well. The

popularizing of rapid prototyping even increases the possibility of such fabrication

[6]. However, different kinds of fabrication face different characteristics in structure.

When higher quality and higher efficiency are required for the fabrication, the assem-

bly might also be more challenging.

In this section, we will review the block assembly, and then introduce some aca-

demic findings for designing building instructions for a general assembly task.

4.1.1 Block Assembly

A commercial block product generally provides a manual for users to assemble it

smoothly. Virtual models of completed LEGO products are built concurrently with

the writing of the user instructions. Instructions in LEGO manuals can be observed

to be designed following certain rules.

1. As shown in Fig.4.1(a), LEGO manuals essentially contain a series of figure-

based static illustrations, corresponding to four typical types of views: package

view, group view, step view, block-list view.

2. The inner structure of a 3D block model is mainly illustrated by the step view,

which is similar with a cross-sectional view (e.g., cutaway illustration [44] and

exploded views [43]).

3. As shown in Fig.4.1(b), during the assembly of a 3D block model, step views

do not always share the same view angle.
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4. As shown in Fig.4.1(c), arrows of different colors are important in correctly

guiding the building operation. Generally, a black arrow means to insert the

block group shown inside the rectangle linked with this arrow; a red arrow

means to align or connect two pieces; two blue curved arrows forming a circle

means upside down or rotation.

5. As shown in the left image of Fig.4.1(d), in a large LEGO project, blocks

assembled in current step are highlighted as pieces with yellow borders.

6. As shown in the right images of Fig.4.1(d), similar block pieces easy to be

mistaken will be tagged with number, or put together for comparison.

Manual generation of building instructions requires design experience. Generation

of a user-friendly building instruction might require interactions among several tools

for many subtasks. A series of specialized applications (e.g., the modeling tool of

MLCAD [34], the model displaying tool of LDView [7], and the page layout tool of

LPub [66] for building instruction) use the LDraw [62] open-source library to repre-

sent block parts in 3D. These applications serve a large user community. Moreover,

to facilitate the manual task, a convenient user interface is essentially required for

free control of a block model (e.g., pose changing, viewing/hiding a block). There-

fore, some generalized tools for modeling (e.g., BrickSmith [70], Sketchup [45], and

SolidWorks [10]) are also shared among LEGO fans. These tools support the manual

creation of block building instructions as well.

Tools for automatically generated instructions mainly suffer from the lack of

grouping rules thought over by experienced designers, which is the biggest flaw in

assembling mini block construction that is fragile. Moreover, these tools basically

support a step-by-step ordered simulation (allowing rollback to earlier steps); how-

ever, they are still not well considered for efficient and user-friendly assembly. LEGO

Instruction Creator [16] and Testuz et al. [73] use a naive bottom-up building order

calculated layer-by-layer, which is common in block designing tools. However, such a

naive approach cannot handle the floating blocks illustrated in Fig.1.4. LEGO Digi-

tal Designer [36] is the free tool officially provided by LEGO, enabled for the manual

design of a LEGO construction and the automatic simulation of assembling it. The

automatic simulation considers the connection to earlier-built blocks and a change in

viewing angle to ensure that each upcoming block is visible. However, such a simu-

lation adds only one block in each step, and the added block might frequently come

in an unpredictable direction, making the assembly not user-friendly enough.
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Figure 4.1: Observations on LEGO Manuals [39]. Images are excerpts from manuals
of LEGO 60129, LEGO 30277, LEGO 75827, LEGO 42048, LEGO 21026.
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Block assembly can also be guided in new style. Gupta et al. [23] proposed a novel

Kinectr-based augmented system for guiding block assembly. Unlike conventional

systems using a block model as input, this augmented system requires the troublesome

tracking of a designer’s real-time modeling to generate a building guide.

4.1.2 Academic Findings for Designing Building Instructions

To produce visually comprehensible and accessible instructions for different assembly

tasks (e.g., block assembly, furniture assembly), Heiser et al. [24] and Agrawala et

al. [2] [1] have investigated a series of design principles through cognitive psychology

experiments. Among these design principles, one refers to the hierarchy and grouping

of parts. For example, disjoint parts are more likely to be segmented [2], and parts

are also typically grouped (e.g., the legs of a chair or the drawers of a desk) [75]. As

covered by Agrawala et al. [2], it is preferable that parts within a group be assembled

simultaneously or continuously.

Another important design principle discussed by Agrawala et al. [2] involves the

hierarchy of attachment, which is required at the higher levels for combining separate

subassemblies and at the lowest level for attaching smaller parts to the more significant

parts. The significance of a part depends on a number of factors including function,

size, and symmetry.

