A Study on Algorithms for Finding
Correct XPath Queries

Kosetsu IKEDA

Graduate School of Library, Information and Media Studies

University of Tsukuba

July 2016

XML BE&ERICH T BIEEERE
FERE7ZIITY ZLICEAT R

3=

Gk U7z MG A RO R 2K WigE, AT %2 ELBET
LZHENRH L. ZD XD RIGEIZ, ELOWHAERDEZ BT 2 LT
HATENTEHATHS. ZNET, BFRET —XRX—-RTHBVWTIE, SQL XD
Ak % X T B 72D DFESREINT E /2. —J, XML(Extensible Markup
Language) XBfRT — XA R—A L LR THO AR D EMREEEZELTVWS. 2
D7z, XMLIZEWTHAEYADHRZ XET LD LI OKN#ETHY, A
NEFIRFFE A EFLEL R VDODPERTH 5.

MeaER0HR 2 LBT2720121%, F— X EEICHET 5 EMRIERZ
HET 2HEDR DD, TDOEIWERERLAIELLT, T—XE2EALT
T AKEEICET A EmEINET 5 HEE, T—RZDOROVIZAF—T %S
I BHED2O08FZ6NE. LHLrL, BIZIZITVWSO0PDOMELRD 5.
9, TI3ANY—=PkFa) T LOHENS, T—XOREEIT
2RI 200PRELRGEND L. RIZ, T—ROV A XFIAF—DEN
LMD TRKENWD, FHREEHREORONZBERICBEWTIXERRT —X %
W 2 Z 2 DBREERGENDH L. T I TARITIIEEIHEHL, AF¥—
IPSRONDEEFRICEDVTHAEEADFIRZ LTSI LiI2ONWT
BRI L. 1z, MEEA0Rd%2%XET 2546, MEEGEROBIZXE
2179 (BEL0Mi7%RE) Hike, EULLBVHEEA GRS -5 E
WWEDORZIELWEDIEBIET B AEENREZONS. TN DHEIFAN

i

WZHNLT A EDOTIRARL, fHHTAZ B AEETHD. L DbITEEI, &
BRI NMEE R T LDORERZEI R VRR, AF—<DAEHFINTHE
FAPREULLSBWEDE RS GEREIZEMNTHS. R XX TIXREIZE
HLU, FMAZIZE > TRl &7z XPath X2 IEL Wb DITEBIET B M@EIZD
WTHHET 5.

F—REZBETAF - E OV THAERDIES BV 2T 8
% WHKIET (static analysis) & W\, KGR TEES HHE S iFIETD 1 DT
H%5. ZIT, XMLIZE T S HHHENTEEIZL < OEE I WTEIEREET
HbHZEPHISNT WS, FlZIE, XPath 7 & rJREM: R (XPath satisfiability
problem) I XML iIZHWTHEH AL M SN TWASHNEITIIED S 5D 1D
THb. ZOMBIE—BRITIFRESRBETH DI LARINTED, childifie
descendant-or-self HiD AN FF I NBGEIZEVWTHE NPREETH 5 Z & H35
Mo T\W5, 7z, XPath @& ¥R (XPath containment problem) £ XML
ZBEWTELHSNT WL EEIETH 55, ZOMELIESETDH
L5ZENHOoNTVWS. KX TELT 5 XPath NMEEMEICOWTH, Z
DRFEDR L R 20 EPIFEHHETRL, 7TV XL - GHEERNED
BAEPS ZOMEOEZ RIS 22 L IFEERRETH L. T I TARRX
TlE, XPath REEMBEIZHENT, AF—<X XPath RITH T B HIFI DR X
DB S, FERNERES LRI BT DHOZHSPIZTEI L2 E
mHWE T 5.

AKX DEREBRIIUATDED TH 5.

1. 2N E T, XPath XX BEEZ AT ESE U igin U 7258137 1E
UZdrorz. AT, XPath RICH T 2 MERIEOE RN EHEZE
5.2, 2DO0EBIED T 5 X core B L W extended ZEDS. T1H
DEFIZE D, XPath XMEEMEDFHEEHES LTI Y X LI
THRAN LR ZEZATREE LTWa. ZHITIA T, XPath XD 2 DD
a2 I Asimple BEUXPEEHRT D, N SMmMERIES & U XPath
D7 Z AN, XPath NMEEMBEDGBEEM S I E L5 2 5 FELER
THHIZLZPEOMTT B, KT, WEBRMEL U Textended ZFF L 72

iii
%6, XPath ABLRENGIRRNETH S I L EZHLNITT S,

2. fEEEL U Tcore DAZAWS &L 7= ET, XPath A& F &
B T2HODOT IV T XALZERETS. ZOT)ILVITY ALY 5
A% @ U T, XPath 27 simple 72 D Tdh 5 %6, XPath MMEIEMED
ZIEARME AR TH D Z L ZHSHPIZT S, & 512, XPath XA XPIZ
BT 25512 HEWT, XPath AMEEREN L IHAR R AR TH 272D
+REHEEHONTT S.

