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Abstract

Direction Of Arrival (DOA) estimation is a traditional research subject in array signal processing.

Because of the importance of DOA information in many applications, a wide range of studies have

already been reported. However, representative high-resolution DOA estimatiors suffer from a no-

table problem that they are constrained by the signal dimensionality and cannot estimate DOAs in

underdetermined cases, where the number of sources exceeds the number of sensors. Although

several conventional methods, exploiting higher order cumulants of signals, have been proposed to

overcome the problem, they also have another shortcoming for the short-time analysis. Therefore,

we set our research goal to propose a novel approach that can estimate DOAs with high resolution

even in underdetermined conditions and achieve superior estimation accuracy in short-time analysis.

The work for this study is mainly two-fold. First, we establish concept of our proposed method

employing higher-dimensional nonlinear mapping. By increasing signal dimensionality with the

mapping, we extend the analysis of MUltiple SIgnal Classification (MUSIC), the representative

high-resolution DOA estimator, to the underdetermined DOA estimation. Furthermore, for the

higher estimation accuracy in short-time analysis, we propose a class of mapping which enables

us to analyze higher order moments of signals. Through the comparisons focusing on the bias-

variance tradeoff between moment and cumulant, we demonstrate the superiority of the proposed

method for short-time analysis in terms of both estimation accuracy and computational complexity.

Next, for the further improvement of estimation accuracy, we propose an extension of the pro-

posed method. We describe an algorithm that utilizes multiple maps simultaneously for the joint

analysis of moment of multiple high orders. Also, we discuss the advantage of this approach and

conduct experiments to evaluate its effectiveness. Experimental results reveal that the extended

proposed method achieves quite higher estimation accuracy than other conventional methods.
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Chapter 1

Introduction

1.1 Study background and purpose

Array signal processing, taking an quite important sub-area of signal processing, has been widely

used in several fields of science and engineering such as, radar, sonar, wireless communication,

radio astronomy, seismology, acoustics and medical imaging [1, 2, 3, 4]. Early development of array

signal processing has mainly been made in the fields of wireless communication and radar system

among the first half of 20th century. From the second half of the 20th century, with the progress of

digital signal processing hardware, those fundamental knowledge conveyed to other fields had been

growing up and numerous new developments and contributions are being made nowadays.

Direction Of Arrival (DOA) estimation is a traditional research subject in array signal processing

and have mainly been developed for applications in the radio and wireless communication field.

Because of the importance of DOA information in many applications, a wide range of studies have

already been reported, and these techniques are adopted as a processing step in many sensor sys-

tems [5]. In acoustic and speech signal processing field, these techniques have also been introduced.

Not only as a straightforward usage for audio scene recognition or source localization, these meth-

ods are now essential as a preprocessing for various other applications, such as noise reduction,

dereverberation, and source separation [6].

The beginning of DOA estimation techniques was beamformer approach utilizing the time differ-

ences between signal arrivals [7, 8], such as generalized cross-correlation (GCC) [9] based on the

whitened cross-correlation function. These methods have a low computational cost but inadequate

estimation accuracy. While extensions and generalizations of GCC, such as the steered response

power (SRP) [10] have been shown to improve the estimation accuracy for cases of more than two

microphones, the issue of low estimation resolution remains when the number of sources is large.
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Over the past few decades, many DOA estimators with high resolution have been proposed. Early

contributions were made by introducing constrained conditions of the algorithm for the adaptive

array processing [11, 12, 13, 14, 15], and later, various methods based on the eigenvalue analysis

have been proposed for higher resolution [16, 17, 18, 19]. Among these methods, MUltiple SIgnal

Classification (MUSIC) [18] is the prevalent technique. However, MUSIC has a notable shortcom-

ing that it is restricted by the dimensionality of the covariance matrix. This is because MUSIC

requires the residual subspace of the observation to be reserved only for noise. To estimate DOAs

of N sources, M(> N) microphones are required and the DOA estimation performance degrades

as N approaches M . Thus, a huge microphone array is required for the DOA estimation of a large

number of sources. To overcome this issue, several extensions of MUSIC have been proposed. An

extension of MUSIC utilizing 4th-order cumulants [20] was developed in the 1990s, and later this

approach was generalized as 2q-MUSIC [21], which exploits the cumulants of arbitrary even orders.

Utilizing the increased dimensionality of the matrix composed of cumulants with additivity, these

methods can estimate DOAs in underdetermined cases, where the number of sources exceeds the

number of microphones, and also improve the resolution of DOA estimation by virtually increasing

the signal expressiveness by expanding the nonlinear subspace [22]. However, since the cumulant

have a large variance and a complex calculation, these methods still suffer from the problems of es-

timation accuracy in short-time analysis and slow processing speed, and cannot satisfy the request

from many practical applications such as real time source tracking.

Meanwhile in recent years, in the context of acoustic signal processing, wide variety of researches

based on the sparse representation of source signals have been proposed to improve performance

and to achieve availability for the case which the conventional approaches cannot adopt well. For

example, the sparse sound field decomposition [23, 24] to improve accuracy even when the source

signals are highly correlated and the sources are in a highly noise environment, and source localiza-

tion based on sparse representation [25, 26, 27] to achieve higher spatial resolution.

In this study, by utilizing such sparse property of signal referred to as W-disjoint orthogonality

[28], that is a condition in which the time-frequency representations of the sources do not overlap,

we aims to achieve a underdetermined DOA estimation with high resolution that also has higher re-

liability for short-time analysis and lower computational complexity than conventional 2q-MUSIC.

The work for this dissertation is mainly two-fold. First, we propose a new DOA estimator based

on different approach from 2q-MUSIC. For scenarios with more noise sources than microphones,

a speech enhancement method called complementary beamforming [29] has been proposed, which

has been applied to DOA estimation problems [30]. Complementary beamforming has also been

extended and explained as the mapping of a signal onto a higher-dimensional space using a kernel

function [31]. Since this is a direct way to increase the subspace dimensionality and can easily
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change the tendency of the analysis with the class of mapping, the approach to increasing the signal

dimensionality in these methods is expected to be particularly effective for MUSIC, in which the di-

mensionality is critical. Therefore, as the combination method of the higher-dimensional mapping

and MUSIC, we propose mapped MUSIC [32, 33], an extension of MUSIC for underdetermined

DOA estimation that is based on the correlation analysis of the mapping. We describe the estima-

tion algorithm of mapped MUSIC and introduce a class of mapping functions with which mapped

MUSIC analyzes the moments of arbitrary even orders. Moreover, we explain the availability of

the moment analysis for the underdetermined case exploiting W-disjoint orthogonality of the source

signals. After we establish bias-variance tradeoff between moment and cumulant through the dis-

cussion of statistical property between those two statistics, we hypothesize the proposed method

performs well for short-time analysis, where the influence of the variance is greater. To evaluate the

bias-variance tradeoff, we compare the performances of the proposed method and 2q-MUSIC by

using simulated and real data under the assumption that the true number of sources N is given as

prior information. Moreover, we demonstrate the computational efficiency of the proposed method

and introduce alternative mappings to further reduce the computational complexity for 4th- and

6th-order moment analysis. Experimental results reveal the superior performance of the proposed

method for short-time analysis in terms of both estimation accuracy and computational complexity.

Next, we propose the extension of mapped MUSIC based on joint analysis of moments of mul-

tiple orders [34] to further improve estimation accuracy. Although use of higher order statistics

yields a higher dimensional subspace for the DOA estimation, the result lose robustness due to the

greater bias and variance in the higher-order statistics as shown in the first work. Thus the question

of a strategy for trade-off between resolution and robustness arises. To explore the possibility of

realizing both advantages of the high and low orders of statistics, we evaluate moments of multiple

orders simultaneously. This goal was found to be possible and can be accomplished by properly

combining low-and-high-ordered moments in a nonlinearly expanded space. Experimental results

of speech DOA estimation demonstrate that the mapped MUSIC with the new map, for joint analysis

of moments of multiple orders, achieves a higher accuracy than other MUSIC extensions.

The subsequent section describes our contributions in more detail.

1.2 Thesis overview and contributions

The following chapters will proceed as follows:

• Chapter 2 will present problem statement of the DOA estimation of sound sources using

microphone array. We show the observation signal model assumed in this dissertation. Sub-

sequently, we describe specific estimation procedure using steering vector.
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• Chapter 3 will review several conventional methods. We describe estimation algorithm of

delay-and-sum beamformer and its extension SRP as the DOA estimators with no constraint

about the number of estimated DOAs. We also describe estimation algorithm of MUSIC, a

representative DOA estimator with high resolution, and 2q-MUSIC, MUSIC extension ex-

ploiting higher order cumulant for underdetemined DOA estimation.

• Chapter 4 will propose mapped MUSIC. We describe estimation algorithm of mapped MU-

SIC based on the correlation analysis of the nonlinear mapping of the signals. Also, we

propose the suitable map allow us to estimate moments of arbitrary even order. Through the

comparison with 2q-MUSIC focusing of the difference between moment and cumulant, we

confirm mapped MUSIC becomes a superior option for practical short-time analysis.

• Chapter 5 will propose extension of mapped MUSIC. To further improve the DOA estimation

accuracy, we propose new mapping function for joint analysis of moments of multiple orders.

Experimental results of speech DOA estimation show the efficiency of this method which

combines both advantages of the high and low orders of statistics.

• Chapter 6 will conclude this dissertation. We summarize our study and discuss future direc-

tion.
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Chapter 2

Problem statement

This chapter describes problem statement of DOA estimation scenario with microphone array and

sound sources. Section 2.1 describes an aim of DOA estimation assuming sound sources. Section

2.2 shows observation signal model assumed throughout this dissertation. Section 2.3 describes

specific procedure of DOA estimation.

2.1 Aim of DOA estimation of sound sources

We assume a recording environment shown in Fig. 2.1. An aim of DOA estimation of sound sources

is to identify correct direction of direct sound emitted from target sound source by analyzing the

recorded mixture containing direct sound, reflected sound, and sudden noise.

Sound source

Microphone array

Direct sound
(Target)

Sudden noise

Reflected sound

Noise source

Figure 2.1: An example of room recording.
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Figure 2.2: A DOA estimation of two sound sources located at the directions of 30 and 60 from the

circular microphone array. Left figure shows the locations of the microphones and the sources in

5 m square room. Right figure shows the DOA evaluation function of Delay-and-Sum beamformer

and MUSIC defined later. DOAs are estimated as the peak of these plots, triangles denote estimated

DOAs, and the true source directions are denoted as vertical lines. MUSIC with high resolution

can estimate respective sources correctly, but Delay-and-Sum beamformer estimates single DOAs

at wrong direction because of its low resolution.