In addition to discussing theoretical design principles, Agrawala et al. [2] devel-

oped algorithms to evaluate these design principles. Their experiments for different

assembly tasks have shown that design principles are extremely useful for choosing a

user-friendly sequence of assembly operations.

The design principles mentioned above are for general assembly tasks. However,

for a specific type of fabrication, domain-specific knowledge is required, especially

when automatically predicting the hierarchy and grouping of parts. Mesh segmenta-

tion [68] typically focuses on surface decomposition driven by geometric properties.

For fabrication by 3D printing [49], basic requirements are the printable part size

and the assemblability. In this paper, for block assembly, we propose a method to

automatically generate layout-driven assembly parts in a block model.

4.2 Proposed Method

We aim at the user-friendly assembly of fragile block models, i.e., block models with

weakly-connected blocks. The input of our method is an assembled shape of a block

model, which can be easily obtained using existing LEGO design software. All blocks
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are assumed to be rectangular solids having the same height, similarly to the previous

methods, e.g., [73]. The output of our method is a step-by-step set of 3D instructions

which can be viewed from any angle. Firstly, we will introduce a method for dividing

a model into components in Section 4.2.1. Then we will introduce a method for

generating building instructions by deciding the assembly order of the components in

Section 4.2.2.

4.2.1 Generation of Components

We define a block segment as a set of blocks treated as a basic element for generating

component. To facilitate operations (e.g., intersection, union) among basic elements,

each basic element requires blocks inside to be interconnected as one. Our basic

approach for generating components is to initially segment the input model into block

segments deliberately and then make components by merging some unnecessarily-

small block segments. For the segmentation, our aim is twofold: to separate the input

model at weakly-connected blocks; and to separate the input model to eliminate

floating blocks. These two types of segmentation are implemented independently,

and are described in Section 4.2.1.1 and 4.2.1.2 respectively. In Section 4.2.1.3, we

describe how the block segments generated by both segmentations are merged into

components.

4.2.1.1 Segmentation at Weakly-Connected Blocks

We detect weakly-connected blocks as blocks corresponding to the previously defined

“weak articulation points” [73]. Note that a block model can be abstracted as a graph,

where the vertices represent individual blocks and the edges indicate brick linkage by

studs. An articulation point in graph theory is such a vertex that when removing

it the graph generates more than one disconnected subgraph. For a block model, to

identify important articulation points, Testuz et al. [73] define a “weak articulation

point” as an articulation point that connects each subgraph owning a size (number

of edges in subgraph) greater than one.

When designing a block model, previous research [73] detected “weak articulation

points” for reducing them in optimized model; however, not all “weak articulation

points” can be avoided when thin part exists. In this paper, we find “weak articulation

points” as weakly-connected blocks to help us to divide a model into block segments.

Definition of “weak articulation point” [73] decides that, by removing each weakly-

connected block, the model can be separated into multiple disconnected parts, with
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Figure 4.2: Algorithm and illustrations for segmentation at weakly-connected blocks
(black blocks).

each part containing more than one block. Inspired by this property, in our segmen-

tation (see algorithm in Fig.4.2), all the weakly-connected blocks detected in Step 1

are removed from the initial model in Step 2. Then in Step 3, each weakly-connected

block is merged into a block segment that has the largest number of connections to

the block.

4.2.1.2 Segmentation Avoiding Floating Blocks

We first extract the blocks that will be in the floating state during a layer-by-layer,

bottom-up assembly. Such floating blocks are easily detected as follows. As shown in

Fig.4.3(a), we visit connected blocks from each bottommost block to the top. The

allowed visiting direction is only upward, because in a LEGO model two blocks are

directly connected to each other only if they overlap each other. The blocks that have

not been visited by the end are floating blocks. Fig.4.3(a) illustrates a simple LEGO

model in 2D with floating blocks (colored in red).

This process for detecting floating blocks uses basically a breath-first search algo-

rithm. By default, as shown in Fig.4.3(a), there is only one bottom, hence the search

starts from all the bottommost blocks (i.e., initial search keys) and travels through

the whole model. If allowing one more bottom, as shown in Fig.4.3(b), the original

model is segmented, causing an independent search inside each block segment.

