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Abstract

Rapid growth of data volumes necessitates efficient analysis techniques for large-
scale data. To this end, GPUs (graphics processing units) can be considered a cost-

effective means to accelerate data analysis techniques. GPUs have recently evolved
as many-core accelerators and shown superior performance over ordinary CPUs.
However, in order to harness the power of GPUs, we need to take into account

several characteristics of GPUs.

The main challenges of using GPUs are three-fold: massive and hierarchical
parallelism, memory hierarchy, and load balancing. The first challenge means that

GPUs accommodate thousands of threads and the threads are hierarchically orga-
nized. In this situation, conventional multi-threaded algorithms for CPUs cannot
be directly applied to GPUs. The second challenge is to utilize memory hierarchy

available on GPUs. Various kinds of memory have different properties (e.g., band-
width and size), and exploiting them effectively is important for achieving high
performance. The third challenge is to balance workloads processed by massive

and hierarchical threads. This is especially important when skewed data, which is
common in the real world, is handled.

This dissertation explores efficient and effective ways to exploit GPUs by in-

specting four problems: frequent itemset mining from uncertain data, comparison
sorting, canopy clustering, and graph clustering. To make the best use of GPUs,
the following three techniques are exploited: (1) effective data structures, (2) data-

parallel primitives, and (3) capturing key-component on specific algorithms. Through
experimental evaluation, this dissertation reveals that proposed methods substan-
tially outperform existing GPU-based methods and CPU implementations. Con-

cretely, we obtained the following results: GPU-accelerated frequent itemset min-
ing from uncertain data outperformed a CPU parallel implementation by a factor of

up to 5.5; our comparison sorting method improved throughput by 32% over an ex-
isting GPU-based method; canopy clustering on a GPU was at most 2.5 times faster
than CPU parallel implementation, even if the CPU counterparts used two octa-

core processors; and GPU-accelerated label propagation achieved 30 times higher
performance on average than a CPU implementation of label propagation.
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Chapter 1

Introduction

Recent advances of technology lead to the growing amount of available data in
the real world, and analyzing such large-scale data in realistic time requires ef-
ficient analysis techniques. Parallel computing is a common means to accelerate

analyses by performing computations simultaneously on one or more computers.
Recently, in the fields of parallel computing and high performance computing, het-

erogeneous computing has attracted significant attention because it can achieve both

superior performance and lower power consumption than common “homogeneous”
systems [95]. Heterogeneous computing refers to the system that not only uses

CPUs but also is equipped with other kinds of co-processors such as GPUs (graph-
ics processing units). Since CPUs and co-processors have different strengths and
weaknesses, heterogeneous systems are capable of achieving computational gains

by assigning workload to an appropriate processor. Heterogeneous computing has
been increasingly important, as can be seen from the fact that many supercomputers

of TOP5001 and Green5002 utilize CPUs and co-processors.

Among such co-processors, GPUs and Intel R⃝ Xeon Phi
TM

are more commonly
employed. These co-processors fall under the category of many-core processors,
which contain tens to thousands of processing units. For instance, NVIDIA Tesla

K40 GPU3 consists of 2,880 simple processing units, and Intel R⃝ Xeon Phi
TM

Proces-
sor 7120p4 includes 61 relatively complex cores. Compared to Intel R⃝ Xeon Phi

TM
,

GPUs excel in computing massive amounts of simple and independent computa-

tions. This means that GPUs are suitable for highly data-parallel processing. Many

1http://www.top500.org/
2http://www.green500.org/
3http://www.nvidia.com/object/tesla-workstations.html
4http://ark.intel.com/products/75799/
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data analysis techniques tend to proceed in a data-parallel manner, and the avail-
able parallelism grows as the data size increases. Therefore, GPUs are considered

as a more promising solution than Intel R⃝ Xeon Phi
TM

for accelerating large-scale
data analysis techniques. Thus this work focuses on GPU-accelerated data analysis
techniques.

As mentioned above, GPUs contain a large number of simple processing units.

By exploiting this massive parallelism, GPUs have recently been extensively uti-
lized for accelerating a wide range of applications [104]. For instance, GPUs have

accelerated database processing such as sorting [8, 73] and data mining techniques
such as clustering [69, 80, 133]. However, in order to harness the power of GPUs,
we need to take into account several characteristics of GPUs. The main challenges

of using GPUs are three-fold: (1) massive and hierarchical parallelism, (2) memory
hierarchy, and (3) load balancing. The first challenge means that GPUs accom-

modate thousands of threads and the threads are hierarchically organized. In this
situation, conventional multi-threaded algorithms for CPUs cannot be directly ap-
plied to GPUs, because they are commonly run by up to tens of non-hierarchical

threads. The second challenge is to utilize memory hierarchy available on GPUs.
Various kinds of memory have different properties (e.g., bandwidth and size), and
exploiting them effectively is important for achieving high performance. The third

challenge is to balance workloads processed by massive and hierarchical threads.
This is especially important when skewed data, which is common in the real world,

is handled.

This dissertation presents efficient and effective ways to utilize GPUs by in-
specting a broad spectrum of problems and algorithms. Specifically, the following
three techniques are exploited for addressing the above challenges:

• Effective data structures: Available parallelism and usage of memory hierar-
chy heavily depends on not only algorithm but also underlying data structures.

Thus, we carefully design the data structures used in specific algorithms so
that efficient parallel processing and memory accesses are allowed. Conse-

quently, we can achieve high effective memory bandwidth of GPUs.

• Data parallel primitives: Primitives are the operations that commonly ap-

pears in data-parallel computing, and they can be efficiently implemented on
GPUs. By transforming algorithms into a combination of such primitives, we
can harness the maximum power of GPUs.

• Capturing key components: Algorithms usually have a key component, the
dominant part of overall computational cost. By carefully capturing and par-

allelizing it for GPUs, we can achieve order-of-magnitude speedups.
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On the basis of the techniques, this dissertation accelerates processing of four prob-
lems: (1) frequent itemset mining from uncertain data, (2) comparison sorting,

(3) canopy clustering, and (4) graph clustering.

Frequent itemset mining from uncertain data. Frequent itemset mining [3]
from uncertain data is one of the major research issues in the area of uncertain
data management, and there have been a number of algorithms [17, 76, 124]. How-

ever, existing algorithms suffer from high computational cost for dealing with un-
certainty, such as probability computation. To mitigate this problem, we accelerate

the computation by using GPUs, with effective data structures and data parallel
primitives.

Comparison sorting. Sorting is a fundamental operation in computer science,
especially database systems, and its acceleration has significant importance [68]. In

particular, comparison sort is a sorting algorithm that determines the order of ele-
ments on the basis of comparison operations, and it has the advantage that it can be

applied to any kind of data in principle if comparison is possible. In this dissertation,
we develop a method based on two existing algorithms, samplesort [73] and merge
sort [8]. This method takes into account efficient access patterns to GPU memory

and also utilizes data parallel primitives, thereby achieving high throughput.

Canopy clustering. Canopy clustering is a preprocessing method for stan-
dard clustering algorithms such as k-means and hierarchical agglomerative cluster-
ing [90]. Canopy clustering can greatly reduce the computational cost of clustering

algorithms. However, canopy clustering itself may also take a vast amount of time
for handling massive data. To address this problem, this dissertation presents effi-

cient algorithms and implementations of canopy clustering on GPUs. We not only
accelerate the computation of original canopy clustering, but also propose an al-
gorithm using grid index, by exploiting effective data structures and data parallel

primitives.

Graph clustering. Graph clustering, also known as community detection, is
one of the prominent techniques for graph data analytics, gaining much attention
from many researchers and developers [35]. However, there is a problem that the

size of available graph data becomes increasingly gigantic. To tackle this problem,
this dissertation proposes an algorithm based on label propagation [112], which is

known as one of the fastest graph clustering algorithms. Our algorithm consists
of multiple data parallel primitives and also takes into account load balancing by
using the primitives whose performance is not largely affected by the existence

of skewness, thereby enabling efficient processing of skewed graph data, which is
common in the real world.

Experiments confirmed that our proposals outperform existing solutions. Con-

3



cretely, we obtained the following results:

• GPU-accelerated frequent itemset mining from uncertain data outperformed
a CPU parallel implementation by a factor of up to 5.5.

• Our comparison sorting method improved throughput by 32% over an exist-
ing GPU-based method.

• Canopy clustering on a GPU was at most 2.5 times faster than CPU parallel
implementation, even if the CPU counterparts used two octa-core processors.

• GPU-accelerated label propagation achieved 30 times higher performance on

average than a CPU implementation of label propagation.

From these results, we believe that our GPU-acceleration techniques help to im-
prove the performance of not only the specific four problems but also a wider range
of applications.

Organization. The rest of this dissertation is organized as follows. Chapter 2

discusses related work, including GPU computing, frequent itemset mining, sort-
ing, clustering, and graph clustering. Chapters 3–6 describe GPU-accelerated anal-

ysis techniques on the four problems, respectively. Specifically, Chapter 3 presents
a GPU-based method of frequent itemset mining from uncertain data. Chapter 4
explains a novel parallel comparison-sorting method for GPUs. Chapter 5 pro-

vides GPU-accelerated canopy clustering, including GPU parallelization of original
canopy clustering and the use of grid index. Chapter 6 details GPU-accelerated la-

bel propagation for graph clustering. Finally, Chapter 7 concludes this dissertation
with possible future directions.
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Chapter 2

Related Work

This chapter discusses related work of this study. Section 2.1 overviews preliminar-
ies and related work on GPU computing, including the CUDA framework and data-
parallel primitives. Section 2.2 gives an overview of research work using GPUs

to accelerate various kinds of data analysis techniques in the fields of databases
and data mining. Sections 2.3–2.6 reviews related work on the specific four prob-
lems, namely frequent itemset mining, sorting, clustering, and graph clustering.

Section 2.7 discusses the positions of proposed methods and also mentions Intel R⃝

Xeon Phi
TM

.

2.1 GPU computing

GPU computing means the use of GPUs for accelerating general-purpose compu-
tations rather than graphics tasks, which are the original targets of GPUs [104].
GPUs have recently evolved as many-core processors and have been utilized to ac-

celerate a wide range of applications such as data analytics and scientific computa-
tions. The advantages of GPUs over traditional CPUs are their high computational
performance with a large number of simple processing units, relatively low price,

and low power consumption. In order to develop programs for GPUs, the de-facto
standard framework is CUDA (compute unified device architecture) provided by

NVIDIA [98]. The rest of this section firstly describes the architectural features of
GPUs and programming model of CUDA in Section 2.1.1 Data-parallel primitives

implemented on CUDA, which are extensively utilized in this study, are summa-

rized in Section 2.1.2.

5



2.1.1 CUDA

The CUDA GPU architecture is made up of multiple streaming multiprocessors

(SMs), which in turn consist of many simple processing units called scalar pro-

cessors (SPs). CUDA provides fine-grained parallelism by launching a massive
number of lightweight threads. A large number of threads are grouped into a thread

block (or a block for short). Typical numbers of threads per block are 128 and 256.
Threads within a block run concurrently on an SM, sharing the resources of the SM.
On the other hand, an SM can accommodate multiple blocks simultaneously, main-

taining its resources among blocks and scheduling the threads of blocks. Blocks
comprise a grid, which is generated each time when functions to be executed on

GPUs are called; such functions are referred to as kernels.

SMs employ an architecture called SIMT (single-instruction, multiple-thread)

to efficiently manage a large number of threads. Threads on SMs are managed and
scheduled in groups of 32 parallel threads called warps, and multiple warps form a

block. A warp carries out a common instruction at a time, and thus the most efficient
case is achieved if all threads of a warp follow the same execution path. If threads

of a warp follow different paths, then the warp serially executes each path in turn,
performing redundant operations consequently.

Meanwhile, GPUs have several kinds of memory. The largest memory on GPUs
is global memory. For instance, NVIDIA Tesla K40 has the global memory of

12 GB. It can be accessible from all threads of a grid and has a high bandwidth
although the access latency is high. SMs also contain local memory, which can be
accessed much faster than global memory although the size is small (up to 96 KB,

depending on the microarchitecture of GPUs). This memory can be used as shared

memory, which is shared by threads within a block and can be used to exchange

data among the threads.

There are important accessing patterns to global memory, called coalesced ac-

cesses [98]. In general, global memory accesses are serviced with one or more
memory transactions, depending on the access pattern. If all threads of a warp

access an aligned and contiguous region of 128 bytes, then these accesses are coa-
lesced into one transaction. Otherwise, the accesses are partly coalesced into not
one but multiple transactions and the performance deteriorates compared to the

single-transaction case.
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2.1.2 Data-parallel primitives

Data-parallel primitives are basic operations in data-parallel computing [56]. They

can be used as building blocks to efficiently parallelize more complex algorithms,
because implementations of primitives can be highly tuned and deliver high perfor-
mance. GPU implementations of primitives have been explored since the introduc-

tion of CUDA [46, 50, 51, 53, 54, 56, 139]. This subsection summarizes primitives
commonly used in this dissertation and related work on the primitives if any.

Map

A map operation takes an array [a0, a1, . . . , an−1] of n elements and a unary function

f , and returns the array
[

f (a0), f (a1), . . . , f (an−1)
]

. This operation can be easily
parallelized by assigning each thread to each element.

Reduce

A reduce operation takes an array [a0, a1, . . . , an−1] of n elements and a binary as-

sociative and commutative operator ⊕, and returns the value a0 ⊕ · · · ⊕ an−1. For
example, if the binary operator is addition, the reduce operation computes the sum
over the array. Several implementations of reduce can be possible, and, among

them, a tree-based approach presented by NVDIIA [50] is commonly used.

Scan

A scan, also known as prefix sum, operation takes an array [a0, a1, . . . , an−1] of n

elements and a binary associative and commutative operator ⊕ with identity I, and

returns the array
[

I, a0, a0 ⊕ a1, . . . , a0 ⊕ a1 ⊕ · · · ⊕ an−2

]

. This operation is a useful
building block for other primitives and many algorithms such as sort and breadth

first search [139].

While the serial algorithm is simple, an efficient parallel implementation is sur-
prisingly difficult. Thus much effort has been made to develop efficient scan meth-
ods for GPUs [46,51,139]. The pioneering work on CUDA was done by Harris [51].

He develop a work-efficient method based on the concept of a balanced binary tree.
More recently, Ha and Han [46] presented a novel scalable parallel scan method

based on two techniques: (1) work-efficient and depth-optimal intra-block scan and
(2) memory bandwidth efficient global decomposition. The current state of the art
is considered to be the method, called StreamScan, proposed by Yan et al. [139].

While conventional scan implementations require three kernels and at least 3n (n
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is the problem size) global memory accesses, their method realizes the scan opera-
tion with only one kernel and 2n global memory accesses, thereby achieving large

performance improvements.

Filter

A filter operation selects a subset of elements from an array according to a unary
predicate P (i.e., a function that takes one argument and returns zero or one) [56].
This operation can be implemented with the map and scan primitives in three steps.

First, the map primitive with predicate P is applied to the input array and produces
a corresponding array flag of boolean values. Second, we perform scan with ad-

dition on the array flag and store the result into another array index. Finally,
the elements that satisfy the predicate P are outputted based on the two arrays. If
flag[i] is one, the ith element of the input array is moved to the output array at the

index index[i]. Otherwise, the element is ignored and filtered out.

Gather and scatter

A gather operation carries out indexed reads from an array [53, 56]. It takes two
arrays A of n elements and B of m elements and returns the array C of m elements
that are computed as C[i] ← A[B[i]]. A scatter operation is dual to gather, per-

forming indexed writes to an array [53, 56]. It takes two arrays A of n elements
and B of m elements and returns the array C of m elements that are computed as

C[B[i]]← A[i].

Segmented sort and segmented reduce

Segmented sort and segmented reduce are parts of the library Modern GPU [8],
efficiently working on multiple irregular-length segments within one array in par-
allel. A segmented sort operation takes two arrays A =

[

a0, a1, . . . , an−1

]

and S =
[

s0, s1, . . . , sm−1, sm = n
]

, and sorts each subarray
[

asi
, . . . , asi+1−1

]

of A. A segmented
reduce operation takes two arrays A =

[

a0, a1, . . . , an−1

]

and S =
[

s0, s1, . . . , sm−1, sm =

n
]

and a binary associative and commutative operator ⊕. Then it returns the array
[

r0, r1, . . . , rm−1

]

where an element ri is the result of reduce with ⊕ over the subarray
[

asi
, . . . , asi+1−1

]

of A. Since a simple implementation that distributes work per sub-

arrays is very inefficient owing to load imbalance, the implementations of Modern
GPU intelligently parallelize the computations so that almost complete load balanc-
ing can be achieved.
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2.2 GPU-accelerated data analysis techniques

GPUs have been successfully utilized to accelerate many data processing tech-
niques. This section gives an overview of representative studies of databases, data

mining, and graph data analyses.

2.2.1 Databases

In the database field, the following topics have been well studied using GPUs:
(1) Query processing and (2) GPU-accelerated database systems.

Query processing

The main focus of GPU-accelerated query processing include sorting, joins, and

indexed search. Since sorting is described in Section 2.4, the work on joins and
indexed search is reviewed here.

GPU acceleration of relational joins has been studied since the introduction of
CUDA. He et al. [54] discussed designs and implementations of relational-join al-

gorithms using GPUs. They developed data-parallel primitives to harness the power
of GPUs and implemented relational-join algorithms by using the primitives as
building blocks. Specifically, the following four algorithms were implemented and

compared: (1) non-indexed nested-loop join, (2) indexed nested-loop join, (3) sort-
merge join, and (4) hash join. Their results showed that GPU implementations

outperform CPU counterparts by a factor of 2 to 7. Kaldewey et al. [63] proposed
an implementation of hash join by exploiting a feature of CUDA, called unified vir-

tual addressing (UVA). UVA allows GPUs to directly access the CPU main mem-

ory, thereby enabling processing larger data than the size of GPU memory. He
et al. [52] accelerated hash joins by exploiting CPU–GPU integrated chips such

as AMD APUs1. Such an architecture can remove the data-transfer time between
the CPU and GPU, which often becomes the bottleneck in conventional GPU ap-
plications. They discussed and developed several kinds of fine-grained processing

mechanism that is suitable for the architecture.

Acceleration of various kinds of search processing with tree structure indexes
has also been studied recently. Kim et al. [66] proposed a tree index structure called
FAST (fast architecture-sensitive tree), suited for processing on both CPUs and

GPUs. FAST is a binary tree taking into account hardware features such as the size
of cache lines and page size of virtual memory, thereby not only reducing memory

1http://developer.amd.com/tools-and-sdks/heterogeneous-computing/
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access latency but also making the structure suitable for parallel processing. Mean-
while, for accelerating multi-dimensional range search, an R-tree on the GPU was

proposed by Kim et al. [65]. They proposed an algorithm called MPTS (massively

parallel three-phase scanning), to efficiently traverse an R-tree on the GPU. MPTS
transforms recursive tree search into serial data processing, thereby exploiting the

parallelism and resources of GPUs. Goldfarb et al. [41] noticed the pattern com-
monly existing in multiple tree-traversal algorithms and proposed a method to trans-

form the tree-traversal pattern into a format that can be efficiently processed on the
GPU. They proposed autorope, which has the following features: (1) autorope can
be applied without semantic knowledge of tree-traversal algorithms; (2) autorope

can be applied to algorithms with complex traversal patterns; and (3) pre-processing
on tree structures is not needed.

Database systems

Database systems using GPUs have been also developed recently. He et al. [56]
developed GDB, the first relational database systems using GPUs. They developed

data-parallel primitives and implemented basic relational operations by using the
primitives as building blocks. In addition, they designed a cost model to estimate

query processing time on the GPU for query optimization. Heimel et al. [57] devel-
oped Ocelot, an extension of MonetDB2, an open-source column-store database.
Currently, various kinds of parallel processors are available, such as multi-core

CPUs and GPUs. Thus it is costly to implement appropriate programs for each pro-
cessor. Ocelot introduces hardware-oblivious operators to alleviate this challenge.

These operators are implemented without awareness of specific processors, and they
are compiled for the actual hardware in runtime. Thereby Ocelot reduces develop-
ment costs, without sacrificing the performance. Wu et al. [135] presented Red Fox,

a compiler and runtime infrastructure to execute relational queries on the GPU. Red
Fox consists of the four components: (1) a language front-end for LogiQL [61],
(2) a compiler from a relational algebra to GPU implementations, (3) optimized

GPU implementations of relational operators, and (4) a supporting runtime. Red
Fox is the first system that supports the complete set of TPC-H3 queries on com-

modity GPUs.

