
A Study on Algorithms for Finding

Correct XPath Queries

Kosetsu IKEDA

Graduate School of Library, Information and Media Studies

University of Tsukuba

July 2016

XML問合せ式における修正候補

発見アルゴリズムに関する研究

要旨

記述した問合せ式が所望の結果を返さない場合，問合せ式を正しく修正す

る必要がある．このような場合に，正しい問合せ式の記述を支援する手法が利

用できれば有用である．これまで，関係データベースにおいては，SQL文の

記述を支援するための手法が提案されてきた．一方，XML(Extensible Markup

Language)は関係データベースと比べてかなり複雑な構造を有している．こ

のため，XMLにおいて問合せ式の記述を支援するのはより困難であり，有

効な手法はほとんど存在しないのが現状である．

問合せ式の記述を支援するためには，データ構造に関する正確な情報を

把握する必要がある．そのような情報を得る方法として，データを走査して

データ構造に関する情報を収集する方法と，データの代わりにスキーマを参

照する方法の 2つが考えられる．しかし，前者にはいくつかの問題がある．

まず，プライバシーやセキュリティ上の理由から，データの全体または一部

を参照するのが困難な場合がある．次に，データのサイズはスキーマのそれ

より極めて大きいため，計算資源の限られた環境においては巨大なデータを

処理することが困難な場合がある．そこで本論文では後者に着目し，スキー

マから得られる構造情報に基づいて問合せ式の記述を支援することについて

考察する．また，問合せ式の記述を支援する場合，問合せ式記述の際に支援

を行う（要素名の補完など）方法と，正しくない問合せ式が記述された場合

にその式を正しいものに修正する方法とが考えられる．これらの方法は互い

i

ii

に対立するものではなく，併用することも可能である．とりわけ後者は，記

述された問合せ式が所望の結果を返さない時や，スキーマが更新されて問合

せ式が正しくないものとなった場合などに有効である．本論文では後者に着

目し，利用者によって記述されたXPath式を正しいものに修正する問題につ

いて考察する．

データを参照せずスキーマに基づいて問合せ式の振る舞いを解析すること

を静的解析 (static analysis)といい，本論文で考察する問題も静的解析の1つで

ある．ここで，XMLにおける静的解析問題は多くの場合において計算困難で

あることが知られている．例えば，XPath充足可能性問題 (XPath satisfiability

problem)はXMLにおいて最も広く知られている静的解析問題のうちの 1つ

である．この問題は一般には決定不能であることが示されており，child軸と

descendant-or-self軸のみが許される場合においてもNP困難であることが分

かっている．また，XPath包含判定問題 (XPath containment problem)もXML

においてよく知られている静的解析問題であるが，この問題も決定不能であ

ることが知られている．本論文で考察するXPath式修正問題についても，こ

の問題が効率よく解けるか否かは自明でなく，アルゴリズム・計算複雑性の

観点からこの問題の性質を究明することは重要な課題である．そこで本論文

では，XPath式修正問題において，スキーマやXPath式に対する制約の強さ

の観点から，計算困難な部分と効率よく解ける部分を明らかにすることを主

な目的とする．

本論文の主な貢献は以下の通りである．

1. これまで，XPath式に対する修正を形式的に定義し議論した研究は存在

しなかった．本論文では，XPath式に対する編集操作の形式的な定義を

与え，２つの編集操作のクラス coreおよび extendedを定める．これら

の定義により，XPath式修正問題の計算複雑性およびアルゴリズムに関

する形式的な議論を可能としている．これに加えて，XPath式の 2つの

部分クラス simpleおよびXPを定義する．これら編集操作およびXPath

のクラスが，XPath式修正問題の計算複雑さに影響を与える主要な要因

であることを明らかにする．特に，編集操作として extendedを許した

iii

場合，XPath式修正問題が計算困難であることを明らかにする．

2. 編集操作として coreのみを用いると仮定した上で，XPath式修正問題

を解くためのアルゴリズムを提案する．このアルゴリズムに関する議

論を通じて，XPath式が simpleなものである場合，XPath式修正問題が

多項式時間可解であることを明らかにする．さらに，XPath式がXPに

属する場合において，XPath式修正問題が多項式時間可解であるための

十分条件を明らかにする．

編集操作はXPath式修正問題を形式化するために必要不可欠であり，この

問題の計算複雑さにも影響を与える．本論文では，4章においてXPathに対す

る６種の編集操作を定義する．それは，(1)軸の置換，(2)ラベルの置換，(3)

ロケーションステップの挿入，(4)ロケーションステップの削除，(5)ロケー

ションステップの交換，(6)述語の交換，である．ここで，(1)から (4)まで

の編集操作を coreといい，(5)および (6)を extendedという．これらの編集

操作は，任意のXPath式を他の任意のXPath式に変換できるという意味で完

全 (complete)であり，この完全性は編集操作を coreなものに限定しても成り

立つという性質を有する．この問題の計算複雑さに影響を与えるもう一つの

要因はXPath式である．本論文では，XPath式の 2つの部分クラス simpleと

XPを定義する．XPは，軸として child, descendant-or-self, following-sibling,

preceding-sibling, attributeを用いたXPath式からなる集合である．また，XP

に属するXPath式 qが述語も属性軸も使用しないものであるとき，qは simple

であるという．これら定義に基づいて，XPath式修正問題を「XPath式 qと

DTDDに対して，Dの下で qに最も近い (編集距離の最も小さい)XPath式を

求める問題」として定義し，この問題の計算複雑さを明らかにする．まず，

編集操作として coreに加えて extendedの使用が可能である場合，XPath式を

simpleなものに限定したとしてもXPath式修正問題がNP困難であることを，

有向ハミルトン経路問題 (directed Hamiltonian path problem)からの帰着によ

り示す. 次に，ロケーションステップの交換を用いないと仮定しても，述語の

交換とラベルの置換を許した場合，述語に含まれるどのロケーションステッ

iv

プも述語を含まないという制約が課されたXPath式 (XPの部分クラスに相当)

に対しても，XPath式修正問題が NP困難となることを有向ハミルトン経路

問題からの帰着により示す．一方，編集操作を coreに限定した場合，XPath

式としてXPに属するものを許した場合でも，多くの場合において効率良く

解けることを後述のアルゴリズムにより明らかにする．

XPath式の修正を行う場合，その式に構文的に近くかつ正しい XPath式

は複数存在し得るため，そのようなXPath式の中から望ましい式を選択でき

ることが望ましい．そこで本論文では，編集操作を coreに限定した場合にお

いて，XPath式 q，DTDD，および正整数 Kに対して，Dの下で qに最も近

い K個のXPath式を求めるアルゴリズムを構成する．ただし，たとえ編集操

作が coreに限定されていたとしても，qに最も近い K個のXPath式が効率良

く得られるか否かは自明でない．この問題に対処するため，アルゴリズムを

次の方針に基づいて構成する．(1)まず, qを修正して得られる，スキーマに

妥当なXPath式の集合を求める．(2)次に, (1)で得られたXPath式の中から，

qに最も近い K 個の式を選択する．(1)の性質を満たし, かつ, qに最も近い

K個のXPath式を効率良く選択することが可能なXPath式集合を表現するた

め，５章において xd-graphという新しいグラフを提案する．Xd-graphの最

も重要な点は，qを修正して得られる妥当なXPath式がグラフ上の開始ノー

ドから受理ノードへの経路に対応していることである．もう１つの重要な点

は，開始ノードから受理ノードへの任意の経路 pに対して，pの重みが「入

力XPath式 qを pで表される妥当なXPath式に修正するためのコスト」に一

致していることである．したがって，qに最も近い K個のXPath式を得るた

めには，xd-graphを求めた上で，この xd-graph上でK最短経路問題を解けば

よいことになる．６章では，この考えに基づいて，入力XPath式 qとDTDD

に対して，Dの下で qに最も近い K個のXPath式を効求めるアルゴリズムを

構成する．そして，本アルゴリズムが simpleなXPath式に対して多項式時間

で動作することを示す．また，XPに属する XPath式に対して，述語のネス

トの深さが定数で抑えられている場合に，提案アルゴリズムは多項式時間で

動作することを示す．さらに，評価実験において，適切な枝刈り処理を行う

v

ことにより，本アルゴリズムが実 DTDの下で効率よく XPath式を修正可能

であることを明らかにする．

正規木文法 (regular tree grammar)はDTDより真に表現力の高いスキーマ

言語であり，W3C XML SchemaやRELAX NGなどのスキーマ言語の形式モ

デルとしても用いられている．本論文では，正規木文法にも対応できるよう

に上述のアルゴリズムを拡張する．DTDと正規木文法との最も大きな違いは，

前者は一つの要素名に対して 1つの型しか割り当てることができないのに対

し，後者は一つの要素名に対して複数の型を割り当てることが可能であるこ

とである．７章では，この「一つの要素名に対して複数の型を割りあて可能」

という性質を xd-graphの定義に採り入れて拡張することにより，xd-graphと

同様の性質を有する xg-graphを構成する．この xg-graphを用いることによ

り，入力XPath式 qと正規木文法Gに対して，Gの下で qに最も近い K個の

XPath式を求めるアルゴリズムを構成する．さらに，このアルゴリズムの計

算複雑さについても考察し，正規木文法は DTDより真に表現力が高いにも

かかわらず，DTDの場合と同様の効率で提案アルゴリズムが動作可能である

ことを明らかにする．

A Study on Algorithms for Finding Correct XPath

Queries

Abstract

If a query written by a user does not return a desirable answer, then the user

have to correct the query. In such cases, a method for helping users to write

correct queries is much useful. For relational databases (RDBs), methods for

helping users to write correct SQL queries have been proposed. On the other hand,

Extensible Markup Language (XML) essentially has a much more complex data

structure than RDB. Thus, helping users to write correct queries is a much more

difficult problem, and very few effective methods for dealing with the problem

have been proposed so far.

In order to help users to write correct queries, information about correct data

structures is required. There are two possible approaches to obtain such infor-

mation: (1) gathering structural information from data and (2) referring schema

information instead of data. However, the former approach has some drawbacks.

First, it is sometimes impossible to access some or entire part of data due to pri-

vacy and/or security reasons. Second, the size of data is extremely larger than

that of schema, and large data is hard to be processed in environments with small

resources. In such situations, it is useful to help users to write correct queries by

using schema rather than data. Therefore, this dissertation focuses on the latter

approach and considers correcting queries by using the structural information of

schema. Assuming this approach, there are two possibilities to help users to write

vi

vii

correct queries. One is to help users while writing a query (e.g., completing el-

ement names), the other is to help users after a query is written. These are not

incompatible to each other, and we can use both of them together. In particular,

the latter is much useful if a user writes a query but the query returns undesirable

results, or a correct query becomes invalid due to schema updates. This disserta-

tion focuses on the latter and considers correcting XPath queries written by users.

Problems of analyzing the behavior of queries over schema without referring

data are called static analysis, and the problem considered in this dissertation is a

kind of static analysis problem. It is known that XML static analysis problems are

intractable in many cases. For example, the XPath satisfiability problem is one of

the most popular XML static analysis problem. This problem is shown to be unde-

cidable in general case, and remains NP-hard even if only child and descendant-or-

self axes are allowed. The XPath containment problem is another popular XML

static analysis problem, and it is also shown that the problem is undecidable in

general case. It is not clear whether the XPath query correction problem consid-

ered in this dissertation can be solved efficiently or not, and careful considera-

tions are required to investigate the nature of the problem in terms of algorithm

and computational complexity. Therefore, this dissertation aims at clarifying the

boundaries between the tractability and the intractability of the XPath query cor-

rection problem, in terms of the restrictions on schemas and XPath queries.

The main contribution of this dissertation are the following.

1. A formal definition of edit operations to XPath query is presented for the

first time. Two classes of edit operations, core and extended, are defined.

These enable formal discussions about complexities and algorithms for cor-

recting XPath queries. Besides this, two XPath fragments simple and XP are

given in order to investigate the complexity of the XPath query correction

problem. As stated later, these two factors surely affects the complexity of

the problem. In particular, the XPath query correction problem is shown to

be intractable if the extended edit operations are allowed.

viii

2. Algorithms for solving the XPath query correction problem are presented,

assuming that only the core edit operations are available. It is shown that

the algorithms run efficiently for simple XPath queries. Moreover, sufficient

conditions under which the algorithms run efficiently for queries in XP are

identified.

Edit operation is the key to formalize the XPath query correction problem and

also affects the complexity of the XPath query correction problem. In Chapter 4,

six edit operations to XPath queries are proposed: (1) axis substitution, (2) label

substitution, (3) location step insertion, (4) location step deletion, (5) location step

exchange, and (6) predicate exchange. Above (1) to (4) are called core edit oper-

ations and (5) and (6) are called extended edit operations. The six edit operations

are complete in the sense that any XPath query can be transformed into another

arbitrary XPath query by using these edit operations, and the completeness still

holds for the core edit operations. The other major factor of the complexity of the

problem is XPath fragment. In this dissertation, two XPath fragments simple and

XP are presented. In short, XP is the set of XPath queries using child, descendant-

or-self, following-sibling, preceding-sibling, and attribute axes. In particular, a

query q in XP is simple if q uses neither predicate nor attribute axes. Based on

these definitions, the XPath query correction problem is defined to find, for an

XPath query q and a DTD D, the query that is syntactically closest (i.e., having

the least edit distance) to q. By reducing the directed Hamiltonian path problem

to the XPath query correction problem, it is shown that if extended edit operations

are allowed, then the problem becomes NP-hard even for simple XPath queries. It

is also shown that if predicate exchange and label substitution are allowed at the

same time, the problem is NP-hard even if each predicate of an XPath query is a

simple location step having no predicate, which corresponds to a subclass of XP.

On the other hand, by using the algorithms presented below, it is shown that if

only core edit operations are allowed, then the problem is tractable in many cases

even if queries in XP are allowed.

ix

Since there may be more than one correct XPath query syntactically close to

a query q, it is desirable for users to be able to choose a preferable query from

queries obtained by correcting q. Therefore, the main algorithm proposed in this

dissertation is designed for finding top-K queries syntactically close to a query q

under a DTD D. However, even if the set of edit operations to queries is restricted

to core, it is not clear if top-K queries syntactically close to q under D can be

obtained efficiently. To cope with this problem, the algorithm proposed in this

dissertation takes the following approach: (1) compute the set of valid queries

obtained by correcting q, then (2) select top-K queries close to q among the valid

queries. To model the set of valid queries in (1) that enables efficient computations

of top-K queries, a novel graph called xd-graph is proposed. The most important

point of xd-graph is that valid queries obtained by correcting q are mapped to paths

from the start node to the accepting node. Another important point is that, for any

path p from the start node to the accepting node, the cost of p represents the cost

of correcting the input query to the valid query represented by p. Therefore, once

an xd-graph is obtained, it suffices to solve the K shortest paths problem over the

xd-graph to obtain top-K valid queries syntactically close to q. Based on this idea,

in Chapter 6 an algorithm for finding top-K queries that runs in polynomial time

for simple XPath queries is proposed. As for queries in XP, it is shown that the

algorithm runs in polynomial time if the nest level of a predicate is bounded by

a constant. It is also shown that the algorithm can efficiently find top-K queries

under a real-world DTD by pruning unnecessary nodes and edges of an xd-graph

appropriately.

Regular tree grammar is strictly more expressive than DTD and is used to

model major powerful schema languages such as W3C XML Schema and RELAX

NG. The above proposed algorithm is extended in order to handle such powerful

schemas. The main difference between DTD and regular tree grammar is that

the former assigns exactly one type to one element name while the latter is able to

assign more than one type to one element name. In Chapter 7, a novel graph called

x

xg-graph is introduced by extending the definition of xd-graph to cope with this

property inherent to regular tree grammar. Based on this xg-graph, an algorithm

for finding, for an XPath query q and a regular tree grammar G, top-K queries

syntactically close to q under G is presented. Then it is shown that the algorithm

runs as efficient as the previous algorithm designed for DTD, despite the fact that

regular tree grammar is strictly more expressive than DTD.

Table of Contents

1 Introduction 1

2 Related Works 8

2.1 Edit Operation to Various Data Structure 8

2.2 XPath Satisfiability and Related Problems 9

2.3 XML Query Correction and Related Studies 11

3 Preliminaries 13

4 Edit Operations to XPath Query and Intractability 17

4.1 Edit Operations to XPath Query 17

4.2 Edit Operations Causing Intractability 19

5 Xd-Graph Representing Set of Valid Queries 25

5.1 Overview . 25

5.2 Xd-Graph Examples . 28

5.3 Formal Definition of Xd-Graph 33

6 Algorithm for Finding top-K Queries under DTDs 37

6.1 Algorithm for Simple Query . 37

6.2 Algorithm for Queries in XP . 43

7 Algorithm for Regular Tree Grammar 52

xi

TABLE OF CONTENTS xii

7.1 Regular Tree Grammar . 52

7.2 Xg-Graph . 54

7.2.1 Production-Graph . 56

7.2.2 Xg-Graph . 57

7.3 Algorithm for Finding top-K Queries 61

7.3.1 Algorithm for Simple Query 61

7.3.2 Algorithm for Queries in XP 62

7.3.3 Graph Optimization and Pruning 64

8 Experimental Results 68

8.1 Quality of the Output of the Algorithm 68

8.2 Execution Time of the Algorithm 72

9 Discussion 76

9.1 Edit Operation and Intractability 76

9.2 Algorithm and Complexity . 77

9.3 Boundary of Tractability and Intractability 78

10 Conclusion 81

Acknowledgement 83

Bibliography 84

Full List of Publications 95

List of Figures

1.1 Overview of our algorithm . 7

4.1 A directed graph H = (V, E), a DTD D = (d, v1, α), and a query q. 24

5.1 An example of xd-graph . 26

5.2 Xd-graph . 28

5.3 a DTD graph G(D) . 29

5.4 An xd-graph G(q,G(D)) . 30

5.5 Edges representing location step insertion 31

5.6 Edges representing axis substitution 32

5.7 Edges dealing with→+ and←+ axes 33

6.1 Xd-graph . 39

6.2 Adding a new accepting node n to G(q,G(D)) 42

6.3 Node li and its gadget, where l′i is a new node and e1, · · · , eK are

new edges. 45

6.4 DTD graph G(D). 46

6.5 Xd-graph G(sp(q),G(D)). 47

6.6 The graph obtained by modifying G(sp(q),G(D)). 49

7.1 An example of RELAX NG schema 55

7.2 An example of production-graph 57

7.3 An xg-graph G(q,G(P)) . 58

xiii

LIST OF FIGURES xiv

7.4 A production-graph that non-terminals conflict 65

7.5 A (contracted) production-graph that non-terminals do not conflict 65

8.1 Ratios at which the outputs contain correct answers 72

8.2 Execution time with/without pruning of the algorithm for queries

targeting “far” nodes . 73

8.3 Execution time with/without pruning of the algorithm for queries

targeting “near” nodes . 74

List of Tables

3.1 Syntax of XP . 14

8.1 XPath queries (correct queries) and conditions 71

8.2 Incorrect queries written by users 75

9.1 The complexity of the XPath query correction problem under DTD 79

9.2 The complexity of the XPath query correction problem under reg-

ular tree grammar . 80

xv

Chapter 1

Introduction

The more complex the data structure becomes, the more difficult it is to write “cor-

rect” queries. For relational databases (RDBs), a number of methods for helping

users to write correct SQL queries have been proposed (e.g., [76, 63, 36, 19]). On

the other hand, Extensible Markup Language (XML) essentially has a much more

complex data structure than RDB, but very few studies on helping users to write

correct queries for XML have been made so far.