Figure 2.2 shows the DOA estimation examples. As this figure suggests, the resolution of es-

timation is essential for the superior estimation performance as well as the the robustness against

disturbance, such as reflection and sudden noise. In particular, the resolution has greater importance

under the condition when the number of sources becomes large and each source inevitably locate

nearby. Although high resolution methods like MUSIC are good option for the case, there still

remain the problem how we provide sufficient number of microphones. Overcoming this issue is

main objective of this dissertation.

2.2 Observation signal model

Throughout this dissertation, signals are expressed as complex amplitudes. We assume N source

signals propagating to an array consisting of M microphones, and the true number of sources N is

given as prior information. The signals are statistically independent and the single signal emitted

by the nth source, sn(ω, t), is a zero-mean super-Gaussian complex random variable. Also, the

signals emitted at different times are assumed to be statistically independent. Thus, a noise-free
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Noise signal
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𝑎1,1(𝜔, 𝑡)

⋯
⋯

Figure 2.3: Observation signal model assuming N sound sources and M microphones.

vector z(ω, t) of the observed signals is assumed to be given by

z(ω, t) = [z1(ω, t), · · · , zM (ω, t)]T

= A(ω)s(ω, t), (2.1)

A(ω) = [a1(ω), · · · ,aN (ω)] , (2.2)

s(ω, t) = [s1(ω, t), · · · , sN (ω, t)]T , (2.3)

where ai(ω) = [a1,i(ω), · · · , aM,i(ω)]
T is an array manifold vector from the direction of the ith

source, which consists of the transfer function from the ith source to the jth microphone aj,i(ω, t),

ω is the angular frequency, t = 1, · · · , L is the time frame index, and [·]T denotes the transpose.

Furthermore, the noise-corrupted observed vector x(ω, t) is given by

x(ω, t) = [x1(ω, t), · · · , xM (ω, t)]T

= z(ω, t) + n(ω, t), (2.4)

n(ω, t) = [n1(ω, t), · · · , nM (ω, t)]T , (2.5)

where nj(ω, t) is the zero-mean noise signal superimposed on the jth microphone. Figure 2.3 is a

diagram of this observing system.
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2.3 Problem statement of DOA estimation

In the signal model expressed by Eq. (2.4), each microphone observes a mixture of source signals

and noise signals. The problem in this dissertation is the estimation of the DOAs θ1, · · · , θN of the

sources s1(ω, t), · · · , sN (ω, t) by searching for directions θ with the steering vector b(ω; θ) close

to each of the array manifold vectors a1(ω), ...,aN (ω). The steering vector b(ω; θ) is given by

b(ω; θ) =
1√
M

[1, exp(−ȷω∆τ12), · · · , exp(−ȷω∆τ1M )]T , (2.6)

where ∆τij (i, j = 1, · · · ,M) are time differences between ith microphone and jth microphone,

given by a signal from direction θ, and ∆τii is obviously 0.

Note that an estimation of the number of sources is an important aspect of DOA estimation

[35, 36]. For the purpose, besides manual thresholding of the eigenvalue, several approaches have

been proposed to estimate the number of sources, based on Akaike information criteria [37] or min-

imum descriptive length criteria [38], and applying the support vector machine [39]. However this

dissertation does not contain this discussion. This is because both our proposed mapped MUSIC

and conventional 2q-MUSIC, which is mainly compared in this dissertation, have a side effect to

expand signal dimensionality and lose applicability for those approaches in the realistic conditions.

Therefore, this dissertation assumes the true number of sources N is given as prior information and

just focus on the comparison of DOA estimation using N .
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Chapter 3

Conventional methods

This chapter reviews conventional DOA estimators, based on traditional inter-channel correlation

and subspace analysis. Note that this chapter partially contains the explanations in time domain.

Section 3.1 reviews delay-and-sum beamformer. Section 3.2 reviews generalized cross correlation.

Section 3.3 reviews steered response power. Section 3.4 reviews MUSIC. Section 3.5 reviews 2q-

MUSIC.

3.1 Delay-and-sum beamformer

Delay-and-Sum beamformer is the most straightforward approach for the Time Difference Of Ar-

raival (TDOA) estimation based on the analysis of the peak of the inter-channel correlation. Also,

since DOA can be uniquely determined from TDOA if we know the array arrangement, many meth-

ods based on the concept of delay-and-sum beamformer are also applied for the estimation of DOA.

We assume following Fig. 3.1 where a plane wave is imping on M microphones and observed

signals are aligned with delay operatorsDi (i = 1, · · · ,M). When allDi equals to real TDOAs be-

tween each channel pair, observed signals x1, · · · , xM become in-phase, and output is maximized.

Therefore, delay-and-sum beamformer estimate TDOAs by finding Di which give maximal output.

Although delay-and-sum beamformer is directly represented by cross-correlation function in the

continuous time domain, this operation require to estimate respective TDOAs for each channel pair

if the array consists of multiple microphones such as Fig. 3.1. Hence, the practical processing is

usually conducted in the discrete time-frequency domain in which we can compute correlations of

all channel pairs at once and simplify convolution integral into multiplication.

The estimation of delay-and-sum beamformer is formulated as finding the vectors τ whose entries

9
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𝑥2
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𝑥4

𝐷4
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𝐷1
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Aligned signals

Output

∑

Figure 3.1: A diagram of delay-and-sum beamformer. The left hand figure shows microphone array

of M = 4. The right hand figure shows output is maximized when all delay operators Di (i =

1, · · · , 4) equal to real TDOAs ∆τ11, · · · ,∆τ14 respectively.

are true TDOAs ∆τ11, · · · ,∆τ1M .

τ = [∆τ11, · · · ,∆τ1M ]T . (3.1)

Then, the correct estimation of the vector τ ought to maximize all cross-correlation functions be-

tween each channel pair. Since the delay of the length ∆τij is expressed by the phase rotation

exp(−ȷω∆τij) in the time-frequency domain, the formulation can be also expressed as finding fil-

ters exp(−ȷω∆1j) (i = 1, · · · ,M) as follows:

τ ← arg max
τ ′

fDaS(τ
′), (3.2)

fDaS(τ
′) =

M∑
i=1

M∑
j=1

∑
ω

Gxixj (ω)exp(−ȷω∆′
ij),

=
M∑
i=1

M∑
j=1

∑
ω

Gxixj (ω)exp
(
−ȷω(−∆′

1i +∆′
1j)
)
, (3.3)

Gxixj (ω) = E[x∗i (ω, t)xj(ω, t)], (3.4)

τ ′ =
[
∆τ ′11, · · · ,∆τ ′1M

]T subject to ∆τ ′11 = 0, (3.5)

whereE[·] denotes the expectation of the argument, [·]∗ denotes the complex conjugate, andGxixj (ω)

is the cross spectrum given as the discrete Fourier transform (DFT) of the cross correlation function

between ith channel and jth channel.

Furthermore, Eqs. (3.2)–(3.5) to maximize a fDaS(τ
′) can be replaced by the quadratic form

using covariance matrix C2(ω) and the steering vector b(ω; θ) defined for DOA estimation in Eq.
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(2.6), because DFT of possible vector τ ′ corresponds to the steering vector of any direction and

desired filters exp(−ȷω∆1j) (i = 1, · · · ,M) are equivalent to the steering vector b(ω; θ) when

direction θ accords with the DOA of target signal. We define the replaced function fDaS(θ) as the

DOA evaluation function of delay-and-sum beamformer which is maximal in a direction θ close to

true source DOA.

fDaS(θ) ≜
∑
ω

fDaS(ω; θ), (3.6)

fDaS(ω; θ) ≜ bH(ω; θ)C2(ω)b(ω; θ), (3.7)

C2(ω) = E
[
x(ω, t)xH(ω, t)

]
,

=
[
Gxixj (ω)

]
ij
, (3.8)

where [·]H denotes the complex conjugate transpose, and [·]ij denotes a matrix consisting of the

argument in parentheses as its (i, j) entry. Finally, we can estimate DOAs by finding peaks from

the function fDaS(θ).

3.2 Generalized cross correlation

Delay-and-sum beamformer is weak against errors and the peak of the cross correlation Cx1x2 be-

tween two observations, x1 and x2, is easily made unclear by the reverberant, noisy recording

environments and the colored signals. Generalized Cross Correlation (GCC) is the most represen-

tative extension of delay-and-sum beamformer which utilizes whitening filter to ensure robustness

against such disturbance. By substituting the cross correlation function Cx1x2 with its whitened ver-

sion ψ12 ⊛ Cx1x2 (⊛ is the convolution operator) applying the whitening filter ψ12, GCC clarifies

the peak and achieves the greatly improved estimation accuracy even in the noisy or reverberant

environment.. Although it is not the scope of our study, GCC particularly shows high estimation

performance in the scenario of stereo channel [40] for which the latter mentioned methods based on

subspace analysis cannot perform well.

The estimation of GCC is an addition of whitening filter into delay-and-sum beamformer and it

is formulated according to the following equation in time domain,

∆τ12 ← arg max
∆τ ′12

ψ12(∆τ
′
12)⊛ Cx1x2(∆τ

′
12). (3.9)

As with delay-and-sum beamformer, the formulation of GCC shown as Eq. (3.9) is expressed in

frequency domain according to following equation,

∆τ12 ← arg max
∆τ ′12

∑
ω

Ψ12(ω)Gx1x2(ω) exp(−ȷω∆τ ′12), (3.10)

11



where Ψ12 is the DFT of ψ12. For the improvement of estimation accuracy, appropriately design

of whitening filter is necessary and the filter design is conducted in the frequency domain for Ψ12.

The following are examples of specific filters among several filter design methods on the basis of

different criteria.

• GCC-SCOT filter

Ψ12(ω) =
1√

Gx1x1(ω)Gx2x2(ω)

This filter is robust against noise.

• GCC-PHAT filter

Ψ12(ω) =
1

|Gx1x2(ω)|

This filter is robust against the reverberation.

3.3 Steered response power

Steered Response Power (SRP) is a multichannel extension of GCC. Because of its moderate resolu-

tion without constraint about the number of target sources, SRP is frequently applied as the reliable

and common DOA estimator.

SRP is the whitened version of delay-and-sum beamformer with whitening filter of GCC when

M ≥ 3. Therefore, the estimation of SRP is easily expressed as the combination of Eqs. (3.2)–(3.5)

and GCC filter Ψij(ω) for the ith and jth channel pair.

τ ← arg max
τ ′

fSRP(τ
′), (3.11)

fSRP(τ
′) =

M∑
i=1

M∑
j=1

∑
ω

Ψij(ω)Gxixj (ω)exp
(
−ȷω(−∆′

1i +∆′
1j)
)
. (3.12)

τ ′ =
[
∆τ ′11, · · · ,∆τ ′1M

]T subject to ∆τ ′11 = 0. (3.13)

Also, it can be expressed by the following quadratic form of the generalized correlation matrix
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Figure 3.2: Comparison of DOA estimation between delay-and-sum beamformer and SRP-PHAT.