2https://www.monetdb.org/
3http://www.tpc.org/tpch/
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2.2.2 Data mining

In the field of data mining, GPUs have been widely utilized to enable large-scale

mining. This subsection gives an overview of GPU-accelerated data mining and
machine learning methods. Since association rule mining (or frequent itemset min-
ing) and clustering, which are representative data-mining methods, are reviewed

in Sections 2.3 and 2.5, respectively, the following describes GPU acceleration of
other well-known techniques.

Support vector machines (SVMs) are well-known supervised learning models
that are able to achieve high accuracy among other supervised learning methods.

Since the learning process is time-consuming, the use of GPUs has been investi-
gated. Catanzaro et al. [19] firstly implemented SVMs on GPUs. They parallelized

the sequential minimal optimization (SMO) algorithm [110] on the GPU, and also
employed several heuristics adaptively, thereby speeding up learning of SVMs. In
addition, they accelerated not only the learning process but also classification with

SVMs on the GPU. Cotter et al. [25] proposed a learning algorithm of SVMs that is
more suitable for GPU processing. While existing GPU-based methods are based

on parallelization of conventional algorithms, Cotter et al. designed a novel algo-
rithm taking into account several perspectives of GPUs from scratch. An advantage
of their algorithm is that it efficiently handles sparse data, which is difficult to deal

with by existing methods. More recently, Li et al. [81] accelerated the learning pro-
cess of SVMs that uses n-fold cross validation, which is commonly used in SVMs
to tune hyper-parameters. However, it makes learning computationally expensive.

Li et al. addressed this issue by parallelizing multiple learning tasks and sharing
matrices of multiple tasks.

As other data mining and machine learning methods, Yan et al. [138] accel-

erated LDA (latent Dirichlet allocation) [12], a representative topic model. They
parallelized on the GPU two methods used in the learning of LDA, namely col-

lapsed Gibbs sampling (CGS) [45] and collapsed variational Bayesian (CVB) [125].

They also proposed a data-partitioning method to maximize the utilization of GPUs
and a data-streaming scheme to handle larger data than the size of GPU memory.
Meanwhile, Raina et al. [113] proposed GPU-accelerated two unsupervised learn-

ing methods, deep belief networks (DBNs) [58] and sparse coding [102]. To speed
up learning of these methods on GPUs, the following requirements should be met:

(1) to minimize data transfer between the CPU and GPU; and (2) to make the best
use of hierarchical parallelism of CUDA. They firstly develop an algorithmic tem-
plate that satisfies the two requirements, and on the basis of this template, the two

methods are parallelized for GPUs.

Recently, deep learning [72] has gained tremendous attention, because it achieves
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high accuracy in various kinds of tasks such as speech recognition and visual object
recognition. However, since the learning process is highly time-consuming, it is

difficult to conduct learning in realistic time without acceleration. To address this
issue, GPUs have been recently utilized, and many frameworks for deep learning us-
ing GPUs have been developed, such as cuDNN4 published by NVIDIA, Theano5,

Caffe6, and Chainer7.

2.2.3 Graph data analyses

Graph data management and processing has increasingly gained much attention
because of the emergence of various kinds of real-world graphs, including online

social networks and biological data. Since real-world graphs may become gigan-
tic, GPU acceleration of graph algorithms has been widely proposed. In particular,
the following fundamental graph processing algorithms have been extensively ex-

plored: (1) breadth first search and (2) shortest path problems. In addition, GPU-
based graph mining algorithms as well as graph processing systems have been also

developed.

Fundamental algorithms

Breadth first search is a very fundamental operation to traverse graph data structures,

and its GPU acceleration has been broadly studied. Harish and Narayanan [49]
firstly accelerated not only breadth first search but also shortest-path problems. Luo

et al. [86] pointed out the problem that the GPU implementation of breadth first
search by Harish et al. has a larger computational complexity than a serial CPU
implementation, and they proposed a more efficient GPU implementation. Specifi-

cally, while the computational complexity of Harish et al. is O(nd +m), the method
by Luo et al. has the complexity of O(n + m), where n is the number of vertices,

d is the diameter of a graph, and m is the number of edges, However, the method
by Luo et al. has that problem that load balancing is not well considered, and the
performance degrades when degree distributions follow power laws.

Hong et al. [60] presented an efficient method, called a virtual warp-centric pro-

gramming method, which employs warp-oriented task assignment. In order to bal-
ance load, they introduced the following two techniques with queues: (1) deferring

4https://developer.nvidia.com/cudnn
5http://deeplearning.net/software/theano/
6http://caffe.berkeleyvision.org/
7http://chainer.org/
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processing of vertices with exceptionally large degrees and (2) dynamic workload
distribution. Meanwhile, Hong et al. [59] developed a parallel breadth-first-search

method targeting multi-core CPUs, and combined it with the GPU implementa-
tion [60] to realize a CPU–GPU hybrid method. Their method adaptively selects
the appropriate device. Specifically, if the number of traversed vertices is small at

one level, the CPU is used because it incurs small overhead. On the other hand, if
a large number of vertices are to be traversed, the GPU is chosen because of higher

throughput.

Merrill et al. [93] proposed an efficient GPU implementation that has the op-
timal time complexity of O(n + m) and achieves load balancing by using the scan
primitive. In particular, their method exploits the scan primitive for load balanc-

ing when retrieving the adjacent vertices of current active vertices. Nasre et al. [96]
compared data-driven and topology-driven implementations on irregular algorithms

including graph processing. A data-driven implementation maintains a set of “ac-
tive” vertices and process only such vertices. A topology-driven implementation
examines all vertices and process the vertices that are considered active. Topology-

driven implementations can be easily parallelizable, although the processing cost
likely becomes high. On the other hand, data-driven implementations have the op-
timal computational complexity, while parallel implementations are difficult. Nasre

et al. discussed tradeoffs between the two schemes and compare them with six
applications.

To handle larger-scale graph data, Mastrostefano and Bernaschi [88] developed

a method using GPU clusters. They used a load-balancing approach for a single
GPU based on binary search, thereby efficiently dealing with scale-free graphs.
In addition, they introduced an efficient pruning procedure to reduce communi-

cation overhead. The current state-of-the-art method is considered to be Enter-

prise proposed by Liu and Huang [83]. Their method achieves high performance of
breadth first search by integrating the following three techniques: (1) streamlined

GPU threads scheduling: constructing a frontier queue without conflicts by multi-
ple threads; (2) GPU workload balancing: classifying frontier vertices on the basis

of their out-degrees; and (3) GPU-based BFS direction optimization: caching hub
vertices when switching top-down and bottom-up breadth first search [9].

As another fundamental algorithm of graph processing, efficient solutions for
shortest path problems on GPUs have also been extensively studied. While there

exist a number of variants of shortest path problems, two variants are commonly
tackled: (1) single-source shortest path (SSSP) problem and (2) all-pairs shortest

path (APSP) problem. The SSSP problem, given a weighted graph G = (V, E,w)
and a source vertex s, finds the minimum costs from s to all the other vertices v ∈ V .

13



The APSP problem, given a weighted graph G = (V, E,w), finds the minimum costs
of all pairs between vertices v, u ∈ V .

The pioneering work for SSSP and APSP was presented by Harish and Narayanan [49],

as mentioned above. Their SSSP implementation is based on parallelization of Di-
jkstra’s algorithm [24]. Later, Martı́n et al. [87] pointed out that the implementation
of SSSP by Harish et al. computes results different from the optimal one, and pre-

sented a solution to this issue. The implementation of Harish et al. has the problem
that concurrency control is not perfect. Thus Martı́n et al. proposed solutions that

compute the optimal result. Delling et al. [29] developed a pre-processing-based
SSSP method, called PHAST, especially focusing on certain classes of graphs, in-
cluding road networks. PHAST constructs an index structure from a graph on the

basis of contraction hierarchies [40]. This index enables the SSSP computation
with only a linear sweep of all vertices. PHAST also takes advantages of paral-

lelism available on multi-core CPUs and GPUs. More recently, Davidson et al. [27]
presented three methods for SSSP, workfront sweep, near-far pile, and bucketing,
by balancing the tradeoff between saving work and organizational overhead. These

methods are designed to expose sufficient parallelism for GPUs. They reported that
near-far pile is the fastest method because of its balance between work efficiency
and available parallelism.

As for the APSP problem, Katz and Kider [64] proposed a method based on

the Floyd–Warshall algorithm [24]. Their method partitions the adjacency matrix
into small blocks and processes each block on shared memory, thereby accelerating

memory accesses to graph data. They also developed methods to handle larger data
than GPU memory and also to utilize multiple GPUs. Buluç et al. [16] presented
an APSP method that recursively partitions the APSP computations and exploits

existing implementations of fast matrix multiplication. Meanwhile, Matsumoto et
al. [89] proposed a similar method in that they recursively partition the APSP com-
putations and utilize matrix multiplications. The difference is that the method of

Matsumoto et al. computes not only the minimum costs of shortest paths but also
the actual shortest paths, and their method is able to cope with large-scale data

that does not fit into GPU memory. Okuyama et al. [101] developed an improved
method of the APSP implementation by Harish and Narayanan [49]. The imple-
mentation by Harish et al. solves the APSP problem by separately computing SSSP

from all vertices as sources. On the other hand, Okuyama et al. exploit the property
that intermediate results of multiple SSSP problems can be shared, by using shared

memory.

The above-mentioned APSP methods deal with only small-scale graphs, at most
32,000 vertices. To solve larger-scale problems, Djidjev et al. [30] proposed a
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scheme for handling huge graphs using GPU clusters. Their scheme distributes
the APSP computation by partitioning the input graph. Specifically, their method

realizes distributed APSP computations by the following four steps: (1) the input
graph is divided into k components; (2) each component is processed by the Floyd–
Warshall algorithm on a GPU; (3) the method is recursively applied to boundary

vertices in each component; and (4) with the results of steps 2 and 3, shortest paths
crossing different components are updated.

Other techniques

Data mining methods targeting graph data have also been developed, including

PageRank [105], HITS [67], and graph clustering [35]. Since graph clustering is
described in Section 2.6, other methods are reviewed here.

Yang et al. [140] proposed a fast method of sparse matrix vector multiplica-
tion (SpMV), thereby accelerating graph mining algorithms such as PageRank and

HITS, because these algorithms are mostly based on SpMV. Their method is de-
signed to capture the characteristics of real-world graphs, especially the scale-free
property [7]. They also discussed a scheme to automatically tune parameters used

in their method.

He et al. [55] accelerated SimRank [62], a similarity measure between vertices
in a graph. While existing methods of SimRank have two limitations that they are

computationally expensive and only applicable to static graphs, They proposed a
novel technique to rewrite the SimRank equation so that optimizations and incre-
mental updates can be performed. In addition, they develop a general framework

for parallel SimRank computation on GPUs.

McLaughlin and Bader [91] sped up the computation of betweenness central-

ity [37], which is a popular metric to distinguish influential vertices in a graph.

Existing GPU implementations manage scale-free graphs, but their performance de-
grades when handling graphs with large diameters such as road networks. McLaugh-
lin and Bader alleviated this issue by developing a hybrid method. This method

adaptively selects an appropriate processing scheme according to the size of a next
working set.

Graph processing systems

As described above, many graph processing algorithms have been successfully ac-
celerated by using GPUs. However, development of efficient programs for GPUs is

still difficult and costly. To address this challenge, graph processing systems using
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GPUs have recently been proposed.

Zhong and He [142] presented a programming framework, Medusa. Medusa
enables users to develop programs of GPU-accelerated graph processing by writing

C/C++ codes of serial execution. To efficiently process graph data on GPUs, they
propose a programming model called edge-message-vertex (EMV), and Medusa of-
fers a small set of APIs based on EMV. They also introduced a series of graph-

centric optimizations for GPUs and extend Medusa to execute on multiple GPUs.
Fu et al. [38] also proposed a programming framework called MapGraph, which

offers APIs based on the modified gather-apply-scatter (GAS) model [42]. Map-
Graph achieves high performance by dynamically selecting scheduling strategies
depending on the frontier size and the size of adjacency lists of frontier vertices.

They also integrated several existing optimizations suitable for GPU architectures.

More recently, Wang et al. [130] developed a graph processing system, Gunrock.
Gunrock simplifies graph processing on the GPU by a high-level bulk-synchronous

abstraction with traversal and computation steps. They also integrated a number of
optimization strategies such as multiple load-balancing strategies, direction-optimal
traversal, and a two-level priority queue.

2.3 Frequent itemset mining

The association rule mining problem was firstly introduced by Agrawal et al. [3].
Frequent itemset mining can be considered as the first step for association rule min-
ing, and usually this first step is the most time-consuming part. To accelerate this

step, many efficient algorithms have been developed. Among such algorithms, there
are two major algorithms, namely Apriori [5] and FP-growth [47].

Parallelization of these algorithms has been widely studied in the literature [4,
82, 84, 107, 117]. Three Apriori-based algorithms on a shared-nothing architecture

were presented by Agrawal and Shafer [4]. They explored several tradeoffs such as
computation, communication, and synchronization. Parthasarathy et al. [107] paral-

lelized the Apriori algorithm that uses hash trees. They developed a parallel imple-
mentation on a shared-memory multi-processor, taking into account load balancing,
data locality, and false sharing. Liu et al. [84] proposed a cache-conscious FP-array

to improve the spatial locality of FP-growth, and a lock-free dataset tiling approach
to fully utilize a modern multi-core processor. Li et al. [82] designed a parallel al-

gorithm of FP-growth on a massive computing environment using MapReduce [28].
More recently, mcEclat was introduced by Schlegel et al. [117] to handle the large
number of threads provided by Intel many-core processors.
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While the above-mentioned parallel algorithms work well for the conventional
certain transaction databases, they cannot effectively process frequent itemset min-

ing from uncertain databases, which gains increasing importance in order to handle
data uncertainty. There is much existing work for modeling, querying, and min-
ing such uncertain data (see a survey by Aggarwal and Yu [2] for details and more

information).

To mine frequent itemsets with taking into account the uncertainty, a large num-
ber of algorithms have been proposed. Chui et al. [22] proposed the U-Apriori al-

gorithm that computes the expected support of itemsets by summing up all itemset
probabilities under the attribute-uncertainty model, where each item in transactions
has an existential probability. Leung et al. [77] proposed a tree-based mining algo-

rithm UF-growth, which is an adaptation of FP-growth. Later, Leung and Tanbeer
improved the algorithm and compactness of the tree structure [75]. Sampling-based

method was also introduced by Calders et al. [18].

Bernecker et al. [11] found that the use of expected supports may result in miss-
ing interesting itemsets, and proposed an algorithm to find probabilistic frequent
itemsets. While all the above-mentioned work deals with the attribute-uncertainty

model, Sun et al. [124] considered the tuple-uncertainty model, where each transac-
tion has an existential probability, and they presented algorithms for mining proba-
bilistic frequent itemsets under this model. Recently, Tong et al. [128] implemented

existing representative algorithms and test their performance with uniform measures
fairly.

Several attempts to accelerate the algorithms also exist [17, 76, 132]. Calders et

al. [17] sped up the computation by approximating the probabilities for probabilistic
frequent itemsets based on sampling. Wang et al. [132] accelerated the computa-
tion of probabilities by exploiting the statistical properties of probabilistic models.

Leung and Hayduk [76] proposed a tree-based algorithm with MapReduce to find
expected support-based frequent itemsets. To the best of our knowledge, there has
been no work to accelerate probabilistic frequent itemset mining with GPUs.

Frequent itemset mining from “certain” databases on GPUs was studied in [6,

34,120,127]. Fang et al. [34] proposed two approaches, a GPU-based method and a
CPU–GPU hybrid method. The GPU-based method uses bitstrings and bitwise op-

erations for fast support counting, running entirely on the GPU. The hybrid method
adopts the trie structure on the CPU and counts supports on the GPU. Teodoro et
al. [127] parallelized the Tree Projection algorithm [1] on the GPU as well as multi-

core CPU. Amossen and Pagh [6] presented a novel data layout BatMap to represent
bitstrings, which is well suited to parallel processing and compact even for sparse

data. They make use of BatMap to accelerate frequent itemset mining. Silvestri and
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Orlando [120] proposed a parallel version of a state-of-the-art algorithm DCI [103].

2.4 Sorting

Sorting is a fundamental operation in many algorithms, and its acceleration has

significant importance in many fields. Recently, GPU acceleration of sorting has
also been extensively studied.

The pioneering work was done by Govindaraju et al. [43] before the introduction
of CUDA. They presented a novel sorting algorithm called GPUTeraSort, which

has the following advantages: (1) it can sort datasets that do not fit into the GPU
memory; and (2) it can handle long records with wide keys.

Since the introduction of CUDA, a large number of proposals have been made.

Satish et al. [115] discussed designs and implementations of radix sort and merge
sort on GPUs. An efficient implementation of radix sort is realized by exploiting the
scan primitive for enabling fine-grained parallel processing. Merge sort is imple-

mented by developing an efficient algorithm for merging a pair of sorted sequences.
In addition, they also discussed the use of shared memory for the sorting algorithms.
A faster comparison-sorting algorithm8 was proposed by Ye et al. [141], called

GPU-Warpsort. GPU-Warpsort exploits the lock-step nature of CUDA’s warps,
thereby reducing the overhead of thread synchronization.

As another comparison-sorting algorithm, Leischner et al. [73] presented a GPU

implementation of samplesort [13]. Samplesort is an algorithm that recursively
partitions an input sequence into k buckets by sampling k − 1 splitters from the
input. When the input becomes sufficiently small, another algorithm is used to finish

the sorting. Compared to merge sort and quicksort, samplesort has the advantage
that the number of global-memory accesses is smaller. Samplesort is described in
Section 4.2.1 in more detail.

Meanwhile, Satish et al. [116] discussed efficient implementations of merge sort

and radix sort, targeting both CPUs and GPUs. For a fair comparison, they tune
implementations for both architectures. As a result, the CPU radix sort outperforms

the GPU counterpart by 20%. On the other hand, the merge sort on the GPU shows
higher performance that on the CPU.

The state-of-the-art implementation of radix sort is considered to be the work
presented by Merrill and Grimshaw [92]. They exploit two techniques, kernel fu-

8Comparison sorting algorithms here mean that the algorithms sort input lists by only comparing
pairs of elements [68]. For example, merge sort is a comparison-sorting algorithm, while radix sort
is not.
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sion [136] and multi-scan, thereby largely reducing memory-access cost, compared
with existing methods. Kernel fusion attempts to combine multiple kernels into one,

resulting in better utilization of GPU resources. Multi-scan computes multiple scan
operations simultaneously, reducing the computational cost. On the basis of this
implementation, a more tuned one is publicly available as a part of library called

CUB [94].

On the other hand, the state of the art of comparison sorting is a merge-sort-
based method published as a part of library, Modern GPU [8]. This method is based

on merge path [44], which partitions merge of a pair of sorted lists into p equi-
sized subproblems. Thus, by using merge path, completely load-balanced merge
can be achieved. The Modern GPU implementation utilizes such merge procedures

to realize an efficient merge sort.

2.5 Clustering

Clustering is a task to separate data points from a dataset such that similar points
belong to the same group called cluster [48]. In general, standard clustering algo-

rithms require high computational cost. For example, k-means [48] has the time
complexity of O(nkt), where n is the number of data points, k is the number of

clusters, and t is the number of iterations. As another example hierarchical agglom-
erative clustering [48] has the time complexity of O(n3) with n data points. Thus
there are a large number of techniques to accelerate the processing of clustering

algorithms. One of such techniques is canopy clustering [90], which is described
in Section 5.2 in detail. Another option for acceleration is to parallelize the com-
putation of clustering algorithms. The following first reviews parallel clustering on

CPUs and then describes clustering on GPUs.

2.5.1 Parallel clustering

Significant efforts have been made to parallelize clustering algorithms. For in-
stance, Dash et al. [26] proposed a parallel algorithm of hierarchical agglomerative

clustering for shared-memory architectures that employs partially overlapping par-
titioning. Patwary et al. [108] parallelized the DBSCAN algorithm [48] by using
the disjoint-set data structure and a tree-based bottom-up scheme to build clusters.

More recently, Li et al. [79] presented an approach of k-means for the MapReduce
framework. They utilize three techniques: locality sensitive hashing, a novel center

initialization algorithm, and a pruning scheme for avoiding unnecessary distance
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computations. To the best of our knowledge, only Soroush et al. [122] dealt with
the parallelization of canopy clustering. They use canopy clustering as a running

example for their new storage manager for parallel array processing, ArrayStore,
and implement canopy clustering on top of ArrayStore.