In order to help users to write correct queries, we need information about cor-

rect data structures. There are two possible approaches to obtain such information:

(1) gathering structural information from data and (2) referring schema informa-

tion instead of data. However, the former approach has some drawbacks. First, it

is sometimes impossible to access some or entire part of data due to privacy and/or

security reasons. Second, the size of data is extremely larger than that of schema,

and large data is hard to be processed in environments with small resources. In

such situations, it is useful to help users to write correct queries by using schema

rather than data. Therefore, this dissertation focuses on the latter approach and

considers correcting queries by using the structural information of schema.

In general, there are two approaches to help users to write correct queries.

One is to help users while writing a query (e.g., suggesting some keywords or

subexpressions), the other is to help users after a query is written (e.g., correcting

1

CHAPTER 1. INTRODUCTION 2

a query that returns undesirable results). These approaches are not incompatible to

each other, and we can use both of them together. In particular, the latter approach

is much useful if a user writes a query but the query returns undesirable results, or

a correct query becomes invalid due to schema updates. This dissertation focuses

on the latter approach and considers correcting XPath queries written by users.

Problems of analyzing the behavior of query over schema without referring

data are called static analysis, and the problem considered in this dissertation is a

kind of static analysis problem. It is known that XML static analysis problems are

intractable in many cases. For example, the XPath satisfiability problem, which

is the most popular XML static analysis problem, is shown to be undecidable in

general case, and remains NP-hard even if only child and descendant-or-self axes

are allowed [11]. The XPath containment problem is another popular XML static

analysis problem, which is shown to be undecidable [52]. The XML type checking

problem is also a popular XML static analysis problem. Again it is shown that

the problem is undecidable [1, 2] and remains intractable even if a number of

restrictions are imposed on schemas and queries [44, 45]. Thus, whether the query

correction problem considered in this dissertation can be solved efficiently or not

is not clear, and careful considerations are required to investigate the nature of

the problem in terms of computational complexity. Therefore, this dissertation

aims at clarifying the boundaries between the tractability and the intractability of

the XPath query correction problem, in terms of the restrictions on schemas and

XPath queries.

The problem addressed in this dissertation is described as follows:

Input: A DTD D, a query q, and a positive integer K.

Problem: top-K XPath queries syntactically close to q among the XPath queries

valid against the schema

As a brief example of the problem, let us consider the following simple DTD

D as a schema.

CHAPTER 1. INTRODUCTION 3

<!ELEMENT site (people)>

<!ELEMENT people (person)*>

<!ELEMENT person (name, email, phone?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ATTLIST person id ID #REQUIRED>

Suppose that a user wants name element of the person whose id is “123” and that

he/she tries to use an XPath query

q = /person[@id = "123"]/nama,

which is not valid against D. Our algorithm finds XPath queries “syntactically

close” to q based on the edit distance between XPath queries, proposed in this dis-

sertation. In this example, our algorithm lists the following top-K XPath queries

syntactically close to q (assuming that K = 3). Each XPath query q′ is followed

by the edit distance between q and q′, assuming that the cost of relabeling l with

l′ is the normalized string edit distance between l and l′ [47].

1. //person[@id = "123"]/name (0.75)

2. //people/person[@id = "123"]/name (1.75)

3. /site/people/person[@id = "123"]/name (2.25)

As above, by the algorithm the user can obtain top-K correct XPath queries syn-

tactically close to q without modifying q by hand even if he/she does not know

the exact structure of D. Although the above DTD D is very small, schemas used

in practice are larger and more complex [15]. In such a situation, a user tends

not to understand the entire structure of a schemas exactly, and thus our algo-

rithm is helpful for writing correct XPath queries on such schemas. Moreover,

since the algorithm is based on the edit distance between XPath queries, we can

CHAPTER 1. INTRODUCTION 4

change the cost of an edit operation, if necessary. For example, if a user wants

“concise” XPath queries that prefers descendant-or-self axes to child axes wher-

ever possible, it suffices to decrease the costs of deleting child axis and inserting

descendant-or-self axis.

The main contributions of this dissertation are the following threefold.

1. The notion of correcting XPath query has not been formalized so far. In this

dissertation, a formal definition of edit operations to XPath query is pre-

sented for the first time. This enables formal discussions about complexities

and algorithms for correcting XPath queries. The edit operations has two

classes called “core” and “extended”, which affect the (in)tractability of the

XPath query correction problem.

2. Two XPath fragments “simple” and “XP” are given in order to investigate

the complexity of the XPath query correction problem. Here, XP is the set of

XPath queries using child, descendant-or-self, following-sibling, preceding-

sibling, and attribute axes. In particular, a query q is simple if q ∈ XP and

q uses neither predicate nor attribute axes. It is shown that if core and ex-

tended edit operations are allowed, then the XPath query correction problem

becomes intractable even for simple XPath queries. On the other hand, it is

shown that if only core extended edit operations are allowed, then the XPath

query correction problem can be solved efficiently in many cases.

3. Algorithms for solving the XPath query correction problem are presented,

assuming that only the core edit operations are available. It is shown that

the algorithms run efficiently for simple XPath queries. Also, sufficient

conditions under which the algorithms run efficiently for queries in XP are

identified.

An overview of our main algorithm is as follows. Let q be an XPath query

and D be a DTD. To obtain top-K queries syntactically close to q under D, we

first compute the set of valid queries obtained by correcting q, then select top-K

CHAPTER 1. INTRODUCTION 5

queries close to q among the valid queries. To obtain such a set of valid queries,

we construct a graph called “xd-graph” (Fig. 1.1). The important point of xd-

graph is that valid queries obtained by correcting q are mapped to paths from the

start node to the accepting node. For example, consider the XPath query q and the

xd-graph in Fig. 1.1. The path n0 → a0 → d1 → c2 on the xd-graph represents

a valid query / ↓:: a/ ↓:: d/ ↓:: c, which is obtained by inserting / ↓:: a to q

and substituting the label of the first location step ↓:: e with d. Similarly, the

other paths from the start node n0 to the accepting node c2 represent valid queries

obtained by correcting q. Another important point is that, for any path p from the

start node to the accepting node, the cost of p represents the cost of correcting

the input query to the valid query represented by p. Therefore, once an xd-graph

is obtained, it suffices to solve the K shortest paths problem over the xd-graph

to obtain top-K valid queries syntactically close to q. It is also shown that the

algorithm can efficiently find top-K queries under a real-world DTD by pruning

unnecessary nodes and edges of an xd-graph appropriately.

This dissertation considers regular tree grammar as well as DTD. Regular tree

grammar is strictly more expressive than DTD, and is used to model major pow-

erful schema languages such as W3C XML Schema and RELAX NG. The above

proposed algorithm is extended in order to handle such powerful schemas. The

main difference between DTD and regular tree grammar is that the former assigns

exactly one type to one element name while the latter is able to assign more than

one type to one element name. In Chapter 7, a novel graph called xg-graph is

introduced by extending the definition of xd-graph to cope with this property in-

herent to regular tree grammar. Based on this xg-graph, an algorithm for finding,

for an XPath query q and a regular tree grammar G, top-K queries syntactically

close to q under G is presented. Then it is shown that the algorithm runs as effi-

cient as the previous algorithm designed for DTD, regular tree grammar is strictly

more expressive than DTD nonetheless.

CHAPTER 1. INTRODUCTION 6

Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 shows related works

and position of this dissertation. Chapter 3 gives some preliminary definitions of

XPath and DTD. Chapter 4 defines edit operations to XPath queries and considers

the complexity of the problem and shows that finding top-K valid XPath queries is

NP-hard if extended edit operations are allowed. Chapter 5 introduces xd-graph,

which forms the basis of our algorithm. Chapter 6 gives algorithms for finding top-

K valid XPath queries under DTDs, assuming that only core edit operations are

allowed. Chapter 7 extends the algorithms to use regular tree grammar as a schema

instead of DTD. Chapter 8 shows some experimental results. Chapter 9 discusses

the results of this dissertation and some future works. Chapter 10 summarizes this

dissertation.

CHAPTER 1. INTRODUCTION 7

(a) XPath query

n0 a0

b0

d0

c0

n1 a1

b1

d1

n2 a2

b2

d2

{::e

{::c

start node

c1

c2

accepting node

(b) DTD

(c) Xd-graph:

(1st location
step of q)

(2nd location
step of q)

<!ELEMENT a (b,d)>
<!ELEMENT b (c)>
<!ELEMENT d (c)>
<!ELEMENT c (#PCDATA)>

q = / ::e/ ::c

/ ::a/ ::d/ ::cThis path represents valid query

(invalid query)

/ ::a/ ::b/ ::cThis path represents valid query

Figure 1.1: Overview of our algorithm

Chapter 2

Related Works

2.1 Edit Operation to Various Data Structure

Correcting XPath queries in this dissertation are essentially based on edit opera-

tions to XPath queries. Edit operation was firstly proposed in terms of strings by

Levenshtein [40]. This consists of

• insertion of a symbol,

• deletion of a symbol, and

• substitution of a symbol for another symbol.

These have widely been accepted as the basis of edit operations. Then some ex-

tensions were proposed, e.g., transposition of two adjacent character, merge, and

split [74, 60]. Alignment is a notion similar to edit distance, which is widely used

to compare DNA sequences [62, 75, 22, 29, 12].

The notion of edit operation is also extended to handle other data structures

that are more complex than string. In particular, tree is the most popular data

structure to which edit operations are applied. The basic edit operations to trees

consist of insertion of a node, deletion of a node, and relabeling of a node. Unlike

string, a tree is either unordered or ordered, and thus we have two kinds of tree

8

CHAPTER 2. RELATED WORKS 9

edit distance problem: the unordered tree edit distance problem and the ordered

tree edit distance problem. Whether a tree is ordered or not significantly affects

the complexity of the problem. Actually, the former problem is shown to be NP-

hard [86]. Moreover, the problem is shown to be MAXSNP-hard [9], and thus it

is unlikely that there exists an efficient approximation algorithm for solving the

problem. On the other hand, the latter problem is fortunately tractable. An al-

gorithm for solving the problem was firstly introduced by Tai [70], then Zhang

and Shasha proposes a new algorithm to the problem [85]. However, these al-

gorithms run in O(n4) in the worst case. Recently, Demaine et al. reduced the

upper bound complexity of the problem, in which their algorithm run in O(n3)

time [17]. Pawlik proposed another O(n3) algorithm [55]. Besides string and tree,

edit operations are also defined in terms of other data structures. For example, edit

operations to graphs are used in order to measure the structural distance between

two graphs [25]. In [65, 66] edit operations between a schema and an XML doc-

ument are proposed, which are used to correct invalid XML documents into valid

ones. Edit operations between two schemas are also proposed [30, 38, 39]. These

edit operations are used to detect changes between old and new schemas.

2.2 XPath Satisfiability and Related Problems

The notion close to the syntactical validity of XPath in this dissertation is XPath

satisfiability. Here, the XPath satisfiability problem is to decide, for a DTD D

and an XPath query q, whether there exists an XML document d valid against D

such that the answer of q on d is not empty. The main difference between the

two notions is that the XPath satisfiability uses a more strict condition than the

syntactical validity of XPath, and thus the XPath satisfiability problem has higher

complexity than the syntactical validity of XPath.

In fact, assuming that no restriction is imposed on DTDs, the XPath satisfi-

ability problem is shown to be NP-hard even if an XPath query uses only child

CHAPTER 2. RELATED WORKS 10

and descendant-or-self axes [10, 11]. Moreover, the problem remains intractable

even under fixed DTDs [67]. Due to this situation, a number of studies on ex-

ploring subclasses of DTD under which the satisfiability problem is tractable have

been made. For example, Ref. [27] considers the problem under non-recursive

DTDs. However, non-recursiveness does not broaden the tractable class of XPath.

On the other hand, Ref. [49] considers the problem under disjunction-free DTD,

and shows that under disjunction-free DTDs the satisfiability problem becomes

tractable for some XPath fragments. However, alternation ‘|’ cannot be used

under disjunction-free DTDs, which means that disjunction-freeness is too re-

strictive from a practical point of view. Besides these restricted DTDs, more

practical subclasses of DTD have been proposed. It is shown that the problem

becomes tractable under duplicate-free DTDs (i.e., DTDs in which no content

model contains two occurrences of the same label) for XPath queries using only

child and descendant-or-self axes [68, 69]. Moreover, disjunction-capsuled DTD

(DC-DTD) and its extensions have been proposed. Here, a DTD is disjunction-

capsuled if each alternation ‘|’ is enclosed by ‘*’ or ‘+’. Under these DTDs, the

satisfiability problem is tractable if only child and descendant-or-self axes are al-

lowed [32, 31, 33, 34]. Moreover, it is shown that most of real-world DTDs are

categorized into DC-DTD and its extensions [34, 64].

Ref. [28] takes an approach different to the above studies. The study propose

a system for solving the satisfiability problem by transforming a DTD and an

XPath query into MSO-logic formulas and then solving the problem with decision

procedures for MSO-logic formulas. This approach does not require restricting

DTDs but requires exponential time in the worst case.

Another popular XML static analysis problem related to XPath is the XPath

query containment problem [61]. For XPath queries p and q, q contains p if

it holds that whenever a document d matches p d also matches q. It is shown

that the XPath query containment problem is undecidable in general case [52],

and remains coNP-hard in several restricted cases [78]. The XPath equivalence

CHAPTER 2. RELATED WORKS 11

problem is a problem similar to above, which is to decide whether given two

XPath queries always return the same result. This problem is also shown to be

intractable [48].

2.3 XML Query Correction and Related Studies

Currently, XML is widely used to represent various kind of data, and XPath [81]

is the most popular query language for XML. Moreover, XPath is contained in

transformation languages such as XSLT [83] and XQuery [82]. In such languages,

XPath expressions are used to select elements to be transformed.

The ordinary XPath processors [37, 8] only verify the syntax of an inputs

XPath expression according to the XPath specification. However, such XPath pro-

cessors do not check the validity of an input XPath query in terms of a schema. On

the other hand, our algorithm corrects an XPath expression that is invalid against

a schema even though syntactically valid.

Although a number of studies on XPath have been made so far, studies on

correcting XPath queries are unexpectedly not many. Ref. [16, 13] proposes an

algorithm that finds valid tree pattern queries most syntactically close to an in-

put query. Their algorithm and ours are incomparable due to the underlying data

models; in their data model a tree is unordered and a schema and a query are

represented by a DAG, while we use DTD and regular tree grammar as schema

(recursion is supported) and a tree is ordered. Since in our data model a schema

allows cycles and a query allows sibling axes (→+, ←+), their algorithm cannot

be applied to our data model. Note that Choi investigated 60 DTDs and 35 of the

DTDs are recursive [15], which suggests that it is meaningful to support recursive

schemas. Besides this, the major limitation of their algorithm is that their algo-

rithm outputs a DAG even if an input query is restricted to be a tree. Therefore,

their algorithm cannot be directly applied to XPath query correction.

Besides query correction, several related but different approaches have been

CHAPTER 2. RELATED WORKS 12

studied for XML; query expansion, inexact queries, interaction, keyword search,

minimizing query, etc. Ref. [58] proposes the node insertion operation that is

also proposed in this dissertation. Ref. [57] takes a query expansion approach

instead of correcting queries. Refs. [5, 6, 21, 20] deal with a top-K query evalu-

ation for XML documents to derive inexact answers, i.e., evaluating a “relaxed”

version of the input query, if it is unsatisfiable. Inexact querying is also studied

in Refs. [42, 43], in which a user can write an XQuery query without specifying

exact connections between elements. Ref. [50] proposes an interactive system

for generating XQuery queries in which an XPath query is interactively created

by an algorithm based on the interactive learning algorithm for regular expres-

sion [7]. There has been a number of studies on XML keyword search (e.g.,

[84, 41, 14, 71, 53, 72]), which are especially suitable for users that are not famil-

iar with XML query languages. Refs. [4, 77, 56, 23] proposes minimizing XPath

Queries for optimizing a query more efficiently but maintain outputs. Several

XML editors (e.g., XMLSpy [3]) support auto-complete for XPath query editing,

but they do not support listing K correct XPath queries.

Chapter 3

Preliminaries

In this chapter, we give some definitions related to XPath and DTD.

Let Σe be a set of labels (element names) and Σa be a set of attribute names

with Σe ∩ Σa = ∅. A DTD is a triple D = (d, α, s), where d is a mapping from Σe

to the set of regular expressions over Σe, α is a mapping from Σe to 2Σa , and s ∈ Σe

is the start label. For example, the DTD in Chapter 1 is represented by a triple

(d, α, site), where

d(site) = people,

d(people) = person∗,

d(person) = (name, emailaddress, phone?),

d(name) = ϵ,

α(name) = {id},

α(e) = ∅ for any element e ∈ Σe\{name}.