Condition of the estimation is same as that of Fig. 2.2. SRP-PHAT achieves moderate resolution

and improve estimation accuracy of delay-and-sum beamformer. However, there is a small error at

the direction of 30◦ and the resolution is still lower than MUSIC.

Ψ(ω)⊙C2(ω) and the steering vector b(ω; θ).

fSRP(θ) ≜
∑
ω

fSRP(ω; θ), (3.14)

fSRP(ω; θ) ≜ bH(ω; θ) (Ψ(ω)⊙C2(ω))b(ω; θ), (3.15)

Ψ(ω) = [Ψij ]ij , (3.16)

where ⊙ denotes Hadamard product, and Ψ(ω) is the filter matrix whose (i, j) entry is Ψij . We

define fSRP(θ) as the DOA evaluation function of SRP. Note that the estimation using SRP when

M = 2 is equivalent to that using GCC because

fGCC(∆τ
′
12) =

∑
ω

Ψ12(ω)Gx1x2(ω) exp(−ȷω∆τ ′12), (3.17)

fSRP(τ
′) = fSRP

(
[∆τ ′11,∆τ

′
12]

T
)
=

2∑
i=1

2∑
j=1

∑
ω

Ψij(ω)Gxixj (ω)exp
(
−ȷω(−∆′

1i +∆′
1j)
)
,

=
∑
ω

Ψ12(ω)Gx1x2(ω)exp
(
−ȷω∆′

12

)
+
∑
ω

Ψ21(ω)Gx2x1(ω)exp
(
ȷω∆′

12

)
=2fGCC(∆τ

′
12)

∝fGCC(∆τ
′
12). (3.18)

Figure 3.2 shows the improvement of DOA estimation performance between delay-and-sum

beamformer and SRP-PHAT.
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3.4 MUSIC

MUSIC is a DOA estimator based on subspace analysis exploiting the covariance of the signals. Ac-

cording to an analogy of the steering vectors to the eigenvectors of the covariance matrix associated

with the non-zero eigenvalues, MUSIC estimates DOAs with high resolution.

MUSIC analyzes the following M ×M covariance matrix C2(ω), whose entries are the covari-

ance of the observation x(ω, t):

C2(ω) = E[x(ω, t)xH(ω, t)], (3.19)

Under the assumption that noise signals observed with each microphone have sufficiently small

correlations and noise covariances almost do not affect nondiagonal entries, the following equations

are obtained by the eigendecomposition of the covariance matrix C2(ω):

C2(ω) = U(ω)G(ω)UH(ω), (3.20)

U(ω) = [u1(ω), · · · ,uM (ω)],

UH(ω)U(ω) = IM , (3.21)

G(ω) = diag[g1(ω), · · · , gM (ω)],

g1(ω) ≥ · · · ≥ gN (ω),

gN+1(ω) ≈ · · · ≈ gM (ω) ≈ 0, (3.22)

where u1(ω), · · · ,uM (ω) are the eigenvectors associated with the respective eigenvalues

g1(ω), · · · , gM (ω), Ii denotes the i-dimensional identity matrix, diag[·] is a diagonal matrix with

the arguments in the diagonal entries. The first term of Eq. (3.22) can be classified into N large

eigenvalues and (M −N) nearly zero eigenvalues, and N eigenvectors associated with the former

N eigenvalues span the almost identical space to signal subspace S defined as the span of a set of

array manifold vectors a1(ω), · · · ,aN (ω).

span [u1(ω), · · · ,uN (ω)] ≈ S ≜ span [a1(ω), · · · ,aN (ω)] , (3.23)

where span[·] denotes the subspace spanned by the argument vectors. Moreover, the orthogo-

nal complement of S in span [u1(ω), · · · ,uM (ω)] is defined as the noise subspace. According

to the orthogonality between eigenvectors u1(ω), · · · ,uM (ω) and the Eq. (3.23), the follow-

ing relation is satisfied between the array manifold vectors a1(ω), · · · ,aN (ω) and the vectors

uN+1(ω), · · · ,uM (ω), which span the noise subspace orthogonal to the signal subspace:

aHi (ω)uj(ω) ≈ 0

for i = 1, · · · , N j = N + 1, · · · ,M. (3.24)
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With the steering vectors b(ω; θi) ≃ ai(ω) (i = 1, · · · , N), we define the following DOA evalua-

tion function f(ω; θ), which utilizes the orthogonality in Eq. (3.24):SIC

fMUSIC(ω; θ) ≜
1∑M

j=N+1 |bH(ω; θ)uj(ω)|2
, (3.25)

which is maximal in a direction θ close to source directions.

Note that the evaluation function fMUSIC(ω; θ) is defined for each narrowband, and it is necessary

to integrate the information from all frequency bins in order to obtain a single wideband DOA

estimation fMUSIC(θ). A common approach is to average Eq. (3.25) over frequencies and several

average operations have been discussed [41, 42, 43] thus far.

fMUSIC(θ) =



1

J

∑
ω

fMUSIC(ω; θ) (arithmetic mean)[∏
ω

fMUSIC(ω; θ)

] 1
J

(geometric mean)

J∑
ω

1

fMUSIC(ω; θ)

(harmonic mean)

, (3.26)

where J denotes the number of averaged frequency bins. As we reviewed above, delay-and-sum

beamformer and its extensions conduct simple addition of narrowband estimation along frequency

direction, which corresponds to arithmetic mean. On the other hand, ideal MUSIC estimation has

infinite peaks on Eq. (3.25), and the evaluation function for directions other than true DOAs of sound

sources approaches nearly zero. Therefore, we use the following geometric mean for MUSIC-based

methods among these operations:

fMUSIC(θ) ≜
[∏

ω

fMUSIC(ω; θ)

] 1
J

. (3.27)

Finally, DOAs are estimated by finding the peaks of fMUSIC(θ). Note that MUSIC cannot correctly

estimate DOAs in underdetermined conditions, because it requires at least one-dimensional noise

subspace to compute Eq. (3.25). Also, for the more reliable estimation,M must become sufficiently

greater than N to accurately evaluate the linear dependency between steering vectors and noise

subspace.

3.5 2q-MUSIC

2q-MUSIC is an extension of MUSIC exploiting 2qth-order cumulants with an arbitrary positive

integer q. Also, 2q-MUSIC is equivalent to standard MUSIC when q = 1 because the second-order

cumulant is equivalent to the covariance.
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2q-MUSIC analyzes the following M q × M q cumulant matrix C2q(ω), whose entries are the

temporal mean of the 2qth-order cross-cumulants of the observation x(ω, t):

C2q(ω) = [cij(ω)]ij , (3.28)

cij(ω) ≜ Cum[x⊕oi,1(ω, t), · · · , x
⊕
oi,q(ω, t),

x⊖oj,q+1
(ω, t), · · · , x⊖oj,2q(ω, t)], (3.29)

x⊕oi,l(ω, t) ≜

xoi,l(ω, t) (if l is odd)

x∗oi,l(ω, t) (if l is even)
, (3.30)

x⊖oj,l(ω, t) ≜

x∗oj,l(ω, t) (if l is odd)

xoj,l(ω, t) (if l is even)
, (3.31)

where Cum [· · · ] denotes the 2qth-order cumulant given by its 2q arguments. The tuples of the q

indices {oi,1, · · · , oi,q} and {oj,q+1, · · · , oj,2q} are composed of repeated permutations of the values

1, · · · ,M :

oi,l = 1 +

⌊
i− 1

M q−l

⌋
mod M

for i = 1, · · · ,Md l = 1, · · · , q, (3.32)

oj,l = 1 +

⌊
j − 1

M2q−l

⌋
mod M

for j = 1, · · · ,Md l = q + 1, · · · , 2q, (3.33)

where ⌊·⌋ denotes the floor function and mod denotes the modulus. As described in [22], the entries

in C2q are interpreted as the correlations between M q-dimensional virtual observations, whose

spatial arrangements are given by the higher-dimensional steering vectors bq(ω; θ) stated below.

The cumulant matrix C2q(ω) can be diagonalized as

C2q(ω) =
[
Us(ω) Un(ω)

] [∆s(ω)

∆n(ω)

][
UH

s (ω)

UH
n (ω)

]
, (3.34)

K is the nonnegative integer parameter indicating the dimensionality of the signal subspace, ∆s(ω)

is the diagonal matrix of the largest K eigenvalues of the cumulant matrix C2q(ω), ∆n(ω) is the

diagonal matrix of the other M q −K eigenvalues of C2q(ω), and Us(ω) and Un(ω) are the uni-

tary eigenmatrices composed of the corresponding eigenvectors. Here, the column eigenvectors of

Us(ω) and Un(ω) are regarded as the bases of the signal and noise subspaces, respectively. Be-

cause of the additivity of cumulants, the N signal sources ideally make only the N eigenvalues

large and they span the N -dimensional signal subspace. Thus, the appropriate setting of the signal
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subspace dimensionality parameter is K ← N . Although the automatic estimation of parameter K

is theoretically possible by finding the boundary between the large-eigenvalue group and the small-

eigenvalue group, the boundary between the signal and noise subspaces is not clear in practical

analysis under the existence of variance and noise. Therefore, in this dissertation we manually set

the signal subspace dimensionality parameter K ← N given the number of sources N . Making

use of the orthogonality between the higher-dimensional steering vectors bq(ω; θ) and the noise

subspace Un(ω), 2q-MUSIC constructs the DOA evaluation function f2q(ω; θ) as follows:

bq(ω; θ) ≜

b(ω; θ) (q = 1)

b(ω; θ)⊗ b∗
q−1(ω; θ) (q ≥ 2)

, (3.35)

f2q(ω; θ) ≜
1∣∣bH

q (ω; θ)Un(ω)
∣∣2 , (3.36)

where ⊗ denotes the Kronecker product operator. Finally, we merge the narrowband evaluation

functions into a wideband evaluation function involving the geometric mean:

f2q(θ) ≜
[∏

ω

f2q(ω; θ)

] 1
J

. (3.37)

DOAs are estimated by finding the peaks of Eq. (3.37). When q ≥ 2, 2q-MUSIC achieves underde-

termined DOA estimation capability with high resolution owing to its richer expressiveness of the

subspaces based on dimensional expansion from M to M q.