Our final target is to ensure that there are no floating blocks in each component

generated. Here, we introduce two strategies to achieve this goal. One is a direct

way, the other indirect. The direct way is to explicitly separate the floating blocks as

components. Note that, in Fig.4.3(a), if we treat the floating blocks (colored in red)

and the rest (colored in green) as two different components, each component contains
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Figure 4.3: Segmentation avoiding floating blocks. (a) Detecting floating blocks (red
blocks) along arrows. (b) A pseudo floor is inserted between the 2nd and 3rd layers.
(c) The model is divided into four segments.

no floating blocks inside. On the contrary, the indirect way is separating the model

by horizontal planes until no floating block exists as illustrated in Fig.4.3(b). The

dashed line shows the horizontal plane used to separate the model into components.

This separation works as if we had inserted a working floor between the 2nd and

3rd layers. We call this separating plane a pseudo floor. In Fig.4.3(c), due to the

separation by the pseudo floor, four independent components are obtained, and each

can be assembled from the bottom to the top without any floating block. So we

know that we have eliminated the floating blocks by inserting a pseudo floor at an

appropriate location. In Fig.4.3, such a location is between the 2nd and 3rd layers.

However, sometimes one pseudo floor might be not enough to eliminate all the floating

blocks ; we might require more, or in an extreme case, one pseudo floor under each

layer.

Now we have two strategies to generate components with no floating blocks inside.

We further combine both strategies to reduce the amount of block segments, which will

benefit a more precise instruction. We do so by applying indirect way first, however,

not for eliminating all floating blocks, but for reducing floating blocks reasonably by

inserting a few effective pseudo floors. After that, we use the direct way to handle

the unreduced floating blocks.

The problem now becomes how to select effective pseudo floors. We find that

inserting a pseudo floor at an appropriate location (e.g., between the 2nd and 3rd

layers in Fig.4.3) is important. This location is important because if a pseudo floor

is inserted elsewhere, floating blocks below the pseudo floor cannot be eliminated. To

find such an appropriate location, we introduce an index Cfloating(l), which equals

the number of floating blocks had by inserting a pseudo layer between the l-th and

(l + 1)-th layers for l = 0, 1, 2, ... (l = 0 means the ground floor). By evaluating the

value of Cfloating for all possible l, we choose to insert pseudo floors where the value

of Cfloating takes on local-minima. We do so because each local-minimum of Cfloating

indicates a horizontal separation which can better reduce floating blocks in the local
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Figure 4.4: Algorithm and illustrations for segmentation avoiding floating blocks.

area around the pseudo floor. By applying all these separations at the same time, the

initial model is segmented into several block segments. The algorithm described above

is summarized in Fig.4.4 with 2D and 3D illustrations. Note that all floating blocks

are not eliminated always by Step 1. The red blocks in the top row of 3D illustration

are floating blocks when the model is separated by two pseudo floors (illustrated by

dashed lines). On the other hand, no floating blocks exist in the example illustrated in

2D after inserting a pseudo floor. Therefore, there are no differences between middle

and bottom rows of 2D illustrations.

These separations caused by this algorithm result in unnecessarily-small block

segments (e.g., the brown and the purple block segments in 2D illustration in Fig.4.4,

these block segments can be combined without generating any floating block). In next

subsection, we will describe a strategy to adjust these over-segmentations.

4.2.1.3 Making Components

The initial model is segmented using the two approaches mentioned above. Based on

these segmentations, the components are generated. As described in the algorithm in

Fig.4.5, we first apply the two segmentations to the model (Step 1). Then we generate

components by dividing the model along the boundaries of the segmentations (Step

2). If floating blocks remain, we separate them as individual components. Because

this generates tiny components, we merge them to reduce the number of components

(Step 3). This step is divided into following four sub-steps.

1. Find a component “A” which touches a pseudo floor, or contains only one or

two blocks;

2. Find a component “B” which connects component “A”;
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Figure 4.5: Algorithm and illustrations for making components from block segments.
In Step 3, black arrows upward indicate successful merging. We also show some failed
merging indicated by red arrows in 2D illustration.

Figure 4.6: Different results for components containing no floating block.

3. Merge component “A” and “B” only if the merged component does not generate

additional floating blocks ;

4. Repeat Sub-step 1 to 3 until all possible merge operations are done.

Fig.4.5 illustrates our way to obtain components containing no floating block.

However, theoretically, other results for components (see Fig.4.6) can achieve the

same goal if other features (e.g., recognizability of a component, equilibrium of a

component) are not considered. In the future, improvements can be made to satisfy

more beneficial features in a component.