By L(d(a)) we mean the language of d(a). For labels b, c, if there is a string

str ∈ L(d(a)) such that str[i] = c and str[j] = b with i < j (i > j), then we say

that b can be right (resp., left) to c in d(a), where str[i] denotes the ith character

of str. For example, e can be right to c in d(a) = c(f |e)∗.

13

CHAPTER 3. PRELIMINARIES 14

Table 3.1: Syntax of XP

XP ::= “/” RelativePath | “/” RelativePath “@” Attribute

RelativePath ::= LocationStep | LocationStep “/” RelativePath

LocationStep ::= Axis “::” Label | Axis “::” Label Predicate

Axis ::= “↓” | “↓∗” | “→+” | “←+”

Label ::= (any label in Σe)

Attribute ::= (any label in Σa)

Predicate ::= “[” Exp “]”

Exp ::= PredPath | PredPath Op Value

PredPath ::= RelativePath | “@” Attribute | RelativePath “@” Attribute

Op ::= “=” | “<” | “>” | “=<”| “=>”

Value ::= ‘”’ (any string other than ‘”’) ‘”’

For a DTD D = (d, α, s) and labels a, b ∈ Σe, b is reachable from a in D if

• a = b or b appears in d(a), or

• for some label a′, a′ is reachable from a and b appears in d(a′).

In the following, we assume that any label in a DTD is reachable from the start

label of the DTD.

In this dissertation, we use XPath queries using child (↓), descendant-or-self

(↓∗), following-sibling (→+), preceding-sibling (←+), and attribute (@) axes. The

set of such XPath queries is denoted XP. Formally, XP is the set of XPath queries

defined in Table 3.1. Thus, an XPath query (query for short) q in XP can be

denoted

/ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]], (3.1)

CHAPTER 3. PRELIMINARIES 15

where

ax[i] ∈ Axis,

l[i] ∈ Σe(1 ≤ i ≤ m − 1),

exp[i] ∈ Exp(1 ≤ i ≤ m),

ax[m] ∈ Axis ∪ {@},

l[m] ∈

Σa if ax[m] = @,

Σe otherwise.

If the ith location step has no predicate, then we write exp[i] = ϵ. Although XP

supports no upward axes, this usually gives little problem since the majority of

XPath queries uses only downward axes[35].

Let q be a query in (3.1). For indexes i, j such that ax[i] ∈ {↓, ↓∗} and that

ax[i + 1], · · · , ax[j] ∈ {→+,←+}, we say that l is the parent label of l[j] in q if

• ax[i] =↓ and l = l[i − 1], or

• ax[i] =↓∗, l is reachable from l[i − 1], and l[i] appears in d(l).

For example, if q = / ↓:: a/ ↓:: b/→+:: c/←+:: d, then a is the parent label of

b, c, d in q.

Let D = (d, α, s) be a DTD. Then q is (syntactically) valid against D if the

following conditions hold.

• ax[1] = ↓ and l[1] = s, or, ax[1] = ↓∗ and l[1] ∈ Σe

• The following condition holds for every 2 ≤ i ≤ m

– ax[i] = ↓ and l[i] appears in d(l[i − 1]),

– ax[i] = ↓∗ and l[i] is reachable from l[i − 1] in D,

– ax[i] = →+ and l[i] can be right to l[i−1] in d(l), where l is the parent

label of l[i] (the case where ax[i] = ←+ is defined similarly), or

CHAPTER 3. PRELIMINARIES 16

– ax[i] = @, i = m, and l[i] ∈ α(l[i − 1]).

• For every 1 ≤ i ≤ m with exp[i] , ϵ, query /↓:: l[i]/exp[i] is valid against

DTD (d, α, l[i]).

By |q| we mean the number of location steps in q, e.g., if q = / ↓:: a/ ↓::
b[←+:: d], then |q| = 3. If a query q has neither predicate nor attribute axis, then

we say that q is simple.

Chapter 4

Edit Operations to XPath Query

and Intractability

In this chapter, we firstly define edit operations to queries and show that some edit

operations make finding top-K valid queries intractable.

4.1 Edit Operations to XPath Query

We propose the following six kinds of edit operations.

1. Axis substitution: substitutes axis ax with ax′, denoted ax → ax′. For

example, by applying ↓→↓∗ to /↓:: a we obtain /↓∗:: a.

2. Label substitution: substitutes label l with l′, denoted l → l′. For example,

by applying a→ b to /↓:: a we obtain /↓:: b.

3. Location step insertion: inserts location step ax :: l, denoted ϵ → ax :: l.

For example, by applying ϵ →↓:: b to the tail of /↓:: a we obtain /↓:: a/↓::
b.

4. Location step deletion: deletes location step ax :: l, denoted ax :: l → ϵ.
For example, by applying ↓:: a→ ϵ to the first location step of /↓:: a/↓:: b

17

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 18

we obtain /↓:: b.

5. Location step exchange: exchanges adjacent two location steps. For exam-

ple, by applying this edit operation to / ↓:: a/ ↓∗:: b we obtain / ↓∗:: b/ ↓::
a.

6. Predicate exchange: exchanges the predicates of adjacent two location steps.

For example, by applying this edit operation to / ↓:: a[b/d]/ ↓∗:: c we ob-

tain / ↓:: a/ ↓∗:: c[b/d].

Above 1 to 4 are called core edit operations and 5 and 6 are called extended

edit operations.

We next define the position of a location step ls, denoted pos(ls). Let q =

/ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]] ∈ XP. We define that pos(ax[i] ::

l[i]) = i for 1 ≤ i ≤ m. As for location steps in predicates, let exp[i] = ax′[1] ::

l′[1][exp′[1]]/ · · · /ax′[n] :: l′[n][exp′[n]]. Then we define that pos(ax′[j] ::

l′[j]) = i. j for 1 ≤ j ≤ n. The position of a location step in exp′[j] can be

defined similarly. For example, let q = / ↓:: a/ ↓:: b[↓:: d[↓:: g]]/→+:: c. Then

pos(↓:: b) = 2, pos(↓:: d) = 2.1, and pos(↓:: g) = 2.1.1. By [op]pos, we mean

an edit operation op applied to the location step at position pos. If op is an edit

operation inserting a location step ls, then [op]pos inserts ls just after the location

step at pos.

Let q ∈ XP. An edit script for q is a sequence of edit operations having a

position in q. For an edit script s for q, by s(q) we mean the query obtained by

applying s to q. For example, let s = [ϵ →↓:: b]1 [c → f]3 and q = / ↓∗:: a/ ↓::
d/↓:: c. Then we have s(q) = /↓∗:: a/↓:: b/↓:: d/↓:: f .

Throughout this dissertation, we assume the following. Let U = {↓, ↓∗}, S =

{→+,←+}, and A = {@}.

• An axis can be substituted with an axis of the “same kind” only, that is,

ax ∈ U (resp., S , A) can be substituted with an axis in U (resp., S , A) only.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 19

• A location step ax :: l can be inserted to a query only if ax ∈ U and l ∈ Σe.

A cost function assigns a cost to an edit operation. By γ(op) we mean the cost

of an edit operation op, where γ is a cost function. In the following, we assume

that γ(op) ≥ 0. A cost function can be a general function as well as a constant.

For example, γ(op) can be a string edit distance between l and l′ if op = l → l′.

For an edit script s = op1op2 · · · opn, by γ(s) we mean the cost of s, that is,

γ(s) =
∑

1≤i≤n

γ(opi).

For a DTD D, a query q, and a positive integer K, the K optimum edit script

for q under D is a sequence of edit operations s1, · · · , sK satisfying the following

conditions.

1. Each of s1(q), · · · , sK(q) is valid against D.

2. γ(s1) ≤ · · · ≤ γ(sK).

3. s1, · · · , sK are optimum, that is, for any edit script s for q such that s(q) is

valid against D, s(q) ∈ {s1(q), · · · , sK(q)} or γ(s) ≥ γ(sK).

We say that s1(q), · · · , sK(q) are top-K queries syntactically close to q under

D.

4.2 Edit Operations Causing Intractability

For an query q and a DTD D, top-K queries syntactically close to q under D may

not be found efficiently if all the edit operation defined in the previous section are

allowed. Actually, in this section we show that the extended edit operations make

finding top-K valid queries intractable.

Let us consider the following decision problem, called query correction prob-

lem.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 20

Input: A DTD D, a query q, and a positive integer K.

Problem: Determine whether there is an edit script s to q such that γ(s) ≤ K and

that s(q) is valid against D.

We have the following result.

Theorem 1 If location step exchange is allowed, the query correction problem is

NP-hard even if a query is simple.

Proof We reduce the directed Hamiltonian path problem, which is NP-complete [26],

to the query correction problem. The directed Hamiltonian path problem is de-

fined as follows.

Input: A directed graph H = (V, E) and nodes u, v ∈ V .

Problem: Determine whether H contains a directed Hamiltonian path from u to v.

Let H = (V, E) and u, v ∈ V be an instance of the directed Hamiltonian path

problem, where V = {v1, v2, · · · , vk}. From this instance, we define a DTD D, a

query q, and a positive integer K. First, D is defined to simulate H. Formally, Σe,

Σa, and D = (d, α, s′), are defined as follows.

Σe = {v1, v2, · · · , vk},

Σa = ∅,

s′ = u,

d(vi) = seqi, (1 ≤ i ≤ k)

where seqi is any sequence of labels such that v j occurs in seqi iff vi → v j ∈ E.

Second, query q is defined as follows.

q = /↓:: v1/↓:: v2/ · · · /↓:: vk.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 21

For example, let us consider the directed graph shown in Fig. 4.1(A). From this

graph, we obtain the DTD in Fig. 4.1(B) and the query in fig. 4.1(C) according to

the above reduction. As for the costs of edit operations, we define that the cost of

a location step exchange is one and that the costs of the other edit operations are

∞. Let K = 1
2k2(k + 1).

In the following, we show that H has a directed Hamiltonian path from u to v

iff there is an edit script s to q such that γ(s) ≤ K and that s(q) is valid against D.

(⇒) Assume that H has a directed Hamiltonian path from u to v, say u = vi1 →
vi2 → · · · → vik = v. By the definition of D, query q′ = / ↓:: vi1/ ↓:: vi2/ · · · / ↓::
vik is valid against D. Since {vi1 , vi2 , · · · , vik} = V , there is an edit script s to q

consisting of only location step exchanges such that γ(s) ≤ 1
2k2(k + 1) = K and

that s(q) = q′.

(⇐) Assume that H has no directed Hamiltonian path from u to v. Then any

path from u to v on H of length k visits some same node more than once. This and

the definition of D imply that in order to make q valid, we need to use a location

step deletion, a location step insertion, or a label substitution, which costs∞. Thus

there is no edit script s to q such that γ(s) ≤ K and that s(q) is valid. □

We also have the following.

Theorem 2 If predicate exchange and label substitution are allowed at the same

time, the query correction problem is NP-hard even if each predicate of a query is

a simple location step having no predicate.

Proof Again we reduce the directed Hamiltonian path problem to the query cor-

rection problem. Let H = (V, E) and u, v ∈ V be an instance of the directed

Hamiltonian path problem, where V = {v1, v2, · · · , vk}. From this instance, we de-

fine a DTD D, a query q, and a positive integer K. First, D is defined to simulate

H. Formally, Σe, Σa, and D = (d, α, s′), are defined as follows.

Σe = {v} ∪ {v1, v2, · · · , vk} ∪ {a1, a2, · · · , ak},

Σa = ∅,

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 22

s′ = u,

d(ai) = ϵ, (1 ≤ i ≤ k)

d(vi) = seqi, (1 ≤ i ≤ k)

where seqi is a sequence of labels such that v j occurs in seqi iff vi → v j ∈ E or

v j = ai.

Second, query q is defined as follows.

q = /↓:: v[↓:: a1]/↓:: v[↓:: a2]/ · · · /↓:: v[↓:: ak].

As for the costs of edit operations, we define that for any l′ ∈ Σe

γ(l→ l′) =

1 if l = v,

∞ otherwise,

the cost of a predicate exchange is one, and that the costs of the other edit opera-

tions are∞. Let K = 1
2k2(k + 1) + k.

We can show similarly to Theorem 1 that H has a directed Hamiltonian path

u = vi1 → vi2 → · · · → vik = v iff there is an edit script s to q such that s(q) =

/↓:: vi1[↓:: ai1]/↓:: vi2[↓:: ai2]/ · · · /↓:: vik[↓:: aik], γ(s) ≤ K, and that s(q) is valid

against D. □

Thus, it is unlikely that we can find top-K valid queries efficiently, if we use

the extended edit operations. In the following chapters, we consider finding top-K

valid queries assuming that only the core edit operations are allowed.

Finally, let us consider the expressive power of the edit operations. Under

the following restriction, the six edit operations are “complete” in the sense that

any query can be transformed into another arbitrary query by using these edit

operations.

• No new predicate can be added to a query.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 23

We believe that this restriction is reasonable since (i) it is unnatural to add a pred-

icate that is not written by a user and (ii) it is hardly possible to “infer” an ap-

propriate predicate from an “empty” predicate. The completeness can be shown

easily since a query q can be transformed into another query q′ by deleting every

location step of q and inserting every location step of q′. In fact, the completeness

still holds even if the extended edit operations are omitted, although more edit

operations may be required to correct a query. For example, let q = / ↓:: a/ ↓:: b

and q′ = /↓:: b/↓:: a. If location step exchange is allowed, q can be transformed

into q′ by just one edit operation, otherwise at least two edit operations are re-

quired. In summary, since the completeness is preserved, we believe that our edit

operations have an expressive power enough to handle the problem of correcting

invalid queries, even if extended edit operations are omitted.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 24

Figure 4.1: A directed graph H = (V, E), a DTD D = (d, v1, α), and a query q.

Chapter 5

Xd-Graph Representing Set of Valid

Queries

In this chapter, we introduce a graph called xd-graph, which forms the basis of

our algorithm. An xd-graph is constructed from an XPath query and a DTD, and

as we will see below, an xd-graph represents the set of valid queries obtained by

correcting the input query.

Throughout this chapter, we assume that each query is simple.

5.1 Overview

For a query q and a DTD D, in order to obtain top-K queries syntactically close to

q under D, we first need to compute the set of valid queries obtained by correcting

q, then select top-K queries close to q among the set of valid queries. However,

it is not obvious how to obtain such a set of valid queries in which top-K queries

can be found easily. To cope with this problem, in this dissertation we construct

a graph called “xd-graph” from q and D, as shown in Fig. 5.1. An xd-graph has

a start node and an accepting node, and valid queries obtained by correcting q are

mapped to paths from the start node to the accepting node. Thus, in order to obtain

25

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 26

a

b d

c

(a) XPath query

q = / ::a/ ::e/ ::c

(c) DTD graph of D

n0 a0

b0

d0

c0

n1 a1

b1

d1

n2 a2

b2

d2

n3 a3

b3

d3

{::a

{
{

::e

::c

start node

c1

c2

c3

accepting node

(b) DTD D = (d, α, a)

d(a) = bd
d(b) = c
d(d) = c
d(c) = ε

(d) Xd-graph

|q| + 1 DTD graphs

(1st location
step of q)

(2nd location
step of q)

(3rd location
step of q)

Figure 5.1: An example of xd-graph

top-K queries syntactically close to q under D, it suffices to solve the K shortest

paths problem over the xd-graph.

Let us show the structure of xd-graph. As shown in Fig. 5.1(d), an xd-graph

consists of |q|+1 DTD graphs and some edges connecting the DTD graphs, where

the DTD graph of D represents the parent-child relationships between labels oc-

curring in D (Fig. 5.1(c)). The reason why we use such multiple DTD graphs

is that we have to represent every edit operation to each location step of q. As

shown in Fig. 5.2, the edges between the first and second DTD graphs represent

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 27

edit operations to the first location step ↓:: a, the edges between the second and

third DTD graphs represent edit operations to the second location step ↓:: e, and

so on. To identify the edit operation of an edge, an xd-graph has several kinds of

edges; a “horizontal” edge li → l′i corresponds to a location step insertion, each

“slant” edge li−1 d l′i corresponds to a label substitution, and each “vertical” edge

li−1 ≻ li corresponds to a location step deletion. For example, consider the edges

on the path n0 → a0 d b1 d c2 ≻ c3 (the thick path in Fig. 5.2).

• The first “horizontal” edge n0 → a0 represents inserting location step ↓:: a

before the first location step ↓:: a.

• The second “slant” edge a1 d b1 represents substituting the label of the

first location step ↓:: a with b.

• The third “slant” edge b1 d c2 represents substituting the label of the sec-

ond location step ↓:: e with c.

• The last “vertical” edge c2 ≻ c3 represents deleting the third location step

↓:: c.

Thus, the thick path represents correcting q = / ↓:: a/ ↓:: e/ ↓:: c to valid query

/ ↓:: a/ ↓:: b/ ↓:: c. Each edge has a cost according to the edit operation as-

sociated with the edge. Thus, the cost of each path p from the start node to the

accepting node represents the cost of correcting the input query to the valid query

represented by p.

In the following, we first present the detailed examples of xd-graph (Sec-

tion 5.2), then give the formal definitions (Section 5.3).

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 28

n0 a0

b0

d0

c0

n1 a1

b1

d1

n2 a2

b2

d2

n3 a3

b3

d3

{::a

{
{

::e

::c

start node

c1

c2

c3

accepting node

edit operations
to ::a

edit operations
to ::e

edit operations
to ::c

(1st location
step of q)

(2nd location
step of q)

(3rd location
step of q)

location step
insertion before
 ::a

Figure 5.2: Xd-graph

5.2 Xd-Graph Examples

To construct an xd-graph, we need a graph representation of DTD. The DTD graph

G(D) of a DTD D = (d, α, s) is a directed graph (V, E), where

V = Σe, E = {l→ l′ | l’ is a label appearing in d(l)}.

For example, Fig. 5.3 is the DTD graph of D = (d, α, s), where d(s) = ba∗,

d(a) = c|d, d(b) = d, d(c) = ϵ, d(d) = b|ϵ.
Now let us illustrate xd-graph. We first present the following three cases by

examples, then define xd-graph formally.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 29

Figure 5.3: a DTD graph G(D)

Case A) Only child (↓) can be used as an axis.