Because of the additivity of the cumulants, 2q-MUSIC has little bias in its model if it can utilize

an infinite number of snapshots without noise to obtain the temporal mean. However, 2q-MUSIC

suffers from performance degradation when the number of snapshots is small because the variance

of the estimated cumulants is large. There is also a problem of computational complexity: 2q-

MUSIC must compute the complicated Leonov–Shiryaev formula [44] for every entry cij(ω) of

C2q(ω).
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Chapter 4

Proposed method: mapped MUSIC

This chapter proposes mapped MUSIC, an estimation algorithm that nonlinealy maps the observed

signal onto a space with expanded dimensionality and conducts MUSIC-based correlation analysis

in the expanded space. By way of increasing the dimensionality of the noise subspace for sparse

signal via the higher-dimensional mapping, the proposed method enables the estimation of DOAs

in the case of underdetermined conditions.We describes the algorithm of mapped MUSIC and com-

pares with the 2q-MUSIC, a similar MUSIC extension based on high order cumulants. Finally, we

present the efficiency of mapped MUSIC for short time analysis through the evaluation experiments.

Section 4.1 explains DOA estimation algorithm of mapped MUSIC. Section 4.2 proposes a class of

map ϕd with which mapped MUSIC analyzes the moments of arbitrary even orders. Moreover,

we explain how the map achieve underdetermined DOA estimation for the sparse data. Section 4.3

describes the alternative maps that gives the equivalent DOA estimation to ϕd and have lower com-

putational complexity. Furthermore, we present the alternative mappings in the case of d = 2, 3.

Section 4.4 discusses the comparison between mapped MUSIC and 2q-MUSIC from the viewpoint

of statistical properties and computational complexity. Section 4.5 compares the practical estima-

tion performances of the proposed methods and the conventional methods about DOA estimation

accuracy and execution time.. Section 4.6 concludes this chapter.

4.1 DOA estimation algorithm of mapped MUSIC

Mapped MUSIC maps the M -dimensional observed signal x(ω, t) onto an M ′-dimensional Eu-

clidean space (M ′ ≥M) with a nonlinear function ϕ : CM → CM ′
and conducts a similar analysis

to MUSIC with the mapped observation vector ϕ(x(ω, t)). Mapped MUSIC is also a generalization

of standard MUSIC, which corresponds to the special case that ϕ(x(ω, t)) = x(ω, t). To estimate
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DOAs accurately with mapped MUSIC, the information on the correlations between observation

vectors must be retained after mapping. To maintain the spatial properties, we impose the following

three conditions in the choice of the mapping function ϕ(x(ω, t)):

1. The magnitude relation of the norm is retained.

||ϕ(x)||2 ≥ ||ϕ(y)||2 if ||x||2 ≥ ||y||2. (4.1)

2. The origin remains intact.

ϕ(x) = 0 if x = 0. (4.2)

3. The orthogonality between vectors is preserved.

ϕH(x)ϕ(y) = 0 if xHy = 0. (4.3)

By using mapping functions satisfying these three conditions, mapped MUSIC appropriately achieves

underdetermined DOA estimation capability with high resolution without any major adverse effects.

We describe the DOA estimation algorithm of mapped MUSIC using the mapping ϕ satisfying

Eqs. (4.1)–(4.3). The covariance matrix of ϕ(x(ω, t)) is expressed as

R(ω) = E[ϕ(x(ω, t))ϕH(x(ω, t))], (4.4)

The following equations are obtained by the eigendecomposition of the covariance matrix R(ω):

R(ω) = V(ω)E(ω)VH(ω), (4.5)

V(ω) = [v1(ω), · · · ,vM ′(ω)],

VH(ω)V(ω) = IM ′ , (4.6)

E(ω) = diag[e1(ω), · · · , eM ′(ω)],

e1(ω) ≥ · · · ≥ eM ′(ω), (4.7)

M ′ = dim[ϕ(x(ω, t))], (4.8)

where v1(ω), · · · ,vM ′(ω) are the eigenvectors associated with the respective eigenvalues

e1(ω), · · · , eM ′(ω), and dim[·] is the dimensionality of the argument vector. By manually setting

the signal subspace dimensionality parameter K similarly to in 2q-MUSIC, we define the subspace

spanned by v1(ω), · · · ,vK(ω) as the signal subspace S(ω) in the mapped space,

S(ω) ≜ span[v1(ω), · · · ,vK(ω)]. (4.9)
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Moreover, the orthogonal complement of S(ω) in span[v1(ω), · · · ,vM ′(ω)] is defined as the noise

subspace. The following relation is satisfied between the maps of array manifold vectors a1(ω), · · · ,aN (ω)

and the vectors vK+1(ω), · · · ,vM ′(ω) on the noise subspace:

ϕH(ai(ω))vj(ω) ≈ 0

for i = 1, · · · , N j = K + 1, · · · ,M ′. (4.10)

Under the condition b(ω; θi) ≃ ai(ω) (i = 1, · · · , N), we can find the true sound source direc-

tions by searching for the orthogonal projection onto the mapped noise subspace from the mapped

steering vectors ϕ(b(ω; θ)). Similarly to in MUSIC and 2q-MUSIC, we define the following DOA

evaluation function fmap(ω; θ), which utilizes the orthogonality in Eq. (4.10), for mapped MUSIC:

fmap(ω; θ) ≜
1∑M ′

j=K+1 |ϕH(b(ω; θ))vj(ω)|2
, (4.11)

which is maximal in a direction θ close to θi. Finally, we merge the narrowband evaluation functions

into a wideband evaluation function involving the geometric mean:

fmap(θ) ≜
[∏

ω

fmap(ω; θ)

] 1
J

. (4.12)

4.2 Mapping for analysis of 2dth-order moments

As shown in Sect. 4.1, mapped MUSIC can use any mapping function satisfying Eqs. (4.1)–(4.3),

but its properties change with the choice of mapping. In this dissertation, to quantitatively evaluate

the properties of the mapping, we focus on the mapping ϕd : CM → CMd
, which gives a 2dth-

order cross-moment matrix as its covariance matrix. The mapping function ϕd(x(ω, t)) is defined

recursively as

ϕd (x(ω, t)) ≜

x(ω, t) (d = 1)

x(ω, t)⊗ ϕ∗
d−1 (x(ω, t)) (d ≥ 2)

. (4.13)

Figure 4.1 shows specific examples of ϕd when M = 2 and d up to 3. According to this definition,

each entry of the map ϕd(x(ω, t)) is given as the product of d observed signals corresponding to its

entry index,

ϕd (x(ω, t)) =

[
d∏

l=1

x⊕o1,l(ω, t), · · · ,
d∏

l=1

x⊕o
Md,l

(ω, t)

]T
, (4.14)

x⊕oi,l(ω, t) ≜

xoi,l(ω, t) (if l is odd)

x∗oi,l(ω, t) (if l is even)
. (4.15)
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Figure 4.1: Specific examples of mapping function ϕd with M = 2 and d up to 3.

The entries of ϕd (x(ω, t)) are similar to the first half of those in Eq. (3.29); thus, the tuple of d

indices {ok,1, · · · , ok,d} is given in the same manner as Eq. (3.32):

ok,l = 1 +

⌊
k − 1

Md−l

⌋
mod M

for k = 1, · · · ,Md l = 1, · · · , d. (4.16)

Then, the covariance matrix of the mapping of the observed signal ϕd(x(ω, t)) is explicitly ex-

pressed as an Md ×Md moment matrix whose entries are 2dth-order cross-moments of the obser-

vations,

R2d(ω) = E
[
ϕd(x(ω, t))ϕ

H
d (x(ω, t))

]
= [rij(ω)]ij , (4.17)

rij(ω) ≜ E

[
d∏

l=1

x⊕oi,l(ω, t)

d∏
l=1

x⊖oj,l(ω, t)

]
, (4.18)

x⊖oj,l(ω, t) ≜

x∗oj,l(ω, t) (if l is odd)

xoj,l(ω, t) (if l is even)
. (4.19)

In the following we discuss the determination of the signal subspace dimensionality K in Eqs.

(4.9)–(4.11) for the correct estimation using the mapping ϕd : CM → CMd
for the higher-order

moment analysis. In contrast to the cumulants exploited in 2q-MUSIC, moments do not maintain

additivity, and it should be noted that underdetermined DOA estimation is not obtained by the vector

dimensionality extending itself as we employ the mapping ϕd. When the noise-free observation
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model is expressed according to Eqs. (2.1)–(2.3),

x(ω, t) = [x1(ω, t), · · · , xM (ω, t)]T

= A(ω)s(ω, t), (4.20)

A(ω) = [a1(ω), · · · ,aN (ω)] , (4.21)

ai(ω) = [a1,i(ω), · · · , aM,i(ω)]
T , (4.22)

s(ω, t) = [s1(ω, t), · · · , sN (ω, t)]T , (4.23)

its mapping ϕd(x) is expressed by the mapping of source vector ϕd(s) and array manifold vectors

ψd(· · · ) in the higher-dimensional space:

ϕd(x) = [ψd(a1,a1, · · · ,a1),ψd(a1,a1, · · · ,a2), · · · ,ψd(aN ,aN , · · · ,aN )]ϕd(s) (4.24)

ψd(ai1 ,ai2 , · · · ,aid) ≜
[

d∏
l=1

a⊕o1,l,il(ω, t), · · · ,
d∏

l=1

a⊕o
Md,l

,il
(ω, t)

]T
for i1, · · · , iN = 1, · · · , N , (4.25)

ψd(ai1 ,ai2 , · · · ,aid) = ϕd(an)

if i1 = i2 = · · · = iN = n. (4.26)

From the above equations, we found the mapped observations ϕd(x) are given by the directional

mapped sources ϕd(s) whose dimensionality is Nd, and the signal subspace obtained from the

covariance matrix of mapped observation R2d(ω) = E
[
ϕd(x(ω, t))ϕ

H
d (x(ω, t))

]
also becomes

Nd dimensional. This relation means that proposed mapping ϕd increases the dimensionality of

the analysis from M to Md, but does not directly clear the problem of standard MUSIC when

we assume underdetermined condition (N > M) for the original observation, because directional

sound source also increase from N to Nd by the mapping. However, Nd − N entries in mapped

sources ϕd(s) are given as the cross product of different original sources, and these entries are

reduced by assuming that the sources having high sparseness over time-frequency direction, which

is referred to as W-disjoint orthogonality [28]. Therefore, for the highly sparse data such as speech
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signal, that is the main target of this study, Eqs. (4.24) – (4.26) are approximated as follows.