2.5.2 GPU clustering

Clustering on GPUs has been extensively studied since the introduction of CUDA [98].
In particular, the k-means algorithm is well studied because of its popularity [69,

80, 133]. Wasif and Narayanan [133] implemented all the steps of k-means en-
tirely on the GPU, and evaluated the implementation not only on a single GPU but

also on multi-GPU platforms. Kohlhoff et al. [69] also presented an efficient im-
plementation of k-means for GPUs by utilizing parallel sorting as preprocessing.
Another implementation of k-means for GPUs is proposed by Li et al. [80]. They

take into account the dimensionality and adaptively employ two schemes for low-
dimensional data and high-dimensional data, respectively.

There also exists work on the acceleration of other algorithms such as DBSCAN

and hierarchical agglomerative clustering [15,118,134]. Böhm et al. [15] proposed
CUDA-DClust, a parallel algorithm for density-based clustering on GPUs. They
further accelerated this algorithm by using an index structure suited for GPU pro-

cessing. Another variant of DBSCAN, called Mr. Scan, is introduced by Welton
et al. [134]. This algorithm is implemented on the MRNet tree-based distribution
network with GPU-configured nodes, and is capable of clustering 6.5 billion points

in 17.3 minutes. Hierarchical agglomerative clustering was accelerated Shalom and
Dash [118]. They use partially overlapping partitions in order to efficiently paral-

lelize the computation on GPUs.

2.6 Graph clustering

Graph clustering, also known as community detection, has recently been paid sig-
nificant attention, and many algorithms and measures to evaluate clustering results

have been proposed [35, 131]. This section gives an overview of graph clustering
algorithms (Section 2.6.1) and their parallelization (Section 2.6.2).
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2.6.1 Serial graph clustering

Modularity [97] is a popular measure to evaluate clustering quality, and many modularity-

based algorithms have been proposed. Modularity measures the difference between
a clustering result and an expected random graph, and it takes high values when the
result contains many intra-cluster edges and few inter-cluster edges. The Louvain

method [14] is a well-known greedy algorithm to maximize modularity. Louvain
enables fast clustering by computing modularity gains when a vertex is moved from
a cluster to another. Shiokawa et al. [119] improved the Louvain method by in-

crementally aggregating clusters. However, it is pointed out that modularity has a
limitation called resolution limit [36], which means that, as graphs become larger,

small clusters cannot be captured by modularity.

As another class of graph clustering algorithms, label propagation has been
proposed [78, 112]. Raghavan et al. [112] proposed a basic label propagation algo-
rithm, which clusters graph data by propagating labels from vertices to neighbors.

Leung et al. [78] improved the basic label propagation algorithm by introducing two
heuristics, called hop attenuation and node preference.

Wang et al. [131] conducted extensive experiments for fair comparisons of ten

graph clustering algorithms, by implementing them with a common framework.
Consequently, label propagation achieves higher performance and more accurate
results compared with other algorithms. Therefore, this study focuses on the accel-

eration of label propagation.

2.6.2 Parallel graph clustering

Since real-world graphs become increasingly huge, it is important to accelerate
graph clustering techniques. To this end, many parallel graph clustering methods
have recently been developed. In particular, because of its popularity, parallelization

of modularity-based algorithms has been extensively studied. For instance, Djidjev
and Onus [31] accelerated modularity-based clustering by utilizing the property that

the problem of modularity maximization can be reduced to a minimum weighted cut
problem on a complete graph with the same vertices. With this reduction, modu-
larity maximization can be efficiently solved by existing parallel graph partitioning

techniques. Que et al. [111] parallelized the Louvain method on a large-scale cluster
consisting of 8,192 nodes. They introduce a novel hash-based strategy to efficiently

store and process dynamic graphs.

Parallelization of label propagation has also been proposed, because it is suit-
able for parallel processing as only vertex-local information is used. Cordasco and
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Gargano [23] proposed a novel method that updates vertex labels semi-synchronously.
In label propagation algorithms, synchronous label updates mean that all labels are

updated at the same time, and asynchronous label updates mean that labels are se-
quentially updated [112]. The synchronous updates can be easily parallelizable,
but it is known that the convergence is slow [78]. On the other hand, the asyn-

chronous updates converge faster, but it is difficult to correctly parallelize them.
The semi-synchronous method is a hybrid of synchronous and asynchronous meth-

ods: it partitions a graph into multiple sets by graph coloring [], labels are updated
in a set-by-set fashion, and within each set, labels are updated synchronously. Al-
though Cordasco et al. did not conduct experiments with parallel environments,

later Duriakova et al. [32] extended and implemented the semi-synchronous scheme
and evaluated it with multi-core CPUs.

GPUs have also been utilized to accelerate graph clustering. Stovall et al. [123]

parallelized on GPUs the SCAN algorithm [137], which is based on structural sim-
ilarity. Label propagation on GPUs was proposed by Soman and Narang [121].
They develop a parallel label propagation method targeting both multi-core CPUs

and GPUs. However, the details of GPU implementation is not well discussed and
load balancing is not considered much.

2.7 Discussion

This chapter has given an overview of related work on GPU-accelerated data anal-

ysis techniques and the four problems: frequent itemset mining, sorting, clustering,
and graph clustering. This dissertation presents GPU-accelerated methods for the
problems.

A GPU-accelerated method of frequent itemset mining from uncertain data is

described in Chapter 3. While GPU acceleration of frequent itemset mining from
“certain” data has already been proposed [6, 34, 120, 127], our target is to speed up

frequent itemset mining over uncertain data, which has not yet been accelerated by
GPUs. More than that, the key component is the acceleration of numerous convo-
lutions, and this kind of computation has not been accelerated by GPUs, to the best

of our knowledge.

A novel algorithm of efficient comparison sorting on GPUs is provided in Chap-
ter 4. Since comparison sort can be more widely applicable than non-comparison

sort such radix sort, we attempt to accelerate comparison sorting on GPUs. The state
of the art of comparison sorting is a merge-sort-based implementation presented by
Baxter [8]. However, it has the limitation that the performance degrades for sort-
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ing large-scale data. Our method alleviates this limitation by combining Baxter’s
implementation and samplesort [73], with taking into account load balancing.

Chapter 5 presents efficient algorithms and implementations of canopy clus-

tering on GPUs. While standard clustering algorithms such as k-means have been
extensively accelerated by GPUs, canopy clustering on GPUs has not yet been tack-
led. With the acceleration of canopy clustering, we can expect to speed up the whole

clustering process, by combining GPU-accelerated canopy clustering and clustering
algorithms. More than that, we also propose an efficient procedure to construct grid

index structures on the GPU by exploiting data-parallel primitives.

GPU-accelerated graph clustering is introduced in Chapter 6. Our method is
based on parallelization of label propagation [112], one of the fastest algorithms.
Label propagation is suitable for parallel processing [78] and achieves accurate clus-

tering results [131]. Thus label propagation is considered as a promising algorithm
for parallelizing on GPUs. Soman and Narang [121] has already presented a parallel

label propagation algorithm for GPUs as well as multi-core CPUs. However, their
method does not well take into account load balancing, which is extremely impor-
tant to efficiently handle real-world graphs. On the other hand, our method achieves

load balancing almost completely, by exploiting primitives whose performance is
not largely affected by the existence of skewness.

While this dissertation focuses on the use of GPUs, another option of many-
core processors is available: Intel R⃝ Xeon Phi

TM
. Intel R⃝ Xeon Phi

TM
includes around

60 cores, each of which supports long (512-bit) SIMD instructions, thereby en-
abling massive and hierarchical parallelism. As for threading models, GPUs em-

ploy massive amounts of light-weight threads that can be swithched with almost
zero overhead. On the other hand, Intel R⃝ Xeon Phi

TM
utilizes threads with costly

context switches, and each core accommodates up to four threads. Therefore, com-

pared to Intel R⃝ Xeon Phi
TM

, GPUs excel in computing massive amounts of simple
and independent computations. This means that GPUs are suitable for highly data-
parallel processing. Many data analysis techniques can be efficiently processed in

a highly data-parallel manner. Therefore, GPUs are considered as a more promis-
ing solution than Intel R⃝ Xeon Phi

TM
for accelerating large-scale data analysis tech-

niques. In particular, the four problems focused in this dissertation contain the
following data-parallel nature: (1) frequent itemset mining from uncertain data re-
quires massive amounts of probability computations; (2) comparison sorting can

be efficiently expressed as a set of data-parallel primitives; (3) canopy clustering
needs many distance computations between data points; and (4) graph clustering

has data-parallelism in the levels of vertices and edges.

Actually, a number of research papers have reported that GPUs exhibit better
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performance and more effective memory bandwidth than Intel R⃝ Xeon Phi
TM

for
various applications [20, 126, 129]. Teodoro et al. [126] conducted comparative

performance analyses of Intel R⃝ Xeon Phi
TM

, GPUs, and CPUs with a case study
of microscopy image analysis. Applications of microscopy image analysis con-
sist of multiple common operations. Teodoro et al. identify the data access and

computational patterns of the operations, and they classify the operations into three
categories: regular data access, irregular data access, and heavy use of atomic func-

tions. Their experimental results reveal the following observations: (1) GPUs are
faster on memory-bound operations with regular data access; (2) GPUs and Intel R⃝

Xeon Phi
TM

are comparable on compute-bound operations in the category of reg-

ular data access; (3) GPUs are more efficient than the other devices on operations
of irregular data access; and (4) GPUs significantly outperforms the other devices

on operations that heavily rely on atomic functions. Tran et al. [129] investigated
acceleration of bit-parallel approximate pattern matching on both GPUs and Intel R⃝

Xeon Phi
TM

. Their results also show that a GPU implementation achieves superior

performance than Intel R⃝ Xeon Phi
TM

by a factor of up to 2.9. By observing these
facts, GPUs are considered as a more promising solution for accelerating large-scale
data analysis techniques.

24



Chapter 3

GPU-Accelerated Frequent Itemset

Mining from Uncertain Data

Uncertainty is prevalent in many real-world applications such as sensor monitoring
systems [2]. To deal with the vast amount of uncertain data, uncertain databases
have been widely studied during the last decade. Several algorithms of frequent

itemset mining, one of the major data mining techniques, have also been proposed
to extract valuable information from uncertain databases [128]. However, their per-

formance is not satisfactory because handling uncertainty incurs high processing
cost. In order to address this problem, we utilize GPUs, which increasingly gain
popularity as many-core processors. The key component is to speed up probabil-

ity computations by making the best use of GPU’s high parallelism and fast local
memory. More specifically, we accelerate numerous convolutions between proba-
bility mass functions by exploiting their tree-structured computation. In addition,

we present a technique of simultaneous computation of convolutions to maximize
the utilization of GPUs. We also employ an algorithm to manipulate bitstrings and

data-parallel primitives to improve performance in other steps. Extensive experi-
ments show that our GPU implementation is up to 5.5 times faster than a parallelized
CPU implementation.

3.1 Introduction

The problem of uncertain data management has attracted a great deal of attention
due to the inherent uncertainty in the real world [2]. For example, when analyzing
purchasing behavior of customers using RFID sensors, there may be incorrect sen-

sor readings due to errors. In addition to this, uncertain data takes place in many
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situations. Major sources of uncertainty include limitations of equipment, privacy
concerns, or statistical methods such as forecasting. To deal with such uncertain

data, uncertain databases have recently been developed [2].

In the area of uncertain data management, frequent itemset mining or associa-
tion rule mining [3] from uncertain databases is one of the major research issues,
and there have been a number of algorithms [11,17,18,22,75,77,124,128,132]. Al-

though conventional frequent itemset mining is a well-studied technique [3, 5, 47],
frequent itemset mining from uncertain databases is different from the conventional

one in the sense that we need to take into account uncertainty. Existing algorithms
suffer from performance problems due to the fact that dealing with uncertainty, such
as probability computation, incurs extra cost and is often highly time-consuming.

It is thus necessary to accelerate this computation in order to handle large-scale
uncertain databases.

This chapter presents a method of GPU-accelerated frequent itemset mining

from uncertain databases. The key component is to speed up probability compu-
tations by making the best use of GPU’s high parallelism and fast local memory.
More specifically, we accelerate numerous convolutions between probability mass

functions by exploiting their tree-structured computation. In addition, we present a
technique of simultaneous computation of convolutions to maximize the utilization
of GPUs. We also employ an algorithm to manipulate bitstrings and data-parallel

primitives to improve performance in other steps. Extensive experiments show that
our GPU implementation is up to 5.5 times faster than a parallelized CPU imple-

mentation.

3.2 Preliminaries

Section 3.2.1 defines conventional frequent itemsets, and Section 3.2.2 extends the
definition for uncertain data. This study basically follow the definition provided

by Sun et al. [124]. Section 3.2.3 describes the pApriori algorithm, which was
proposed by Sun et al. [124].

3.2.1 Frequent itemsets

Let I denote a set of all items. A set X ⊆ I of items is called an itemset and a
k-itemset means an itemset that contains k items. A pair of an ID and an itemset
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is called a transaction T .1 A transaction database T is a set of transactions and
its cardinality is denoted by |T |. Given a transaction database T and an itemset X,

the support of X, denoted by sup(X), is defined as the number of transactions in T
that include X. An itemset X is frequent or a frequent itemset if sup(X) ≥ minsup,
where minsup is a support threshold given by users.

3.2.2 Probabilistic frequent itemsets

An uncertain transaction database U is a transaction database where each trans-

action has an existential probability. The probability stands for the chance that a
transaction exists in U. Table 3.1 shows an uncertain transaction database, which

represents purchase records. For example, the transaction T1 means that items a and
b are purchased together with probability 0.8.

Uncertain transaction databases are often interpreted with the possible world se-
mantics [124,132]. Under this notion, a database generates a set of possible worlds,

each of which is a distinct combination of transactions in the database. For instance,
the database in Table 3.1 produces 16 possible worlds: ∅, {T1}, {T2}, {T3}, {T4}, {T1, T2},

etc. Each world is also associated with an existential probability that is the product
of the probabilities of world’s transactions. The world {T1} in Table 3.1 has the
probability that the transaction T1 exists and the transactions T2, T3, and T4 do not

exist (i.e., 0.8 · (1 − 0.7) · (1 − 0.9) · (1 − 0.5) = 0.012).

In this interpretation, the support of an itemset X varies with possible worlds
and hence becomes a random variable. The probability mass function of a support
is called a support probability mass function (SPMF), denoted as fX. With this func-

tion, the probability that sup(X) = i can be written as fX(i), where i is an integer that
sup(X) may take (i.e., i ∈ {0, 1, ..., |U|}). In principle, fX(i) is calculated by summing

the probabilities of worlds where sup(X) = i. For example, Figure 3.1 illustrates an
SPMF f{b} for the database in Table 3.1. The support sup({b}) equals 0 in worlds ∅
and {T3}. Hence f{b}(0) is evaluated as 0.003 + 0.027 = 0.03, where “0.003” and

“0.027” are the existential probabilities of worlds ∅ and {T3}, respectively.

An itemset X is probabilistic frequent or a probabilistic frequent itemset (PFI)

if

P
(

sup(X) ≥ minsup
)

=

|U|
∑

i=minsup

fX(i) ≥ minprob, (3.1)

where minprob ∈ (0, 1] is a probability threshold given by users. In short, an

1A transaction is used to mean the itemset of the transaction in the context of set-theoretic inclu-
sion relation.
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Table 3.1: An uncertain transac-
tion database.

ID Itemset Prob.

T1 {a, b} 0.8
T2 {b, c} 0.7
T3 {a} 0.9

T4 {a, b, c} 0.5
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Figure 3.1: The SPMF of an itemset {b}.

itemset is probabilistic frequent if it is frequent with certainty at least minprob. For

example, when minsup = 2 and minprob = 0.5 with the database in Table 3.1, an
itemset {b} is a PFI because

P(sup({b}) ≥ minsup)

= f{b}(2) + f{b}(3) + f{b}(4)

= 0.47 + 0.28 + 0.0 = 0.75 ≥ minprob

Having defined uncertain transaction databases and probabilistic frequent item-
sets, we define the problem accelerated in this chapter as follows.
Problem 1 (probabilistic frequent itemset mining). Given an uncertain transaction

database U, minsup, and minprob, find probabilistic frequent itemsets from the

databaseU.

3.2.3 The pApriori algorithm

The Apriori algorithm, which was originally proposed by Agrawal and Srikant [5],
is a well-known algorithm for association rule mining. Sun et al. [124] proposed
pApriori that adapts Apriori to uncertain transaction databases.

A pseudo-code of the pApriori algorithm is shown in Algorithm 1. First of

all, this algorithm extracts a set C1 of candidate 1-itemsets from an input database
U. This set contains an itemset whose element is one item in the database U.

From the candidates C1, pApriori computes a set L1 of probabilistic frequent 1-
itemsets (or 1-PFIs). Subsequently, the algorithm sets k = 1 and continues the
following procedures alternately with incrementing k by one, until no additional

PFI is detected:

1. Generating a set Ck of candidate k-itemsets from a set Lk−1 of (k − 1)-PFIs.

2. Extracting a set Lk of k-PFIs from the set Ck.
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Algorithm 1: The pApriori algorithm.

Input: uncertain transaction databaseU,
minsup, minprob

1 C1 ← generate candidates from the databaseU

2 L1 ← extract probabilistic frequent itemsets from C1

3 k ← 1
4 while Lk ! ∅ do

5 k← k + 1
6 Ck ← generate candidates from Lk−1

7 Lk ← extract probabilistic frequent itemsets from Ck

8 end

9 return All probabilistic frequent itemsets
⋃k−1

i=1 Li

Eventually the pApriori algorithm returns all PFIs extracted fromU.

The following sections describe the two procedures and a pruning technique.

Generating candidates

The procedure of generating candidate itemsets can be separated into two phases:

merging and pruning phases.

In the merging phase, candidate k-itemsets are generated from (k − 1)-PFIs.
More specifically, a candidate k-itemset is created from a pair {X, Y} of (k − 1)-PFIs
if the pair is joinable, which means that X and Y satisfy the following condition:
(X[1] = Y[1])∧ (X[2] = Y[2])∧ · · ·∧ (X[k − 2] = Y[k − 2])∧ (X[k − 1] < Y[k − 1]),
where X[i] denotes the ith item of X in a certain order such as lexicographical order.

If X and Y are joinable, a candidate k-itemset is formed as the union of X and Y ,
and it is stored into a set Ck of candidate k-itemsets.

In the pruning phase, the following lemma is used in order to prune the candi-
dates [124].

Lemma 1 (Anti-monotonicity). If an itemset X is a PFI, then any itemset X′ ⊂ X is

also a PFI.

The contraposition of this lemma yields that if any itemset X′ ⊂ X is not a PFI,
then the itemset X is not a PFI either. Hence a candidate k-itemset can be pruned out

when any (k−1)-subset of the candidate is not included in a setLk−1 of (k−1)-PFIs.
If a candidate can be pruned out, it is deleted from Ck.
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Extracting probabilistic frequent itemsets

In order to reveal whether or not an itemset X is a PFI, the SPMF of X needs

to be computed and substituted for Equation 3.1. Since the number of possible
worlds increases exponentially with the number of transactions, a naı̈ve solution
to compute SPMFs is considered to be intractable. To address this problem, Sun

et al. proposed two algorithms based on dynamic programming and divide-and-
conquer [124]. Here, we only describe the latter algorithm because it is shown to
be more efficient and is considered to be more suitable for parallel processing.

The algorithm takes as inputs an uncertain transaction databaseU and an item-

set X and returns the SPMF fX of X. If the databaseU contains only one transaction,
it just computes the SPMF and returns the result. IfU contains two or more trans-

actions, it horizontally partitionsU into two databasesU1 andU2, and recursively
applies the same algorithm to them. Having finished the computation for U1 and
U2, the algorithm combines the resulting SPMFs into one SPMF and returns it as

output.

The key here is that two SPMFs are efficiently combined into one by convolu-
tion [124]; i.e., the desired SPMF fX can be computed as

fX(i) =

i
∑

j=0

f 1
X( j) · f 2

X(i − j) (i ∈ {0, 1, ..., |U|}) ,

where f 1
X and f 2

X are SPMFs onU1 andU2, respectively. Although the naı̈ve com-
putation of convolution requires O(|U|2) time, it can be improved to O

(

|U| log(|U|)
)

time complexity with fast Fourier transform (FFT) algorithms [124]. Consequently,
the time complexity of the divide-and-conquer algorithm results in O

(

|U| log2(|U|)
)

.

Pruning

Owing to the high complexity of SPMF computation, it is desirable to prune in-
frequent itemsets without computing SPMFs. For this purpose, a count and an

expected support of an itemset X are used. The count cnt(X) is the number of
transactions that include an itemset X, regardless of existential probabilities. The

expected support esup(X) is the expectation of support sup(X), which can be com-
puted by summing the existential probabilities of transactions that include X. Sun et
al. proved two lemmas that allow for pruning candidates with the two values [124].