Case B) Descendant-or-self (↓∗) can be used as well as ↓.

Case C) Sibling axes (→+,←+) can be used as well as ↓ and ↓∗.

Case A) Only child (↓) can be used as an axis.

Let us first illustrate the xd-graph constructed from a simple query q = /↓:: a/↓::
d and the DTD graph G(D) in Fig. 5.3. Since only ↓ axis is allowed, it suffices

to consider location step insertion, location step deletion, and label substitution.

Figure 5.4 shows xd-graph G(q,G(D)). The xd-graph is constructed from 3 copies

of G(D) with their nodes connected by several edges. Here, n0, n1, n2 are newly

added nodes, which correspond to the “root node” in the XPath data model. Each

node is subscripted, e.g., the node s in G(D) is denoted s0 on the topmost DTD

graph of G(p,G(D)), s1 on the second topmost DTD graph, and so on, as shown

in Fig. 5.4.

We have the following three kinds of edges in an xd-graph.

• A “horizontal” edge l→ l′ corresponds to a location step insertion.

• A “slant” edge ld l′ corresponds to a label substitution.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 30

Figure 5.4: An xd-graph G(q,G(D))

• A “vertical” edge l ≻ l′ corresponds to a location step deletion.

More concretely, let us first consider horizontal edge n0 → s0 in Fig. 5.4. This

edge means “moving from the root node to child node s, using no location step of

q”. In other words, the edge n0 → s0 represents adding a location step ↓:: s, that

is, the edge represents an edit operation [ϵ →↓:: s]0. Let us next consider slant

edge s0 d b1 in Fig. 5.4. This edge means “moving from node s to child node b

using the first location step ↓:: a of q”. Since the target node is b rather than a,

we have to substitute the label of ↓:: a with b, that is, the edge s0 d b1 represents

[a → b]1. Finally, consider vertical edge b1 ≻ b2 in Fig. 5.4. This edge means

“staying the same node b by ignoring (deleting) the second location step ↓:: d of

q”. Thus the edge b1 d b2 represents [↓:: d → ϵ]2.

In Fig. 5.4, n0 is called start node and d2 is called accepting node. Each

path from the start node to the accepting node represents a simple query valid

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 31

Figure 5.5: Edges representing location step insertion

against D obtained by correcting q. For example, let us consider a path p =

n0 → s0 d a1 d d2 in Fig. 5.4. Recall that q = / ↓:: a/ ↓:: d. The first

edge n0 → s0 represents a location step insertion [ϵ →↓:: s]0. The second edge

s0 d a1 represents a label substitution [a→ a]1, i.e., the first location step “↓:: a”

of q is unchanged. Similarly, the location step “↓:: d” of q is unchanged. Thus,

p represents a query q′ = / ↓:: s/ ↓:: a/ ↓:: d, which is obtained by applying

[ϵ →↓:: s]0[a→ a]1[d → d]2 to q. Note that q′ is valid against D.

Case B) Descendant-or-self (↓∗) can be used as well as ↓.

In this case, we can use ↓∗ axes as well as ↓ axes. Let us first consider an edit

operation inserting location step ↓∗:: l to a query. For this insertion, we add edges

representing the edit operation to an xd-graph. Fig. 5.5 shows the xd-graph con-

structed from the DTD graph in Fig. 5.3 and a query q = / ↓:: d. Each dashed

edge in Fig. 5.5 represents a location step insertion. For example, s0 d d0 means

“moving from node s to node d via ↓∗ axis, using no location step of q”, that is, in-

serting a location step ↓∗:: d at position 0 of q, i.e., [ϵ →↓∗:: d]0. As stated before,

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 32

Figure 5.6: Edges representing axis substitution

every path from the start node to the accepting node represents a simple query

valid against D, which is obtained by correcting q. For example, n0 → s1 d d1

represents a simple query /↓:: s/↓∗:: d obtained by applying [d → s]1[ϵ →↓∗:: d]1

to q = /↓:: d.

Let us next consider axis substitution between ↓ and ↓∗. Fig. 5.6 shows the

xd-graph constructed from the same DTD graph as above and the same query

q = / ↓:: d. In the figure, for simplicity we omit some of the edges representing

location step insertion, location step deletion, and label substitution. In Fig. 5.6,

a dashed edge represents substituting ↓:: a with ↓∗:: l. For example, n0 d a1

means “moving from the root node to a with ↓∗ axis”, i.e., substituting ↓:: d with

↓∗:: a. Here, consider path p = n0 → s0 d d1 in Fig. 5.6. p represents a query

/↓:: s/↓∗:: d, which is obtained by applying [ϵ →↓:: s]0[↓→↓∗]1 to q = /↓:: d.

Finally, substituting ↓∗ with ↓ can be represented by a slant edge similar to

label substitution (l → l′), and the deletion of a location step using ↓∗ axis can be

handled similarly to the location step deletion in Case A.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 33

Figure 5.7: Edges dealing with→+ and←+ axes

Case C) Sibling axes (→+,←+) can be used as well as ↓ and ↓∗.

Let us consider handling →+ and ←+ axes. Fig. 5.7 shows the xd-graph con-

structed from the same DTD graph as above and a query q = /→+:: d. First,

let us consider edges connecting the same labels having distinct subscripts, e.g.,

s0 → s1 and a0 → a1. Such an edge means that the position does not change

(ignoring→+:: d of q) and→+:: d is deleted from q.

Let us next consider dashed edges connecting “sibling labels”. For example,

we have four edges between a0, b0 and a1, b1 (e.g., a0 d b1, b0 ≻ a1) since a and

b are siblings in d(s) = ba∗. A dashed edge ≻ represents substituting a sibling

axis (→+ or ←+) with →+, and another dashed edge d represents substituting a

sibling axis with ←+. For example, a0 d b1 means “moving from node a to b

via←+ axis”, that is, substituting the location step→+:: d of q with←+:: b. An

xd-graph has no edge violating a DTD, e.g., Fig. 5.7 does not have edge b0 d a1

since d(s) = ba∗ and a cannot be left to b.

5.3 Formal Definition of Xd-Graph

Let us now give the formal definition of xd-graph. Let D = (d, α, s) be a DTD,

G(D) = (V, E) be the DTD graph of D, and q = /ax[1] :: l[1]/ · · · /ax[m] :: l[m]

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 34

be a simple query. Moreover, let Gi(D) = (Vi, Ei) be a graph obtained by adding a

subscript i to each node of G(D), that is, Vi = {li | l ∈ V} and Ei = {li → l′i | l →
l′ ∈ E} for 0 ≤ i ≤ m. Then the xd-graph for q and G(D), denoted G(q,G(D)), is

a directed graph (V ′, E′), where

V ′ = {n0, n1, · · · , nm} ∪ V0 ∪ V1 ∪ · · · ∪ Vm,

E′ = Einsc ∪ (E′0 ∪ E′1 ∪ · · · ∪ E′m) ∪ (F1 ∪ F2 ∪ · · · ∪ Fm).

Here, Einsc in (5.1) is the set of edges inserting ↓:: l (corresponding to “ϵ →↓:: l”

in Fig. 5.4), that is,

Einsc = {n0 → s0, · · · , nm → sm} ∪ (E0 ∪ · · · ∪ Em),

where Ei is the set of edges of Gi(D). E′i in (5.1) is the set of edges inserting ↓∗:: l

(corresponding to “ϵ →↓∗:: l” in Fig. 5.5) and is defined as follows.

E′i = {ni → li | li ∈ Vi} ∪ {li → l′i | l′ is reachable from l in D}.

Fi in (5.1) is the set of edges between Gi−1(D) and Gi(D) defined as follows. We

have two cases to be considered.

1) The case where ax[i] ∈ {↓, ↓∗}: Fi = Di ∪Ci ∪ Ai, where

Di = {ni−1 → ni} ∪ {li−1 → li | l ∈ V}, (5.1)

Ci = {ni−1 → si} ∪ {li−1 → l′i | l→ l′ ∈ E},

Ai = {ni−1 → li | li ∈ Vi} ∪ {li−1 → l′i | l′ is reachable from l in D}. (5.2)

Here, Di is the set of edges corresponding to “↓:: l → ϵ” in Fig. 5.4, Ci is the

set of edges corresponding to “l → l′” in Fig. 5.4, and Ai is the set of edges

corresponding to “↓:: d →↓∗:: l” in Fig 5.6.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 35

2) The case where ax[i] ∈ {←+,→+} : Fi = Di ∪ Li ∪ Ri, where

Li = {li−1 → l′i | l′ can be left to l, l′′ is the parent label of l, l′ in d(l′′)},

Ri = {li−1 → l′i | l′ can be right to l, l′′ is the parent label of l, l′ in d(l′′)},

and Di is the same as the previous case. Li (resp., Ri) is the set of edges corre-

sponding to “→+:: d → ←+:: l” (resp., “→+:: d → →+:: l”) in Fig. 5.7.

Finally, we define the cost of an edge in G(q,G(D)) = (V ′, E′). Suppose that

γ(l → l′), γ(ax → ax′), γ(ϵ → ax :: l), and γ(ax :: l → ϵ) are defined for any

l, l′ ∈ Σe and any axes ax, ax′. Then the cost of an edge e ∈ E′, denoted γ(e), is

defined as follows.

• The case where e ∈ Einsc: We can denote e = li → l′i . Since this edge

represents inserting a location step ↓:: l′, γ(e) = γ(ϵ →↓:: l′).

• The case where e ∈ E′i : We can denote e = li → l′i . Since this edge

represents inserting a location step ↓∗:: l′, γ(e) = γ(ϵ →↓∗:: l′).

• The case where e ∈ Di: We can denote e = li−1 → li. Since this edge

represents deleting a location step ax[i] :: l[i], γ(e) = γ(ax[i] :: l[i]→ ϵ).

• The case where e ∈ Ci: We can denote e = li−1 → l′i . Since this edge repre-

sents substituting ax[i] with ↓ and substituting l[i] with l′, γ(e)=γ(ax[i]→↓)
+ γ(l[i]→ l′).

• The case where e ∈ Ai: We can denote e = li−1 → l′i . Since this edge

represents substituting ax[i] with ↓∗ and substituting l[i] with l′, γ(e) =

γ(ax[i]→↓∗) + γ(l[i]→ l′).

• The case where e ∈ Li: We can denote e = li−1 → l′i . Since this edge

represents substituting ax[i] with ←+ and substituting l[i] with l′, γ(e) =

γ(ax[i]→←+)+γ(l[i]→ l′). The case where e ∈ Ri can be defined similarly.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 36

For example, assume that γ(ax → ax′) = 0 if ax = ax′, γ(l → l′) = 0 if

l = l′, and that γ(op) = 1 for any other edit operation op. Then for the path

p = n0 → s0 d a1 d d2 in Fig. 5.4, we have γ(p) = γ(ϵ →↓:: s) + (γ(↓→↓
) + γ(a→ a)) + (γ(↓→↓) + γ(d → d)) = 1 + 0 + 0 = 1.

Chapter 6

Algorithm for Finding top-K

Queries under DTDs

In this chapter, we present an algorithm for finding top-K queries syntactically

close to an input query under a DTD. We first consider the case where a query is

simple, then present an algorithm for queries in XP.

6.1 Algorithm for Simple Query

Let D be a DTD, Σe be the set of labels in D, q = /ax[1] :: l[1]/ · · · /ax[m] :: l[m]

be a simple query, and G(q,G(D)) = (V ′, E′) be the xd-graph for q and G(D).

Moreover, let n0 ∈ V ′ be the start node and (l[m])m ∈ V ′ be the accepting node of

G(q,G(D)). If l[m] < Σe (due to user’s typo), then the label l ∈ Σe “most similar”

to l[m] is selected and lm ∈ V ′ is used as the accepting node.1 Currently, we select

l ∈ Σe such that the edit distance between l and l[m] is the smallest.

By the definition of xd-graph, in order to find top-K queries syntactically close

to q under D, it suffices to solve the K shortest paths problem over the xd-graph

1G(q,G(D)) can also have multiple accepting nodes by adding a new “accepting” node n and
edges from each node in Vm to n. But since this approach tends to output “too diverse” answers,
we currently use a single accepting node.

37

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 38

G(q,G(D)) between the start node and the accepting node. The resulting K short-

est paths represent the top-K queries syntactically close to q under D. Formally,

this algorithm can be described as follows.

Input: A DTD D = (d, α, s), a simple query q = /ax[1] :: l[1]/ · · · /ax[m] :: l[m],

and a positive integer K.

Output: Top-K queries syntactically close to q under D.

1. Construct the DTD graph G(D) of D.

2. Construct the xd-graph G(q,G(D)) for q and G(D).

3. Solve the K shortest paths problem2 on G(q,G(D)) between the start node

and the accepting node.

4. Let q1, · · · , qK be the queries represented by the K paths obtained above.

Return q1, · · · , qK .

Let us give a simple example. We use query q and DTD D in Fig. 5.1, thus

we have q = / ↓:: a/ ↓:: e/ ↓:: c and D = (d, α, a), where d(s) = bd, d(a) = c,

d(b) = c, d(c) = ϵ. Let K = 2. For simplicity, we only consider child axis (the

other axes are omitted), and suppose that the cost of each edit operation is one

except that γ(l→ l′) = 0 whenever l = l′. In line 1 of the algorithm, we obtain the

DTD graph D(G) shown in Fig. 5.1(c). In line 2, we obtain the xd-graph shown in

Fig. 5.1(d), where n0 is the start node and c3 is the accepting node. Now, in step

3 we solve the K shortest paths problem on the xd-graph and obtain the following

two shortest paths.

• n0 d a1 d b2 d c3. The second edge a1 d b2 represents substituting the

label of the second location step ↓:: e of q with b, while the other edges do

nothing (substituting a label with the same one). Thus we have / ↓:: a/ ↓::
b/↓:: c.

2There are a number of algorithms for solving K shortest paths problem (e.g., [46, 18]). Here
we can use any of them.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 39

• n0 d a1 d d2 d c3. The second edge a1 d d2 represents substituting the

label of the second location step ↓:: e of q with d, while the other edges do

nothing. Thus we have /↓:: a/↓:: d/↓:: c.

The above two queries are returned in line 4.

Figure 6.1: Xd-graph

We have the following.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 40

Theorem 3 Let D be a DTD, q be a simple query, and K be a positive integer.

Then the above algorithm outputs top-K queries syntactically close to q under D.

Proof Let q = /ax[1] :: l[1]/ · · · /ax[m] :: l[m] be a simple XPath query and D

be a DTD. It suffices to show that the xd-graph G(q,G(D)) of q and D is “sound”

(every path from the start node to the accepting node corresponds to a valid query)

and “complete” (every valid query obtained by some edit script to q is represented

by a path from the start node to the accepting node in the xd-graph). Let qk be the

prefix of q of length k, that is, qk = /ax[1] :: l[1]/ · · · /ax[k] :: l[k]. In particular,

q0 = ϵ. In the following, we show by induction on |q| that for any node lk in

G(q,G(D)), the following two statements hold.

• (Soundness) Any path from the start node to lk represents a valid query

retrieving element l obtained by applying an edit script to qk.

• (Completeness) Any valid query retrieving l obtained by applying an edit

script to qk is represented by a path from the start node to lk.

Basis: |q| = 0 and q = ϵ. Thus G(q,G(D)) contains only one DTD graph (G1

in Fig. 6.1). Since q = ϵ, only location step insertions to q are allowed. Thus it is

easy to verify that for each node l0 in G(q,G(D)), the above two statements hold.

Induction: Assume as the induction hypothesis that if |q| < m, then for any

node lk in G(q,G(D)), the above two statements hold. Consider the case of |q| = m.

Since the soundness is rather clear, we only consider the completeness. Consider

an edge between Gm−1 and Gm, say am−1 → cm (see Fig. 6.1). We have the follow-

ing observations.

• By the induction hypothesis, any valid query retrieving a obtained by ap-

plying an edit script to qm−1 is represented by a path from the start node to

am−1, that is, the subgraph A of Fig. 6.1 is complete.

• By definition, the edges between Gm−1 and Gm cover all the edit operations

to the mth location step of q.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 41

• Assuming that cm is the “document root”, we can show similarly to the basis

case that any valid query p retrieving e (the label of the accepting node)

obtained by applying location step insertions to ϵ is represented by a path

from cm to em. That is, the subgraph B of Fig. 6.1 is complete.

The above three observations imply that any valid query retrieving l obtained by

applying an edit script to q is represented by a path from the start node to lm, where

lm is the accepting node. Hence G(q,G(D)) is complete. □

Let us consider the time complexity of this algorithm. First, we consider the

size of G(q,G(D)). For every node n in G(p,G(D)), the number of edges leaving

n is in O(|Σe|). Since the number of nodes in G(q,G(D)) is in O(|q| · |Σe|), the total

number of edges in G(q,G(D)) is in O(|q| · |Σe|2). Let us next consider solving

the K shortest paths problem on G(q,G(D)). There are a number of algorithms for

solving this problem (e.g., [46, 18]), and we use the extended Dijkstra’s algorithm.

The time complexity of the Dijkstra’s algorithm is O(K · |E| · log |V |), where E is

the set of edges and V is the set of nodes. Since the number of edges in the xd-

graph is in O(|q| · |Σe|2) and that of nodes is in O(|q| · |Σe|), the time complexity for

solving the K shortest paths problem over the xd-graph is in

O(K · |q| · |Σe|2 · log(|q| · |Σe|)).

This is the time complexity of the algorithm.

Thus we have the following.