ϕd(x) ≈



[ϕd(a1),ϕd(a2), · · · ,ϕd(aN )]


|s1|d−1s1

|s2|d−1s2
...

|sN |d−1sN

 (if d is odd)

[ϕd(a1),ϕd(a2), · · · ,ϕd(aN )]


|s1|d

|s2|d
...

|sN |d

 (if d is even)

. (4.27)

For the data with complete W-disjoint orthogonality, with which the time-frequency representations

of the sources do not overlap at all, mapped sources span only N -dimensional subspacle and signal

subspace dimensionality parameter K is set as K ← N . Although we cannot determine signal

subspace dimensionality should N in actual analysis because of the source signals with not the per-

fect W-disjoint orthogonality, when the data are highly sparse, the signal subspace dimensionality

becomes less than Nd and close to N . In the case, parameter setting K ← N is enough suboptimal

for the practical estimation and the increase in dimensionality of the covariance matrix R2d(ω) from

M to Md with the mapping ϕd enhances the expressiveness of the noise subspace to enables us to

estimate the DOAs in underdetermined cases.

Also, note that the actual dimensionality after mapping becomes less than Md. This is because

the set of Md mapped vectors ϕd(xi), i = 1, · · · ,Md with xi ∈ CM , contains several linearly

dependent vectors and cannot span the whole Md-dimensional space when d > 2. However, it is

guaranteed that the dimensionality of the subspace spanned by the mapped vectors ϕd(xi) is an

increasing function of d.

Here we discuss a similarity between the proposed method with the mapϕd and 2q-MUSIC based

on cumulant analysis. From Eqs. (3.35) and (4.13), the mapped steering vector ϕd(b(ω; θ)) is

equal to the higher-dimensional steering vector bq(ω; θ) in 2q-MUSIC. This equality suggests that

2q-MUSIC can also be interpreted as a mapping of b(ω; θ) onto a higher-dimensional Euclidean

space identical to that in the proposed method. Regardless of the identity of the space, the matrices

to be analyzed are composed of different statistics, resulting in a difference in their behaviors. In

Sect. 4.4.1, we discuss their behaviors from the perspective of the bias-variance tradeoff.
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4.3 Alternative mapping for efficient computation

As discussed above, DOA estimation by mapped MUSIC is based on the analysis of the linear

dependence among the mapped vectors. Thus, two different maps ϕ and ϕ′ give exactly the same

DOA estimation when their inner products are identical,

ϕH(x)ϕ(y) = ϕ′H(x)ϕ′(y), ∀x,y ∈ CM , (4.28)

and the analyses using these two mapping functions give identical results. Therefore, the mapping

function ϕd given by Eq. (4.13) also has alternative mappings that give the equivalent DOA esti-

mation. In this section, we give a compact expression for the computational efficiency of mapped

MUSIC in the cases of d = 2, 3.

The inner product between the mappings ϕd of two arbitrary complex vectors x and y is given

by

ϕH
d (x)ϕd(y) =


∣∣xHy

∣∣d−1
xHy (d is odd)∣∣xHy

∣∣d (d is even)
. (4.29)

Note that the inner product becomes real when the degree of the mapping d is even. In this instance,

a real-valued mapping ϕ
′
d : CM → RMd

satisfying Eq. (4.28) always exists, and it simplifies the

construction of the covariance matrix and the eigenvalue problem because their calculations only

include operations on real values.

For example, when d = 2, the following mapping ϕ′
2 : CM → RM2

can be employed:

ϕ′
2(x) ≜

[
ϕ′T

abs(x),ϕ
′T
re (x),ϕ

′T
im(x)

]T
, (4.30)

ϕ′
abs(x) ≜ [∀|xi|2|1 ≤ i ≤M ]T , (4.31)

ϕ′
re(x) ≜

√
2[∀Re[xix∗j ]|2 ≤ i ≤M, 1 ≤ j ≤ i− 1]T , (4.32)

ϕ′
im(x) ≜

√
2[∀Im[xix

∗
j ]|2 ≤ i ≤M, 1 ≤ j ≤ i− 1]T . (4.33)

Moreover when d > 2, there are several redundant entries of equal value in ϕd, meaning that the

rank of its covariance matrix becomes less than Md. Hence, by designing an alternative mapping

that satisfies Eq. (4.28) and omitting the redundant entries in the original mapping ϕd, we can

remove the redundant computations. The mapping in the case of d = 3 can be simplified in this
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manner. We define the mapping ϕ′
3 : CM → C

M3+M2

2 as

ϕ′
3(x) ≜

[
ϕ′T
3a(x),ϕ

′T
3b(x),ϕ

′T
3c(x),ϕ

′T
3d(x)

]T
, (4.34)

ϕ′
3a(x) ≜ [∀|xi|2x∗i |1 ≤ i ≤M ]T , (4.35)

ϕ′
3b(x) ≜ [∀xix∗2j |1 ≤ i, j ≤M, j ̸= i]T , (4.36)

ϕ′
3c(x) ≜

√
2[∀|xi|2x∗j |1 ≤ i, j ≤M, j ̸= i]T , (4.37)

ϕ′
3d(x) ≜

√
2[∀xix∗jx∗k|1 ≤ i, j, k ≤M ]T ,

(i, j, and k are different). (4.38)

4.4 Comparison of mapped MUSIC with 2q-MUSIC

As discussed above, our proposed mapped MUSIC corresponds to the substitution of the moment

matrix for the cumulant matrix in 2q-MUSIC. We discuss the effectiveness of this substitution from

the viewpoints of statistical properties and computational complexity.

4.4.1 Statistical properties

We compared the statistical properties of mapped MUSIC and 2q-MUSIC in terms of the bias-

variance tradeoff. Since the cumulants utilized in 2q-MUSIC maintain additivity, the dimensionality

of the signal subspace of the cumulant matrix coincides with the number of sources N if there

is no noise and infinite snapshots [45, 46]. Thus, the signal and noise subspaces are identified

correctly under such a condition where the cumulant matrix is appropriately estimated. In contrast

to cumulants, moments do not have additivity, the signal subspace dimensionality of the moment

matrix is generally greater than N , and this model bias degrades the accuracy of MUSIC analysis

even if an accurate moment matrix is estimated. Thus, the proposed mapped MUSIC suffers from

bias, in contrast to 2q-MUSIC. However, the effect of the variance is more serious in 2q-MUSIC.

Since the cumulants are composed of multiple moments [22], the variance of the cumulants is larger

than that of the moments of the same order. Thus, if a sufficient number of snapshots are unavailable,

the accuracy of identification of the signal and noise subspaces is easily degraded by the variance.

In the following, we conducted a simulation of DOA estimation using pseudorandom numbers as

the source to accurately evaluate the effects of bias and variance. In this simulation, we assumed

noise-free observation and independent signals with different frequencies. Figure 4.2 shows the

experimental environment. The number of microphones is four, the number of sources is five, and

observations are created as mixtures of simulation-generated source signals s(ω, t) whose directiv-

ities are given by steering vectors b(ω; θ) with θ randomly chosen from θ = {0◦, 30◦, · · · , 330◦}.
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Figure 4.2: Experimental environment for statistical comparison.

Source signals s(ω, t) are generated from a circularly symmetric complex generalized Gaussian

distribution (CGGD) [47] whose probability density function is given as

p (s(ω, t)) =

β exp

(
−
(
|s(ω,t)|

α

)β)
2πα2Γ

(
2
β

) , (4.39)

where exp (·) denotes the natural exponential function, β is a shape parameter, and α is a scale

parameter. In this experiment, we adopted the parameter settings β = 0.315 and α = 1, which we

found through a statistical investigation to have a similar property to that in the short-time Fourier

analysis of speech [48], because speech processing is the main target of the proposed method. We

conducted estimations with mapped MUSIC and 2q-MUSIC with 4th- and 6th-order statistics to

investigate the difference in the same statistics. Although standard MUSIC is not applicable to un-

derdetermined case, for reference, we also conduct estimation with standard MUSIC by regarding

the one-dimensional subspace concurrent with the minimum eigenvalue as the noise subspace in

every frequency bin. We varied the number of snapshots L (t = 1, · · · , L) from 1 to 50,000 and

conducted DOA estimation for each L. Moreover, we performed 100 trials with different combina-

tions of the five source locations as a quantitative evaluation. Table 4.1 summarizes the experimental

conditions.

As the evaluation criterion, we utilized the root-mean-squared error (RMSE):

RMSE ≜

√√√√ 1

N

N∑
i=1

∣∣∣θ̂i − θi∣∣∣2, (4.40)

where N denotes the number of sources and θ̂i and θi are estimated DOA and true DOA of the

ith sound source, respectively. Although there are several combinations for the correspondence be-
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Table 4.1: Experimental conditions for statistical comparison

Microphone array Circular array with radius of 0.1 m

# of microphones 4

Sound sources Simulation-generated signals

# of sources 5

Source signal

Circularly symmetric complex

generalized Gaussian distribution

Set 1: β = 0.315, α = 1

Set 2: β = 0.05–3, α = 1

Frequency bandwidth 0.2–5 [kHz]

Frequency resolution 1 [kHz]

Array manifold vector
Steering vector b(ω; θ)

θ = {0◦, 30◦, · · · , 330◦}

Snapshot range
Set 1: 1–50,000 [samples]

Set 2: 10–1,000 [samples]

tween estimated DOAs and true DOAs, we chose the combination that minimizes the error. The

results are shown in Fig. 4.3. First, both 2q-MUSIC and the proposed mapped MUSIC improve

estimation accuracy with the increasing snapshots. Thus, the efficacy of analysis with the increased

dimensionality based on higher-order statistics is ascertained. In the comparison between the same

type of 4th- and 6th-order statistics, mapped MUSIC based on 6th-order moments shows better

performance than that based on 4th-order moments with increasing number of snapshots. This is

because higher-order statistics increase the dimensionality but are more affected by the variance.

Although 2q-MUSIC with 6th-order cumulants does not outperform that with 4th-order cumulants

in the range in Fig. 4.3, the superiority of 6th-order cumulants is also expected upon further in-

creasing the number of snapshots. For the range of 1–100 snapshots, mapped MUSIC performs

better than 2q-MUSIC, whereas 2q-MUSIC performs better for a larger number of snapshots. Thus,

the bias-variance tradeoff between 2q-MUSIC and mapped MUSIC is confirmed. Furthermore, the

difference in accuracy between 2q-MUSIC and mapped MUSIC is still moderate even for 50,000

snapshots. This is because the bias in mapped MUSIC is canceled through the frequency-averaging

operation as shown in Fig. 4.4. We can observe several pseudopeaks that do not correspond to true

DOAs in the narrowband estimation as a result of the bias. However, these pseudopeaks disappear

as a result of frequency averaging.