Since counts and expected supports can be obtained by a single scan of database, it
is more efficient to compute counts and expected supports than to compute SPMFs.
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Figure 3.2: An uncertain transaction database on the GPU.

3.3 Proposed method

Although the above-mentioned pApriori algorithm achieves an efficient way of

probabilistic frequent itemset mining, even better performance is desirable when
dealing with huge databases. To this end, we aim at improving performance of the

pApriori algorithm by exploiting the massive parallelism of GPUs.

We now describe a method of probabilistic frequent itemset mining using a sin-
gle GPU. We assume in the following that items in transactions are denoted as inte-
ger values in

{

0, 1, ..., |I|− 1
}

. In Section 3.3.1, we explain data layouts on the GPU.

Sections 3.3.2 and 3.3.3 describe algorithms for generating candidate itemsets and
extracting PFIs, respectively.

3.3.1 Data layouts on the GPU

An uncertain transaction database is the only data needed to execute our method.

On the GPU, a database U is represented by two one-dimensional arrays: an array
of itemsets in transactions and an array of existential probabilities. The first array
can be regarded as a binary matrix where the entry in the ith row and jth column

is 1 if the ith transaction contains the item j. Since this matrix tends to be sparse,
we store the matrix using a sparse matrix format. More specifically, we employ the
ELL format [114], because it is known that this format is well-suited to the GPU

architecture [10]. The ELL format stores an M-by-N sparse matrix with at most K

nonzeros per row as two arrays: a dense M-by-K array of nonzeros and an M-by-K

array of nonzero-column indexes. When considering itemsets of transactions as a
matrix, each entry contains merely 0 or 1. Thus we can represent the itemsets by
storing only the latter array. Note that K is the maximum size of transactions in our

case.

For example, the database in Table 3.1 can be represented as arrays shown in
Figure 3.2, where the items a, b, and c are denoted as 0, 1, and 2, respectively. Each
row of the first array represents the itemset of a transaction. Since the length of rows

is the maximum size of transactions, shorter rows are padded with a sentinel denoted
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Algorithm 2: Extract probabilistic frequent itemsets.

1 for X ∈ Ck in parallel do

2 Inclusion check of X

3 end

4 for X ∈ Ck in parallel do

5 Attempt to prune X

6 end

7 for each X ∈ Ck do

8 Filter transactions

9 Compute the SPMF of X

10 end

as X. We used the number of items |I| as the sentinel in our implementation. The

second array just stores existential probabilities corresponding to the transactions.

The first array in Figure 3.2 is stored in column-major order. This means that
the array is laid out in linear memory as 0, 1, 0, 0, 1, 2, X, 1, X, and so on. This
layout enables GPUs to coalesce multiple memory accesses into one transaction

when processing inclusion check, which is described in Section 3.3.3.

Meanwhile, we use an array of integers to represent itemsets. A k-itemset is
stored in an integer array of k elements. Let now Sk be a set of k-itemsets, which

corresponds to a set of either k-PFIs or candidate k-itemsets. The set Sk is stored
in an integer array of k · |Sk| elements in the following way. The first itemset in Sk

is stored in the array from 0 to k − 1 elements, and the second itemset is stored in

the array from k to 2 · k − 1 elements. In other words, the ith itemset occupies the
elements from (i − 1) · k to i · k − 1.

3.3.2 Generating candidates

The algorithm to generate candidates is similar to that of pApriori, while the details
are different to adapt to GPUs.

First, we allocates an integer array on the GPU that can store all candidate item-

sets, i.e., an array of k ·
(

|Lk−1 |

2

)

elements, where Lk−1 is a set of (k − 1)-PFIs. By
allocating the array that accommodates all the candidate k-itemsets, we can gener-

ate the candidate itemsets in parallel, without concurrency control. In the merging
phase, the GPU checks in parallel whether pairs in Lk−1 are joinable. If Xi and Xj

are joinable, where Xi is the ith itemset in Lk−1, they are combined into a candidate

k-itemset. The candidate is stored into the allocated array at a unique index corre-
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sponding to i and j. This index is computed as
(

|Lk−1| − 1
)

· i − i · (i + 1)/2 + j − 1.
If Xi and Xj are not joinable, a special value (e.g., −1) is assigned at the same index

to indicate that the candidate does not exist. In the pruning phase, if it is confirmed
that any (k − 1)-subset of a candidate is not contained in Lk−1, the special value is
assigned at the corresponding index of the candidate as before.

After generating candidates, candidates and non-candidates are intermixed in

the resulting array. Thus we filter out the non-candidates by applying the filter
primitive. The resulting array is an input to filter and each candidate is considered

as an element. The predicate is a function that takes a candidate and returns true if
the first element of the candidate is not the special value.

3.3.3 Extracting probabilistic frequent itemsets

Algorithm 2 shows an overview to extract PFIs, which comprises four steps: in-
clusion check, pruning, filtering, and SPMF computation. Inclusion check is to

check whether transactions of database include a candidate. By using this result,
the pruning step attempts to prune candidates by computing counts and expected

supports. Non-pruned candidates become subject to the filtering step. For each can-
didate, this step filters out transactions that do not include the candidate, because
such transactions do not contribute to the SPMF. The final step computes the SPMF

of this candidate and determines whether the candidate is a PFI or not. Note that
inclusion check and pruning are processed in parallel for all candidates and the rest
steps of each candidate are performed in parallel. The following describe the four

steps one by one.

Inclusion check

Inclusion check is to check whether transactions of an input database U include a
candidate X. A straightforward implementation of inclusion check using iterative

loops with conditional branching deteriorates the performance, because GPUs can-
not execute such codes in parallel due to the architecture’s limitation. Thus it is
more desirable to investigate a method that can be executed efficiently on GPUs.

The information whether a transaction includes a candidate can be represented

by one bit. It is therefore a waste of memory to naı̈vely store the information as
an integer element. Instead, we employ a more compact data structure [103]; the
result of inclusion check is stored to an array of 32-bit integers, where each integer

is treated as a bitstring. The array, which we call inclist hereafter, allows for storing
the result with

⌈

|U| / 32
⌉

elements. In addition, the bitstrings enable us to exploit
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Figure 3.3: An overview to inclusion check for k = 1 on the GPU. G is the number
of blocks, N is the number of transactions, and there are |I| inclists, where I is a set
of all items.

intrinsic functions of GPUs, which are described later.

The computation of inclusion check is divided into two cases according to k,

namely, k = 1 and k > 1. Besides, inclusion check for k = 1 can be performed by
either the CPU or the GPU. The following explains them one by one.

k = 1 (GPU). Figure 3.3 illustrates an overview to inclusion check of GPU
approach. Each block of the GPU deals with the same 32 transactions, and each

thread in a block is in charge of |I| / B different candidates, where B is the number of
threads in one block. In other words, one thread conducts inclusion check of |I| / B

candidates with regard to 32 transactions, and packs these 32 boolean values into
an element of inclist. We assign threads to 32 transactions so that the threads can
store the results without a lock mechanism, because we assume that each element

of inclist is a 32-bit integer.

Transactions accessed from a block are transferred to shared memory before
inclusion check, because the transactions are shared by the threads within the block
and are read multiple times. When transferring the transactions to shared memory,

the threads of a warp read consecutive addresses on global memory thanks to the
column-major order, as mentioned in Section 3.3.1. These accesses are thereby

coalesced into fewer memory reads, so that the transfers can be completed quickly.

For each candidate, a thread judges whether transactions include the candidate
by linear search, transaction by transaction. Linear search enables threads of a warp
to read the same data on shared memory at the same time. Such memory accesses

are broadcasted to all the threads and take only one access time, thus resulting in
quite fast memory reads. Having finished the linear search, a thread sets a bit corre-
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sponding to a transaction to one, if the transaction includes the candidate; otherwise
the thread sets it to 0.

k = 1 (CPU). Since the GPU architecture is based on SIMT, it may be difficult

to efficiently parallelize every step of an algorithm. CPUs can be used for parallel
processing of such steps instead of GPUs. Inclusion check fits this situation; inclu-
sion check for only k = 1 is processed on the CPU and the cases when k > 1 are

done on the GPU. Since constructing inclists can be highly costly, pruning at k = 1
is also performed on the CPU before the inclusion check, contrary to Algorithm 2.

The computation of inclusion check and pruning on the CPU proceeds in a dif-

ferent manner than the GPU approach. While the GPU looks up which transactions
include candidates, the CPU searches through transactions to find which candidates
are contained in the transactions. The major difference from the GPU approach is

that transactions are examined only once.

First, the counts and the expected supports of candidate 1-itemsets are com-
puted by scanning the database. With the two values, we judge if candidates can be

pruned. Then, inclusion check of non-pruned candidates is carried out as follows.
For each item of transaction, we see if the item is still a candidate or not, and if so,
we set the corresponding bit of inclist elements. When parallelizing, 32 transactions

are handled by one thread to avoid locks as in the GPU approach. Having computed
the inclists of non-pruned candidates, the CPU transfers them to the GPU and shifts
to parallel processing on the GPU.

k > 1. In this case, it is not necessary to scan the whole database by reusing

inclists for k − 1, with an idea described in the prior work [34]. The inclist of a
candidate k-itemset X is computed as bitwise AND operations between two inclists

of (k − 1)-PFIs that are used to create the candidate X. For example, the inclist of
{a, b} can be computed as bitwise AND operations between two inclists of {a} and
{b}. This computation is efficiently parallelizable by assigning a thread to a bit-

wise AND operation. In addition, this optimization technique substantially reduces
accesses to the global memory, thereby making inclusion check run much faster.

Pruning

The second step is to prune out useless candidates. As explained in Section 9, prun-
ing requires counts and expected supports. Having computed counts and expected

supports, we can easily test whether candidates are pruned or not. If a candidate is
decided to be pruned, a special value is assigned to the first element of the candi-

date to indicate that it is pruned. After evaluating all candidates, pruned candidates
are discarded by applying the filter primitive as in Section 3.3.2. The following
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describes how to efficiently compute counts and expected supports.

cnt(X). This value means the number of transactions that include the itemset
X. The count can be computed by summing the number of bits set to 1 in the

inclist of X. The map and reduce primitives are utilized to realize this computation.
For the map function, we use a GPU intrinsic function popc [98]. The popc

function takes an integer and returns the number of bits that are set to 1 in the

binary representation. By applying map with popc to the inclist of X, we can
get an intermediate array of partial counts. To this array, the reduce primitive with

addition is applied, and cnt(X) is obtained as a result.

esup(X). This value means the expectation of sup(X), which can be computed
by summing the existential probabilities of transactions that include the itemset X.
At first glance, it may seem that applying the reduce primitive is enough to compute

esup(X). However, since the inclusion information is encoded within the bitstrings
of inclists, it is difficult to directly apply the primitives. Therefore some specialized

function is needed to work with inclists.

To this end, we exploit popc and another GPU intrinsic function ffs. This
function takes an integer and returns the position of the first (least significant) set
bit [98]. Combining these functions, we design an algorithm to decode a bitstring

(Algorithm 3). This algorithm enables us to work only with bits set to one. Since
ffs returns the position of the first set bit, we can obtain at the first iteration the

index of the first transaction that includes the candidate. Then some operation is

done with acc as an index, and x is shifted right by pos bits to make the first set bit
disappear. The algorithm repeats these operations popc(x) times (i.e., for all bits

set to one).

In order to compute esup(X), we apply the map primitive to the inclist of X with
Algorithm 3 as the map function. More precisely, the map function adds up the
existential probabilities corresponding to the transactions encoded in the inclist at

Line 6 of Algorithm 3, and returns this sum. The reduce primitive aggregates these
sums to obtain esup(X).

Filtering

To compute the SPMF of an itemset X, it is sufficient to consider the transactions
that include X; the other transactions can be ignored because these transactions do

not contribute to the SPMF. In this case, the time complexity of SPMF computation
for X decreases from O(|U| log2|U|) to O(cnt(X) log2 cnt(X)) [124]. To discard the

unnecessary transactions in parallel, we use a procedure similar to the filter primi-
tive.
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Algorithm 3: Decode a bitstring.

Input: an integer x

1 n← popc(x) ◃ the number of bits set to one
2 acc← −1 ◃ the position of a current bit in x
3 for i = 0 to n − 1 do

4 pos← ffs(x) ◃ the position of the next bit
5 acc← acc + pos

6 do some operation using acc as an index

7 x← x >> pos

8 end

...    ...

...    ...

...    ...

f 1
X f 2

X f 3
X f 4

X f n−3
X

f n−2
X f n−1

X f n
X

fX

m1

m2

rX
...

...

Figure 3.4: A tree structure in computing an SPMF fX. A node means an SPMF
and its size indicates the size of an SPMF.

We firstly decode the inclist of X by using Algorithm 3 and store the result to
an array of |U| elements that contains 0-or-1 values. The elements of this array are

flags, indicating whether transactions include the itemset X. This array becomes an
input to the scan operation with the addition operator, and the resulting array is the

indexes for output. The flag and index arrays are used in the next step to initialize
SPMFs.

SPMF computation

Since the computation of SPMFs is the most computationally intensive part of the
pApriori algorithm, we have to carefully parallelize this step. When the divide-and-

conquer algorithm (Section 9) is adopted, the processing flow of SPMF computation
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Figure 3.5: The computation of an SPMF f{b}.

can be illustrated as the tree structure in Figure 3.4. The computation begins from
the leaf nodes; by performing convolutions repeatedly, finally the desired SPMF is
evaluated. We exploit this structure to achieve high performance on the GPU. To

the best of our knowledge, there is no work on this kind of computation.

Before computing the SPMF of an itemset X, we allocate an array FX of 4 ·
2⌈log2(cnt(X))⌉ elements to store initial SPMFs, which correspond to the leaf nodes f i

X.
In other words, the array FX stores 2⌈log2(cnt(X))⌉ (the next-higher power of two to the

count) SPMFs of size 4. Hereafter, we call the exponent ⌈log2(cnt(X))⌉ the rank of
an itemset X, denoted as rX. The rank is an important factor because it determines

the height of the tree (Figure 3.4), or the time complexity. The time complexity of
SPMF computation is expressed with the rank as O(2rX log2 2rX ) = O(2rX r2

X).

The reasons that FX is of size 4 · 2rX are as follows:

1. The number of SPMFs in FX must be a power of two in order to combine the
SPMFs into one SPMF with repeated convolutions.

2. Each SPMF must be able to accommodate a convoluted SPMF, which has
three elements after the initial convolution.
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3. Making the size of SPMFs a power of two is beneficial to the performance of
FFT [99].

The first point makes the number of SPMFs 2rX = 2⌈log2 (cnt(X))⌉. The second and third

points together lead to the initial SPMFs of size 4.

To initialize the array FX, GPU threads compute the SPMFs of X in databases
that consist of only one transaction, by referring to the precomputed flag and index

arrays in the last step. If flag[i] is one, the ith thread computes the SPMF with regard

to the database that has only the ith transaction. The thread stores the computed
SPMF to the array FX so that it occupies the first two of specific four elements

of FX. The array FX at this time is the third array from the top in Figure 3.5,
which illustrates the computation of an SPMF f{b} with the database in Table 3.1. f i

X

denotes the SPMF of {b} in the database that consists of the ith transaction among

those that includes {b}. The first element of f i
X is the value of f i

{b}(0) and the second

element is the value of f i
{b}(1). Note that, in the example, f 4

X has no corresponding

transaction because cnt({b}) is 3, but f 4
X is added so that there exist a power-of-two

number of SPMFs.

To make the size of SPMFs four and correctly compute convolution, zero padding
(i.e., padding extra elements with 0) is carried out. Then the convolutions of two

adjacent SPMFs on FX are computed by performing three operations: Fast Fourier
Transform (FFT), the pairwise products of two transformed SPMFs, and Inverse

FFT (IFFT) on the multiplied ones. The third array from the bottom in Figure 3.5
shows FX at this point. The shaded areas indicate the elements that are updated with
a previous operation. Note that IFFT is only performed on a half of the SPMFs and

zero padding is carried out to the other half, thereby enabling next convolutions to
take SPMFs of a power-of-two size. The two operations (i.e., zero padding and con-
volutions) continue until the number of SPMFs becomes one. Finally, the desired

SPMF is stored in the array FX[0] to FX[cnt(X)].

As for FFT and IFFT, we used CUFFT, which is the CUDA FFT library [99].
The CUFFT library provides a simple interface for computing parallel FFTs on an

NVIDIA GPU. The library achieves the best performance when transforming the 2a

size. By storing the SPMFs in one array with the same size, we can also use batch
execution that is a feature of CUFFT.

SPMF computation on shared memory

As mentioned in the previous section, the SPMF computation begins from the leaf

nodes in Figure 3.4. By performing convolutions, the size of SPMFs doubles while
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Figure 3.6: Convolution between two SPMFs fX and fY .

the number of SPMFs gets half. In other words, there are a large number of small
SPMFs to be convoluted in the beginning of computation. This means that the
convolutions can be computed entirely on shared memory of GPUs in the first few

levels. Thus we consider dividing the SPMF computation into two phases: shared-
memory phase at first m1 levels and global-memory phase at the rest m2 levels,
as shown in Figure 3.4. In the first phase, the convolutions are directly computed

entirely on shared memory, without using FFT. In the second phase, we use the
algorithm explained in the previous section. We describe the details of computation

on shared memory in the following.

Figure 3.6(a) shows the computation of convolution between two SPMFs de-
noted as two arrays fX and fY , and the convoluted array is fXY . The arrows from
input elements mean contributions to the pointed elements. Resulting elements zi

are calculated as the expressions shown on the right side of the figure.

According to this illustration, we can consider two parallelization options:

Scatter: to assign a thread to an element in an input array.

Gather: to assign a thread to an element in a resulting array.

Figures 3.6(b) and 3.6(c) depict the two options, respectively. In the figures, compu-
tations by different threads ti are drawn in different line styles. Pairs of a thread and

its work are also shown on the right side. For example, the thread t1 in Figure 3.6(b)
is assigned to x0 and computes z0 ← z0 + x0y0, z1 ← z1 + x0y1, and z2 ← z2 + x0y2,

while the thread t1 in Figure 3.6(c) is assigned to z0 and computes z0 ← x0y0.

Pros and cons of the two options are twofold: memory write conflict and load
balance. As can be seen from Figure 3.6(b), the three threads of the scatter ap-
proach perform the same amount of work and thus this approach provides load bal-

ancing. However, it is possible that different threads update the same address at the
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same time and a conflict occurs. Such conflicts must be resolved by using atomic
functions available on GPUs, at the expense of performance. On the other hand,

write conflicts never occur with the gather approach because threads are assigned
to elements of a resulting array, although load balance is not achieved as shown in
Figure 3.6(c).

During the SPMF computation on shared memory, two arrays are used to main-

tain SPMFs. The initial SPMFs handled by a specific block are stored in one of the
arrays, by packing the SPMFs into the array. Two adjacent SPMFs in the array are

convoluted and the results are stored in the other array. Then, in turn, the latter array
becomes the next input array. The convolutions are computed in this fashion until
we reach the specified m1 level.

Simultaneous computation of multiple SPMFs

The algorithm of SPMF computation described so far cannot fully exploit the par-

allelism of GPUs when the rank of a candidate is low. To alleviate the problem, this
section introduces a technique of simultaneous computation of multiple SPMFs.
This technique allows for the effective utilization of GPUs even if there are only

candidates with low ranks.

The main idea is simple: to pack the arrays FX of multiple candidates into a
single array. Then we can perform FFT to multiple candidates in parallel by using

the feature of batch execution in CUFFT [99]. Zero padding and pairwise products
are also carried out simultaneously on multiple SPMFs. The targets of packing in
one batch are candidates with the same rank; otherwise the number of convolutions

to be performed disagrees among candidates.

The last loop of Algorithm 2 is replaced with Algorithm 4, which shows a
pseudo-code of the technique. Candidates are firstly sorted by their counts, to put

candidates with the same rank side by side (Line 1). Then we continue to get the
next candidates (Lines 5–7) while the rank of next candidate is the same with the
current one and the buffer for computation has enough space (Line 8). Having cho-

sen candidates, the algorithm initializes the buffer with the candidates so that the
computation of SPMFs can be started. Finally, it computes multiple SPMFs simul-
taneously and tests whether the current candidates are a PFI or not. The iteration

continues until there is no more candidate.
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Algorithm 4: Simultaneous computation of multiple SPMFs.

Input: a set C of candidates

1 Sort the candidates C by their counts
2 while C ! ∅ do

3 S ← ∅ ◃ the target candidates at this iteration

4 do

5 X ← the next candidate in C

6 S ← S ∪ {X}

7 C← C − {X}

8 while C ! ∅ ∧ the rank of next candidate = rX ∧ buffer B has enough

space

9 Initialize the buffer B with the candidates in S

10 Compute SPMFs using the buffer B

11 Test whether the candidates in S are PFIs or not

12 end

Table 3.2: Characteristics and parameters of datasets.