4.2.2 Making a Component-Driven Instruction

After the LEGO model has been divided into components, we start to make an

instruction guide for assembly. By now it is ensured that no floating blocks exist in

any component. Hence, we can simply assemble each component in bottom-to-top

order, and focus only on the order of combining components. Among the components,

we define a joint component as one connecting two or more other components. The

assembly order of components is decided according to the following priorities:
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Figure 4.7: Our graphical instruction guide.

1. the number of connected components;

2. the number of blocks contained in the component;

3. the number of connected joint components ;

4. the distance from the bottommost block (smaller has higher priority).

If value 1 is the same for each component, value 2 is used to decide the priority.

Furthermore, if value 2 is the same for each component, value 3 is used, and so on.

Finally, if symmetrical components-pairs exist, the order of components is further

adjusted to ensure successive assembly of such symmetric component-pairs.

After deciding the assembly order of the components, we generate a graphical in-

struction guide. To prepare the user for the assembly flow, the guide firstly switches

from the original LEGO model (Fig.4.7(a)) to the completed model showing colors

assigned from blue to red to the components according to their priority (Fig.4.7(b)).

After that, the user begins assembling the first component (the red one in Fig.4.7(b)).

The assembly procedure of each component is displayed in an interactive 3D view

(Fig.4.7(c)) and a static top-view (Fig.4.7(d)). Both views are simultaneously up-

dated step-by-step. In both views, blocks in the active component (the component

being assembled) are rendered in the original color, but already assembled compo-

nents are rendered in a customized color (beige in Fig.4.7(c,d)). Showing the already

assembled components with the active component helps users to understand their

relative positions. Visibility of blocks during assembling process is important. Be-

cause each component generated in our method can be assembled layer-by-layer, a

2D view which shows blocks in current assembling layer (Fig.4.7(d)) always ensures

the visibility of all blocks, even though these blocks might be occluded in 3D view.
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4.3 Results and Discussion

We developed a prototype system to evaluate our method. It was implemented using

C++ and tested on a laptop with a 2.40-GHz Intel Core (TM) i5-2430M processor,

8 GB RAM, and NVIDIA NVS 4200M GPU.

As far as we know, benchmark containing different block models (e.g., block mod-

els designed in different resolutions, block models fragile to varying degrees) has not

been discussed before. To build such a benchmark is not easy. In this paper, our

proposed method is mainly designed for fragile block models. Because the fragile

structure is normally found in block models designed in low resolution, low-resolution

block models are used to evaluate our proposed method. We prepared seven low-

resolution block models (see Fig.4.8) created by a mini block artwork design system

[84]. These test examples are fragile to varying degrees, i.e., weakly-connected blocks

in these block models are counted differently (see Table 4.1).

4.3.1 Generation and Ordering of Components

Segmentation in our method is driven by weakly-connected blocks and pseudo floors

found in input model. As shown in Table 4.1, the number of weakly-connected blocks

ranged from 0 (camera) to 14 (sunglasses) in our test models. After the segmentation

at weakly-connected blocks, the number of block segments ranged from 1 (camera)

to 12 (cat). Fig.4.9 shows the graph of Rfloating(l), which is the normalized value of

Cfloating(l) divided by total number of blocks in the model so that it takes between 0

to 1. For example, if no floating block exists when a pseudo floor is inserted between

l-th and (l + 1)-th layers, Rfloating(l) takes zero; if half of all blocks are floating,

Rfloating(l) takes 0.5. By observing the graph, we can find that most test models

(except for Lego Man) have only one local-minimum or two local-minima. Detailed

information is shown in middle column of Table 4.1. Although both segmentation

steps result in unnecessarily tiny components (Fig.4.8(a, b)), our merging strategy

successfully combines tiny components into large ones for better results (Fig.4.8(c)).

Details can be found in right column of Table 4.1.

Note that Fig.4.8 reveals an important feature of our component generation method:

segmentation along the horizontal pseudo floor/floors might be locally unwise some-

times (see sunglasses, dolphin and cat in Fig.4.8(b); however, segmentation along

horizontal pseudo floor/floors is able to be revised locally, because a wise remerging

is possible due to a wise segmentation of existing block segments at local disjunctions.

Currently, local disjunctions are identified by weakly-connected blocks in fragile block
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model. In the future, for a block model being not fragile, other efficient segmentation

methods can also be easily integrated into our current method.

Assembly order of components determined by our method is illustrated in Fig.4.8(c)

as well. As expected, joint components are to be built earlier (in a warmer color),

and symmetric component-pairs to be built successively are in similar colors. This

demonstrates the effectiveness of our ordering.