27



(a) Entire Interval

1 10 100 1000 10000 50000
10

-2

10
-1

10
0

10
1

10
2

Snapshots [sample]

R
M

S
E

 [
d
e
g
re

e
]

 

 

MUSIC (2nd-order moments)

2q-MUSIC (4th-order cumulants)

2q-MUSIC (6th-order cumulants)

Mapped MUSIC (4th-order moments)

Mapped MUSIC (6th-order moments)
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Figure 4.3: Error transition with increasing number of snapshots (β = 0.315). Mapped MUSIC and

2q-MUSIC show efficacy for underdetermined DOA estimation. The RMSE is evaluated over 100

trials. In the range of 1–100 snapshots, mapped MUSIC shows better performance and 2q-MUSIC

outperforms mapped MUSIC with the larger number of snapshots.

Furthermore, we evaluated the behavior of the bias-variance tradeoff for various signal characters

by changing the shape parameter β of the CGGD. We varied β in the range from 0.05 to 3 with α =

1, and evaluated each method in the same way as in the former experiment using the RMSE obtained

from 100 trials. A lower β produces longer tails in the CGGD, and the CGGD is super-Gaussian

when β < 2. As examples of practical numbers of snapshots, we used 10, 100, and 1000 snapshots

for the evaluation. The results are shown in Fig. 4.5. We can see that the superiority of mapped

MUSIC is maintained when β is small and that the distribution is sparse with a long tail, similarly

to human speech. This is because the drawback of bias when using moments without additivity

becomes less problematic with highly sparse data [49]. Thus, mapped MUSIC performs well with

sparse signals such as speech.
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Figure 4.4: DOA evaluation function of mapped MUSIC in the narrow and wide frequency bands.

The estimation uses 4th-order moments and the sources are given by the parameters in Sect. 3,

β = 0.315 and α = 1. The number of snapshots is 50,000, triangles denote estimated DOAs, and

the true source directions are denoted as vertical lines at 0◦, 90◦, 180◦, 300◦, and 330◦. There are

many pseudopeaks in the narrowband estimation, but these peaks are suppressed in the wideband

estimation because they are canceled by the frequency-averaging operation.
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Figure 4.5: Dependence of error on shape parameter β. The RMSE is evaluated over 100 trials.

Mapped MUSIC shows better performance when the shape parameter β is small because a lack of

additivity in moment analysis becomes less problematic with sparse data.
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4.4.2 Comparison of computational complexity

In this section, we discuss the computational complexity of the proposed method. As described in

Sect. 3.5, the computation of the cumulants is complicated and the complexity increases rapidly

when the statistical order becomes larger. 2q-MUSIC must perform such computations for all en-

tries of the cumulant matrix C2q(ω), and this procedure includes redundancy since many similar

computations are required.

Conversely, mapped MUSIC achieves more rapid computation because a single moment has a

simpler form than the cumulant, and the procedure in mapped MUSIC avoids redundancy in the

construction of the moment matrix R2d(ω) by repeatedly using the same map ϕ2d(ω) given once.

Table 4.2 shows a comparison of the numbers of multiplications required to construct the cumulant

matrix C2q(ω) (q = 2, 3) in 2q-MUSIC and the moment matrix R2d(ω) (d = 2, 3) in the proposed

method. For reference, the numbers of multiplications with the alternative map ϕ′
2d (d = 2, 3),

introduced in Sect. 4.3 for rapid computation, and for computing all entries individually (entrywise),

such as in 2q-MUSIC, are also shown. Moreover, Fig. 4.6 shows the transitions of the numbers of

multiplications required to construct the cumulant matrix C2q(ω) and moment matrix R2d(ω) with

the maps ϕ2d and ϕ′
2d, respectively, with increasing number of snapshots from 0 to 10000 when the

number of microphones is four.

4.5 Experiments

In this section, we compare the performances of the proposed method and the conventional methods

via experiments assuming practical conditions for DOA estimation. The comparison is based on the

DOA estimation accuracy and execution time, and the accuracy is evaluated using both simulation

results and the real-room impulse responses.

4.5.1 Evaluation of DOA estimation accuracy

First, to investigate the estimation accuracy under various combinations of disturbances, we con-

ducted a simulation experiment. We compared the accuracy of the proposed mapped MUSIC with

those of SRP-PHAT [10], standard MUSIC, and 2q-MUSIC. For this experiment, we created speech

mixtures by convoluting Japanese speech samples [50] and room impulse responses assuming point

sources in the environment shown in Fig. 4.7 using the image method [51]. We prepared seven

different reverberant conditions and diffuse pink noises [52] with three different SNRs to evaluate

the robustness of each method to disturbances. Also, we conducted the evaluation with six different

signal lengths to examine the effect of the number of snapshots. Similarly to in Sect. 4.4.1, we use
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Table 4.2: Computational complexity

Matrix Multiplication (times)

C4(ω) 12(3L+ 1)M4

C6(ω) 20(30L+ 11)M6

R4(ω) [with ϕ2d] 4L(M2 +M4)

R6(ω) [with ϕ2d] 4L(M2 +M3 +M6)

R4(ω) [with ϕ′
2d] L(M + 3M2 +M4)

R6(ω) [with ϕ′
2d] L(3M2 + 5M3 +M4 + 2M5 +M6)

R4(ω) [entry-wise] 12LM4

R6(ω) [entry-wise] 20LM6
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Figure 4.6: Transitions of the numbers of multiplications required to construct the statistical matrix

with increasing number of snapshots. The number of microphones is four and the number of snap-

shots ranges from 0 to 10000. The proposed method has lower computational complexity, and using

the computationally efficient map ϕ′2d markedly reduces the computational complexity.
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Table 4.4: Conditions for experiment using impulse response measured in real room

Microphone array Circular array with radius of 0.1 m

# of microphones 4

Sound sources
Japanese speech signals from JNAS [50]

emitted from speakers 1 m apart from array

# of sources 5

Room size
Studio 1: 3.4 × 4 × 2.7 [m]

Studio 2: 5.5 × 9 × 2.6 [m]

Noise type Observed diffuse noise

Reverberation (T60) Studio 1: 0.3, Studio 2: 0.8 [s]

SNR 10,20 [dB]

Signal length 1,2,3,5,10,20 [s]

Sampling frequency 16 [kHz]

Frequency bandwidth 0.2–5 [kHz]

Frame length 512 samples

Frame shift length 256 samples

Window function Hanning window

the number of sources as the dimensionality of the signal subspace for the proposed method and 2q-

MUSIC. Also DOA estimation with MUSIC is performed similarly to in Sect. 4.4.1 as a reference.

We performed 1,000 trials of the estimation with randomly chosen combinations of source positions

and obtained the RMSE over all trials. Table 4.3 shows the experimental conditions.

Also, to evaluate the estimation performance in a more realistic environment, we conducted an

experiment using convolutive mixtures with the impulse responses measured in two different studios

shown in Figs. 4.8 and 4.9. To mimic noisy observation, we observed diffuse noise with the same

microphone array in a noisy room containing several computers and fans. Table 4.4 shows the

experimental conditions.

Figures 4.10 and 4.11 show the results of the simulation experiment and the experiment with

the measured impulse responses. Throughout these results, standard MUSIC does not perform ap-

propriately because of the setup of underdetermined case, and SRP-PHAT also performs poorly

because of its low resolution. To the contrary, both mapped MUSIC and 2q-MUSIC show the effec-

tiveness for the underdetermined DOA estimation also in these practical conditions. The estimation

accuracies of mapped MUSIC and 2q-MUSIC improve with increasing signal length and deteriorate
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Figure 4.7: Environment for simulation experiment.

Table 4.3: Conditions for simulation experiment

Microphone array Circular array with radius of 0.1 m

# of microphones 4

Sound sources
Japanese speech signals from JNAS [50]

emitted as point sources 1 m apart from array

# of sources 5

Room size 5 × 5 × 2 [m]

Noise type Diffuse pink noise

Reverberation (T60) 0,150,500 [ms]

SNR 10,20 [dB]

Signal length 1,2,3,5,10,20 [s]

Sampling frequency 16 [kHz]

Frequency bandwidth 0.2–5 [kHz]

Frame length 512 samples

Frame shift length 256 samples

Window function Hanning window
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Table 4.5: Computational environment

CPU Intel Corei7-3930K 3.2GHz

Memory DDR3 64GB

OS CentOS 6.6

Software MATLAB R2010b

with increases in the reverberation time and noise. In most cases, mapped MUSIC performs bet-

ter than 2q-MUSIC. However, their difference becomes smaller with increasing signal length, and

2q-MUSIC performs better for a signal length of 20 s in several cases. This behavior is consistent

with the bias-variance tradeoff. These results ascertain the effectiveness of the proposed method for

short-time analysis, which is particularly important for practical DOA estimation.

4.5.2 Evaluation of execution time

We also measured the execution times required to construct the statistical matrix, the moment matrix

R2d(ω) in mapped MUSIC, and the cumulant matrix C2q(ω) in 2q-MUSIC. Using the same condi-

tions as in the DOA estimation experiments, we adopted four microphones and 4th- and 6th-order

statistics. Using a system whose specifications are shown at Table 4.5, we conducted an evaluation

by averaging 100 measurements for two signal lengths, 1 s and 10 s.

Figure 4.12 shows the number of multiplications and the practical execution time required for the

construction of the statistical matrix. For both signal lengths, the proposed method has a shorter

computation time than 2q-MUSIC, although the computation time is not proportional to the number

of multiplications. This is thought to be due to the slow loop processing of MATLAB. Although the

measured speed strongly depends on the environment, this experiment indicates the lower compu-

tational complexity of the proposed method. Thus, mapped MUSIC is expected to be a useful tool

for various applications requiring a small delay and rapid computation.

4.6 Conclusion

In this chapter, we proposed mapped MUSIC, a high-resolution DOA estimator for underdetermined

conditions. We also discussed the properties of the mapping function with degree d used to analyze

the 2dth-order cross-moments and presented efficient algorithms with which the 4th- and 6th-order

moments can be calculated. Furthermore, we compared the characteristics of the proposed method

and conventional 2q-MUSIC utilizing 2qth-order cumulants. We demonstrated the advantageous-

ness of the proposed method via an experiment. Mapped MUSIC is expected to be a suitable option
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Figure 4.10: Results of simulation experiment. Each subcaption represents a combination of rever-

beration and SNR.
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2q-MUSIC (4th-order cumulants) 2q-MUSIC (6th-order cumulants)
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Figure 4.11: Results of experiment with the measured impulse response. Each subcaption represents

a combination of recording room and SNR.

for many applications requiring short-time processing and rapid computation.
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Figure 4.12: Number of multiplications and execution time.
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Chapter 5

Extension of mapped MUSIC

This chapter proposes an extension of mapped MUSIC for joint analysis of the moments of multiple

orders. By use of multiple maps of different orders simultaneously, this method achieves further

improved estimation performance with the more extended subspace dimensionality. In this chapter,

we describes the aim of this method and propose new map for joint analysis of moments of multiple

orders. Experimental results of speech DOA estimation demonstrate that mapped MUSIC exploiting

moments of multiple high orders achieves a higher accuracy than other MUSIC extensions. Section

5.1 describes an aim of joint analysis of moments of multiple high orders and introduce new map

for that purpose. Section 5.2 conducts the experiment to evaluate efficiency of mapped MUSIC

exploiting moments of multiple high orders. Section 5.3 concludes this chapter.