Theorem 4 Let D be a DTD, Σ be the set of labels in D, q be a simple XPath

query, and K be a positive integer. Then top-K queries syntactically close to q

under D can be obtained in O(K · |q| · |Σ|2 · log(|q| · |Σ|)) time. □

Let D be a DTD, q = /ax[1] :: l[1]/ · · · /ax[m] :: l[m] be a query, and

G(q,G(D)) be the xd-graph for q and D. The proposed algorithm assumes that

the label of the accepting node of G(q,G(D)) coincides with that of the last loca-

tion step of q, that is, l[m]m is the accepting node of G(q,G(D)). Here, consider

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 42

s

a

b

c

d

s

a

b

c

d

s

a

b

c

d

n1

n2

1

2

2 2

2

1

2

n0 0

0 0

0

a::

d::

{
{

start

0

1

n

Figure 6.2: Adding a new accepting node n to G(q,G(D))

the case that a user write a query q. Then the label of the last location step of q rep-

resents the most symbolic label that the user wants to retrieve, thus the user tends

not to write a completely wrong label at the last location step of q. Therefore, in

most cases we believe that the above assumption is a reasonable one. However, if

a user prefers a more general query correction, we can relax the above assumption

by extending the xd-graph, as follows (see Fig. 6.2)

1. Add a new accepting node n to G(q,G(D)).

2. For each node li in G(q,G(D)), add and edge li → n.

3. For each edge li → n added above, let γ(li → n) = 0.

On the other hand, the drawback of the above extension is that the approach tends

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 43

to output “too many” corrected queries. Thus the above extension should be used

only if no desirable query correction is obtained under the original xd-graph.

6.2 Algorithm for Queries in XP

The algorithm proposed in the previous section can handle only simple queries.

In this section, we extend the algorithm so that it handles any queries in XP.

We present an algorithm that finds, for a query q ∈ XP and a DTD D, top-

K queries syntactically close to q under D. We first give some definitions. Let

q = /ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]] ∈ XP. By sp(q) we mean the

selection path of q obtained by dropping every predicate in q and the last location

step of q if ax[m] = @; that is,

sp(q) =

/ax[1] :: l[1]/ · · · /ax[m − 1] :: l[m − 1] if ax[m] = @,

/ax[1] :: l[1]/ · · · /ax[m] :: l[m] otherwise.

Suppose that ax[m] = @. By definition the set of edit operations applicable to

ax[m] :: l[m] is S = {ax[m] :: l[m]→ ϵ} ∪ {l[m]→ l | l ∈ α(l[m − 1])}. We say that

op1, · · · , opK are K optimum edit operations for ax[m] :: l[m] if op1, · · · , opK ∈ S ,

opi , op j for any i , j, γ(op1) ≤ · · · ≤ γ(opK), and γ(opK) ≤ op for any

op ∈ S \{op1, · · · , opK} (We assume that op|S |+1 = · · · = opK = nil with γ(nil) = ∞
if |S | < K).

We now present the algorithm. To find top-K queries syntactically close to

a query q under a DTD D, we again construct an xd-graph G(sp(q),G(D)) and

solve the K shortest paths problem on the xd-graph. But since q may not be

simple, before solving the K shortest paths problem we modify G(sp(q),G(D)) as

follows.3

3Since it is fairly difficult to correct the right hand side and the comparison operator of exp[i]
exactly, we focus on correcting the left hand side of exp[i].

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 44

• Suppose exp[i] , ϵ. The cost of deleting location step ax[i] :: l[i][exp[i]]

should be γ(ax[i] :: l[i] → ϵ) + γ(exp[i] → ϵ), where “exp[i] → ϵ” stands

for the delete operations that delete every location step in exp[i] (line (3-a)

below).

We also have to consider correcting exp[i]. To do this, we call the algorithm

for query /l[i]/exp[i] and DTD (d, α, l[i]) recursively. The obtained result

is incorporated into G(sp(q),G(D)) by using the gadget in Fig. 6.3 (node li

corresponds to l[m]); the obtained K optimum edit scripts are assigned to

the K edges e1, · · · , eK in the gadget (line (3-b)).

• If ax[m] = @, we have to modify G(sp(q),G(D)) in order to incorporate

the K optimum edit operations for ax[m] :: l[m] (line 4).

FindKPaths(D, q,K)

Input: A DTD D = (d, α, s), a query q = /ax[1] :: l[1][exp[1]]/ · · · /ax[m] ::

l[m][exp[m]], and a positive integer K.

Output: Top-K queries syntactically close to q under D.

1. Construct the DTD graph G(D) of D.

2. Construct the xd-graph G(sp(q),G(D)) for q and G(D).

3. For each 1 ≤ i ≤ m with exp[i] , ϵ, modify G(sp(q),G(D)) as follows.

(a) For each edge e ∈ Di (defined in Eq. (5.1)), let γ(e)← γ(e)+γ(exp[i]→
ϵ).

(b) For each node li ∈ Vi, do the following (i) – (iii).

i. Replace li with its corresponding gadget (Fig. 6.3).

ii. Call FindKPaths(D′, q′,K), where D′ = (d, α, li) and q′ = /li/exp[i].4

Let s′1, · · · , s′K be the result.
4Since li is added as the first location step of q′, for each recursive call we assume that γ(n0 →

l) = 0 if l = (li)0 and γ(n0 → l) = ∞ otherwise, where n0 is the start node of the constructed
xd-graph in the recursive call.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 45

Figure 6.3: Node li and its gadget, where l′i is a new node and e1, · · · , eK are new
edges.

iii. γ(e j)← γ(s′j) for every 1 ≤ j ≤ K.

4. If ax[m] = @, modify G(sp(q),G(D)) as follows.

(a) Replace the accepting node lm−1 of G(sp(q),G(D)) with its correspond-

ing gadget (Fig. 6.3).

(b) Let op1, · · · , opK be the K optimum edit operations for ax[m] :: l[m].

(c) γ(e j)← γ(op j) for every 1 ≤ j ≤ K.

5. Solve the K shortest paths problem on G(sp(q),G(D)) modified as above.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 46

6. Let q1, · · · , qK be the queries represented by the K paths obtained above.

Return q1, · · · , qK .

a

b d

c e

Figure 6.4: DTD graph G(D).

Let us explain the algorithm by an example. For simplicity, we assume that

the cost of each edit operation is one except that γ(l → l′) = 0 whenever l = l′.

We also assume that only child axes are allowed (the other axes are omitted).

Let K = 2, q = / ↓:: a/ ↓:: b[↓:: e]/ ↓:: c be a query, and D = (d, α, a) be a

DTD, where d(a) = bd, d(b) = c, d(d) = ce, and d(c) = d(e) = ϵ. In step 1

of the algorithm, we obtain the DTD graph G(D) shown in Fig. 6.4. In step 2,

sp(q) = / ↓:: a/ ↓:: b/ ↓:: c and we obtain the xd-graph G(sp(q),G(D)) shown

in Fig. 6.5, where n0 is the start node and c3 is the accepting node. In this xd-

graph, the costs of four edges n0 d a1, a1 d b2, b2 d c3, d2 d c3 are zero (the

edges labeled by “0” in Fig. 6.5), while the costs of the other edges are one (their

labels are omitted). In step 3, since the second location step ↓:: b[↓:: e] of q has

a predicate, G(sp(q),G(D)) is modified by replacing five nodes a2, b2, c2, d2, e2

with their corresponding gadgets, as shown in Fig. 6.6. For example, consider

the gadget having two nodes b2 and b′2. This gadget has two edges b2
A→ b′2 and

b2
B→ b′2, where the former represents substituting e with c in the predicate and the

latter represents deleting the predicate of q. Note that, due to step (3-a), the costs

of “vertical” edges n1 ≻ n2, a1 ≻ a′2, b1 ≻ b′2, c1 ≻ c′2, d1 ≻ d′2, and e1 ≻ e′2

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 47

n0 a0

b0

d0

c0

e0

n1 a1

b1

d1

c1

e1

n2 a2

b2

d2

c2

e2

n3 a3

b3

d3

c3

e3

{::a

{
{

::b

::c

0

0

0

0

start

Figure 6.5: Xd-graph G(sp(q),G(D)).

are increased by one (the edges labeled by “2” in Fig. 6.6), since these edges now

represent deleting ↓:: b[↓:: e] instead of deleting ↓:: b. Over this modified graph,

we solve the K shortest paths problem between n0 and c3 (step 5). The followings

are the three shortest paths whose costs are one.

• n0 d a1 d b2
A→ b′2 d c3. The third edge b2

A→ b′2 represents substituting

e with c in the predicate of q, while the other edges do nothing (substituting

a label with the same one). Thus we obtain /↓:: a/↓:: b[↓:: c]/↓:: c.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 48

• n0 d a1 d b2
B→ b′2 d c3. The third edge b2

B→ b′2 represents deleting the

predicate of q, while the other edges do nothing. Thus we obtain /↓:: a/↓::
b/↓:: c.

• n0 d a1 d d2
A→ d′2 d c3. The second edge a1 d d2 represents substitut-

ing b with d in the second location step ↓:: b[↓:: e], while the other edges

do nothing. Thus we obtain /↓:: a/↓:: d[↓:: e]/↓:: c.

Since K = 2, arbitrary two of the above three are returned in step 6 (ties are broken

arbitrary).

We have the following.

Theorem 5 Let D be a DTD, q ∈ XP a query, and K be a positive integer. Then

FindKPaths outputs top-K queries syntactically close to q under D.

Proof Let q = /ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]]. We show the

completeness of the graph obtained in lines (1) to (4) of the algorithm. Every

update to sp(q) is covered by G(sp(q),G(D)) by Theorem 4. Thus we have to

consider (a) updates to the predicates in q and (b) update to the attributes in q.

Consider first (a). Consider a location step ax[i] :: l[i][exp[i]] of q. Due to the

definition of update operations, the possible updates to this location step are as

follows.

1. The whole location step is deleted.

2. This location step is not deleted. In this case, l[i] is replaced by some label

and exp[i] is updated by some update script.

(1) is covered by line (3-a) and (2) is covered by line (3-b) of the algorithm. As for

(b), the possible updates to the attributes are covered by line (4). Thus the graph

obtained in line (3) is complete. □

Let us consider the running time of the algorithm. Let q = /ax[1] :: l[1][exp[1]]

/ · · · /ax[m] :: l[m][exp[m]]. By mnl(q) we mean the maximum nest level of q, that

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 49

n0 a0

b0

d0

c0

e0

n1 a1

b1

d1

c1

e1

n2 a2

b’2

d
’
2

c’2

e’2

n3 a3

b3

d3

c3

e3

a’2

b2

d2

c2

e2

b’2b
2

Α: γ(e c) = 1

d’2d2

{::a

{
{

::b[e]

::c

0

0

0

2 2
2

2

2

2

Β: γ(e ε) = 1

Α: γ(e e) = 0

Β: γ(e c) = 1

start

A
B

A
B

Figure 6.6: The graph obtained by modifying G(sp(q),G(D)).

is,

mnl(q) =

0 if q is simple,

1 +max1≤i≤m(mnl(exp[i])) otherwise.

For example, if q = / ↓:: a/ ↓:: b[↓:: d[↓:: e]]/ ↓:: c, then mnl(q) = 2. First, con-

sider the case where mnl(q) = 1, i.e., no exp[i] has a predicate. In this case, since

FindKPaths is called |Vi| = |Σe| times (step (3-b)), by Theorem 4 the algorithm

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 50

runs in

O(K · |sp(q)| · |Σe|2 · log(|sp(q)| · |Σe|) +∑
1≤i≤m

|Σe| · (K · |exp[i]| · |Σe|2 · log(|exp[i]| · |Σe|))) =

O(K · |q| · |Σe|3 · log(|q| · |Σe|))

time. In general, due to step (3) the running time of the algorithm is increased by

a factor of |Σe| as mnl(q) increases by one. Thus, the algorithm runs in

O(K · |q| · |Σe|2+mnl(q) · log(|q| · |Σe|))

time. Thus we have the following.

Theorem 6 Let D be a DTD, q ∈ XP be a query, and K be a positive integer. Then

FindKPaths(D, q,K) runs in polynomial time of |D| and |q| if mnl(q) is constant.

This suggests that the algorithm may run inefficiently if q has deeply nested

predicates. However, XPath queries usually contains very few such predicates,

and as we will see below, by pruning unnecessary edges and nodes of xd-graphs

the algorithm can run more efficiently. Therefore, we believe that the algorithm

runs efficiently for most of XPath queries.

Pruning Xd-Graph

An xd-graph may contain unnecessary nodes, e.g., in Fig. 5.4 the accepting node

d2 is unreachable from c0, c1, and c2, and thus these three nodes are unnecessary.

By pruning such nodes, we can save space and time. Such a pruning is effective

especially if a DTD has a tree-like structure. For example, suppose that the DTD

graph D(G) is a complete k-ary tree and that query q contains no sibling axis and

no predicate. For a leaf node n in D(G), the number of nodes from which n is

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 51

reachable is in O(log |Σe|). Thus the size of the xd-graph can be reduced from

O(|q| · |Σe|2) to O(|q| · log2 |Σe|), and the time complexity of the algorithm in this

section can be reduced to

O(K · |q| · log2+mnl(q) |Σe| · log(|q| · log |Σe|)).

On the other hand, the pruning itself can be done very efficiently. Actually,

the pruning needs (1) a top-down traversal from the start node and (2) a bottom-

up traversal from the accepting node, each of which can be done by a breath-first

traversal. Since a breath-first traversal can be done in O(|V |+ |E|) time for a graph

(V, E) [73] and the numbers of nodes and edges of an xd-graph are in O(|Σe|), the

pruning can be done in

O(|Σe| + |Σe|) = O(|Σe|).

We also make an experiment to evaluate the effect of this pruning. This is

shown in Section 8.2.

Chapter 7

Algorithm for Regular Tree

Grammar

In this chapter, we extend the algorithms to use regular tree grammar as a schema

instead of DTD. Regular tree grammar is a general schema model for XML in-

cluding local tree grammar, which is equivalent to DTD [51]. Since regular tree

grammar can assign more than one type (non-terminal) to a label, we cannot use

the definition of xd-graph in that shape. In the following, we firstly define regular

tree grammar formally, then extend xd-graph for regular tree grammar (xg-graph).

By using xg-graph, we describe how to find correct XPath queries.

7.1 Regular Tree Grammar

A regular tree grammar is a 4-tuple G = (N,T, S , P), where N is a set of non-

terminals, T is a set of terminals, S ∈ N is a set of start symbols, P is a set

of productions of the form X → ar such that X ∈ N, a ∈ T , and r is a regular

expression over N. We say that X is the left-hand side of the production, ar is the

right-hand side, a is the label, and r is the content model.

For example, the DTD in Chapter 1 can be represented by a regular tree gram-

52

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 53

mar G = (N,T, S , P), where

N = {S ite, People, Person,Name, Pcdata},

T = {site, people, person, name, pcdata},

S = {S ite},

P = {S ite→ site(People), People→ people(Person∗),

Person→ person(Name),Name→ Pcdata(Pcdata),

Pcdata→ pcdata(ϵ)}.

For a regular tree grammar G = (N,T, S , P) and labels a, b, we say that b is

reachable from a in G if either one of the conditions is satisfied.

• a = b, or there are productions X → ar and X′ → br′ in P such that X′

occurs in r.

• For a label a′, a′ is reachable from a, and there are productions X → a′r

and X′ → br′ such that X′ occurs in r.

Let t be a tree. An interpretation I of t against G is a mapping from each node

e in t to a state I(e) that satisfies the following conditions.

• If e is the root of t, I(e) is an initial state.

• There is a production X → ar in G such that I(e) = X, a is a terminal of e,

and that I(e0)I(e1)...I(em) matches r, where e0, e1, ..., em are the child nodes

of e.

By L(G) we mean the language of G. Then t ∈ L(G) if and only if there is an

interpretation of t against G.

It is shown that regular tree grammar is strictly more expressive than DTD [51].

Actually, both W3C XML Schema [79, 80] and RELAX NG [54] can be modeled

by regular tree grammar. For example, let us consider the RELAX NG schema

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 54

shown in Fig. 7.1. In this schema, an item element can be of type CD or Book,

and the CD and Book types have different content models. Such types cannot be

modeled by any DTD since each element must have exactly one content model.

On the other hand, regular tree grammar can handle such types. The following

regular tree grammar G = (N,T, S , P) corresponds to the RELAX NG schema in

Fig. 7.1.

N = {Catalog,CD, Book,Title, Artist, Author, Pcdata}

T = {catalog, item, title, artist, author, pcdata}

S = {Catalog}

P = {Catalog→ catalog(CD+ Book+),

CD→ item(Title Artist),

Book → item(Title Author),

Title→ title(Pcdata),

Artist → artist(Pcdata),

Author → author(Pcdata),

Pcdata→ pcdata(ϵ)}

7.2 Xg-Graph

In this section, we introduce a graph called xg-graph. This is an extended version

of xd-graph that can handle non-terminal of regular tree grammar. Throughout

this section, we assume that each query is simple. The general case is considered

in Section 7.3.2.

Similar to Section 6.1, we obtain K optimum edit scripts against a query q

under G = (N,T, S , P) as follows.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 55

� �
<?xml version="1.0" encoding="Shift_JIS" ?>
<rng:grammar
xmlns:rng="http://relaxng.org/ns/structure/1.0">

<rng:start>
<rng:ref name="Catalog" />

</rng:start>

<rng:define name="Catalog">
<rng:element name="catalog">
<rng:oneOrMore>
<rng:ref name="CD" />

</rng:oneOrMore>
<rng:oneOrMore>
<rng:ref name="Book" />

</rng:oneOrMore>
</rng:element>

</rng:define>

<rng:define name="CD">
<rng:element name="item">
<rng:ref name="Title" />
<rng:ref name="Artist" />

</rng:element>
</rng:define>

<rng:define name="Book">
<rng:element name="item">
<rng:ref name="Title" />
<rng:ref name="Author" />

</rng:element>
</rng:define>
<rng:define name="Title">
<rng:element name="title">
<rng:text />

</rng:element>
</rng:define>

<rng:define name="Artist">
<rng:element name="artist">
<rng:text />

</rng:element>
</rng:define>

<rng:define name="Author">
<rng:element name="author">
<rng:text />

</rng:element>
</rng:define>

</rng:grammar>� �
Figure 7.1: An example of RELAX NG schema

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 56

1. Construct a production-graph G(P) from P in G.

2. Construct an xg-graph G(q,G(P)) from q and G(P). It consists of all paths

that represent XPath expressions valid against G obtained by applying edit

scripts on q.

3. Solve K shortest paths problem over G(q,G(P)) to obtain top-K optimum

edit scripts against q under G. The details is considered in Section 7.3.

7.2.1 Production-Graph

To construct an xg-graph, we need to represent productions of regular tree gram-

mar as a graph. Therefore, we first define production-graph.