Table 4.1: Statistics of test models.
Test Model Segmentation at Segmentation avoiding Making Components

weakly-connected blocks floating blocks

# of # of block # of # of block # of # of
weakly- segments pseudo floors segments components by components

connected generated (local- generated overlapping after merging
blocks (Fig.4.8(a)) minima) (Fig.4.8(b)) block segments (Fig.4.8(c))

sunglasses 14 7 1 5 11 7

flower 12 4 1 4 6 6

dolphin 1 2 1 5 6 5

cat 7 12 2 16 20 10

headphones 10 3 2 11 13 11

Lego Man 5 4 3 6 8 6

camera 0 1 1 3 3 3

4.3.2 Auto-generation of Instruction Guide

Table 4.2 compares the instruction guide generated by our method with those gen-

erated by LEGO Digital Designer [36] and LEGO Instruction Creator [16]. We used

in our test the cat model shown in Fig.4.8, which consists of 93 blocks and 7 weakly-

connected blocks in total. On the one hand, we found that the instruction guide

generated by LEGO Instruction Creator showed some steps with floating blocks, while

our layer-by-layer assembly inside each component avoided floating blocks. On the

other hand, we found in the test that the assembly starting from the feet was break-

able, because earlier-built weak parts of the feet interfered with the smooth assembly

of the rest. However, unlike the other two systems which did not generate separate

components for the feet, in our instruction guide, the assembly of the separate foot

components was near the end, and thus, it seldom affected the assembly of other

components.

We recruited four undergraduate volunteers to test the time efficiency of the in-

struction guides generated by our system and LEGO Digital Designer. The results

showed that all subjects completed the cat model in much less time when using our

instructions. The average time needed to complete the model with our instructions
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Figure 4.8: Generation and ordering of components in different test models (top
row). (a) Block segments separated at weakly-connected blocks. (b) Block segments
avoiding floating blocks. (c) Final components generated. Assembly order of final
components, as marked by numbers, is associated with a specific color in a color map
varying from red (built first) to blue (built last).

Figure 4.9: Graph of Rfloating(l), which takes ratio of floating blocks in whole blocks.
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Table 4.2: Step-by-step instructions created by three systems.

# of components Max/Min # of blocks Instructions steps With first
in component for component block for

Our system 10 (see Fig.4.8) 53/1 layer-by-layer body

LEGO Digital Designer 2 (body & tail) 89/4 block-by-block foot

LEGO Instruction Creator 1 (whole) 93 layer-by-layer foot

was 17 min, which is about 60% of the time needed with LEGO Digital Designer’s

instructions.
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Chapter 5

Conclusions and Future Work

By now, we have introduced a lot on mini block construction. The mini block con-

struction we hope to create can be treated as a mini LEGO construction designed in

a simple way, i.e., by only using block pieces in a standard LEGO brick family. As

a great British writer (William Golding) said, “the greatest ideas are the simplest”.

There are many merits in popularizing such a simple mini block construction. For

example, for general people, building mini block construction saves block resources

and players’ time; for researchers, observing original designs of mini block construc-

tions might help to unravel the secret of how people abstract an object. Moreover,

mini block constructions designed by different people are extremely comparable due

to the regularity in block pieces used. It makes mini block constructions extremely

fit for academic use, e.g., building a benchmark for evaluating different algorithms.

To encourage more people to join in the creation of mini block constructions,

supplying a computer-aided tool is not a bad idea. This chapter concludes our main

efforts made for building such a tool, as well as discussing the limitations and the

future work.

5.1 Conclusions and Limitations

In this paper, we proposed several automatic solutions for different steps in the

computer-aided creation of mini block construction. Firstly, we can automatically

generate a monochrome low-res voxel model which is reasonably abstracted from an

input mesh model. Secondly, we can automatically color the voxel model and revise

its shape, color and block layout for a block model. Thirdly, we can create a user-

friendly building guide to help converting a virtual design step-by-step into a tangible

block construction for fun.
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In the first step of voxel model generation, given a target to be designed, we

automatically generate a low-res voxel model which is downsampled from a high-

res voxel model pre-voxelized from the target. To balance accuracy and abstraction,

a shaped-related voxel attribute of density is calculated for each voxel in low-res

voxel space, and is further used for deciding shape in low-res voxel model. During

this step, a downsampling of color has not been applied synchronously, because the

abstraction of color should additionally take into account the LEGO palette to reduce

the total number of colors in input model, making the processing for color much more

complicate.