5.1 Joint analysis of cross moments of multiple orders

5.1.1 The aim of approach

In previous Chap. 4, the experimental results shows that 4th order moment analysis shows superior

performance than that of 6th within a range of realistic time length, although an analysis of the

higher order statistics yields the greater subspace dimensionality. These results suggest that the

bad influence of bias is stronger than the beneficial increase of dimensionality when we raise the

statistics order, and simply exploiting statistics of higher order is not a performance goal.

To overcome this shortcoming, here we propose a new mapping function for joint analysis of

moments of multiple orders as the way to avoid the shortcoming and to further improve estimation

performance. By evaluating moments of multiple orders at once, this approach aim to simultane-

ously realize the both advantages of the high and low orders, namely, high dimensionality and low

variance. As we will show later in Sect. 5.2, this goal is found to be possible and can be accom-
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plished by properly combining low-and-high-ordered moments in a nonlinearly expanded space.

5.1.2 Mapping ϕd1,··· ,dm for joint analysis of moments

To utilize the advantages of high-resolution estimation with high-ordered moments and robust es-

timation with low-ordered moments, we propose the new map for joint analysis of cross moments

of multiple orders. The proposed map ϕd1,··· ,dm is given by a direct sum of maps ϕd1 , · · · ,ϕdm ,

proposed in Sect. 4.2, as

ϕd (x(ω, t)) =

x(ω, t) (d = 1)

x(ω, t)⊗ ϕ∗
d−1 (x(ω, t)) (d ≥ 2)

=

[
d∏

l=1

x⊕o1,l(ω, t), · · · ,
d∏

l=1

x⊕o
Md,l

(ω, t)

]T
, (5.1)

x⊕oi,l(ω, t) ≜

xoi,l(ω, t) (if l is odd)

x∗oi,l(ω, t) (if l is even)
, (5.2)

ϕd1,··· ,dm ≜ ϕd1 ⊚ · · ·⊚ ϕdm , (5.3)

{ϕd1 , · · · ,ϕdm} = {ϕd | d = d1, · · · , dm}

di+1 > di (i = 1, · · · ,m− 1), (5.4)

where ⊚ denotes a direct sum. Mapped MUSIC with the map ϕd1,··· ,dm gives joint analysis of

multiple moments because the covariance matrix R⊚
d1,··· ,dm(ω) of ϕd1,··· ,dm contains the moments

of multiple orders as

R⊚
d1,··· ,dm(ω) = E

[
ϕd1,··· ,dm(x

′(ω, t))ϕH
d1,··· ,dm(x

′(ω, t))
]

=


Rd1,d1(ω) Rd1,d2(ω) · · · Rd1,dm(ω)

Rd2,d1(ω) Rd2,d2(ω) · · · Rd2,dm(ω)
...

...
. . .

...

Rdm,d1(ω) Rdm,d2(ω) · · · Rdm,dm(ω)

 , (5.5)

Rdi,dj (ω) ≜ E
[
ϕdi(x

′(ω, t))ϕH
dj
(x′(ω, t))

]
= [rpq]pq

(i, j = 1, · · · ,m p = 1, · · · ,Mdi

q = 1, · · · ,Mdj ), (5.6)

rpq = E

( di∏
l=1

x
′⊗
op,l

) dj∏
l=1

x
′⊗
oq,l

∗ , (5.7)
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where x′(ω, t) is an observed signal normalized properly (normalization rule is described later), and

submatrices Rdi,dj (ω) gives (di + dj)th order cross moments. The dimensionality of R⊚
d1,··· ,dm(ω)

is
∑m

i=1M
di , which is still larger than that of the highest-dimensional single cross moment matrix

Rdm,dm(ω). In addition, by analyzing the low-ordered moments together with the high-ordered

moments, the significance of the statistical bias in the analysis of high-ordered moments is relaxed.

With the increased dimensionality and reduced significance of statistical bias, the mapped MUSIC

with the proposed map ϕd1,··· ,dm achieves further improvement of DOA estimation performance.

Note that we must take care of the scaling of the observed signal for the sufficient joint analysis

of the moments of multiple orders. As we find in (5.5)–(5.7), R⊚
d1,··· ,dm(ω) contains moments of

various orders, and it is obvious that the absolute values of the elements in the high-ordered moment

matrices becomes significantly larger than those of the low-ordered moment matrices when the norm

||x(ω, t)|| of the observation is large. In contrast, the absolute values of the elements in the high-

ordered moments becomes considerably small when the norm ||x(ω, t)|| is small. Therefore, if

we utilize original observations as inputs of the mapping, respective analyses in each frequency

bin behave differently because of the difference of the norm. For the sufficient joint analysis of

moments of multiple orders, we must uniformly take into accounts all frequency bins and all the

orders of moments must be weighted appropriately. As such a way of weighting, we normalize the

observed signal with the L2dm-norm based on the maximum degree dm within the proposed map

ϕd1,··· ,dm in each frequency bin as

x′(ω, t) =
wx(ω, t)

2dm

√
E
[

1
M

∑M
i=1 |xi(ω, t)|

2dm
] , (5.8)

where w is a parameter to adjust the L2dm-norm of the observed signal. With large value of w, the

proposed method analyzes the high-ordered moments more significantly, and vice versa.

5.2 Evaluation experiments of DOA estimation accuracy

To explore the possibility of joint analysis of moments, this section conduct experiments to eval-

uate DOA estimation accuracy. We evaluated mapped MUSIC with the proposed map ϕ1,2,3 and

following conventional methods, MUSIC, mapped MUSIC (d = 2, 3) and 2q-MUSIC (q = 2, 3)

for comparison.

5.2.1 Experimental condition

We conducted an evaluation of the DOA estimation of each method by using mixed signals that were

created as convolutive mixtures of the Japanese speeches and the impulse responses, measured at
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Figure 5.1: Recording environment.

the environment shown in Fig.5.1. To emulate noisy observation, diffused pink noises [52] was

superimposed to the observed signals. To verify estimation performance for both overdetermined

and underdetermined environments, we also evaluated the performance with two different number

of sources. Table 5.1 shows the other experimental conditions.

For the evaluation, we employed the root mean squared error (RMSE) between the estimated

direction and the true sound direction. We evaluated 100 combinations of the positions of three or

five sources selected randomly from the directions {0◦, 30◦ · · · , 330◦}. When the estimation score

had fewer peaks than sources, we added a penalty equal to the average error for all directions. This

experiment employed the signal subspace dimensionality parameter of mapped MUSIC K = 15

as the number of source is three, and K = 30 for five sources. We also employed normalization

parameter w = 2 in (5.8) for both of the number of sources. DOA estimation with MUSIC when

M ≤ N is performed by regarding the one-dimensional subspace associate with the minimum

eigenvalue as the noise subspace in every frequency bin.

5.2.2 Experimental results

Figures 5.2–5.3 show the experimental results obtained under different number of sources. Through-

out all the conditions, the proposed method performs the best, and mapped MUSIC performs slightly

better than 2q-MUSIC. When we compare the results of mapped MUSIC (d = 2) and that of

(d = 3), the former shows the better performance, and this tendency also appears as to 2q-MUSIC.

As examined in Sect. 4.4, these results suggest that the latter is biased greater than the former be-
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Table 5.1: Experimental conditions

Microphone array Circular array with radius of 0.1 m

# of microphones 4

Sound sources
Japanese speech signals from JNAS [50]

emitted from speakers 1 m apart from array

# of sources 3, 5

Room size 3.4 ×4 × 2.7 [m]

Noise type Diffused pink noise

Reverberation (T60) 0.3 [s]

SNR 20 [dB]

Signal length 1 [s]

Sampling frequency 16 [kHz]

Frequency bandwidth 0.2–5 [kHz]

Frame length 512 samples

Frame shift length 256 samples

Window function Hanning window

cause of the shortage of snapshots, and the observation of one second is not enough to reduce the

influence of statistical bias derived from the high-ordered statistics. While, the comparison between

the proposed method and mapped MUSIC (d = 2) denotes the effectiveness of joint analysis of

moments of multiple orders. Although the high-ordered moments is inferior as for the sole use,

we can confirm its usefulness to support the low-ordered moments. Furthermore, the proposed

method can be expected to keep showing the best performance even if the time length becomes

larger because the information of the high-ordered becomes more robust. From these discussion,

the effectiveness of the proposed method utilizing the advantage of low-ordered and high-ordered

moments simultaneously is verified.

5.3 Conclusion

This chapter proposed extended mapped MUSIC realizes to estimate DOAs with higher resolution

than other conventional MUSIC extensions. We proposed new map as a direct sum of maps of

multiple degrees, and showed that the proposed method corresponds to joint moments analysis of

multiple orders taking advantage of both resolution with high-ordered moments and robustness with
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Figure 5.3: Experimental results for 5 sources within 1 second.

low-ordered moments. The experiment comparing with the other MUSIC extensions based on single

high order statistics clarified the effectiveness of the joint analysis and excellent DOA estimation

performance by the proposed method.
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Chapter 6

Conclusion

6.1 Thesis summary

This dissertation describes our study for underdetermined DOA estimation with high resolution.

Chapter 1 described background and purpose of this study.

Chapter 2 described problem statement of the DOA estimation of sound sources using micro-

phone array. We showed the observation signal model assumed in this dissertation. Subsequently,

we described specific estimation procedure using steering vector.

Chapter 3 reviewed conventional methods. We described estimation algorithms of delay-and-sum

beamformer and its extensions based on inter-channel correlation function. We also described esti-

mation algorithm of MUSIC and 2q-MUSIC based on subspace method using eigenvalue analysis.

Chapter 4 proposed mapped MUSIC, our first work for this study. We described estimation

algorithm of mapped MUSIC based on MUSIC-like analysis with the nonlinear map. Subsequently,

we proposed the suitable map for the analysis of moments of arbitrary even order. Through the

comparison with 2q-MUSIC, we showed a superiority of mapped MUSIC for short-time analysis

assuming practical estimation environment.

Chapter 5 proposed extension of mapped MUSIC, our second work for this study. To further

improve the DOA estimation accuracy, we proposed new mapping function for joint analysis of

moments of multiple orders. Through the experimental of DOA estimation using speech signals,

we showed the efficiency of this method which combines both advantages of the high and low orders

of statistics.