Let G = (N,T, S , P) be a regular tree grammar. A production-graph G(P) =

(V, E) is a directed graph, where

V = {(X, a) | X → ar ∈ P},

E = {(X, a)→ (X′, a′) | X → ar ∈ P, X′ occurs in r, X′ , Pcdata,

X′ → a′r′ ∈ P for some a′ ∈ T and some regular expression r′ over N}.

For example, a production-graph G(P) for regular tree grammar G = (N,T, S , P)

is shown in Fig. 7.2, where

N = {S , A, B,C,D, Pcdata},

T = {s, a, b, c, d, pcdata},

S = {S },

P = {S → s(A, B), A→ a(C,D), B→ b(D)

C → c(Pcdata),D→ d(B|Pcdata),

Pcdata→ pcdata(ϵ)}.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 57

(S, s)

(A, a)

(C, c)

(B, b)

(D, d)

Figure 7.2: An example of production-graph

7.2.2 Xg-Graph

We next construct an xg-graph from a query q and a production graph G(P). In-

tuitively, each edge on an xg-graph corresponds to an edit operation defined in

Chapter 4.

In the following, we first explain an xg-graph for the case of (1) mentioned be-

low (the case of (2) and (3) are omitted because they are similar to the discussions

in Section 5.2).

(1) Only child (↓) can be used as an axis

(2) Descendant-or-self (↓∗) can be used as well as ↓

(3) Sibling axes (→+,←+) can be used as well as ↓ and ↓∗

Only child (↓) can be used as an axis

Let us consider the xg-graph constructed from a simple query q = /↓:: a/↓:: d and

the production-graph G(P) in Figure 7.2. Since only ↓ axis is allowed, it suffices

to consider location step insertion, location step deletion, and label substitution.

Figure. 7.3 shows an xg-graph G(q,G(P)) constructed from q and G(P). As

shown in this figure, the xg-graph is constructed from |q| + 1 copies of G(P) with

their nodes connected by several edges. Note that (N, n)0, (N, n)1, (N, n)2 are newly

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 58

(N, n)
0

↓::a

↓::d

(S, s)
0

(A, a)
0

(C, c)
0

(C, c)
1

(C, c)
2

(B, b)
0

(B, b)
1

(B, b)
2

(D, d)
2

(D, d)
1

(D, d)
0

(A, a)
1

(A, a)
2

(S, s)
1

(S, s)
2

(N, n)
1

(N, n)
2

Production-graphs

Figure 7.3: An xg-graph G(q,G(P))

added nodes, which correspond to the “root node” in the XPath data model. We

subscript each node of a production-graph to distinguish the nodes. For example,

the node (S , s) over G(P) is denoted (S , s)0 on the topmost production-graph of

G(p,G(P)), (S , s)1 on the second topmost production-graph, and so on.

As shown in Fig. 7.3, we have the following three kinds of edges in an xg-

graph.

• A “horizontal” edge (→) corresponds to a location step insertion (ϵ →↓:: l).

• A “slant” edge (d) corresponds to a label substitution (l→ l′).

• A “vertical” edge (≻) corresponds to a location step deletion (↓:: l→ ϵ).

More concretely, let us first consider horizontal edge n0 → (S , s)0 in Fig. 7.3.

This edge means “moving from the root node to child node s, using no location

step of q”. This is moving to child node s by location step ↓:: s using no location

step in q. That is, the edge represents an edit operation [ϵ →↓:: s]0.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 59

Let us next consider slant edge (S , s)0 d (B, b)1 in Fig. 7.3. This edge means

“moving from node s to child node b using the first location step ↓:: a of q”. Since

the target node is b rather than a, we have to substitute the label of ↓:: a with b,

that is, the edge s0 d (B, b)1 represents [a→ b]1.

Finally, consider vertical edge (B, b)1 ≻ (B, b)2 in Fig. 7.3. This edge means

“staying the same node b by ignoring (deleting) the second location step ↓:: d of

q”. Thus the edge b1 d (B, b)2 represents [↓:: d → ϵ]2.

In Fig. 7.3, (N, n)0 is called the start node and (D, d)2 is called the accepting

node. Each path from the start node to the accepting node represents a simple

query valid against G obtained by correcting q. For example, let us consider a

path p = (N, n)0 → (S , s)0 d (A, a)1 d (D, d)2 in Fig. 7.3. In this path, the

first edge (N, n)0 → (S , s)0 represents a location step insertion [ϵ →↓:: s]0. The

second edge (S , s)0 d (A, a)1 represents a label substitution [a → a]1, that is, the

first location step “↓:: a” of p is unchanged. Similarly, the location step “↓:: d” of

q is unchanged. Therefore, p represents an XPath expression / ↓:: s/ ↓:: a/ ↓:: d,

which is valid against G.

Formal Definition of Xg-graph and Costs of Edges

Let us show the formal definition of xg-graph, and the cost of each edge on the

graph.

Let G = (N,T, S , P) be a regular tree grammar, G(P) = (V, E) be a production-

graph, p = /ax[1] :: l[1]/ · · · /ax[m] :: l[m] be a simple query. By Gi(P) we

mean the graph obtained from G(P) by subscripting each node with i. That is,

Vi = {(X, a)i | X → ar ∈ P} and Ei = {(X, a)i → (X′, a′)i | X → ar ∈ P}.
The xg-graph for p and G(P), denoted G(p,G(P)), is a directed graph (V ′, E′)

defined as follows (Note that n of (N, n)0, · · · , (N, n)m is a label where n < V).

V ′ = {(N, n)0, · · · , (N, n)m} ∪ V0 ∪ · · · ∪ Vm

E′ = Einsc ∪ (F1 ∪ · · · ∪ Fm) (7.1)

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 60

Here, Einsc in (7.1) is the set of edges inserting ↓:: l (corresponding to “ϵ →↓:: l”

in Fig. 7.3) and is defined as follows. Note that Ei is an edge in Gi(P).

Einsc = {(N, n)0 → (S , s)0, · · · , (N, n)m → (S , s)m} ∪ (E0 ∪ · · · ∪ Em)

Fi (1 ≤ i ≤ m) in (7.1) is the set of edges between Gi−1(P) and Gi(P), and have

some definitions depending on the type of the ith axis on p. In this dissertation,

for simplicity we assume that ax[i] ∈ {↓} and Fi = Di ∪ Ci. Then Di and Ci are

defined as follows. Note that Di corresponds an edge “↓:: l → ϵ” in Fig. 7.3 and

Ci corresponds “l→ l′” in Fig. 7.3, respectively.

Di = {(N, n)i−1 → (N, n)i} ∪ {li−1 → li | l ∈ V} (7.2)

Ci = {(N, n)i−1 → (S , s)i} ∪ {li−1 → l′i | l→ l′ ∈ E} (7.3)

We next consider the cost of each edge on an xg-graph. Suppose that following

costs correspond edit scripts defined in Chapter 4.

• γ(l→ l′)：cost of label substituting l to l′

• γ(ϵ → ax :: l)：cost of inserting a location step ax :: l

• γ(ax :: l→ ϵ)：cost of deleting a location step ax :: l

According to the above costs, we define the cost γ(e) of an edgee ∈ E′ on an

xg-graph, as follows.

• The case where e ∈ Einssc : We denote e = li → l′i . Since this edge represents

inserting a location step ↓:: l′, we define γ(e) = γ(ϵ →↓:: l′).

• The case where e ∈ Di : We denote e = li−1 → li. Since this edge represents

deleting a location step ax[i] :: l[i], we define γ(e) = γ(ax[i] :: l[i]→ ϵ).

• The case where e ∈ Ci : We denote e = li−1 → l′i . Since this edge

represents substituting ax[i] with ↓ and substituting l[i] with l′, we define

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 61

γ(e) = γ(ax[i]→↓) + γ(l[i]→ l′).

For example, let us consider the following cost function.

γ(l→ l′) =

0 when l = l′

1 otherwise

γ(ϵ → ax :: l) = 1

γ(ax :: l→ ϵ) = 1

Then for the path (N, n)0 → (S , s)0 d (A, a)1 d (D, d)2, we obtain a cost

γ(ϵ →↓:: s) + (γ(↓→↓) + γ(a→ a)) + (γ(↓→↓) + γ(d → d)) = 1 + 0 + 0 = 1.

7.3 Algorithm for Finding top-K Queries

In this section, we present an algorithm for finding top-K queries syntactically

close to an input query under regular tree grammar. We first consider the case

where a query is simple, then present for queries in XP. Furthermore, we consider

the pruning for graphs.

7.3.1 Algorithm for Simple Query

Let G(P) be a regular tree grammar, q = /ax[1] :: l[1]/ · · · /ax[m] :: l[m] be a

simple query, G(q,G(P)) = (V, E) be the xg-graph for q and G(P). Moreover,

let (N, n)0 ∈ V be the start node and (X, l[m])m ∈ V be the accepting node of

G(q,G(P)).

By the above cost definition, in order to find top-K queries syntactically close

to q under G, it suffices to solve the K shortest paths problem over the xg-graph

G(q,G(P)) between the start node and the accepting node, and output K XPath

expressions represented by the obtained paths p′1, · · · , p′K . The algorithm is de-

scribed as follows.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 62

Input: A regular tree grammar G = (N,T, S , P), a simple query q = /ax[1] :: l[1]/

· · · /ax[m] :: l[m], and a positive integer K.

Output: Top-K queries syntactically close to q under G.

1. Construct the production graph G(P) of G.

2. Construct the xg-graph G(q,G(P)) for q and G(P).

3. Solve the K shortest paths problem on G(q,G(P)) between the start node

and the accepting node of G(q,G(P)).

4. Let q1, · · · , qK be the queries represented by the K paths obtained in step 3.

Return q1, · · · , qK .

Thus we have the following.

Theorem 7 Let G = (N,T, S , P) be a regular tree grammar, q be a simple query,

and K be a positive integer. Then the above algorithm outputs top-K queries

syntactically close to q under G. Moreover, the algorithm runs in O(K · |q| · |P|2 ·
log(|q| · |P|)) time.

7.3.2 Algorithm for Queries in XP

Let q = /ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]] ∈ XP, sp(q) be a query

expression obtained from extracting location steps with predicates from XP. that

is,

sp(q) = /ax[1] :: l[1]/ · · · /ax[m] :: l[m].

Similar to FindKPaths, we construct an xg-graph G(sp(q),G(P)) first, then

solve top-K shortest paths problem.

FindKPathsOnG(G, q,K)

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 63

Input: A regular tree grammar G = (N,T, S , P), a query q = /ax[1] :: l[1][exp[1]]/

· · · /ax[m] :: l[m][exp[m]], and a positive integer K.

Output: Top-K queries syntactically close to q under G.

1. Construct the production-graph G(P).

2. Construct the xg-graph G(sp(q),G(P)).

3. For each 1 ≤ i ≤ m with exp[i] , ϵ, modify G(sp(q),G(P)) as follows.

(a) For each edge e ∈ Di, let γ(e)← γ(e) + γ(exp[i]→ ϵ).

(b) For each node li ∈ Vi, do the following (i) – (iii).

i. Replace li with its corresponding gadget (Fig. 6.3).

ii. Call FindKPathsOnG(G′, q′,K), where G′ = (N, T, X, P), X of

node (X, li) where X → ar ∈ P, and q′ = /li/exp[i]. Let sc′1, · · · , sc′K
be the results.

iii. γ(e j)← γ(s′j) for every 1 ≤ j ≤ K.

4. If ax[m] = @, modify G(sp(q),G(D)) as follows.

(a) Replace the accepting node lm−1 on G(sp(q),G(D)) with its corre-

sponding gadget (Fig. 6.3)

(b) op1, · · · , opK be the K optimum edit operations for Let ax[m] :: l[m].

(c) γ(e j)← γ(op j) for every 1 ≤ j ≤ K.

5. Solve the K shortest paths problem on G(sp(q),G(P)) modified as above.

6. Let sc1, · · · , scK be the results obtained above. Return sc1(q), · · · , scK(q).

The following result can be obtained similarly to Theorems 5 and 6.

Theorem 8 Let G = (N,T, S , P) be a regular tree grammar, q ∈ XP be a query,

and K be a positive integer. Then FindKPathsOnG outputs top-K queries syntac-

tically close to q under G. Moreover, FindKPathsOnG runs in O(K · |q| · |P|2+mnl(q) ·
log(|q| · |P|)).

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 64

7.3.3 Graph Optimization and Pruning

In the above algorithms, pruning a production-graph and an xg-graph is not con-

sidered. By optimizing nodes on a production-graph and pruning unnecessary

nodes on an xg-graph, we can save space and time.

In this section, we first describe optimizing of a production-graph, then show

how to prune an xg-graph.

Optimization of Production-Graph

Since regular tree grammar allow “conflicting” non-terminals, same non-terminals

may occur more than once in a production-graph. Therefore, more than one iden-

tical query may be obtained when top-K edit scripts are applied to a query.

For example, let us consider a regular tree grammar, where

N = {S , A1, A2, B,C,D, Pcdata},

T = {s, a, b, c, d, pcdata},

S = {S },

P = {S → s(A1, A2), A1→ a(B,C), A2→ a(B,D)

B→ b(Pcdata),C → c(Pcdata),

D→ d(Pcdata), Pcdata→ pcdata(ϵ)}.

Then the algorithm constructs the production-graph of G shown in Fig.7.4. Here,

the terminals of the paths (S , s)→ (A1, a)→ (B, b) and (S , s)→ (A2, a)→ (B, b)

are same, / ↓:: a/ ↓:: b may outputted more than once by solving the K shortest

paths problem on an xg-graph. To avoid this problem, we contract nodes with

same terminals as shown in Fig.7.5. In the following, we describe contraction

formally.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 65

(S, s)

(A1, a)

(B, b)

(A2, a)

(C, c) (D, d)

Figure 7.4: A production-graph that non-terminals conflict

(S, s)

(A1, a)

(B, b)

(A2, a)

(C, c) (D, d)

Figure 7.5: A (contracted) production-graph that non-terminals do not conflict

Recall that a production-graph G(P) = (V, E) is a directed graph, where

V = {(X, a) | X → ar ∈ P},

E = {(X, a)→ (X′, a′) | X → ar ∈ P, X′ occurs in r, X′ , Pcdata,

X′ → a′r′ ∈ P for some a′ ∈ T and some regular expression r′ over N}.

If Xi , X j, ai = a j, there exist nodes (Xi, ai), (X j, a j) reachable from a node in

{(S , a) | S → ar ∈ P}, and the following four conditions hold, then a production-

graph can be constructed by (1) and (2) described bellow.

• (X j, a j) is unreachable from (Xi, ai)

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 66

• (Xi, ai) is unreachable from (X j, a j)

• (Xi, ai) have no (Xi, ai) as a child node.

• (X j, a j) have no (X j, a j) as a child node.

1. Let

Ei = {(Xi, ai)→ (X′i , a
′
i) |

Xi → air ∈ P, X′i occurs in r, X′i , Pcdata,

X′i → a′ir
′ ∈ P for some a′i ∈ T and some regular expression r′ on N},

E j = {(X j, a j)→ (X′j, a
′
j) |

X j → a jr ∈ P, X′j occurs in r, X′j , Pcdata,

X′j → a′jr
′ ∈ P for some a′j ∈ T and some regular expression r′ on N}.

For any (X j, a j) → (X′j, a
′
j) ∈ E j, if a′i , a′j for any (Xi, ai) → (X′i , a

′
i) ∈ Ei,

then add (Xi, ai)→ (X′j, a
′
j) to E and delete (X j, a j)→ (X′j, a

′
j) from E.

2. Let

E j = {(X j−1, a j−1)→ (X j, a j) |

X j → a j−1r ∈ P, X j occurs in r, X j , Pcdata,

X j → a jr′ ∈ P for some a j ∈ T and some regular expression r′ on N}.

Delete every edge in E j from E, and add (X j−1, a j−1)→ (Xi, ai) to E .

Pruning Xg-Graph

Suppose that G is a local tree grammar. Then we can save space and time for

solving K shortest paths problem by deleting nodes unreachable to the accepting

node.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 67

Let us consider the size of an xg-graph G(q,G(P)) for a local tree grammar

G = (N,T, S , P) and a query q. For simplicity, we assume that a production-graph

G(P) of G is a complete n-ary tree. Since whether a node can reach the accepting

node or not depends on→+ and←+ axes, we have two cases to be considered.

• The case where q does not include→+ nor←+ axis : The path that can reach

the accepting node is only one from the assumption. Thus, the number of

necessary nodes on G(P) is log |T |, therefore the size of the xg-graph is

reduced to O(|q| · log |T |).

• The case where q includes →+ or ←+ axis : Let us assume that the depth

of the node that includes →+ or ←+ axis first from the document element

is l. From the assumption, the number of necessary nodes on G(P) is |T |2l ,

therefore the size of the xg-graph is reduced to |q| · |T |2l . In this case, since

→+ or ←+ axis does not occur in l = 0, that is, the document element, we

can reduce the size of an xg-graph to 1
2 or less.

Chapter 8

Experimental Results

In this chapter, we present two experimental results. The first experiment eval-

uates the “quality” of the output of the algorithm, and the second experiment

evaluates the execution time of the algorithm.

The algorithm is implemented in Ruby, and the experiments are performed on

an Apple Xserver with the following specifications.

• Mac OS X Server 10.6.8

• Xeon 2.26GHz CPU

• 6GB Memory

• Ruby-1.9.3

In the following, we use the shorthand notations for child and descendant-or-

self axes, i.e., “↓::” is omitted and “//” is used instead of “/↓∗::”.

8.1 Quality of the Output of the Algorithm

For a Schema S and an incorrect query q written by a user, there are a number

of queries similar to q under S , and thus our algorithm need to output a result

68

CHAPTER 8. EXPERIMENTAL RESULTS 69

containing the “correct query” that the user requires. We evaluate the ratio at

which the results of the algorithm contain such correct queries.

The outline of this experiment is as follows. We first prepare a set of pairs

(qc, qi), where qc is a correct query (a query a user should write) and qi is an

incorrect query (a query a user actually writes). Then for each pair (qc, qi), we

execute the algorithm to obtain top-K queries syntactically close to qi and check

weather the top-K queries contain qc.

Let us give the details of the experiment. The experiment is achieved by the

following five steps.