In the second step, for generating a block model, we consider a coloring and a

revising of low-res voxel model in shape, color and block layout. Coloring a low-res

voxel model proposed in this paper can satisfy some basic requirements; however,

it is still challenging to realize the automatic abstraction for some complicate color

patterns in input models, such as the dotted pattern in Fig.1.2(c). For layout gen-

eration, we achieve a high-quality block layout for low-res voxel model. During our

block layout generation, not only the stability, but also the symmetry is considered

to satisfy the delicate design of a mini block construction qualified for artwork.

In the third step of generating user-friendly building instructions, we get over the

difficulty of fragile structure in low-res block model, and focus more on people’s as-

sembly habits. To avoid fragmentation during assembly, we proposed a solution for

automatic generation of component-based building instructions. Components are ob-

tained considering segmentation at both the weakly-connected blocks and the incoher-

ent spots identified by floating blocks. Due to the generation of these well-considered

components, block assembly habits of “from bottom to top” and “layer-by-layer” can

now be combined in a user-friendly way.

We implemented our proposed method and developed a prototype system. To

evaluate our proposed method, we compared with conventional techniques like, a

popular tool [53] for generating voxel models, a widely referenced method [73] for

generating block layout, and a LEGO official tool [36] for block assembly. To explore

more user-friendly choices for our developed prototype system, we have also conducted

two user studies.

5.2 Future Work

In the future, to improve the quality of automatic abstraction in shape and color,

the effectiveness of saliency information in model can be explored. If a benchmark
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containing well-abstracted examples can be prepared, we can also try the technique

of deep learning [19] to explore more all-powerful methods for abstraction. A recent

study of Wu et al. [81] has led to demonstrate that voxelized geometric shapes in

their 3D CAD model dataset can be used for deep learning, and learned data can be

successfully used as shape features for classification, retrieval, and recognition. There-

fore, in the future, by learning a benchmark of well-abstracted voxel models, useful

abstracted features can be expected to be obtained, as a support to the abstraction

of other models similar with those in the benchmark.

In order to enable our prototype system with practical use, a graphic user inter-

face supporting a convenient surface editing on voxel model should be considered.

Considering the limitations of the-state-of-the-art techniques, there might be a long

way before achieving an automatic abstraction with stable performance, especially

for abstracting from an input model with complicate shape features, color features

or even more complex texture map features [83]. To make up for the limitations in

current automatic abstraction, an efficient voxel-level editing can be powerful in low-

res voxel space. In our current system, although one-click coloring for single voxel

is supported, in the future more types of premier editing can be considered, e.g., a

symmetry-considered editing, a fast creation of color pattern on the surface of voxel

model.

For the generation of block layout in mini block construction, our system has

optimized for the calculation of heuristic-based stability. However, to ensure the

stability in a tangible block construction, it is better to use a physical stability.

Though the state-of-the-art method using physical stability has only been tested

for LEGO blocks, the possibility of extension to blocks of other brands can also be

explored.

To make our proposed method for block assembly more compatible with vari-

ous kinds of block models, we can evolve our component generation to satisfy more

requirements, e.g., new definition of weakly-connected blocks in high-res block con-

structions, components with more perceivable shapes, the static equilibrium of com-

ponent during assembly. To move a step further, we can also explore the possibility

of extending our block assembly method for the self-assembly robots. To make the

automatically generated building instructions more user-friendly, as summarized in

Section 4.1.1, diverse notations shown in manually drawn instructions might be con-

sidered.
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[64] Kálmán Palágyi and Attila Kuba. Directional 3d thinning using 8 subiterations.

In Proceedings of the 8th International Conference on Discrete Geometry for

Computer Imagery, DCGI ’99, pages 325–336, London, UK, UK, 1999. Springer-

Verlag.

71



[65] Pavel Petrovic. Solving lego brick layout problem using evolutionary algorithms.

In Proc. of Norsk Informatik Konferanse, pages 87–97, 2001.

[66] Soren Rolighed, Miguel Agullo, Hideaki Yabuki, and Kevin Clague. Lpub. http:

//lpub.sourceforge.net. Accessed: 2016-07-14.

[67] Tiago Santos, Alfredo Ferreira, Filipe Dias, and Manuel J. Fonseca. Using

sketches and retrieval to create lego models. In Proceedings of the Fifth Eu-

rographics Conference on Sketch-Based Interfaces and Modeling, SBM’08, pages

89–96, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Association.

[68] Ariel Shamir. A survey on mesh segmentation techniques. Computer Graphics

Forum, 27(6):1539–1556, 2008.
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