Dataset
# of # of

Density
Probability Default

items transactions distribution minsup

connect 129 67,557 33% U(0, 1) 48
accidents 468 340,183 7.2% N(0.5, 0.02) 35

T25I10D500K 7,558 499,960 0.33% U(0, 1) 0.65
kosarak 41,270 990,002 0.020% N(0.5, 0.02) 0.3

3.4 Experiments

We conducted extensive experiments to comprehensively evaluate our GPU-based
implementation. Section 3.4.1 summarizes the setting of experiments and datasets.

Sections 3.4.2–3.4.4 show the results on each step of the GPU-based algorithm,
namely, inclusion check, pruning, and SPMF computation. Section 3.4.5 shows the
result on the whole algorithm.

3.4.1 Experimental setup

We implemented our scheme using CUDA 5.5 and conducted experiments on an

NVIDIA Tesla K20X, which has global memory of 6 GB and 14 SMs, each of
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which consists of 196 SPs at 732 MHz. The CPU is a hexa-core Intel Xeon Proces-
sor E5-1650 v2 at 3.50 GHz with memory of 32 GB. It supports Hyper-Threading

Technology and can run 12 threads in total.

For a fair comparison, we parallelized the pApriori implementation that is made
available online by the authors [124]. OpenMP2 was used to parallelize pApriori on
the CPU. In order to optimize FFT computation, we employed the FFTW3 library

with the option of SIMD support for further acceleration. SPMFs are computed on
the CPU by using the same algorithm in Section 8. Although the computation of

a single SPMF is not parallelized, the SPMFs of different candidates are computed
in parallel by multiple threads. While SPMFs are small, the dynamic-programming
algorithm [124] is adopted instead of divided-and-conquer one. This was the fastest

way of computing SPMFs in our preliminary experiments. The technique of simul-
taneous computation of multiple SPMFs was not considered because its objective

is to give the GPU enough parallelism to saturate. On average, our implementation
is 30 times faster than the original one. In the following sections, we only show the
result of our CPU implementation.

We used four datasets for the experiments. Table 3.2 summarizes the character-

istics and the parameters of the datasets. The density of a dataset is computed as the
average length of transactions divided by the number of items. The three datasets
connect, accidents, and kosarak are real datasets that are accessible on Frequent

Itemset Mining Implementations (FIMI) Repository4. The dataset T25I10D500K is
a synthetic dataset generated by IBM data generator [124]. While connect is the

smallest and densest, kosarak is the largest and sparsest, and the other two datasets
lie in the middle. Existential probabilities for connect and T25I10D500K are given
by a uniform distribution between 0 and 1; probabilities for accidents and kosarak

are randomly drawn from a normal distribution with mean 0.5 and variance 0.02.
The default values of minsup are used in our experiments unless explicitly speci-
fied. In the following, the result when changing minprob is not shown and 0.5 is

used because it has little impact on execution time. Figure 3.7 shows the number
of non-pruned candidates for each rank on the four datasets. We shall refer to this

figure when needed.
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Figure 3.7: The number of non-pruned candidates that have a corresponding rank.

33 35 37 39 41

minsup (%)

0

10

20

30

40

50

E
x
ec

u
ti

on
ti

m
e

(m
se

c)

CPU GPU

(a) accidents

0.6 0.65 0.7 0.75 0.8
minsup (%)

0

40

80

120

160

200

E
x
ec

u
ti

on
ti

m
e

(m
se

c)

CPU GPU

(b) T25I10D500K

Figure 3.8: Execution times of inclusion check for k = 1.

3.4.2 Results on inclusion check

In this section, we evaluate the approaches to inclusion check. First, we compare
the CPU approach (CPU) and the GPU approach (GPU) for the case of k = 1. Then

the two methods for k > 1 are evaluated: One is a method without bitwise AND
operations (Baseline) and the other uses bitwise operations (Bitwise AND).

k = 1. Figure 3.8 shows the execution time with varying minsup values, which
are the percentages to the number of transactions. The execution time of CPU in-

cludes the transfer time of inclists. We omit the result on connect because it is
similar to the result on accidents. Also the result on kosarak is not shown because

GPU did not work with it due to running out of memory.

The CPU approach is considerably faster than the GPU counterpart. Specif-

2http://openmp.org/
3http://www.fftw.org/
4http://fimi.cs.helsinki.fi/
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Figure 3.9: Execution times of inclusion check for k > 1.

ically, CPU is 7 and 12–19 times faster than GPU on accidents and T25I10D500K,
respectively. The result reveals that GPU is particularly inefficient on T25I10D500K.
This is because GPU needs to read transactions as many times as the number of items,

whereas CPU reads transactions only once.

Although we may adapt the scheme of CPU to a GPU implementation, it is dif-
ficult to efficiently implement it due to the limitation of size of shared memory.

In addition, we can consider that the CPU approach already realizes sufficient per-
formance, because inclusion check is not a dominant step in the whole algorithm
(Section 3.4.5). Thus we did not try the possibility. The lesson learned here is, as

is well known, that it is easier and more efficient to let CPUs do the work that is
difficult to parallelize on GPUs.

k > 1. Figure 3.9 depicts the total execution time of inclusion check for k >

1 with varying minsup values. Baseline uses the same scheme with the GPU
approach for k = 1, instead of the faster CPU approach because it is specialized for
the k = 1 case. We omit the results on connect and kosarak for the same reasons as

before.

Bitwise AND achieves 18–32x speedups on accidents and 4–10x speedups on
T25I10D500K. As the minsup value decreases, the bitwise method gains more and
more performance improvements. The reason is that a small minsup value leads to

the larger number of candidates and thus Baseline reads transactions more times.
Meanwhile, the bitwise method is more effective when using accidents, because the

dataset has candidates with higher ranks (Figure 3.7). This means that the baseline
approach needs to set more bits to construct inclists, resulting in higher processing
cost. In particular, Bitwise AND outperforms Baseline by a factor of 32.9 when

minsup is 33 % on accidents.
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Figure 3.10: Impact of Algorithm 3 for pruning on the performance.

3.4.3 Results on pruning

This section evaluates the effect of the decoding algorithm (Algorithm 3) with the
comparison to the algorithm that simply loops 32 times to manipulate each bit.

Figure 3.10 illustrates the execution time as a function of minsup on two datasets.
Since the results on connect and kosarak are similar to the results on accidents and
T25I10D500K, respectively, we omit them here.

The decoding algorithm speeds up the pruning on T25I10D500K (Figure 3.10(b)),

while it is slightly slower on accidents (Figure 3.10(a)). The reason of this behavior
can be explained as follows: Efficiency of Algorithm 3 depends on the number of

bits set to 1 in an input integer. If few bits are set to one, the algorithm can process
only bits of interest with fewer instructions. On the other hand, if most of the bits
are set to one, the algorithm performs a few extra instructions compared to simple

loops. Specifically, accidents has high-rank candidates, resulting in inclists with
the large portion of bits set to one; T25I10D500K has only low-rank candidates,
leading to inclists with few bits set to one. Consequently, the algorithm exhibit the

performance as shown in Figure 3.10.

3.4.4 Results on SPMF computation

We measured the computing time of SPMFs on the four datasets. Figure 3.11 shows
the speedups of GPU implementations with the comparison to the CPU. Various

optimization techniques are incrementally added to a naı̈ve GPU implementation,
including filtering, computation on shared memory, and simultaneous computation.
In the following, we evaluate the effect of each technique one by one.

Filtering. The naı̈ve GPU implementation, denoted as GPU in Figure 3.11, uses
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the algorithm in Section 8 without filtering. GPU shows worse performance than CPU
except for the accidents dataset. By applying filtering, we can achieve substantial

speedups, especially when using T25I10D500K and kosarak. For example, filtering
speeds up GPU 16.9 times on kosarak. This is because the two datasets generate
a large number of low-rank candidates (Figure 3.7). Recall that filtering reduces

the time complexity of SPMF computation for an itemset X from O(|U| log2|U|)
to O(cnt(X) log2 cnt(X)). Thus we can greatly decrease the computational cost by

filtering on T25I10D500K and kosarak. On the other hand, on connect and acci-
dents, the speedup by filtering is only around 1.3, because these datasets produce
only high-rank candidates (Figure 3.7). At this point, the GPU is still slower than

the CPU except for accidents.

Shared memory. The next applied technique is to compute SPMFs on shared
memory. There are two variants of this technique: scatter and gather. Both of them
require setting the m1 value in Figure 3.4; this was empirically determined to m1 = 7

and m1 = 8 for scatter and gather, respectively.

Figure 3.11 reveals that gather is always faster than scatter on the present datasets.
While the gather approach computes without write conflicts at the expense of load

imbalance, the scatter approach uses atomic functions to resolve such conflicts. In
other words, scatter needs to serialize memory accesses if conflicts occur. Since
memory accesses are much slower operations than computation in general, gather

leads to the faster execution. Compared with Filtering, the gather kind of compu-
tation on shared memory achieves around 1.5 times speedups. Nevertheless, when

T25I10D500K or kosarak is used, the GPU is not yet faster than the CPU.

Multiple SPMFs. The last optimization is the simultaneous computation of
multiple SPMFs. This technique is particularly effective on T25I10D500K; it achieves
5.2x performance compared with Gather and finally the GPU can outperform the

CPU on this dataset. In general, the technique is beneficial when a dataset has
many low-rank candidates. Thus Multiple is 2.8x faster than Gather on kosarak,
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Figure 3.13: Execution times of probabilistic frequent itemset mining with varying
minsup values.

whereas the speedup on accidents is merely 1.2x since it has only high-rank candi-

dates.

Total speedup. Equipped with all the techniques, the GPU outperforms the
CPU by a factor of 3.17, 4.40, 1.20, and 2.09 on connect, accidents, T25I10D500K,
and kosarak, respectively. So as to see why there are a large gap of speedup values

among datasets, we show the computing time of SPMFs as a function of rank in
Figure 3.12. We here measured the average time over computing 210 SPMFs of

candidates with a corresponding rank. This figure discloses that the GPU is slower
than the CPU until the rank of 13 and then the GPU gets faster and faster than the
CPU as the rank increases. In other words, the GPU is more efficient for high ranks.

That is why the GPU is 4.40x faster than the CPU on accidents, which has only
high-rank candidates. By contrast, the GPU shows the almost same performance
with the CPU on T25I10D500K, which has only low-rank candidates. The slow

performance of GPU at low rank is due to the filtering time; filtering takes time
depending on the number of transactions, regardless of ranks.
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Table 3.3: Time breakdown of CPU and GPU execution. The numbers are in mil-
liseconds. The “Inclusion Check” part of CPU incurs inclusion check, pruning,
and filtering because they are simultaneously run on the CPU. The “Others” part

of CPU means candidate generation. The “Others” part of GPU includes CUDA
initialization, candidate generation, and data transfer between the CPU and GPU.

Inclusion
Pruning Filtering SPMF Others Total

Check

accidents

CPU 2933 11547 588.1 15068

GPU 2.993 33.71 49.03 2582 173.5 2841

T25I10D500K

CPU 471.3 364.0 125.4 960.7

GPU 19.87 19.96 185.9 107.2 188.7 521.6

3.4.5 Results on probabilistic frequent itemset mining

Finally, we compare the whole processing of probabilistic frequent itemset min-
ing. Figure 3.13 shows execution time vs. minsup on the four datasets. Time

breakdowns of CPU and GPU executions on accidents and T25I10D500K are also
summarized in Table 3.3.

Figures 3.13(a) and 3.13(b) show the results on connect and accidents, respec-
tively. The GPU outperforms the CPU by a factor between 3.6 and 5.5. This per-

formance results from the speedup of SPMF computation as well as the other steps.
For example, when minsup is 35 % on accidents, the CPU execution spends about

3 seconds for inclusion check, whereas the GPU performs the same computation
in 85 milliseconds (Table 3.3). In addition, the GPU can compute SPMFs more
than 4 times faster than the CPU. These improvements together lead to the high

performance of our GPU implementation.

Figure 3.13(c) illustrates the result on T25I10D500K. In this case, the GPU is
1.3–1.9 times faster than the CPU when minsup is 0.6–0.75 %, while the GPU is
slightly slower than the CPU with minsup of 0.8 %. This performance degradation

is due to the overhead of CUDA initialization, which takes approximately 100 mil-
liseconds (i.e., more than half of the total execution time). As the minsup values

decreases, actual processing times get longer and performance improvement with
the GPU becomes apparent. However, the result on T25I10D500K does not show
speedups to the same extent as the results on connect and accidents. This is be-
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cause most of the candidates have ranks less than 14. As explained in Section 3.4.4,
SPMF computation on the GPU for the rank below 14 is slower than that on the

CPU. Consequently the GPU is not so efficient on this dataset. Nevertheless, our
GPU implementation outperforms the CPU because of the speedup of other steps
as shown in Table 3.3.

The result on kosarak is shown in Figure 3.13(d). The GPU achieves the speedup

ratio of 3.7–5.3, although this dataset generates many low-rank candidates. The
reason is that the dataset also generates candidates with very high ranks (Figure 3.7).

In addition, the steps other than SPMF computation are much improved because the
parallelism of the GPU is fully utilized due to the large size of dataset.

3.5 Summary

This chapter has presented a method of probabilistic frequent itemset mining using

the GPU based on the pApriori algorithm. The main idea is to accelerate SPMF
computation by employing the filter primitive and exploiting their tree-structured
computation with shared memory on the GPU. The SPMF computation is further

accelerated by handling multiple SPMFs simultaneously. We have also presented
an algorithm to efficiently manipulate a bitstring and utilized several data-parallel

primitives to achieve high parallelism in other parts of the algorithm. We imple-
mented our methods using CUDA and compared the performance with parallelized
pApriori. With the comparison to parallelized pApriori, our implementation outper-

forms by a factor of up to 5.5.
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Chapter 4

GPU-Accelerated Comparison

Sorting

Sorting is a fundamental operation in computer science, especially database sys-
tems, and its acceleration has significant importance [39,68]. In particular, compar-

ison sorting is paid much attention because of its wide applicability. Comparison-

sorting algorithms sort an input sequence by only comparing pairs of elements [68].
The algorithms can be applied to any kind of keys if the keys are comparable. Thus

there have been a large number of comparison-sorting algorithms using GPUs. One
of the fastest comparison-sorting algorithms on GPUs is an algorithm based on
merge sort. This algorithm, however, has the limitation that it slows down when

sorting large-scale data. This chapter presents a novel GPU-based algorithm suited
for sorting large-scale data. The algorithm achieves high performance by first par-
titioning the data into multiple buckets and sorting the buckets cooperatively.

4.1 Introduction

Sorting is a fundamental operation in computer science, and it is widely utilized in
many algorithms and applications such as database systems [39, 68]. Thus, accel-
eration of sorting is significantly important for speeding up a wide range of appli-

cations. One of the accelerating ways is to employ parallel processing capability of
modern processors. In particular, acceleration by GPUs has recently attracted much

attention, and many approaches have been proposed [8, 73, 92, 109].

Currently, two state-of-the-art methods for GPU sorting exist: (1) radix sort
by Merrill and Grimshaw [92] and (2) merge sort by Baxter [8], hereafter referred
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Figure 4.1: The throughput of Baxter sort [8]. The x-axis shows the number of

input keys, and the y-axis means the throughput (i.e., the number of sorted keys per
second).

to as Baxter sort. Radix sort is faster when sorting 32-bit keys, but it is slow for
larger keys such as 64-bit keys, because its computational complexity depends on

the key length. Moreover, since radix sort relies on a bit representation of keys,
it is applicable to only limited kinds of keys. One the other hand, merge sort is a

comparison-sorting algorithm, which can be applied to any kind of keys if the keys
are comparable. Thus, we focus on merge sort in this study for the sake of wider
applicability.

Baxter sort is the fastest comparison-sorting algorithm. However, it has the

limitation that the performance degrades when the number of keys to be sorted
exceeds some point. Figure 4.1 shows the performance of Baxter sort in terms of
throughput (i.e., the number of sorted keys per second). The data is arrays generated

from a uniform distribution. The figure shows that the performance is highest when
the number of keys is 220, and it becomes lower for the larger number of keys. This

behavior is due to the increasing number of merge passes. To sort the data with n

keys, merge sort requires log n merge passes. This means that the number of merge
passes increases as the data becomes large. In other words, the processing time

becomes more than two times longer when the data size doubles.

This chapter presents a novel algorithm for efficiently sorting larger data on
GPUs. The algorithm is based on two existing algorithms, namely samplesort [73]
and Baxter sort [8]. The proposed approach reduces the number of merge passes

by firstly partitioning the input data into k buckets by the partitioning method of
samplesort. Then all of the buckets are sorted by merge sort in parallel. Partitioning

can reduce the number of merge passes by log2 k, thereby improving the overall
performance. For sorting buckets, it is important to take into account the variability
of bucket sizes. If we simply assign one GPU block to one bucket, it may suffer
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Algorithm 5: Samplesort

Input: An array A to be sorted

1 if |A| > M then

2 S ← extract a random sample of αk elements from the array A

3 Sort S

4 (s0, s1, ..., sk)← (−∞, S α, S 2α, ..., S (k−1)α,∞) ◃ si is the iαth elements in S . s0

and sk are sentinels representing minimum and maximum values, respectively.

5 for x ∈ A do

6 Find i such that si−1 ≤ x < si

7 Insert x into the bucket Bi

8 end

9 Apply samplesort to each bucket Bi

10 A← combine the buckets B1, ..., Bk

11 else

12 Sort A by another algorithm

13 end

14 return A

from the load-imbalance problem. To address this issue, our method adaptively

assigns multiple blocks to one bucket according to the bucket sizes. Experimental
evaluation shows that our proposal outperforms Baxter’s merge sort by 39%.

4.2 Preliminaries

This section describes samplesort and Baxter sort, which base our algorithm.

4.2.1 Samplesort

Samplesort [13] is a partitioning-based sorting algorithm. It recursively partitions

the input data into k buckets, and if the size of a bucket becomes sufficiently small,
the bucket is sorted by another algorithm (e.g., insertion sort). Algorithm 5 shows a

pseudo-code of samplesort. If the size of the input array A is smaller than a thresh-
old M, the array is sorted by some sorting algorithm (Line 12). Otherwise, it parti-
tions the data A into k buckets and recursively applies the algorithm to the buckets

(Lines 2–10). For partitioning, k − 1 splitters are selected from the input array A.
To this end, αk elements are sampled from A (Line 2), where α is an oversampling
factor and a larger α leads to buckets with more balanced sizes. Subsequently the
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sample is sorted, and splitters are selected from the sample (Lines 3–4). On the
basis of these splitters, the elements in the array A is assigned to buckets. For an

element x, if si−1 ≤ x < si, x is assigned to the bucket Bi (Lines 6–7). Having
finished partitioning, samplesort is applied to each bucket (Line 9).

Leischner et al. [73] proposed a GPU implementation of samplesort. Their im-
plementation partitions the input array into buckets in parallel until all of the buckets

have smaller sizes than a threshold, by using several data-parallel primitives. Then
one bucket is sorted by one thread block. A limitation of this implementation is

load imbalance due to the difference of bucket sizes. Moreover, if a bucket is too
large or too small, the compute resources of GPUs are not well utilized.

4.2.2 Baxter sort

Baxter [8] presented a GPU implementation of merge sort, which we call Baxter

sort. This implementation exploits a high-performance merge method based on

merge path [44, 100]. Merge path partitions merge of a pair of sorted lists into p

equi-sized subproblems, thereby enabling completely load-balanced merge.

Baxter sort consists of the following two phases:

1. Intra-tile sort: blocks sort distinct parts (or tile) of the input array.

2. Cooperative merge: merge pairs of the sorted tiles until only one tile remains.

Figure 4.2 illustrates a schematic of Baxter sort. The input array is divided into
multiple tiles, and each tile is sorted by one block. The size of tiles should be set

to an appropriate value according to the GPU and characteristics of data. Having
finished intra-tile sort, the tiles are merge by multiple blocks cooperatively. Merge

of one level is performed in two steps: (1) merge path partitions the input so that the
load-balanced merge is done in parallel; and (2) each block merge a distinct portion
of a pair of tiles. As indicated in Figure 4.2, the number of blocks is constant

throughout sorting, and each block processes the same amount of elements. Also
note that the number of blocks per merge increases as the tile size becomes larger.