1. The schema used in this experiment is auction.dtd of XMark [59], which is

a recursive schema. As for XPath queries, we use XPath queries of XPath-

Mark [24]. These queries have a natural interpretation over documents gen-

erated with XMark. Therefore, they simulate realistic query needs of a po-

tential user of the the auction site. Among the queries of XPathMark, we

choose seven queries that can be handled by the implementation of our al-

gorithm. They are treated as “correct queries” qc.

2. XPathMark also purveys a query in natural language and a condition for

each XPath query. For example, for the XPath query

//closed_auction//keyword,

the corresponding query and condition (enclosed in curly brackets) are as

follows.

Keywords in annotations of closed auctions

{descendant}

This condition means “only descendant axis is available”.

These are called “questions”. Table. 8.1 shows the above seven correct

queries and conditions.

CHAPTER 8. EXPERIMENTAL RESULTS 70

3. We request seven people to solve the 7 questions obtained in step 2. That

is, for each question they are asked to write an XPath query so that the

query coincides with what the question means. In this step they can see

auction.dtd at any time. We obtain 7 × 7 = 49 answers (i.e., queries written

by users) in total.

4. We check the above 49 queries by hand and find 20 incorrect ones as shown

in Table 8.1. Now we obtain 20 pairs (qc, qi) of correct queries and incorrect

queries such that qc and qi share the same question.

5. For each incorrect query qi of the 20 pairs (qc, qi) and each K = 1, · · · , 10,

we execute the algorithm for qi under auction.dtd and check whether the

corresponding correct query qc is contained in the output of the algorithm.

We use the following simple cost function. This is determined in an ad-hoc

manner for no particular reason.

γ(l→ l′) = the normalized string edit distance [47]

between l and l′,

γ(ax→ ax′) =

0 if ax = ax′,

2 otherwise,

γ(ϵ → ax :: l) = 1,

γ(ax :: l→ ϵ) = 2.

Fig. 8.1 illustrates the result. As shown in the figure, the algorithm fairly

succeeds in generating top-K queries containing correct queries.

However, the ratio does not reach 100% due to the three incorrect queries 5,

6, and 7 in Table 8.1. Since the cost of location step deletion is set to be larger

than that of location step insertion, incorrect queries containing redundant location

steps tend not to be contained in the result of the algorithm. More concretely, one

CHAPTER 8. EXPERIMENTAL RESULTS 71

Table 8.1: XPath queries (correct queries) and conditions

1. /site/closed auctions/closed auction/annotation/description/text/keyword

Keywords in annotations of closed auctions {child}

2. //closed auction//keyword

Keywords in annotations of closed auctions {descendant}

3. /site/closed auctions/closed auction//keyword

Keywords in annotations of closed auctions {child and descendant}

4. /site/closed auctions/closed auction[annotation/description/text/keyword]/date

Closed auctions with an annotation containing a keyword {filter with child}

5. /site/closed auctions/closed auction[descendant::keyword]/date

Closed auctions with an annotation containing a keyword {filter with descendant}

6. /site/open auctions/open auction/bidder[following-sibling::bidder]

Bidders except the last one of each open auction {following-sibling}

7. /site/open auctions/open auction/bidder[preceding-sibling::bidder]

Bidders except the first one of each open auction {preceding-sibling}

of the incorrect query is the following,

/closed_auctions/closed_auction/annotation/description//keyword

and the corresponding correct query is as follows. The algorithm does not predict

it since it needs to delete two location steps /annotation and /description (and to

insert one location step /site).

/site/closed_auctions/closed_auction//keyword

In this experiment, we use a simple ad-hoc cost function and we might ob-

tain a more better result if we use a more sophisticated cost function. This is an

important future work.

CHAPTER 8. EXPERIMENTAL RESULTS 72

Figure 8.1: Ratios at which the outputs contain correct answers

8.2 Execution Time of the Algorithm

We next evaluate the execution time of the algorithm. In particular, since the

size of an xd-graph may become very large, pruning of xd-graph is important to

obtain top-K queries efficiently. We evaluate the execution time of the algorithm,

as follows.

1. Pruning of xd-graph becomes more effective as the accepting node is near

to the start node. We partition the queries shown in Table 8.1 into two sets.

First set Q1contains queries 1–8 whose target element (accepting node) is

“keyword”, which is far from the start node (the distance between the start

node and the accepting node is 6 in the DTD graph of auction.dtd). Second

set Q2 contains queries 9–20 whose target element is “bidder”, which is near

from the start node (the distance between the start node and the accepting

node is 3).

2. For each set Q1 and Q2 and each K = 1, · · · , 10, we execute the algorithm

CHAPTER 8. EXPERIMENTAL RESULTS 73

Figure 8.2: Execution time with/without pruning of the algorithm for queries
targeting “far” nodes

with the same cost function of the previous experiment and measure its

execution time.

Figure 8.2 plots the average execution times for Q1, and Fig. 8.3 for Q2,

with/without pruning. With pruning the average execution time for Q1 is about

0.51 to 0.81 seconds, while without pruning execution requires about twice the

time in the average. On the other hand, with pruning the average execution time

for Q2 is about 10 milliseconds, while without pruning the average execution time

is increased by a factor of 85 to 113.

Thus, with pruning the algorithm runs efficiently and the pruning brings a

much reduction of the execution time of the algorithm especially for queries tar-

geting near nodes.

CHAPTER 8. EXPERIMENTAL RESULTS 74

Figure 8.3: Execution time with/without pruning of the algorithm for queries
targeting “near” nodes

CHAPTER 8. EXPERIMENTAL RESULTS 75

Table 8.2: Incorrect queries written by users

1. /closed auctions/closed auction/annotation/description/text/keyword

2. /site/closed auctions/closed auction/annotation/keyword

3. /closed auction/annotation/keyword

4. /closed auctions/closed auction/annotation/keyword

5. /closed auctions/closed auction/annotation/description//keyword

6. /site//closed auction/annotation/keyword

7. //closed auction/annotation/keyword

8. /closed auctions/closed auction//keyword

9. /open auction/following-sibling::bidder

10. /site/open auctions/open auction/following-sibling::bidder

11. /open auctions/open auction/bidder/following-sibling::bidder

12. /site/open auctions/open auction/following-sibling::bidder

13. /open auction/bidder/following-sibling::bidder

14. /open auction/preceding-sibling::bidder

15. /site/open auctions/open auction/preceding-sibling::bidder

16. /open auctions/open auction/bidder/preceding-sibling::bidder

17. /site/open auctions/open auction/preceding-sibling::bidder

18. /open auction/bidder/preceding-sibling::bidder

19. /site/open auctions/bdder/following-sibling::bidder

20. /site/open auctions/bdder/preceding-sibling::bidder

Chapter 9

Discussion

This chapter discusses about the XPath query correction problem, mainly from a

point of view of computational complexity and efficiency.

9.1 Edit Operation and Intractability

The complexity of the problem depends on the edit operations applied to XPath

queries; “core” and “core + extended”. The problem is tractable for the former

edit operations, while the problem becomes NP-hard for the latter edit operations

even if only simple XPath queries are allowed. The main difference between the

former and the latter is whether location step exchange is allowed or not. Here,

let us consider the reason why allowing location step exchange considerably in-

creases the complexity of the problem. In Theorem 1, the NP-hardness of the

problem in the case where location step exchange is allowed is shown by reducing

the Hamilton path problem to the XPath query correction problem. The hardness

of the Hamilton path problem comes from the fact that for a given graph G, a node

ordering of G that brings a Hamilton path is hard to find. The proof of the theorem

means that, by allowing location step exchange, the number of possible orderings

of location steps may increase exponentially, which implies that finding an opti-

mum valid query becomes considerably hard. Users that do not fully understand

76

CHAPTER 9. DISCUSSION 77

the structure of a schema tend to write invalid queries in which some of the loca-

tion steps are incorrectly interchanged. In this sense, location step exchange is a

useful edit operation. However, one location step exchange can be simulated by

a pair of a location step deletion and a location step insertion, although the latter

cost does not always coincide with the former cost. In addition, the algorithm pro-

posed in this dissertation presents top-K valid queries to users rather than a single

valid query. This suggests that restricting the available set of edit operations to

“core” is not too restrictive from a practical point of view.

9.2 Algorithm and Complexity

Let us next consider the time complexity of the algorithm, in terms of the ex-

pressive power of schema. As shown in Tables 9.1 and 9.2, the time complexity

of the algorithm under DTD is almost equivalent to the complexity under regular

tree grammar. According to [51], there are three major classes of schema lan-

guages; local tree grammar, single-type tree grammar, and regular tree grammar.

Regular tree grammar corresponds to RELAX NG [54], single-type tree grammar

corresponds to W3C XML Schema [79, 80], and local tree grammar corresponds

to DTD. It is shown that the expressive power of regular tree grammar is strictly

larger than that of single-type tree grammar, and the expressive power of single-

type tree grammar is strictly larger than that of local tree grammar. Although

there is a significant gap between regular tree grammar and DTD in terms of tree

grammar, the expressive power of schema hardly affects the time complexity of

the algorithm.

Let us consider the time complexity of the algorithm further. Assuming that

the set of available edit operations is restricted to “core”, the algorithm finds, for

a schema S , a (possibly invalid) XPath query q, and a positive integer K, top-

K queries syntactically close to q. Firstly, if XPath queries are restricted to be

simple, then the algorithm runs in time polynomial of the sizes of S and q. On the

CHAPTER 9. DISCUSSION 78

other hand, if XPath queries in XP are allowed, then the algorithm runs in time

polynomial of the sizes of S and q in the case where the nest level of predicates

of q is bounded by a constant, while the running time becomes exponential if the

nest level of predicates of q is unrestricted. To see why the nest level of predicates

affects the complexity of the algorithm, let us consider the following query

/ls1[exp1]/ · · · /lsn[expn],

where lsi is a location step and expi is a predicate. Note that if the last label of lsi

is changed to another label, then corrections to predicate expi becomes completely

different. Therefore, corrections to a predicate expi are affected by the corrections

to the location step lsi that holds expi. This is the reason why the complexity of the

algorithm increases exponentially to the nest level of predicates. It is open whether

the problem is tractable or not in the case where arbitrary nest level of predicate

is allowed, and to investigate the (in)tractability is an interesting problem.

The results of the experimental evaluations show the efficiency of the algo-

rithm. In Chapter 8, it is shown that the algorithm runs highly efficiently, although

the evaluations are done under only XMark auction.dtd. However, auction.dtd

used in the evaluations is a relatively large DTD. Actually, auction.dtd is the sixth

largest DTD among the 27 real-world DTDs listed in [34]. Moreover, auction.dtd

contains cycles. These imply that the algorithm runs efficiently for most of real-

world DTDs. However, more experiments should be done under schemas other

than auction.dtd, which is left as a future work.

9.3 Boundary of Tractability and Intractability

As shown in Tables 9.1 and 9.2, the difference between “core” and “core + ex-

tended” is found to be the major boundary for the complexity of the XPath query

correction problem. In the former case, the problem is tractable for many cases,

CHAPTER 9. DISCUSSION 79

Table 9.1: The complexity of the XPath query correction problem under DTD

Edit operation

Query class

simple
XP

mnl(q) ≤ constant general case

core
PTIME PTIME O(K · |q| · |Σe|2+mnl(q) · log(|q| · |Σe|))

(Theorem 4) (Theorem 6) (Theorem 6)

core + extended
NP-hard NP-hard

(Theorems 1 and 2) (Theorems 1 and 2)

while in the latter case the problem becomes intractable even for simple XPath

queries. More specifically, in the former case the problem can be solved effi-

ciently if a query is simple or in XP with bounded nest level of predicates, but the

running time of the algorithm grows exponentially if the nest level is not bounded

by any constant. On the other hand, the complexity of the problem is shown to be

hardly affected by the expressive power of schema.

Finally, there are still some problems that need to be investigated. First, it is

open whether the problem is tractable in the case where a query is in XP and the

nest level of predicates is not bounded. Second, XP does not allow upward axes

such as parent and ancestor-or-self. Investigating the complexity of the problem

for broader XPath classes allowing such axes is also left as a future work.

CHAPTER 9. DISCUSSION 80

Table 9.2: The complexity of the XPath query correction problem under regular
tree grammar

Edit operation

Query class

simple
XP

mnl(q) ≤ constant general case

core
PTIME PTIME O(K · |q| · |P|2+mnl(q) · log(|q| · |P|))

(Theorem 7) (Theorem 8) (Theorem 8)

core + extended
NP-hard NP-hard

(Theorems 1 and 2) (Theorems 1 and 2)

Chapter 10

Conclusion

In this dissertation, we firstly proposed two classes of XPath queries and two

classes of edit operations to XPath queries. We considered the intractability of the

XPath query correction problem in terms of the classes of edit operations and the

classes of XPath query. Then we proposed an algorithm that finds, for a query q,

a schema S , and a positive integer K, top-K queries syntactically close to q under

S . Experimental results suggested that the algorithm outputs “correct” answers

efficiently in many cases.

The results of this dissertation are summarized as follows. First, the extended

edit operations clearly influence the complexity of the query correction problem.

However, the core edit operations are still useful because the edit operations are

complete even without the extended edit operations. Next, the complexity of the

query correction problem remains the same under DTD and regular tree gram-

mar. Thus the expressive power of schema does not affect the complexity of this

problem. Finally, for the XPath query classes, the XPath queries in XP can be

corrected efficiently in many cases if the core edit operations are allowed. How-

ever, whether this problem can be solve efficiently or not in the case where any

nest level of predicate is allowed is open, and identifying the complexity is left as

a future work.

In addition, to apply this research in practical application areas, several ex-

81

CHAPTER 10. CONCLUSION 82

tensions to the algorithms are desired. First, to output useful candidate queries,

using not only schema but also some part of data is especially effective for cor-

recting and recommending predicates. For example, an incorrect numerical value

in a predicate can be corrected by referring data values in the places indicated

by the predicate. Next, cost settings of edit operations directly influence output

queries and user experience. Therefore, for optimizing costs of edit operations,

some learning mechanism based on user feedback are required to collect users’

errors and analyze the tendency of the errors.

Acknowledgement

The author would like to give his sincere thanks, first of all, Associate Professor

Nobutaka Suzuki who graciously supported and guided the author. Without him,

the author did not aim to become a researcher.

The author is grateful to Professor Atuyuki Morishima and Professor Tetsuji

Satoh, both of whom shared their time and knowledge with him. Their advice will

continue to live in his future.

The author would like to thank Professors Shigeo Sugimoto and Associate

Professor Toshiyuki Amagasa both of whom provided many essential and benefi-

cial comments their reviews of his dissertation.

The author also thank to all the members of nslab, mlab and hitslab. They

usually encouraged and gave pleasure to him.

Furthermore, the author thank to his colleagues in Chiba university. Thanks to

their support, the author had completed this dissertation.

Finally, the author express his deepest thanks to his parents and his friends for

their infinite encouragement and kindness.

83

Bibliography

[1] Alon, N., Milo, T., Neven, F., Suciu, D. and Vianu, V.: Typechecking XML

Views of Relational Databases, ACM Transactions on Computational Logic,

Vol. 4, No. 3, pp. 315–354 (2003).

[2] Alon, N., Milo, T., Neven, F., Suciu, D. and Vianu, V.: XML with data

values: typechecking revisited, Journal of Computer and System Sciences,

Vol. 66, No. 4, pp. 688–727 (2003).

[3] ALTOVA: XMLSpy. http://www.altova.com/jp/xmlspy.html.

[4] Amer-Yahia, S., Cho, S., Lakshmanan, L. V. S. and Srivastava, D.: Mini-

mization of Tree Pattern Queries, In Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data (SIGMOD 2001), ACM,

pp. 497–508 (2001).

[5] Amer-Yahia, S., Cho, S. and Srivastava, D.: Tree Pattern Relaxation, In Pro-

ceedings of the 8th International Conference on Extending Database Tech-

nology (EDBT 2002), Springer Berlin Heidelberg, pp. 89–102 (2002).

[6] Amer-Yahia, S., Lakshmanan, L. V. and Pandit, S.: FleXPath: Flexible struc-

ture and full-text querying for XML, In Proceedings of the 2004 ACM SIG-

MOD International Conference on Management of Data (SIGMOD 2004),

ACM, pp. 83–94 (2004).

84

BIBLIOGRAPHY 85

[7] Angluin, D.: Learning Regular Sets from Queries and Counterexamples,

Information and Computation, Vol. 75, No. 2, pp. 87–106 (1987).

[8] Apache Software Foundation: Xalan. http://xalan.apache.org/.

[9] Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M.: Proof Veri-

fication and the Hardness of Approximation Problems, Journal of the ACM,

Vol. 45, No. 3, pp. 501–555 (1998).

[10] Benedikt, M., Fan, W. and Geerts, F.: XPath Satisfiability in the Presence

of DTDs, In the Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS 2005), ACM, pp. 25–

36 (2005).

[11] Benedikt, M., Fan, W. and Geerts, F.: XPath Satisfiability in the Presence of

DTDs, Journal of the ACM, Vol. 55, No. 2, pp. 8:1–8:79 (2008).

[12] Böckenhauer, H.-J. and Bongartz, D.: Algorithmic Aspects of Bioinformatics

(Natural Computing Series), Springer-Verlag Berlin Heidelberg (2007).

[13] Brodianskiy, T. and Cohen, S.: Self-correcting Queries for Xml, In Pro-

ceedings of the 16th ACM Conference on Conference on Information and

Knowledge Management (CIKM 2007), ACM, pp. 11–20 (2007).

[14] Chen, Y., Wang, W., Liu, Z. and Lin, X.: Keyword Search on Structured

and Semi-structured Data, In Proceedings of the 2009 ACM SIGMOD Inter-

national Conference on Management of Data (SIGMOD 2009), ACM, pp.

1005–1010 (2009).

[15] Choi, B.: What are real DTDs like?, In Proceedings of the 5th International

Workshop on the Web and Databases (WebDB 2002), pp. 43–48 (2002).

[16] Cohen, S. and Brodianskiy, T.: Correcting queries for XML, In Proceedings

of the 16th ACM Conference on Conference on Information and Knowledge

Management (CIKM 2007), Vol. 34, No. 8, pp. 690–710 (2009).