In this dissertation, we present mapped MUSIC for the underdetemined DOA estimation along the

acoustic signal scenario, and they achieves superior estimation performance than the conventional

DOA estimator. However, our concept is proposed for DOA estimation with arbitrary sensor array
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and general array signal processing, and the tendency of analysis using higher-dimensional mapping

can be changed easily with the mapping function. Therefore, the concept has large possibility to be

introduced for wide variety of applications by designing the suitable map, and this study contributes

for the development of array signal processing.

6.2 Future direction

While an estimation of the number of sources is an important aspect of DOA estimation, this dis-

sertation avoids the discussion and evaluate DOA estimation performance under the assumption

that the true number of sources is given in advance. This is the considerable shortcoming in this

dissertation, and we need to propose an idea to automatically determine the proper dimensionality

of subspace for a more practical usage. For the purpose, we assume thresholding, based on the

estimated eigenvalue distribution in the covariance matrix of the mapping, is effective. W e are

working on a statistical approach assuming probability distribution of source amplitude to estimate

the covariance matrix of the mapping.

Also, with regard to the our second work, we confirmed that we can achieve the higher estimation

accuracy by changing the combination of multiple orders of moments. This result suggest that the

suitable combination ought to be selected for the better estimation according to the signal property

and recording condition, such as signal time length. To propose the criterion for the choice of the

proper combination is another our future task.
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Appendix A

A.1 Kernel MUSIC

In the field of pattern recognition, kernel method is a popular approach, which enhances the linear

separativity of classifiers with the nonlinear mapping to the higher-dimensional Hilbert space given

by kernel function. Here we describe an alternative expression of mapped MUSIC, named kernel

MUSIC that utilizes the kernel method.

A.1.1 Formulation of kernel MUSIC for generic kernel

It is well known that positive-definite kernel : CM × CM → C expresses the inner product on the

Hilbert spaceH spanned by the mapping ϕ : CM → H as

k(x,y) = ⟨ϕ(x),ϕ(y)⟩H , (A.1)

where x,y ∈ CN and ⟨·, ·⟩H is the inner product on the Hilbert spaceH. The kernel function is often

used in the classification problem to enhance linear separability of the feature vectors, because the

Hilbert space H given by the non-linear kernel function generally has higher dimension than CM .

By replacing the eigenvalue problem of covariance matrix C2(ω) = E[x(ω, t)xH(ω, t)] in MUSIC

with the eigenvalue problem of covariance linear operator

Γω : H → H,Γω = E[⟨·,ϕ(x(ω, t))⟩H ⟨ϕ(x(ω, t)), ·⟩H] on the Hilbert space H and steering

vector b(ω; θ) with its mapping ϕ(b(ω; θ)), kernel MUSIC with the higher resolution of DOA

estimation is obtained.

Since mapping function ϕ cannot be described analytically in general, covariance linear operator

Γω cannot as well. However, as utilized in kernel PCA algorithm [53], the eigenvalues λi(ω) and

the eigenvectors υi(ω) ∈ H of Γω in the following eigenvalue problem,

Γω(υi(ω)) = λi(ω)υi(ω),

⟨υi(ω),υj(ω)⟩H = δij , λ1(ω) ≥ λ2(ω) ≥ · · · ≥ 0, (A.2)
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(δij is Kronecker delta) can be expressed by the eigen decomposition of the L×LGrammian matrix

K(ω) with the observed signals x(ω, t), t = 1, · · · , L as

λi(ω) = di(ω)/L, (A.3)

υi(ω) =
1√
di(ω)

L∑
j=1

uji(ω)ϕ(x(ω, j)), (A.4)

K(ω) = [k(x(ω, i),x(ω, j))]ij = U(ω)D(ω)UH(ω), (A.5)

U(ω) = [uji(ω)]ji , U
H(ω)U(ω) = IL, (A.6)

D(ω) = diag [d1(ω), · · · , dL(ω)] ,

d1(ω) ≥ · · · ≥ dL(ω) ≥ 0. (A.7)

Denoting the rank of K(ω) as r(ω), DOA evaluation function gH(ω) in the Hilbert spaceH is given

as following because span[υi(ω)]
r(ω)
i=N+1 corresponds to noise subspace:

gH(ω) ≜
1∑r(ω)

i=N+1 |⟨ϕ(b(ω; θ)),υi(ω)⟩H|

=
1∑r(ω)

i=N+1

∣∣∣∣∑L
j=1

uji(ω)√
di(ω)

k (b(ω; θ),x(ω, j))

∣∣∣∣ . (A.8)

A.1.2 Kernel function corresponding to map ϕd

For the sake of ease, subsequent discussion omit ω and t from the description of observed signals

x(ω, t). Since kernel MUSIC analyzes correlation in the Hilbert space H, its property is altered

drastically by the choice of the mapping ϕ. Here we take up analyzing arbitrary even order mo-

ments, with kernel MUSIC described in Section A.1.1, by choosing kernel function kd(·, ·) so that

it corresponds to the inner products of the map ϕd proposed in Chap. 4. Then the kernel function

kd ought to be expressed as following equation,

kd(x,y) =< ϕd(x),ϕd(y) >

=

{
|xHy|d−1xHy (if d is odd)

|xHy|d (if d is even)
. (A.9)

kd is positive-definite kernel and reproduces the higher dimensional Euclidian space CMd−null[ϕd].

From the equality to inner product of the map ϕd, kernel MUSIC with kd obtains identical esti-

mation results to mapped MUSIC analyzing covariance matrix of the explicitly described map ϕd.

In regard to computational complexity, whereas mapped MUSIC requires vast amount of compu-

tation in a more higher order analysis, kernel MUSIC shown in Eqs. (A.3)–(A.8) has a merit that
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computational complexity of DOA estimation is mainly dominated by the number of snapshots

L (t = 1, · · · , L) and remains almost constant for all order of moment analysis.
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Appendix B

B.1 Additional experimental results in Sect. 4.4.1

In Sect. 4.4.1, we show the experimental result of error transition using CGGD. For the further

detailed investigation, this section shows additional experimental results using different probability

distributions to generate pseudorandom numbers. Table B.1 are the lists of probability distributions,

in which α denotes scale parameter, β denotes shape parameter, and Γ(·) denotes gamma function.

Likewise CGGD with shape parameter β = 0.315 that gives similar property to the human speech,

we determined the parameters of each probability distribution to fit the complex distributions of

human speech.

Figures B.1–B.2 are the results of error transitions obtained from narrowband of 3 kHz. Also in

these case using different probability distributions, we can confirm bias-variance tradeoff.

Table B.1: Probability distributions utilized in the experiment.

Distribution type Density function Kurtosis

Complex gamma p(s) =
sβ−1 exp(− s

α)
2πΓ(β)αβ

1
β − 1

Weibull p(s) =
β|s|2β−2 exp

(
− |s|2β

αβ

)
παβ

2βΓ
(

2
β

)
Γ( 1

k )
2 − 2

51



Figure B.1: Error transition with increasing number of snapshots. Sources are given as complex

gamma distribution with β = 0.5 and α = 1.

Figure B.2: Error transition with increasing number of snapshots. Sources are given as Weibull

distribution with β = 0.3 and α = 1.
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B.2 Derivation of alternative mapping

In Sect. 4.3, we present alternative maps for the efficient computation, ϕ
′
2:

ϕ′
2(x) ≜

[
ϕ

′T
abs(x),ϕ

′T
re (x),ϕ

′T
im(x)

]T
, (B.1)

ϕ′
abs(x) ≜ [∀|xi|2|1 ≤ i ≤M ]T , (B.2)

ϕ′
re(x) ≜

√
2[∀Re[xix∗j ]|2 ≤ i ≤M, 1 ≤ j ≤ i− 1]T , (B.3)

ϕ′
im(x) ≜

√
2[∀Im[xix

∗
j ]|2 ≤ i ≤M, 1 ≤ j ≤ i− 1]T , (B.4)

and ϕ
′
3:

ϕ′
3(x) ≜

[
ϕ

′T
3a(x),ϕ

′T
3b (x),ϕ

′T
3c (x),ϕ

′T
3d(x)

]T
, (B.5)

ϕ′
3a(x) ≜ [∀|xi|2x∗i |1 ≤ i ≤M ]T , (B.6)

ϕ′
3b(x) ≜ [∀xix∗2j |1 ≤ i, j ≤M, j ̸= i]T , (B.7)

ϕ′
3c(x) ≜

√
2[∀|xi|2x∗j |1 ≤ i, j ≤M, j ̸= i]T , (B.8)

ϕ′
3d(x) ≜

√
2[∀xix∗jx∗k|1 ≤ i, j, k ≤M ]T ,

(i, j, and k are different), (B.9)

whose inner product is the identical to that of the map ϕd,

ϕd(x) ≜

x (d = 1)

x⊗ ϕ∗
d−1(x) (d ≥ 2)x

. (B.10)

Here we confirm the equality of the inner product between these mappings. For example, when
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d = 2,

ϕH
2 (x)ϕ(y) = |x∗y|2

= yHxxHy

=

M∑
i=1

y∗i xi

M∑
j=1

x∗jyj

=

M∑
i=1

|x∗i yi|2 +
M∑
i=1

M∑
j ̸=i

y∗i xix
∗
jyj

=

M∑
i=1

|x∗i |2|yi|2 + 2Re

 M∑
i=2

i−1∑
j=1

y∗i xix
∗
jyj


=

M∑
i=1

|xi|2 |yi|2 + 2

M∑
i=2

i−1∑
j=1

Re
[
xix

∗
j

]
Re [y∗i yj ]− 2

M∑
i=2

i−1∑
j=1

Im
[
xix

∗
j

]
Im [y∗i yj ]

=
M∑
i=1

|xi|2 |yi|2 + 2
M∑
i=2

i−1∑
j=1

Re
[
xix

∗
j

]
Re
[
yiy

∗
j

]
− 2

M∑
i=2

i−1∑
j=1

Im
[
xix

∗
j

]
Im
[
−yiy∗j

]
=

M∑
i=1

|xi|2 |yi|2 + 2

M∑
i=2

i−1∑
j=1

Re
[
xix

∗
j

]
Re
[
yiy

∗
j

]
+ 2

M∑
i=2

i−1∑
j=1

Im
[
xix

∗
j

]
Im
[
yiy

∗
j

]
= ϕ

′T
abs(x)ϕ

′
abs(y) + ϕ

′T
re (x)ϕ

′
re(y) + ϕ

′T
im(x)ϕ

′
im(y)

= ϕ
′T
2 (x)ϕ

′
2(y). (B.11)

We omit the derivation when d = 3, but a equivalence of the inner product between ϕ3 and ϕ
′
3 is

also proofed in the same manner as (B.11).
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