4.3 Proposed method

The proposed method consists of two phases: (1) data partitioning: the input data is

partitioned into k buckets; and (2) intra-bucket sort: each bucket is sorted in parallel
by merge sort. The overview of our method is shown in Figure 4.3. The first phase
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Figure 4.3: Overview of our method.

partitions the data by using the algorithm of samplesort, and the second phase sorts

each bucket by Baxter sort. On the one hand, samplesort has the advantage that par-
titioning can drastically reduce the problem size, but the later phase of samplesort
tends to suffer from the load imbalance issue. On the other hand, merge sort is able

to achieve load balanced sorting, but it has the disadvantage that the required num-
ber of merge passes can become large. Our algorithm combines the two algorithms,
fusing both advantages.

4.3.1 Data partitioning

This section describes a data partitioning method. This method is basically same to
the method by Leischner et al. [73], but several improvements are introduced. The
algorithm consists of four steps: (1) selecting splitters, (2) histogram, (3) scan, and

(4) scatter.
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Figure 4.4: Scan and matrix transposition. The entry ci, j is the number of keys
contained in the bucket i within the jth tile.

Selecting splitters. The first step select k − 1 splitters from the input. As de-

scribed in Section 4.2.1, this step is comprised of three sub-steps: (1) to extract
a sample of αk elements, (2) to sort the sample, and (3) to select splitters. These
sub-steps are implemented by one kernel, using only one block. The block ob-

tains sample elements from the input, store the sample to shared memory, and sort
them. Then the iαth element in the sorted sample becomes the ith splitter. As

for the oversampling factor α, Leischner et al. use some constant value, while we
use the maximum possible value for better balancing of bucket sizes. For exam-
ple, if shared memory is 48 KB, k = 128, and the input is 32-bit integers, then

α = 48 · 1024 / (4 · k) = 96. The extracted splitters are maintained by binary search
tree, as proposed by Leischner et al. [73]. This format enables us to efficiently
search the corresponding bucket of an element.

Histogram. The second step computes the histogram that maintains the sizes

of k buckets, on the basis of splitters selected in the previous step. By applying the
scan primitive over this result, we can determine the position of each bucket after

partitioning.

One block process a distinct part (or tile) of the input, and computes the his-
togram of this tile. The histogram is maintained on shared memory for faster ac-
cesses from the block. Each thread examines one element from the tile, and decide

which bucket the element belongs to by using the binary search tree, constructed in
the previous step. Then the corresponding entry of the histogram is incremented by

1. Since this increment may be simultaneously performed by multiple threads, we
use an atomic function for concurrency control.

The computed histograms can be regarded as a matrix shown at the left in Fig-
ure 4.4, where an entry ci, j means the number of keys from the jth tile that belong

to the ith bucket. For the later steps, the histograms are stored on global memory
such that the sizes of the same bucket are stored consecutively. In other words, the
matrix is stored in row-major order.
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Scan. The third step applies prefix sum over the histograms created in the sec-
ond step. In this step, we introduce two optimization techniques for better global-

memory accesses: (1) matrix transposition and (2) bucket alignment.

The first technique is matrix transposition, transposing the histogram matrix in
order to maximize the opportunity of coalesced accesses. In the next step, a block
that processes the jth tile need to read the elements si, j (1 ≤ i ≤ k) of the result of

scan. In other words, the block requires the jth column of the matrix at the middle
in Figure 4.4. However, since this matrix is stored in row-major order, warps access

non-consecutive memory addresses, and thus coalesced accesses are not achieved.
On the other hand, by transposing the matrix from row-major order to column-major
order, we can fully achieve coalesced accesses.

The second technique is bucket alignment, which is also related to coalesced

accesses. Coalesced accesses occur when all threads of a warp access an aligned
and contiguous region of 128 bytes. However, the first element of each bucket is

placed on not the boundary of a 128-byte segment but an arbitrary location. This
implies that, when a warp accesses the first elements of a bucket, the accesses are
performed by two or more transactions. To address this issue, bucket alignment

adjusts the address of the first element of each bucket so that each bucket starts
from the boundary of a 128-byte segment. This alignment can be easily realized by
modifying the elements si,1 (1 ≤ i ≤ k) of scan result.

Scatter. The fourth step is scatter, relocating the data elements to correspond-

ing buckets. The input array is divided into tiles in the same way as the second
step. A block processes a tile, computing again the histograms. This is because

re-computation is faster than storing and reading the result computed in the second
step [73]. When checking which bucket an element belongs to, a thread increments
the corresponding histogram element by an atomic function, which returns the orig-

inal value. With this value and the scan result, we can determine the index that the
element should be outputted.

If we simply output the elements to global memory, warps do not satisfy the
condition of coalesced accesses, resulting in slow accesses. Thus, before writing to

global memory, we arrange the elements on shared memory so that the elements of
the same bucket occupy a contiguous area of shared memory. Although Leischner

et al. [73] describe that it is faster to directly output the elements to global memory,
we adopt arranging elements on shared memory because our preliminary evaluation
showed that this scheme is faster than direct outputting.
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Figure 4.5: An optimization for de-alignment. This figure illustrates the situation

that multiple threads ti accesses elements of an array, where ti is the ith thread of a
block.

4.3.2 Intra-bucket sort

This section describes the second phase of our proposed method, intra-bucket sort.
This phase mainly consists of three steps: (1) block assignment, (2) cooperative

merge, and (3) bucket de-alignment. Block assignment allocates thread block IDs to
buckets. This step is needed because buckets have different sizes, and thus they are

processed by different numbers of blocks, given that blocks handle the same number
of elements. On the basis of this assignment, the merge step is performed, sorting
the elements within buckets. Finally, since bucket addresses have been modified by

bucket alignment, we need to “de-align” the buckets.

Block assignment can be realized by using the result of scan in the data-partitioning
phase. From the scan result, the array of bucket sizes are created. On the basis of
this array, we compute how many tiles the buckets are divided into, and also com-

pute the scan of this result. By computing these arrays, we can obtain the following
information of each block: (1) which bucket should be processed; and (2) how many

blocks processing the same bucket exist before this block.

The second step sorts the elements within the buckets. While this step is ba-
sically same as Baxter sort, the difference is that we need to take into account the
boundaries of buckets. As with Baxter sort, intra-tile sort is firstly performed, and

then adjacent tiles within the same buckets are merged. Note that, if the correspond-
ing tile does not exist (e.g., see the bucket B2), merge is not performed and the tile is

just outputted without modification. The merge pass is repeated until all the buckets
are sorted.

At the last merge pass, we need to “de-align” the buckets, i.e., return the modi-
fied bucket positions to the original ones. This can be easily achieved by outputting

the merge results to the original addresses. However, a simple implementation
suffers from non-coalesced accesses because write operations of warps cross the
boundary of 128-byte segments. To resolve this issue, we separately handle write

operations to addresses before and after a boundary. Specifically, writes to ad-
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Figure 4.6: Throughput on data generated by a uniform distribution. The x-axis

shows the number of keys and the y-axis shows the throughput.

dresses before a boundary are performed by a small number of threads, and writes

to addresses after a boundary are carried out normally (Figure 4.5). This scheme
enables us to satisfy the condition of coalesced accesses for the write operations

after boundaries.

4.4 Experiments

We conducted experiments to evaluate the performance of our proposed method on
a server equipped with NVIDIA Tesla C2050, which has global memory of 3 GB

and 14 SMs, each of which includes 32 SPs at 1.15 GHz. We compare the follow-
ing three implementations: (1) our proposed method (proposed); (2) Baxter sort
(merge) [8]; and (3) Merrill’s radix sort (radix) [94]. Unless otherwise noted, the

input datasets are randomly generated with uniform distribution.

4.4.1 Performance comparison

Figure 4.6 shows the sorting throughput of the three implementations with various
numbers of keys and different key sizes. The proposed method outperforms Baxter

sort when the data is large enough. Specifically, in the case of 32-bit keys, proposed

becomes faster when the number of keys is larger than 222. In particular, when the
number of keys is 225, proposed achieved 32% better throughput than merge. On

the other hand, merge is faster than proposed when the data size is small. This
is because the partitioning employed by the proposed method generates too small

buckets, and, as a result, the massive parallelism of GPUs is not fully utilized.
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Table 4.1: Time breakdown and the numbers of kernel calls for sorting 225 keys of
32-bit integers.

Kernel
proposed merge [8]

Time (ms) # calls Time (ms) # calls

Intra-tile sort 16.5 1 13.7 1
Merge 22.4 6 56.5 14

Splitters 0.8 1

Bucket sizes 4.4 1
Scan 0.3 1

Transposition 0.3 1
Scatter 8.5 1

Total 53.2 70.2

Compared to radix sort, the proposed method shows comparable performance
when the number of keys is between 222 and 225, while radix sort shows superior

performance for more larger data. This performance trend is due to the computa-
tional complexity of sorting algorithms. Since radix sort is a linear-time algorithm,

the performance does not degrade when the data size increases. On the other hand,
since merge sort has the complexity of O(n log n), execution time becomes more
than two times longer if data doubles. Consequently, the throughput of merge sort

degrades as the number of keys increases. As for the case of 64-bit keys, proposed

achieved consistently superior performance over radix, because the complexity of
radix sort depends on the size of keys.

Next we show more detailed comparisons between our method and Baxter sort.

Table 4.1 summarizes the number of main kernel calls and kernel’s execution time.
While Baxter sort required 14 merge passes, the proposed method called the merge

kernel 6 times, reducing merge passes by 8. In addition, data partitioning can be
carried out in 14.3 ms, which is faster than performing eight merge passes, omitted
thanks to partitioning. As a result, overall processing time of our method is 17 ms

shorter than that of Baxter sort. Note that intra-tile sort of our method is slightly
slower than that of Baxter sort, because the number of blocks for this kernel in-

creases, as mentioned in Section 4.3.2. Also note that, although k = 128 = 27, the
number of merge kernel calls is reduced by eight, larger than seven. This is because
the tile size for each implementation is different.

We also conducted experiments using other distributions. Figure 4.7 shows the

results with the data generated by normal distribution and exponential distribution.
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(b) Exponential distribution with

λ = 10−3

Figure 4.7: Sorting throughput on different distributions.

The normal distribution leads to a similar result to the uniform distribution (Fig-
ure 4.7(a)). On the other hand, the result of exponential distribution is largely dif-

ferent. While our method and Baxter sort show similar performance to the other
distributions, radix sort exhibits better performance. This is because most of the

keys have small values. In this case, most of the higher-order bits are 0, and radix
sort can exit earlier, thus resulting in higher performance.

4.4.2 Effect of the number of buckets

This section evaluates the effect of the number of buckets on the throughput. Fig-
ure 4.8 shows the throughputs on the data generated by a uniform distribution when

the bucket number k is set to 26, 27, and 28. Figure 4.8(a) indicates that k = 27 led to
the highest performance for 32-bit integers. On the other hand, for 64-bit integers,
either k = 27 or k = 28 resulted in the best throughput, depending on the data size:

k = 28 is better for the number of keys between 222 and 225; k = 27 is better for
the larger number of keys. In the other experiments, we used 27 as the value of k

because it is more suitable for sorting large-scale data.

4.4.3 Effect of optimization techniques

This section evaluates the effects of optimization techniques introduced in Sec-
tion 4.3.1, namely matrix transposition and bucket alignment. Bucket alignment
includes the optimization of bucket de-alignment, described in Section 4.3.2. Fig-

ure 4.9 illustrates the speedup ratios when the optimizations are applied. In this
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Figure 4.8: Throughput with the different numbers of buckets.
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Figure 4.9: Speedup ratios by matrix transposition (Transposition) and bucket
alignment (Alignment).

figure, the performance without both of the optimizations is considered as the base-
line.

The figures show that bucket alignment is more effective than matrix transpo-
sition. The reason is that bucket alignment makes an impact on the whole merge

processes, while matrix transposition only affects the scatter step of data partition-
ing. Since the merge processes account for a large portion of execution time, the

alignment turns out to be more effective. Meanwhile, it may become more effective
to simultaneously employ both of the optimizations, rather than only using matrix
transposition (e.g., the case that the number of keys is 227 in Figure 4.9(a)). The

reason of this behavior is considered as follows. Without both of the optimizations,
the scatter kernel do not satisfy the condition of coalesced accesses for both read
and write operations. Matrix transposition enables coalesced accesses for read op-
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erations. However, write operations are still not coalesced accesses. This issue can
be mitigated by also adopting bucket alignment. Therefore both reads and writes

become coalesced accesses by using the two optimization techniques.

Meanwhile, the increasing numbers of keys make the optimizations more effec-
tive. In addition, the speedup ratios of 64-bit integers are higher than those of 32-bit
integers. These behaviors are due to increasing required memory bandwidth as the

data becomes larger. Thus, the results indicate that the optimization techniques
succeeded to enable coalesced accesses. On the other hand, if data is small, the

optimizations lead to lower performance. This degradation is due to the overhead
caused by the introduction of optimizations.

4.5 Summary

This chapter has described an efficient algorithm for GPU-parallel comparison sort-

ing. The algorithm consists of sample-based data partitioning and cooperative
merge. Data partitioning reduces the number of required merges, thereby improving
the overall performance. We also introduce two optimization techniques, namely

matrix transposition and bucket alignment, to maximize the opportunity of coa-
lesced accesses. Cooperative merge sorts the partitioned buckets with one kernel

in a load-balanced manner. Experiments show that, for sufficiently large arrays,
our algorithm is superior than the state-of-the-art implementation of merge sort. In
addition, for arrays of 32-bit integers generated by a uniform distribution, the pro-

posed algorithm is comparable to radix sort. Furthermore, our algorithm is more
than two times faster than radix sort on 64-bit integers.

While this chapter only deals with simple integer data, real-world applications
often require sorting of more complex data such as strings. One way to achieve

string sorting is to sort the first 32-bit parts of strings and use the other parts of
strings if the first 32-bit parts are equal.
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Chapter 5

GPU-Accelerated Canopy Clustering

Canopy clustering [90] is a preprocessing method for standard clustering algorithms
such as k-means and hierarchical agglomerative clustering [48]. Canopy cluster-
ing can greatly reduce the computational cost of clustering algorithms. However,

canopy clustering itself may also take a vast amount of time for handling massive
data, if we naı̈vely implement it. To address this problem, we present efficient algo-
rithms and implementations of canopy clustering on GPUs. We not only accelerate

the computation of original canopy clustering, but also propose an algorithm us-
ing grid index. This algorithm partitions the data into cells to reduce redundant

computations as well as to exploit the parallelism of GPUs. Experiments show that
the proposed implementations on the GPU is 2 times faster on average than multi-
threaded, SIMD implementations on two octa-core CPUs.

5.1 Introduction

Clustering is one of the prominent data mining tasks and has been paid significant
attention during the last decade because of the increasing importance of efficient
and effective data analytics due to the growing amount of available data. Since

clustering algorithms usually require high computational cost, a large number of
acceleration techniques have been proposed. One of such techniques is canopy

clustering [90], which is a preprocessing method for another clustering algorithm.
Canopy clustering first divides a dataset into rougher groups, called canopies, than
desired clusters, by using an inexpensive distance measure. Canopy clustering re-

duces computational cost by restricting distance computations in clustering algo-
rithms only between points within the same canopy. For example, clustering of
visual image data is accelerated by canopy clustering [33].
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Acceleration of clustering by parallel processing has also been widely stud-
ied [26,79,108], and GPUs have recently attracted many researchers and developers

for speeding up clustering [15,69,80,118,133,134]. Standard clustering algorithms
on GPUs such as k-means [48] have been already well investigated [69, 80, 133].
However, the acceleration of canopy clustering by GPUs has not been attempted.

Speeding up canopy clustering on GPUs can lead to the reduction of total processing
time of clustering.

This chapter presents efficient algorithms and implementations of canopy clus-

tering for GPUs. First we implement original canopy clustering [90] on GPUs by
exploiting efficient implementations of data-parallel primitives [56]. The imple-
mentation is further accelerated by a technique called kernel fusion [136], which

can decrease the amount of memory accesses. Then we present an algorithm using
grid index in order to exploit the spatial locality of data points. The grid index also

enables the GPU to efficiently create multiple canopies in parallel. Experiments
show that the grid-indexed implementation outperforms a multi-threaded, SIMD
implementation on two octa-core CPUs by a factor of 2 on average.

5.2 Preliminaries

Canopy clustering was proposed by McCallum et al. [90] and is employed as a

preprocessing step of major clustering algorithms such as k-means and hierarchi-
cal agglomerative clustering [48]. Canopy clustering has been paid attention be-
cause it can greatly reduce the computational cost of large-scale clustering process-

ing, which takes considerably long time if simply implemented. Canopy clustering
firstly divides a dataset into rougher groups, called canopies, than desired clusters,
by using a simple and inexpensive distance. Having created canopies, it makes more

rigorous clusters by using clustering algorithms such as k-means. The main idea of
canopy clustering is to reduce unnecessary computations by creating rough groups

and restricting distance computations only between points within the same canopy.

A pseudo-code of canopy clustering is shown in Algorithm 6. There are three
inputs: a set of data points and two thresholds T1 and T2 (< T1). The first threshold
T1 influences the number of points included in canopies, and T2 affects the number

of canopies created. At first, the algorithm initializes the candidates of centers as the
input dataset (Line 2). Then a center point c is picked from the candidates at random

(Line 4). A canopy around this center point is to be created in the subsequent steps
(Lines 5–13). A canopy includes a data point x if the distance d(x, c) between x
and c is less than or equal to the threshold T1 (Lines 7–9). At the same time, the

inequality d(x, c) ≤ T2 is evaluated and if it holds, the data point x is deleted from
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Algorithm 6: Simple Canopy Clustering.

Input: A set S of data points xi, thresholds T1 and T2

1 C← ∅ ◃ C is a set of canopies
2 Σ← S ◃ Σ is a set of center candidates
3 while Σ ! ∅ do

4 c← get a point from Σ at random ◃ c is a center
5 C ← ∅

6 for x ∈ S do

7 if d(x, c) ≤ T1 then

8 C ← C ∪ {x} ◃ a canopy C includes a point x

9 end

10 if d(x, c) ≤ T2 then

11 Σ← Σ − {x} ◃ remove x from the candidates
12 end

13 end

14 C← C ∪ {C}

15 end

16 return C

the center candidates (Lines 10–12). Such canopy creation steps continue until there
are no center candidates (Line 3), and finally a set of canopies is returned (Line 16).

Let us consider the example shown in Figure 5.1, where nine 2-dimensional

points are plotted. A center c is randomly selected from the nine points, and it turns
out to be the point x3 as shown in Figure 5.1(b). A canopy C1 around this center
is created as follows: First, the data points other than c are tested whether their

distances against c are less than T1. If a point satisfy the condition, it is included
in the canopy. In the example, the canopy C1 contains the points x2, x4, x5, and

x7. Second, the data points are checked whether they should be deleted from the
center candidates. If the distance d(c, x) between the center c and a point x is less
than or equal to a threshold T2, this point is excluded from the candidates. Hence

the points x2, x3, and x5 are removed from the set of candidates in the example.
The next canopy is also constructed in the same way, as shown in Figure 5.1(c),

where the point x6 becomes the next center. In this case, the canopy C2 includes
the four points x4, x6, x8, and x9, and the points x6, x8, and x9 are no longer center
candidates. The same canopy-creation procedure continues while center candidates

exist.
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Figure 5.1: An example of canopy clustering.

while there exist candidates do

compute distances();
create canopy();
select center();

end

Figure 5.2: GPU implementation of the
while loop in Algorithm 6.

Member 2 3 4 5 7 4 6 8 9 · · ·

Pointer 0 5 9 · · ·

C1 C2

Figure 5.3: Two arrays representing
canopies.

5.3 GPU parallelization

We divide the iteration of Algorithm 6 into three kernels: select center,

compute distances, and create canopy. In addition, for the convenience of
checking termination condition, we slightly change the while loop as shown in
Figure 5.2. That is, centers are selected at the last of iterations rather than the first.

The following sections explain data structures for easing efficient implementa-

tions and then describe implementations of the three kernels. We also introduce an
optimization technique called kernel fusion.

5.3.1 Data structures

We need to maintain the following data on global memory: input data points, re-

sulting canopies, and the information of center candidates.

The input data is a set of n d-dimensional data points, which can be represented
by an n × d matrix. This data is read-only and is accessed only when distances are
computed. To enable coalesced accesses in distance computations, the matrix is
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stored in a column-major format.

Resulting canopies are stored as two 1-dimensional arrays in a similar way to
sparse-matrix formats [10]. Figure 5.3 shows the two arrays with regard to the

previous example (Figure 5.1). The member array holds which data points belong
to canopies, while the index array maintains where the boundaries of canopies lie
in the member array. For example, the members of canopy C1 are stored in the

member array at indices 0 through 4.