BIBLIOGRAPHY 86

[17] Demaine, E. D., Mozes, S., Rossman, B. and Weimann, O.: An Optimal

Decomposition Algorithm for Tree Edit Distance, ACM Transactions on Al-

gorithms, Vol. 6, No. 1, pp. 2:1–2:19 (2009).

[18] Eppstein, D.: Finding the k shortest paths, SIAM Journal on Computing,

Vol. 28, No. 2, pp. 652–673 (1998).

[19] Fan, J., Li, G. and Zhou, L.: Interactive SQL query suggestion: Making

databases user-friendly, In Proceedings of the IEEE 27th International Con-

ference on Data Engineering (ICDE 2011), IEEE Computer Society, pp.

351–362 (2011).

[20] Fazzinga, B., Flesca, S. and Furfaro, F.: XPath query relaxation through

rewriting rules, IEEE Transactions on Knowledge and Data Engineering,

Vol. 23, pp. 1583–1600 (2011).

[21] Fazzinga, B., Flesca, S. and Pugliese, A.: Retrieving XML Data from Het-

erogeneous Sources Through Vague Querying, ACM Transactions on Inter-

net Technology, Vol. 9, No. 2, pp. 7:1–7:35 (2009).

[22] Feng, D.-F. and Doolittle, R. F.: Progressive sequence alignment as a prereq-

uisite to correct phylogenetic trees, Journal of Molecular Evolution, Vol. 25,

No. 4, pp. 351 – 60 (1987).

[23] Flesca, S., Furfaro, F. and Masciari, E.: On the Minimization of Xpath

Queries, In Proceedings of the 29th International Conference on Very Large

Data Bases (VLDB 2003), ACM, pp. 153–164 (2003).

[24] Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Gener-

ated Data, In Proceedings of the 3rd International XML Database Sympo-

sium (XSym 2005), Springer Berlin Heidelberg, pp. 129–143 (2005).

[25] Gao, X., Xiao, B., Tao, D. and Li, X.: A survey of graph edit distance,

Pattern Analysis and Applications, Vol. 13, No. 1, pp. 113–129 (2010).

BIBLIOGRAPHY 87

[26] Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to

the Theory of NP-Completeness, W.H. Freeman (1979).

[27] Geerts, F. and Fan, W.: Satisfiability of XPath Queries with Sibling Axes, In

Revised Selected Papers of the 10th International Workshop on Database

Programming Languages (DBPL 2005), Springer Berlin Heidelberg, pp.

122–137 (2005).

[28] Genevès, P. and Layaı̈da, N.: A System for the Static Analysis of XPath,

ACM Transactions on Information Systems, Vol. 24, No. 4, pp. 475–502

(2006).

[29] Higgins, D. G., Thompson, J. D. and Gibson, T. J.: Using CLUSTAL for

multiple sequence alignments, Computer Methods for Macromolecular Se-

quence Analysis, Methods in Enzymology, Vol. 266, Academic Press, pp.

383 – 402 (1996).

[30] Horie, K. and Suzuki, N.: Extracting Differences Between Regular Tree

Grammars, In Proceedings of the 28th Annual ACM Symposium on Applied

Computing (SAC 2013), ACM, pp. 859–864 (2013).

[31] Ishihara, Y., Hashimoto, K., Shimizu, S. and Fujiwara, T.: XPath Satisfiabil-

ity with Downward and Sibling Axes is Tractable Under Most of Real-world

DTDs, In Proceedings of the 12th International Workshop on Web Informa-

tion and Data Management (WIDM 2012), ACM, pp. 11–18 (2012).

[32] Ishihara, Y., Morimoto, T., Shimizu, S., Hashimoto, K. and Fujiwara, T.:

A Tractable Subclass of DTDs for XPath Satisfiability with Sibling Axes,

In Proceedings of the 12th International Symposium on Database Pro-

gramming Languages (DBPL 2009), Springer Berlin Heidelberg, pp. 68–83

(2009).

BIBLIOGRAPHY 88

[33] Ishihara, Y., Shimizu, S. and Fujiwara, T.: Extending the Tractability Results

on XPath Satisfiability with Sibling Axes, In Proceedings of the 7th Interna-

tional XML Database Symposium (XSym 2010), Springer Berlin Heidelberg,

pp. 33–47 (2010).

[34] Ishihara, Y., Suzuki, N., Hashimoto, K., Shimizu, S. and Fujiwara, T.:

XPath Satisfiability with Parent Axes or Qualifiers Is Tractable under Many

of Real-World DTDs, In Proceedings of the 14th International Sympo-

sium on Database Programming Languages (DBPL 2013) (2013). http:

//arxiv.org/abs/1308.0769.

[35] Ives, Z. G., Halevy, A. Y. and Weld, D. S.: An XML query engine for

network-bound data, VLDB Journal, Vol. 11, No. 4, pp. 380–402 (2002).

[36] Karchmer, M., Newman, I., Saks, M. and Wigderson, A.: Non-deterministic

Communication Complexity with Few Witnesses, Journal of Computer and

System Sciences, Vol. 49, No. 2, pp. 247–257 (1994).

[37] Kay, M. H.: SAXON. http://saxon.sourceforge.net/.

[38] Leonardi, E., Hoai, T. T., Bhowmick, S. S. and Madria, S.: DTD-Diff: A

Change Detection Algorithm for DTDs, In Proceedings of the 11th Interna-

tional Conference on Database Systems for Advanced Applications (DAS-

FAA 2006), Springer Berlin Heidelberg, pp. 817–827 (2006).

[39] Leonardi, E., Hoai, T. T., Bhowmick, S. S. and Madria, S.: DTD-Diff:

A change detection algorithm for DTDs, Data & Knowledge Engineering,

Vol. 61, No. 2, pp. 384 – 402 (2007).

[40] Levenshtein, V. I.: Binary codes capable of correcting deletions, insertions

and reversals, Soviet Physics Doklady, Vol. 10, pp. 707–710 (1966).

[41] Li, G., Feng, J., Wang, J. and Zhou, L.: Effective keyword search for valu-

able lcas over XML documents, In Proceedings of the 16th ACM Conference

BIBLIOGRAPHY 89

on Conference on Information and Knowledge Management (CIKM 2007),

ACM, pp. 31–40 (2007).

[42] Li, Y., Yu, C. and Jagadish, H. V.: Schema-Free XQuery, In Proceedings of

the 30th International Conference on Very Large Data Bases (VLDB 2004),

ACM, pp. 72–83 (2004).

[43] Li, Y., Yu, C. and Jagadish, H. V.: Enabling Schema-Free XQuery with

meaningful query focus, VLDB Journal, Vol. 17, pp. 355–377 (2008).

[44] Martens, W. and Neven, F.: Frontiers of Tractability for Typechecking Sim-

ple XML Transformations, In Proceedings of the 23rd ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS

2004), ACM, pp. 23–34 (2004).

[45] Martens, W. and Neven, F.: On the Complexity of Typechecking Top-down

XML Transformations, Theoretical Computer Science, Vol. 336, No. 1, pp.

153–180 (2005).

[46] Martins, E.: K-th Shortest Paths Problem. http://www.mat.uc.pt/

˜eqvm/OPP/KSPP/KSPP.html.

[47] Marzal, A. and Vidal, E.: Computation of Normalized Edit Distance and Ap-

plications, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 15, pp. 926–932 (1993).

[48] Miklau, G. and Suciu, D.: Containment and Equivalence for a Fragment of

XPath, Journal of the ACM, Vol. 51, No. 1, pp. 2–45 (2004).

[49] Montazerian, M., Wood, P. T. and Mousavi, S. R.: XPath Query Satisfiability

is in PTIME for Real-world DTDs, In Proceedings of the 5th International

XML Database Symposium (XSym 2007), Springer Berlin Heidelberg, pp.

17–30 (2007).

BIBLIOGRAPHY 90

[50] Morishima, A., Kitagawa, H. and Matsumoto, A.: A machine learning ap-

proach to rapid development of XML mapping queries, In Proceedings of

the 20th IEEE International Conference on Data Engineering (ICDE 2004),

pp. 276–287 (2004).

[51] Murata, M., Lee, D., Mani, M. and Kawaguchi, K.: Taxonomy of XML

Schema Languages Using Formal Language Theory, ACM Transactions on

Internet Technology, Vol. 5, No. 4, pp. 660–704 (2005).

[52] Neven, F. and Schwentick, T.: XPath Containment in the Presence of Dis-

junction, DTDs, and Variables, In Proceedings of the 9th International Con-

ference on Database Theory (ICDT 2003), Springer Berlin Heidelberg, pp.

315–329 (2003).

[53] Nguyen, K. and Cao, J.: Exploit Keyword Query Semantics and Structure

of Data for Effective XML Keyword Search, In Proceedings of the 21st

Australasian Conference on Database Technologies (ADC 2010), Australian

Computer Society, Inc., pp. 133–140 (2010).

[54] OASIS: RELAX NG (Clark, J. and Murata, M., Eds.). https://www.

oasis-open.org/committees/relax-ng/spec-20011203.html.

[55] Pawlik, M. and Augsten, N.: RTED: A Robust Algorithm for the Tree Edit

Distance, Proceedings of the VLDB Endowment, Vol. 5, No. 4, pp. 334–345

(2011).

[56] Ramanan, P.: Efficient Algorithms for Minimizing Tree Pattern Queries, In

Proceedings of the 2002 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD 2002), ACM, pp. 299–309 (2002).

[57] Schenkel, R. and Theobald, M.: Feedback-Driven Structural Query Expan-

sion for Ranked Retrieval of XML Data, In Proceedings of the 10th In-

BIBLIOGRAPHY 91

ternational Conference on Extending Database Technology (EDBT 2006),

Springer Berlin Heidelberg, pp. 331–348 (2006).

[58] Schlieder, T.: Schema-driven evaluation of approximate tree-pattern queries,

In Proceedings of the 8th International Conference on Extending Database

Technology (EDBT 2002), Springer Berlin Heidelberg, pp. 514–532 (2002).

[59] Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I. and Busse,

R.: XMark: A Benchmark for XML Data Managemet, In Proceedings of

the 28th International Conference on Very Large Data Bases (VLDB 2002),

VLDB Endowment, pp. 974–085 (2002).

[60] Schulz, U. K. and Mihov, S.: Fast string correction with Levenshtein au-

tomata, International Association for Pattern Recognition, Vol. 5, No. 1, pp.

67–85 (2002).

[61] Schwentick, T.: XPath Query Containment, ACM SIGMOD Record, Vol. 33,

No. 1, pp. 101–109 (2004).

[62] Smith, T. and Waterman, M.: Identification of common molecular subse-

quences, Journal of Molecular Biology, Vol. 147, No. 1, pp. 195 – 197

(1981).

[63] SoftTree Technologies: SoftTree SQL Assistant. http://www.

softtreetech.com/isql.htm.

[64] Sugimura, K., Ishihara, Y. and Fujiwara, T.: Proposal and Evaluation of

Polynomial-time Algorithms for Deciding XPath Satisfiability, IPSJ Jour-

nal, Vol. 57, No. 5, pp. 1477–1488 (2016). (in Japanese with English Ab-

stract).

[65] Suzuki, N.: On Finding an Edit Script between an XML Document and a

DTD, IPSJ Digital Courier, Vol. 2, pp. 813–825 (2006).

BIBLIOGRAPHY 92

[66] Suzuki, N.: Finding K Optimum Edit Scripts between an XML Document

and a RegularTree Grammar, In Proceedings of the 1st Workshop on Emerg-

ing Research Opportunities for Web Data Management (EROW 2007), pp.

81–95 (2007).

[67] Suzuki, N.: Satisfiability of Simple Xpath Fragments Under Fixed DTDs, In

Proceedings of the 28th British National Conference on Databases (BNCOD

2011), Springer Berlin Heidelberg, pp. 194–208 (2011).

[68] Suzuki, N. and Fukushima, Y.: Satisfiability of Simple Xpath Fragments

in the Presence of DTDs, In Proceedings of the 11th ACM International

Workshop on Web Information and Data Management (WIDM 2009), ACM,

pp. 15–22 (2009).

[69] Suzuki, N., Fukushima, Y. and Ikeda, K.: Satisfiability of Simple XPath

Fragments under Duplicate-Free DTDs, IEICE Transactions on Information

and Systems, Vol. 96, No. 5, pp. 1029–1042 (2013).

[70] Tai, K.-C.: The Tree-to-Tree Correction Problem, Journal of the ACM,

Vol. 26, No. 3, pp. 422–433 (1979).

[71] Termehchy, A. and Winslett, M.: Effective, Design-independent XML Key-

word Search, In Proceedings of the 18th ACM Conference on Conference on

Information and Knowledge Management (CIKM 2009), ACM, pp. 107–116

(2009).

[72] Termehchy, A. and Winslett, M.: Using structural information in XML key-

word search effectively., ACM Transactions on Database Systems, Vol. 36,

No. 1, p. 4 (2011).

[73] Thomas H. Cormen, Charles E. Leiserson, R. L. R. and Stein, C.: Introduc-

tion to Algorithms, Third Edition, The MIT Press (2009).

BIBLIOGRAPHY 93

[74] Ukkonen, E.: On approximate string matching, Foundations of Computation

Theory: Proceedings of the 1983 International FCT-Conference, Springer

Berlin Heidelberg, pp. 487–495 (1983).

[75] Waterman, M. S. and Eggert, M.: A new algorithm for best subsequence

alignments with application to tRNA-rRNA comparisons, Journal of Molec-

ular Biology, Vol. 197, No. 4, pp. 723 – 728 (1987).

[76] Welty, C.: Correcting user errors in SQL, International Journal of Man-

Machine Studies, Vol. 22, No. 4, pp. 463 – 477 (1985).

[77] Wood, P. T.: Minimising Simple XPath Expressions, In Proceedings of the

4th International Workshop on the Web and Databases (WebDB 2001), pp.

13–18 (2001).

[78] Wood, P. T.: Containment for XPath Fragments under DTD Constraints, pp.

300–314, Springer Berlin Heidelberg (2003).

[79] World Wide Web Consortium: W3C XML Schema Definition Language

(XSD) 1.1 Part 1: Structures (Gao, S., Sperberg-McQueen, C. M. and

Thompson, H. S., Eds.). https://www.w3.org/TR/xmlschema11-1/.

[80] World Wide Web Consortium: W3C XML Schema Definition Language

(XSD) 1.1 Part 2: Datatypes (Peterson, D., Gao, S., Malhotra, A., Sperberg-

McQueen, C. M. and Thompson, H. S., Eds.). https://www.w3.org/TR/

xmlschema11-2/.

[81] World Wide Web Consortium: XML Path Language (XPath) (Clark, J. and

DeRose, S., Eds.). http://www.w3.org/TR/xpath.

[82] World Wide Web Consortium: XML Query Language (XQuery) (Boag, S.,

Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J and Siméon, J.,

Eds.). https://www.w3.org/TR/xquery/.

BIBLIOGRAPHY 94

[83] World Wide Web Consortium: XSL Transformations (XSLT) (Clark, J.,

Ed.). http://www.w3.org/TR/xslt.

[84] Xu, Y. and Papakonstantinou, Y.: Efficient keyword search for smallest

LCAs in XML databases, In Proceedings of the 2005 ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD 2005), ACM,

pp. 527–538 (2005).

[85] Zhang, K. and Shasha, D.: Simple Fast Algorithms for the Editing Distance

between Trees and Related Problems, SIAM Journal on Computing, Vol. 18,

No. 6, pp. 1245–1262 (1989).

[86] Zhang, K., Statman, R. and Shasha, D.: On the Editing Distance Between

Unordered Labeled Trees, Information Processing Letters, Vol. 42, No. 3,

pp. 133–139 (1992).

Full List of Publications

Journal Papers (refereed)

1. Suzuki, N., Fukushima, Y. and Ikeda, K.: Satisfiability of Simple XPath

Fragments under Duplicate-Free DTDs, IEICE Transactions on Information

and Systems, Vol. E96-D, No. 5, pp. 1029–1042 (2013).

2. Ikeda, K. and Suzuki, N.: An Algorithm for Finding top-K Valid XPath

Queries, IPSJ Transactions on Databases, Vol. 7, No. 2, pp. 70–82 (2014).

3. Suzuki, N., Ikeda, K. and Kwon, Y.: An Algorithm for All-Pairs Regular

Path Problem on External Memory Graphs, IEICE Transactions on Infor-

mation and Systems, Vol. E99-D, No. 4, pp. 944-958 (2016).

International Conference Papers (refereed)

1. Ikeda, K. and Suzuki, N.: An Algorithm for Finding K Correct XPath Ex-

pressions, In Proceedings of the 3rd International Workshop with Mentors

on Databases, Web and Information Management for Young Researchers

(iDB Workshop 2011), 10p (2011).

2. Ikeda, K. and Suzuki, N.: Finding top-K Correct XPath Queries of User’s

Incorrect XPath Query, In Proceedings of the 23rd International Conference

on Database and Expert Systems Applications (DEXA 2012), pp. 116–130

(2012).

95

FULL LIST OF PUBLICATIONS 96

3. Hasegawa, K., Ikeda, K. and Suzuki, N.: An Algorithm for Transforming

XPath Expressions According to Schema Evolution, In Proceedings of the

First International Workshop on Document Changes: Modelling Detection,

Storage and Visualization (co-located with ACM DocEng 2013), 8p (2013).

4. Suzuki, N., Ikeda, K. and Kwon, Y.: An External Memory Algorithm for

All-Pairs Regular Path Problem, In Proceedings of the 26th International

Conference on Database and Expert Systems Applications (DEXA 2015),

pp. 399–414 (2015).

5. Sakurai, E., Morishima, A., Ikeda, K. and N, Suzuki.: Bookshelf Problem:

A Human-in-the-Loop Approach for Data Grouping without Complete In-

formation, In Proceedings of iConference 2016, 10p (2016).

6. Ikeda, K., Morishima, A., Rahman, H., Roy, S. B., Thirumuruganathan, S.,

Amer-Yahia, S. and Das, G.: Collaborative Crowdsourcing with Crowd4U,

In Proceedings of the 42nd International Conference on Very Large Data

Bases (VLDB 2016), 4p (2016)(accepted).