The information of center candidates is maintained as an integer array of n ele-
ments. The ith element indicates whether the ith data point is currently a candidate

or not. If the ith data point is still a candidate, we store i − 1 as the ith element;
otherwise n is assigned to indicate that it is no longer a candidate. This format en-
ables an easy and sufficiently efficient implementation of center selection, which is

described next.

5.3.2 Selecting centers

Before constructing a canopy, we need to select a center from the set of center can-
didates. To this end, we decide to choose the data point of minimum index among

candidates as a center, for the ease of implementation. Intuitively this selection pol-
icy is not significantly different from random selection under the assumption that
the data points are given in random order.

The selection policy can be easily implemented with the data structure of center

candidates by using the reduce primitive. If we use the min operation as the binary
operator of reduce and apply it to the array of center candidates, the above selec-
tion policy is realized. If the result of reduce is less than n, then there still exist

candidates; otherwise there is no more candidate and thus the execution should be
terminated.

5.3.3 Computing distances

Having selected a center, we compute distances between the center and points. In

this work, we focus on the Euclidean distance although other distances are also
applicable. Paralellization of distance computations is realized by simply assigning
one thread to one distance computation. Since the data matrix on global memory is

stored in column-major order, the threads can access the data points in a coalesced
manner, thereby achieving high effective memory bandwidth. Having finished the

distance computations, threads test the distances against the two thresholds T1 and
T2. The threads store the information whether the distance is less than or equal to T1
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into a T1-flag array: The ith element of this array equals 1 if d(c, xi) ≤ T1; otherwise
the element is 0. Meanwhile, if the distance is less than or equal to T2, the candidate

is excluded from the set of center candidates, by assigning n to the corresponding
position of center-candidate array.

5.3.4 Creating canopies

This step gathers the indices of data points included in the canopy, on the basis of
the result of the last step. To this end, this step uses the filter primitive, described in

Section 2.1.2. More specifically, the input array to filter is the T1-flag array and the
predicate P is the function that returns true when the ith element of T1-flag array

equals 1.

5.3.5 Kernel fusion

We here introduce an optimization technique called kernel fusion [136]. Kernel
fusion is, as the name indicates, to combine multiple kernels into a single ker-
nel, thereby reducing the number of kernel calls and achieving better utilization

of resources. The above-explained kernels perform few computations and thus they
are bandwidth-bound kernels. By introducing kernel fusion, we can expect perfor-

mance improvements because it typically reduces the amount of accesses to global
memory.

We combine the three kernels (i.e., compute distances, create canopy, and
select centers). In one kernel, a block deals with a chunk of input data, com-

putes distances of the points in the chunk against the center, creates a part of canopy,
and selects the next center. Having finished the distance computations, a block cre-
ates a part of canopy on shared memory, and adds the number of canopy members to

a counter on global memory, which is initialized to 0 in advance. For this addition,
we use an atomic function, which returns the original value of target variable. The

returned value can be used to the output index of canopy-member array. Thereby
blocks write out canopy members to global memory in parallel. Meanwhile, center
selection is done by using an atomic min function: First a block-level candidate is

selected on shared memory by the atomic function, and then one thread in a block
updates the candidate information on global memory, which is initialized to n. One

important point to note is that the canopy members are not properly sorted with the
above scheme because of the atomic function. Thus, we sort the canopy members
after all the canopies are generated, by using segmented sort, which sorts multiples

segments in one array on a segment-by-segment basis.
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Figure 5.4: An example of grid index.

5.4 Canopy clustering with grid index

The simple canopy clustering algorithm has the disadvantage that it performs a
significant number of redundant computations, because it does not make use of

spatial locality of data points. This section introduces an accelerated algorithm of
canopy clustering by using a grid index structure. Section 5.4.1 describes the grid
index, and then Section 5.4.2 explains implementation details.

5.4.1 Grid index

The grid index is constructed by partitioning the data space into equi-width hyper-

cubes, which we call grid cells. A grid cell Gi1 ,i2,...,id in d-dimensional space can
be defined as a set

{

x ∈ S | i j · w ≤ x j < (i j + 1) · w, 1 ≤ j ≤ d
}

, where S is a

set of data points and w is the cell width. The subscript (i1, i2, ..., id) is called cell

coordinates. In our method, a threshold T1 is chosen as the width w of grid cells,
so that canopy creation is accomplished by computing the distances only between

data points in a cell and its neighbor cells. A cell is called a neighbor of another
cell if each dimension of the cell coordinates does not differ more than one, and

the information of neighbors is also associated to grid cells. The other cells do not
need to be taken into consideration in canopy creation because if two cells are not
neighbors, the distance between two points in each cell must be greater than T1.

Figure 5.4 shows an example of partitioned data space and the corresponding

grid cells. In Figure 5.4(b), N
(

G
)

means a set of neighbors of G. By using the
grid index, we can create a canopy as follows: Let us consider that the point x3
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is selected as a center. Since this point belongs to the cell G1,0, the distances are
computed against the points in G1,0 and its neighbor cells. In this case, the neighbors

are G0,0, G1,1, and G2,1. Distances are computed against five points (i.e., x2, x4, x5,
x7, and x8). Thus we can omit the distance computations with regard to the other
three points (i.e., x1, x6, and x9).

5.4.2 Implementation

This section presents how to efficiently implement canopy clustering with grid index

on GPUs. It is especially important to efficiently construct a grid index on GPUs
and to create multiple canopies in parallel. The following explains how to construct

a grid index, how to select multiple centers, and how to create multiple canopies in
parallel, one by one.

Constructing grid index on the GPU

A grid index can be represented by two sparse binary matrices: a matrix of cell
members and a matrix of neighbor information. A sparse binary matrix, in turn, can

be expressed by two 1-dimensional arrays as used for canopies. Thus we store a
grid index on the GPU as four 1-dimensional arrays in total. Such a grid index is ef-
ficiently constructed on the GPU by exploiting fast data-parallel primitives in three

steps: (1) computing cell coordinates from data points and sorting them; (2) build-
ing the cell-member matrix on the basis of the coordinates; and (3) constructing the

neighbor matrix on the basis of the coordinates.

Computing and sorting cell coordinates. The first step computes the cell coor-
dinates of each data point (i.e., the coordinates of the cell to which the point should
belong), and these coordinates are stored on global memory in column-major order.

Then the coordinates are sorted in the dictionary order with data-point indexes as as-
sociated data. On the basis of an example of Thrust1, we realize the dictionary-order

sort by sorting dimension by dimension from the last: If there are d dimensions, first
the dth dimension with data indexes is the target of sorting, and then the (d − 1)th
dimension is subject to next sorting. Before the sorting of (d − 1)th dimension, the

coordinates of (d−1)th dimension is not consistent with the order of dth dimension.
Thus it is necessary to arrange the order according to the data-index array. Having
arranged the coordinates, we sort the (d − 1)th dimension. The sorting procedure

continues until the sorting of first dimension completes. Finally, the dimensions
other than the first need to be arranged in the final dictionary order. As for sorting,

1https://code.google.com/p/thrust/
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we used the sort function of Thrust library. We also used the gather function of
Thrust for arranging the dimensions according to the data indices.

Building the cell-member matrix. Having sorted the coordinates, we next

construct the cell-member matrix. The array of cell members is already obtained
at this time, because it is the array of data indexes sorted in the first step. Thus
it is sufficient to compute the array of pointers in order to finish the construction

of cell-member matrix. This array can be easily obtained by examining the sorted
coordinates: If the coordinates of a point are different from the coordinates of the

next point, the index of the next point indicates the boundary of same cell members.

This step can be easily parallelized on the GPU by assigning threads to points.
A thread checks the coordinates of the assigned point and the next point, and stores
the index to an array on global memory if the two points have different coordinates.

For enabling concurrent writes to the resulting array, we prepare a global counter
of current index for the pointer array. This counter is first set to 1, because we

initialize the first element of pointer array to 0. If a thread wants to write an index
to the pointer array, the thread increments the counter by 1 with an atomic function.
By using the value returned from the atomic function as the output index of pointer

array, the thread writes the boundary pointer value. Since we use an atomic function,
the write order is not deterministic. This means that the elements in the pointer array
is not properly ordered. Thus we sort the pointer array so that adjacent elements of

this array stands for the boundaries of cell members.

Constructing the cell-neighbor matrix. The last step is to construct a cell-
neighbor matrix. To this end, firstly the unique cell coordinates are gathered from

the sorted coordinates created in the first step. With the coordinates, this step is
performed in two passes: The first pass just counts the number of neighbors of
each cell, and the second pass constructs a cell-neighbor matrix according to this

information.

The first pass simply checks all of the combinations of coordinates. This is
parallelized by assigning one block to the coordinates of one cell. Within the block,
one thread compares the assigned coordinates and coordinates of another cell. Each

block outputs the counting result to a corresponding location of pre-allocated array
on global memory. Then exclusive scan is performed over this array, and the output

becomes the pointer array of neighbor matrix.

The second pass similarly checks all of the combinations, but this time outputs
cell-neighbor indices to global memory. Since we have already obtained the pointer
array, it is known where a block should output the neighbor indices. In order to

enable threads to write concurrently, a counter is used again. The counter is pre-
pared on shared memory and is initialized to 0. If a thread have found a neighbor,
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the counter is incremented and the neighbor index is stored to the array on global
memory.

Selecting multiple centers

The selection of multiple centers is performed in two phases: selection and verifica-

tion phases. The selection phase chooses a canopy center per grid cell, so that there
are canopy centers as many as the grid cells. The verification phase checks whether
or not the selected centers violate a condition derived from the canopy-creation pro-

cess: The distance of two canopy centers is not less than a threshold T2. If a pair of
centers violates this condition, a point of the pair is invalidated as canopy center at

current iteration.

The selection phase selects centers by reduction in a similar way as in Sec-
tion 5.3.2. More specifically, one block deals with one cell and selects a center
from the points in the cell. A block performs the reduction on shared memory and

one thread of the block outputs the selected center to a pre-allocated array of as
many elements as the number of cells. Note that the information of candidates is
maintained on global memory as in Section 5.3.2.

The verification phase checks the above-described condition of centers. In or-

der to check multiple centers in parallel, we employ a rather pessimistic scheme: A
center is invalidated if one of the other centers is closer than the threshold T2, al-

though the other centers may be invalidated by other blocks concurrently. To realize
this scheme, one block checks the validity of one center, and one thread within the
block compares the center against another center. This scheme may over-invalidate

centers, but experiments in Section 5.5 indicate that it can provide a sufficient level
of parallelism.

Creating multiple canopies

In order to generate multiple canopies in parallel, while basically the same pro-
cedure to simple canopy clustering can be employed, the difficulty lies in how to

assign the work to thread blocks for the creation of canopies. A naı̈ve scheme is
to make one canopy by one block, but it could suffer from severe load imbalance,

because the required number of distance computations largely varies canopy by
canopy. To alleviate this problem, we assign one block to either a cell that contains
a center or one of the neighbors of such a cell. Blocks compute distances between a

center and the points of assigned cell, and generate a part of canopy. For example,
let us consider to create a canopy around the point x3 in Figure 5.4. In this case, one
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block handles the cell G1,0 and other three blocks are responsible for the neighbor
cells G0,0, G1,1, and G2,1 with respect to the cell G1,0.

5.5 Experiments

This section evaluates the performance of our proposed implementations. Sec-
tion 5.5.1 summarizes the experimental settings and Section 5.5.2 compares CPU
and GPU implementations with and without grid index.

5.5.1 Experimental setup

We used CUDA 6.5 for GPU implementations and conducted experiments on an

NVIDIA Tesla K40 GPU, which has global memory of 12 GB and 15 SMs, each of
which consists of 192 SPs at 745 MHz. The machine has two Intel Xeon Processor

E5-2687W v2 at 3.40 GHz with memory of 128 GB. The OS is CentOS release 6.5
(Final).

We compared four implementations: cpu-simple, a CPU implementation of
canopy clustering; cpu-grid, a CPU implementation with grid index; gpu-simple,

a GPU implementation of canopy clustering including kernel fusion; and gpu-grid,
a GPU implementation with grid index. We parallelized the CPU implementa-
tions by ourselves using OpenMP and AVX, which is SIMD functionality on Intel

CPUs [85]. The multi-threaded, SIMD implementations on two octa-core CPUs
were up to 17 times faster than serial implementations.

We used synthetic datasets for evaluation because we had difficulty in finding

suitable real-world datasets. The synthetic datasets are generated as follows: The
number of clusters is given as an input, and each cluster is represented by a tuple
of d normal distributions, which are independent with each other. The means of

normal distributions are generated by the uniform distribution between 0 and 1,
and the standard deviations are given by the normal distribution with mean 0.01
and standard deviation 0.005. With these clusters, the given number of points are

generated one by one: First we determine which cluster a new point belongs to in a
uniformly-random manner, and then the point’s coordinates are given by the normal

distributions of the cluster. We set the number of clusters to 100 in the experiments.
The dimensionality d was varied from 2 to 6; this may seem small, but canopies
are often constructed on the basis of a small number of attributes [90]. Thus the

dimensionality is not very small for canopy clustering.
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(a) d = 2, T1 = 0.02.
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(b) d = 4, T1 = 0.15.
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(c) d = 6, T1 = 0.35.

Figure 5.5: Elapsed times with varying sizes of synthetic datasets.

5.5.2 Results

Varying dataset sizes

Figure 5.5 shows the elapsed times of the four implementations with varying sizes
of datasets. Note that the elapsed time of GPU implementations includes CPU–
GPU data-transfer time, but does not include GPU–CPU data-transfer time because

we assume that the result of canopy clustering is used in later clustering on GPUs.
For this experiment, the threshold T1 is chosen such that the number of canopies

become around 3,000, and the other threshold T2 is fixed to 0.7T1 for the experiment
purpose; in practice, the thresholds should be determined according to the needs of
applications.

Overall, each kind of GPU implementations is consistently faster than the cor-

responding CPU implementation. The gpu-simple implementation outperforms
cpu-simple by a factor of 1.4 on two-dimensional datasets, 1.9 on four-dimensional
datasets, and 2.0 on six-dimensional datasets. As the dimensionality increases, the

GPU implementation gets faster than the CPU implementation. This is because
canopy clustering of higher-dimensional datasets results in more bandwidth-bound

kernels. Consequently the wide memory bandwidth of GPUs become more effective
in higher-dimensional cases.

The GPU implementation using grid index (i.e., gpu-grid) is also faster than
cpu-grid, leading to speedup of 1.3–1.8 in two dimensions, 1.1–1.6 in four dimen-

sions, and 1.9–2.5 in six dimensions. From this result, we believe that our scheme of
multiple center selection (Section 5.4.2) achieves to provide sufficient level of par-
allelism for GPUs. However, gpu-grid becomes less efficient in four-dimensional
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Figure 5.6: Elapsed times with varying the thresholds T1 and T2.

case. This can be considered due to load imbalance: Since we assign one block
to one grid cell, the processing time of blocks varies depending on the size of grid
cells, which can be largely different by dataset characteristics and thresholds. This

load-imbalance problem should be remedied in our future implementations.

Varying thresholds

We here fix the size of datasets to 10 million and change the thresholds T1 and T2,
which affect the number of canopy members and the number of canopies, respec-

tively. Figure 5.6 shows the elapsed times of the four implementations. The value
of T1 is varied so that the number of canopies lies in roughly the range of 1,000 and
10,000. The threshold T2 is fixed to 0.7T1 as before.

The implementations using grid index get faster and faster as the thresholds

decrease, compared to the implementations without grid index. This is because
more canopies are generated when thresholds are smaller. The implementations
with grid index carry out distance computations between a center and a limited

number of points, while the implementations without grid index perform distance
computations between a center and all of the other points at each iteration. In other

words, the more canopies are generated, the more efficient the implementation us-
ing grid indices are, compared to the simple canopy clustering. Meanwhile, in
six-dimensional case (Figure 5.6(c)), the speedup ratios between gpu-grid and

cpu-grid range from 1.33 to 2.01. Such instability comes from the load-imbalance
problem as before, because the organization of grid index differs according to the
thresholds,
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5.6 Summary

This chapter has presented GPU implementations of canopy clustering, parallelizing
original canopy clustering and canopy clustering with grid index. The implemen-

tation of canopy clustering is accelerated by the kernel-fusion technique. Canopy
clustering using grid index exploits the spatial locality of input data points, thereby

reducing the number of distance computations and providing high parallelism to
the GPU. Experiments showed that the kernel-fused implementation and the GPU
implementation with grid index outperform multi-threaded, SIMD implementations

on two octa-core CPUs by a factor of up to 2.
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Chapter 6

GPU-Accelerated Graph Clustering

Graph clustering has recently attracted much attention as a technique to extract com-
munity structures from various kinds of graph data [35]. However, since available
graph data becomes increasingly gigantic, the acceleration of graph clustering is an

important issue for handling large-scale graphs. This chapter describes a fast graph
clustering method using GPUs. The proposed method is based on one of the fastest
graph clustering algorithms, label propagation [112]. To efficiently process graph

clustering, the algorithm of label propagation is firstly transformed into a sequence
of data-parallel primitives. In addition, load balancing is taken into account by using

the primitives that make the load among threads and blocks well balanced. Experi-
ments on both real-world and synthetic datasets show that our proposed method is
superior than existing methods, in terms of not only efficiency but also accuracy.

6.1 Introduction

Graph clustering (also known as community detection) is a technique to extract
community structures, or clusters, from graph-structured data, such that vertices
in one cluster are densely connected and vertices in different clusters are sparsely

connected [35]. Graph clustering has been successfully applied for various kinds of
graph data ranging from the Web and online social networks to biological data [106].

However, recent graph data becomes increasingly gigantic, and it is difficult to han-
dle such large-scale data by existing methods in realistic time. Thus it is highly
important to accelerate the processing of graph clustering.

Among existing algorithms, label propagation is known as one of the fastest

algorithms [112]. It has the computational complexity linear to the number of
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edges, which is faster than many other algorithms. In addition, it is reported that
the clustering accuracy of label propagation is also better than state-of-the-art algo-

rithms [131]. Furthermore, label propagation is suitable for parallel processing [78],
because it makes clusters by only using vertex-local (i.e., adjacent vertices) infor-
mation. Thus label propagation on GPUs is considered as a promising solution for

accelerating graph clustering.

There exist several challenges to harness the power of GPUs. Among them, load
balancing is a particularly important issue, given the scale-free property of real-

world graphs and the massive parallelism of GPUs. A scale-free graph is a graph
whose degree distribution follows a power law [7]. This means that most vertices
have low degrees, while few vertices have extremely high degrees. Therefore, if

we naı̈vely parallelize the algorithm by assigning the workload of one vertex to one
thread, the implementation suffers from heavy load imbalance. Label propagation

using GPUs has already been proposed by Soman and Narang [121]. However, their
method has the limitation that it does not well take into account load balancing.

In this chapter, we present a GPU-based method to accelerate graph cluster-
ing by parallelizing label propagation with achieving load balancing. To efficiently

execute label propagation on GPUs, the label-propagation algorithm is firstly trans-
formed into a sequence of data-parallel primitives. In addition, load balancing is
taken into account by using the primitives that make the load among threads and

blocks balanced, even if the skew of degrees exists. Experiments on both real-
world and synthetic datasets show that our proposed method is superior than exist-

ing methods.

6.2 Preliminaries

This section describes the problem of graph clustering in Section 6.2.1 and label
propagation in Section 6.2.2.

6.2.1 Problem definition

Let G = (V, E) be a graph, where V is the set of vertices and E ⊂ V × V is the

set of edges. Unless otherwise noted, we denote the numbers of vertices and edges
as n and m, respectively. For the sake of simplicity, this work assumes that graphs
are undirected and unweighted, but the proposed method can be easily extended to

handle directed and weighted graphs. The problem tackled in this chapter is defined
as follows:
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Algorithm 7: Label propagation

Input: A graph G = (V, E)

Output: a set C of clusters
1 Initialize label assignment L ◃ Li denotes the label of a vertex vi

2 repeat

3 π← a random permutation of the sequence (1, 2, . . . , n)
4 for i ∈ π do

5 Li ← arg maxl∈L

∣

∣

∣

{

j | (vi, v j) ∈ E ∧ Lj = l
}

∣

∣

∣

6 end

7 until a termination condition is met

8 C← extract clusters
9 return C

Problem 2 (Graph clustering). Given a graph G = (V, E), find a set of clusters,

C = {C1,C2, . . . ,Cl}, that satisfy the following conditions: (1) for any i, Ci ⊂ V;

(2) for any i and j (i ! j), Ci∩C j = ∅; (3)
⋃l

i=1 Ci = V; and (4) vertices in the same

cluster are densely connected, while vertices between different clusters are sparsely

connected.

6.2.2 Label propagation

Label propagation, proposed by Raghavan et al. [112], is one of the fastest graph-
clustering algorithms. It clusters a graph on the basis of the idea that a vertex v

belongs to the cluster to which the majority of the adjacent vertices of v belongs.
Algorithm 7 shows a pseudo-code of label propagation. First, vertices are initial-
ized by unique cluster labels (Line 1). Then the labels of vertices are to be updated

in random order (Lines 3–6). A label of a vertex vi is updated to the label that most
frequently appears among the adjacent vertices of vi (Line 5). If multiple labels
appear the same number of times, the tie is broken randomly. This update iteration

continues until some termination condition is met, and vertices with the same la-
bel are extracted as elements of the same cluster (Lines 8–9). Several termination

conditions can be considered, such that the number of updated label in one iteration
becomes sufficiently small, or the number of iterations exceeds a threshold.

Figure 6.1 illustrates an example of label propagation. First, vertices are asso-
ciated with unique labels (Figure 6.1(a)). The labels are to be updated in random

order of vertices. In this example, let the order be (v2, v4, v6, v1, v3, v0, v5). The first
vertex v2 has three adjacent vertices v0, v1, and v3 whose labels are A, B, and D,
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(c) The steady state.

Figure 6.1: Example of label propagation: the letters near vertices denote the labels.

respectively. In this case, all of the labels appear the same number of times. Thus
the label of v2 is randomly updated to one of the three labels, and it turns out to be A.
The label of the next vertices are similarly updated. Figure 6.1(b) shows the situa-

tion that all the labels are updated once. Subsequently, when all vertices are iterated
once again (Figure 6.1(c)), the labels become fixed (i.e., labels are no longer up-

dated). Finally, two clusters, CA = {v0, v1, v2} and CD = {v3, v4, v5, v6}, are obtained
as the clustering result.

6.3 Proposed method

This section describes the proposed method, GPU-accelerated label propagation. In

label propagation, the labels of adjacent vertices (or adjacent labels for short) of
a vertex need to be accumulated, and the majority label needs to be computed for
updating the label. The proposed method executes this computation efficiently on

the GPU by exploiting multiple data-parallel primitives. Meanwhile, if we simply
assign a thread block to a vertex, the performance significantly degrades because

of load imbalance, given the scale-free property of real-world graphs. Thus, the
proposed method parallelizes the computation by utilizing skew-resilient operators,
whose performance is not affected by the existence of skewness. In the rest of

this section, Section 6.3.1 introduces the data layout on the GPU. Section 6.3.2
describes the approach for counting adjacent labels, and Section 6.3.3 discusses the
label updating scheme.

6.3.1 Data layout

To execute label propagation, the following data needs to be maintained on the

GPU: (1) input graph data and (2) vertex labels. Our method represents the input
graph data by the CSR (compressed sparse row) format, which is a format for sparse
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ptr
0 1 2 3 4 5 6 7

0 2 4 7 10131618

id
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 0 2 0 1 3 2 4 5 3 5 6 3 4 6 4 5
Adjacent vertices of v1

Figure 6.2: Graph data on the GPU. A graph is represented by two arrays id and
ptr.

matrices [10], because a graph can be regarded as a matrix and it is usually sparse.
The advantages of the CSR format, compared to other sparse-matrix formats, are

low space cost and its aptitude for data-parallel primitives. Meanwhile, the label
information is simply stored as an array of integers where an element is the label
of a corresponding vertex. Note that, although the examples of this chapter denote

the labels as letters for the sake of explanation, labels are stored as integers in the
implementation.

Figure 6.2 illustrates an example of graph data by the CSR format. A graph is

represented by two arrays id and ptr. The array id contains the indices of adjacent
vertices. The array ptr maintains the offsets where the indices of adjacent vertices
for a specific vertex start in the array id. For example, the information of the ad-

jacent vertices of v1 in Figure 6.1 is stored as the elements of the array id from
ptr[1]= 2 to ptr[2]= 4. In general, the CSR format represents a sparse matrix with

one more array to store the value of each entry. However, since entries of adjacent
matrices of unweighted graphs are 0 or 1, such an array is omitted in this case.

6.3.2 Counting adjacent labels

This section describes an approach for counting adjacent labels, which consists of
the following four steps: (1) gathering adjacent labels, (2) sorting the adjacent labels

per vertex, (3) extracting boundaries of the adjacent labels, and (4) computing the
occurrence frequencies of adjacent labels. This approach is based on the following
idea. If the adjacent labels of each vertex is sorted, the same adjacent label of one

vertex is stored contiguously. This means that, if we have the indices where the
adjacent labels change, the occurrence frequencies can be easily computed by the

differences of such indices (or boundaries), without a specific data structure such as
an associative array. In other words, the counting can be implemented with simple
operations on arrays, which are suitable for GPUs. The following details the four

steps.
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Figure 6.3: Gathering adjacent labels. The ith element of the array L denotes the
label of vertex vi.
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0 ! 1?+1 4 ! 4?

Figure 6.4: Extracting boundaries.

Gathering adjacent labels

The first step creates an array L′ of adjacent labels by using the adjacent-vertex array

id and the label array L. Figure 6.3 shows an example of this step. This step can be
implemented by using the gather primitive, by passing the two arrays as input.

Sorting adjacent labels per vertex

This step sorts the array L′ of adjacent labels in a per-vertex manner. This means
that each subarray of L′ regarding one vertex is separately sorted. A naı̈ve way is

to sort one subarray by one block. However, as previously mentioned, this scheme
suffers from severe load imbalance because of the skewness of degree distributions.
Instead, we use a data-parallel primitive, segmented sort, whose performance is not

largely affected by the skewness. Specifically, the arrays L′ and ptr are passed to
segmented sort as input.
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Extracting boundaries

The third step extracts the boundaries of adjacent labels from the sorted array L′ in

the previous step. This step is further divided into three sub-steps: (1) checking the
boundaries of adjacent labels, (2) computing offsets for creating boundary arrays,
and (3) extracting the boundaries. Figure 6.4 illustrates an example of these sub-

steps. The goal here is to construct the two arrays S and Sptr. These arrays play a
similar role to arrays in the CSR format: the first array S contains the information of
boundaries, which are the indices where labels change, while the second array Sptr

maintains the offsets where the boundaries for a specific vertex begin in the array S.

The first sub-step creates an array F of flags to indicate the indices where ad-
jacent labels change. This computation is parallelized in a similar way to the map

primitive. The ith thread takes the ith and (i + 1)th elements of L′, and judges
whether the two labels are different or not. If they are different, the thread stores
‘1’ to F[i]; otherwise ‘0’ is stored to F[i]. Meanwhile, even if the two labels are

same, adjacent labels from different vertices are considered different. Thus ‘1’ is
stored to F in such cases. For example, although L′[3] = L′[4] in Figure 6.4, F[3]

is computed as ‘1’ because L′[3] is an adjacent label of v1 and L′[4] is an adjacent
label of v2.

The next sub-step computes offsets for creating boundary arrays in the next sub-
step. This computation can be easily implemented by using the scan primitive. The

inputs are the array F, the addition operator +, and 0 as the identity element. The
array F′ in Figure 6.4 is the result of this primitive.

With the offsets, the arrays S and Sptr are constructed. Similarly to the first
sub-step, the ith thread compares the ith and (i + 1)th elements of F′. If they are

different, the thread output boundary information; otherwise, it just exits without
outputs. When outputting, the ith thread writes i + 1 to the array S at the index of

F′[i]. That is, the thread executes S [F′[i]] ← i. Meanwhile, the array Sptr is also
computed to maintain the correspondence between boundaries and vertices. This
array is computed by executing Sptr[i]← F′[ptr[i]] in parallel.

Computing the occurrence frequencies

This step calculates the array W of occurrence frequencies from the array S . Each

element of W is computed by one thread: An element of W is the difference between
two adjacent elements of S ; i.e., W[i]← S [i+1]−S [i]. For the boundary case (i.e.,
the computation of W[0]), S [i] becomes directly the frequency.
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Figure 6.5: Updating labels.

6.3.3 Updating labels

By using the results obtained by the method in Section 6.3.2, vertex labels are up-

dated on the GPU. To this end, we need to compute the majority of adjacent labels
per vertex, from the array W of occurrence frequencies. This computation can be

implemented by using the reduce primitive. Reduce with the max operator, which
takes two operands and returns the larger one, is applied to each subarray of W in
a per-vertex manner. Then the result is the maximum frequency for each vertex.

However, this parallelization may suffer from severe load imbalance because of the
skewness of degree distributions, as previously mentioned. To alleviate this issue,
the proposed approach employs the segmented reduce primitive, which is able to ef-

ficiently process skewed data. Originally, segmented reduce only returns the array
of reduced values (i.e., frequencies), while we need the labels with the maximum

frequencies for updating labels. Thus, we extend the primitive so that it also returns
an array I of indices corresponding to the reduced values. By using this array, we
can update the labels by computing L[i] ← L′[S [I[i]]] in parallel. Figure 6.5 shows

an example of this step.

6.4 Experiments

This section evaluates the performance of the proposed method through experi-
ments. We used a server running CentOS release 6.5 (Final) as the OS, equipped

with Intel Xeon Processor E5-2687W v2 at 3.40 GHz and 128 GB memory. The
GPU is NVIDIA Tesla K40, which includes 15 SMs, 2,880 SPs, and 12 GB.

The proposed method (GPU-LP) was implemented using CUDA 7.0. For com-

parison, three implementations were used:

• Louvain [14]: this is a famous algorithm based on maximizing modular-
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Table 6.1: Real-world datasets.

Dataset n m

amazon 334,863 925,872

dblp 317,080 1,049,866

youtube 1,134,890 2,987,624

livejournal 3,997,962 34,681,189

orkut 3,072,441 117,185,083

ity [97], which is a measure to evaluate clustering quality. It is widely known

that this algorithm produces accurate results in terms of modularity with short
processing time. An implementation is made publicly available by the origi-

nal authors. Thus we used this implementation as a kind of baseline method,
although Louvain generates different kinds of clustering results from label
propagation.

• CPU-LP: a serial CPU implementation of label propagation, implemented by

ourselves.

• GPU-LILP (load-imbalanced label propagation): a GPU-based implementa-

tion does not take into account load balancing. This implementation is differ-
ent from GPU-LP in that GPU-LILP does not use the segmented sort and seg-

mented reduce primitives. Instead, GPU-LILP parallelize these computations
in a block-per-vertex manner. As previously mentioned, this parallelization
may suffer from severe load imbalance. This implementation was included to

evaluate the impact of load balancing.

The termination condition for label propagation was set as the number of updated
labels in one iteration is less than 10−5n or the number of iterations reaches ten,

where n is the number of vertices.

In the following, we first evaluate the performance on real-world datasets in
Section 6.4.1. Section 6.4.2 shows the results on synthetic datasets, evaluating clus-

tering accuracy.

6.4.1 Results on real-world datasets

This section evaluates the performance of the proposed method by comparing it

with the three implementations. The experiments measured elapsed time from when
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graph data is ready on the main memory until the clustering result is constructed on
the main memory. Note that the data transfer time between the CPU and the GPU

was included in the measurement. Real-world datasets were obtained from Stanford
Network Analysis Project [74]. Table 6.1 summarizes the five datasets used in the
experiments.

Figure 6.6 illustrates the processing time of the four implementations on the

five datasets. The figure shows that GPU-LP is fastest and successfully accelerates
the processing of graph clustering. Concretely, GPU-LP outperforms Louvain by a

factor of approximately 55 on amazon and orkut, and GPU-LP is around 70 times
faster than Louvain on dblp and youtube. In particular, GPU-LP achieves a higher
speedup of 117 on livejournal.

Compared to CPU-LP, GPU-LP achieves speedups between 25 and 36. Specifi-

cally, 35 times improvements are attained on dblp, youtube, and livejournal. On the
other hand, on the largest dataset orkut, the speedup is 25, lower than those on the

other datasets. This is because while the computational cost of CPU-LP decreases
as the iterations proceed, GPU-LP retains the computational cost throughout the it-
erations. Figure 6.7 shows these trends, where the x-axis is the iteration number and

the y-axis is the processing time at each iteration in a log scale. The figure indicates
that the reduction of processing time is steeper on orkut than on livejournal. As a
result, the speedup of GPU-LP on orkut become lower than that on livejournal.

The performance of GPU-LILP is heavily dependent on datasets. While GPU-

LILP is slowest on the three datasets, amazon, dblp, and youtube, it is second fastest
on livejournal and orkut. This behavior is due to the difference of the skewness in

degree distributions. The first three datasets are sparser and more skewed than the
other two datasets. Since GPU-LILP does not take into account load balancing, it
suffers from severe load imbalance. By introduction segmented sort and segmented

reduce, GPU-LP substantially outperforms GPU-LILP by a factor of up to 93.25.

6.4.2 Results on synthetic datasets

This section evaluates the clustering accuracy by using synthetic datasets. Datasets
are generated by the LFR (Lancichinetti–Fortunato–Radicchi) benchmark [71], which
is commonly employed to evaluate graph-clustering algorithms. The LFR bench-

mark generates graph data with community information. This information is used
in our experiments to evaluate accuracy. To measure accuracy, the following three

famous metrics are adopted [21]: (1) NMI (normalized mutual information), (2) F-
measure, (3) ARI (adjusted Rand index).

NMI measures the similarity between two partitions C and C′ on the basis of an
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Figure 6.6: Processing times of the four implementations on the five datasets.

information-theoretic approach:

NMI(C, C′) =
−2
∑

i, j Ni j log(Ni jNt/Ni·N· j)
∑

i Ni· log(Ni·/Nt) +
∑

j N· j log(N· j/Nt)
,

where N is the confusion matrix whose entry Ni j is the number of vertices that
appear in both Ci and C j, Ni· and N· j are the sum over the row i and the sum over the

column j, respectively, and Nt is the sum over the entire matrix. NMI takes values
between 0 and 1, and if two partitions are same, it takes 1.

F-measure measures the similarity of two partitions by finding the largest over-
laps between pairs of clusters:

F(C, C′) =
1

n

∑

Ci∈C

|Ci|max
C′

j
∈C′

2|Ci ∩ C′j|

|Ci| + |C
′
j|

F-measure also takes values between 0 and 1, and F-measures equals 1 in the best

case.
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Figure 6.7: Processing time at each iteration.

ARI is a metric based on pair counting:

ARI(C, C′) =

∑

i, j

(

Ni j

2

)

− M

1
2

[

∑

i

(

Ni·

2

)

+
∑

j

(

N· j
2

)]

− M
,

where N is the confusion matrix and M =
[∑

i

(

Ni·

2

)

∑

j

(

N· j
2

)

]

/
(

n
2

)

. ARI takes 1 in the

base case as with the other metrics.

Figure 6.8 shows the results on synthetic datasets, where the x-axis means the
number of vertices and the y-axis shows values of each metric. The data is gen-
erated with the average degree of 20 and the maximum degree of 50. Compared

to Louvain, the implementations of label propagation (i.e., CPU-LP and GPU-LP)
achieve superior accuracy. CPU-LP and GPU-LP exhibit similar accuracy and are

not affected by the number of vertices. On the other hand, the accuracy of Louvain

deteriorates as the number of vertices increases. This is because the modularity
employed in Louvain has the limitation, called resolution limit [36] (Section 2.6).

6.5 Summary

This chapter has presented a fast graph clustering algorithm based on parallel label

propagation on the GPU. To efficiently process graph clustering, the algorithm of la-
bel propagation is firstly transformed into a sequence of data-parallel primitives. In
addition, load balancing is taken into account by using the primitives that make the

load among threads and blocks well balanced. Experiments on both real-world and

89



Louvain CPU-LP GPU-LP

1 2 3 4 5 6 7 8 9 10

Number of vertices (×105)

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

(a) NMI

1 2 3 4 5 6 7 8 9 10

Number of vertices (×105)

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su

re

(b) F-measure

1 2 3 4 5 6 7 8 9 10

Number of vertices (×105)

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

(c) ARI

Figure 6.8: Results on synthetic datasets.

synthetic datasets show that our proposed method is superior than existing methods,

in terms of not only efficiency but also accuracy.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation has developed GPU-accelerated data analysis techniques, by fo-
cusing on effective data structures, data-parallel primitives, and capturing key com-

ponents. Effective data structures enable achieving high effective memory band-
width on the GPU; data-parallel primitives help to harness the massive and hierar-
chical parallelism as well as to balance the workloads among hierarchical threads;

and capturing key components enables us to carefully parallelize the bottleneck part
of algorithms and dramatically accelerate the processing. On the basis of the tech-

niques, we have made the following contributions:

• This dissertation has introduced GPU-accelerated frequent itemset mining
from uncertain data in Chapter 3. Uncertain transaction databases are repre-

sented by the ELL format that enables efficient accesses to the data. The pA-
priori algorithm is parallelized by exploiting data-parallel primitives, namely
map, reduce, and filter. The key component of this algorithms is the com-

putation of many repeated convolutions, which are thoroughly accelerated by
combining multiple techniques. Consequently, the proposed method outper-

formed a CPU parallel implementation by a factor of up to 5.5.

• We have presented a novel efficient comparison-sorting method for GPUs in
Chapter 4. The method devise the data layout that takes into account memory

alignment, thereby enabling more coalesced accesses, and it also relies on
several data-parallel primitives such as scan and scatter. The key component
is to reduce the memory access cost, which is achieved by combining two

existing algorithms, samplesort and merge sort. As a result, the proposed
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method improved throughput by 32% over an existing GPU-based method.

• Canopy clustering on the GPU has been proposed in Chapter 5. The proposed
method heavily depends on the CSR format, to represent a set of canopies and
grid index. Data-parallel primitives, including map, reduce, filter, and gather,

are exploited throughout the algorithms. For further acceleration over simple
parallelization, the method constructs grid index on the GPU, thereby reduc-
ing the number of distance computations and providing high parallelism to

the GPU. Experiments showed that the GPU implementation was at most 2.5
times faster than CPU parallel implementation, even if the CPU counterparts

used two octa-core processors.

• GPU-accelerated label propagation for graph clustering has been described in

Chapter 6. The proposed method utilizes the CSR format to represent graph
data, because of low space cost and suitability for data-parallel primitives.
The algorithm of label propagation is transformed into a sequence of data-

parallel primitives such as map, reduce, scan, and gather. The key component
here is load balancing, which is achieved by employing the primitives that

make the load among threads and blocks well balanced. GPU-accelerated
label propagation achieved 30 times higher performance on average than a
CPU implementation of label propagation.

Observing these results, we believe that our GPU-acceleration techniques help to

improve the performance of not only the specific four problems but also a wider
range of applications.

7.2 Future work

Several future directions are possible: (1) handling larger data than the GPU mem-

ory, (2) using multiple GPUs and GPU clusters, and (3) exploiting heterogeneous
resources such as CPUs and GPUs. The first direction requires to devise methods
that partition data on the main memory, transfer a part of data to the GPU, process

it, and return the result to the main memory. These methods are particularly impor-
tant among the future directions, because if the methods are achieved, they can be

relatively easily extended to use multiple GPUs, GPU clusters, and heterogeneous
resources. Thus the following provides descriptions of the first directions for the
four problems.

Frequent itemset mining: In our method, inclists—each of which is an integer

array storing whether a candidate is included in transactions or not—are the
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largest data maintained on the GPUs, and they are associated with candi-
dates. Thus, if candidates are partitioned by some means, larger-scale data

can be handled. Actually, we have proposed methods based on this idea
using multiple GPUs and GPU clusters [70].

Sorting: Our sorting method firstly partitions data into k buckets. If we can trans-

fer and sort each bucket separately, we achieve sorting of larger data than
the GPU memory. However, the partitioning is done on the GPU under the

assumption that the data fit into the GPU. Thus we need either an efficient
method of partitioning on the main memory or a method that uses GPUs by
intelligently overlapping partitioning and transfer.

Canopy clustering: Since our method uses grid index, the data can be easily par-
titioned on the basis of grid cells if grid index is constructed. In the case

that the grid index cannot be constructed on the GPU because of running out
of GPU memory, the grid index can be constructed on the main memory,
because the construction does not take so long time even if CPUs are used.

Graph clustering: Adapting our graph clustering method to larger data is rela-
tively easy. One way is to partition a set of vertices into multiple sets and
process each set separately. In our preliminary evaluation, this method with

partitioning achieved comparable performance to the method without parti-
tioning.

As more general and long-term future work, development of a programming

model can be considered. When utilizing GPU clusters, we need to learn several
parallel programming models such as CUDA, OpenMP, and MPI, and this is greatly
burdensome, costly, and difficult. To ease the development, a novel programming

model should be devised, e.g., on the basis of data-parallel primitives exploited in
this dissertation.
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