i EEHEAF 1 XPath REEREZ LML T 272 DIZBEATRTHY, TD
FIEOR REM S ICHHE 25X 5. AT, 4FIZEWT XPath (249
5 6 MOMERFEZERT S, THIE, (HEIOEH, 2) 7 ~NVDER, (3)
Or—yavAFy JORA, G)ar—rary ATy 7Ol 5)ar—
VavATy IO, (6) BiEOKM, THE. JIT,)HH @ T
DIRERIEE core W\, (5) BL U (6) % extended &\ 5. T o DFEE
#EIL, R D XPath K% {HOFE D XPath IZET E 5 &\ 5 FEIKR T
4 (complete) TH H, ZDERMEITFELEIEZ core RBDIZREL THED
VDOEWOIHEEZEAET S, ZOMEDFHAEEMIIIEELEZ5H5—D0D
Ik XPath A TH 5. AKX Tlk, XPath XD 2 DDED 2 7 A simple &
XPZE#ZT 5. XPiX, #li& U T child, descendant-or-self, following-sibling,
preceding-sibling, attribute % FA\ 7z XPath XD 5 R B2 EATH B, 7z, XP
IZJES % XPath X ¢ 2R FEL BB HEHA L AWEDTH S & &, gldsimple
THdL VI, TNHEHRICFEDWT, XPath REIEMEE [XPath R g &
DTDD IZX LT, DD FTqlZibia\ (fREEHED RS /N VW) XPath X%
RKoOBME] L UTERL, ZOMEOFREEMS ZHOMITE. £7,
MREEEME & U T core IZNZ T extended D AN HETH 2554, XPath X%
simple 726 DIZPRE U7z & L TH XPath REEFTENNPREETH S Z & %,
BFN IV R (directed Hamiltonian path problem) 7° & D@ 12 &
DR IRIZ, BT =2 a Vv ATy TORMMERNEWERELTH, dFED
e S NOVDEREZF LGS, dFEHIIEENEOR T —Ya v ATy

Y

THRFER G TR0V D HFIDERE 7z XPath 2 (XP DERY 27 T AWZAHY)
XL TH, XPath RMEEMEN NP W &L 7025 Z & 2 HAN IV b Uk
ME» S DEIZE DR, —K, HEHRIEE core IZHRE L7554, XPath
REUTXPIZEBTSED2HLEGAETH, Z<DHERIZEVWTHERLS
fRIIBZ 2 BABOT N T ALZEVHSMZT .

XPath XDEIEE1T 556, T ORNITHE IR < 22 DIE L W\ XPath 2
WFEBFAELED720, TD X572 XPath ADOFNPSLEE LWAZEIRTE
HZENEFELV. TI TR TIE, WMEHEMEE core IZIREL-EZEIZE
W, XPath i ¢q, DTDD, B8 X UIEEH K IZH LT, DORTqgIlHEEIE
WK AHD XPath NZERKD BTN T AL EZHERT S, 72770, 72& ZimERE
ED core IZIREINT WL LTH, gIiZimbiL\ KED XPath X3R)E R
{BonNdLENIHBETRY. ZOMEICHLT 5720, 7TLVIV X L%
RO FEIZHEDOWNTHIK T 5. (1) FT,q2BELTHELONSE, AF—<IZ
M7 XPath RDOEE %KD B, (2)IXIZ, (1) THE S N7z XPath ADHiH 5,
g BV KHORZEIRT 5. (1) DWEZEZ L, 2D, ¢ ITHRbH T
K D XPath X% &R E < 3ERT 5 Z & A3 A[HE/: XPath ANEA 2 KRBT 572
b, BEIZBWVT xd-graph L WS F LW T 7 %K T 5. Xd-graph D iy
LEELANE, ¢ 2BIEL TR LN ZY 2 XPath X037 5 7 ORI/ —
RPSZH) — RADRIEIZHIELTWAZ e Th5S. H5 1 DDOEEL K
&, Bt — R oZM) — FADMEEORE p LT, pDOEAD TA
J1XPath g % p TRIN D FZY 7 XPath NIZBIET B720D I A M 12—
BMLTWBZETHD. LIWoT, qilHEEW K HD XPath X% 55 /-
®IZ1%, xd-graph % K7z ET, Z®D xd-graph kT K FFGRIKMEZ R I1E
Wz kizkhs, 6FTIE, ZOEXIZEDOWT, AJ1XPathX g & DTDD
X UT, DOFTqIZmbHIEW KD XPath RZ2%kdD2 TNV T XL %
Wipkd 5. £ LT, A7)V TY X LA simple 72 XPath U2 X U T £ H AR
TEET 22 L 2mRY. 72, XPIZET % XPath KT LT, BEED R A
FDOIEIDREHTHASNTWBGAHEI, RET NIV XLIFLHEHARE T
BEd 22 ams. oI, dHMlFERIZENT, HEYZREN 0 U %175

=

THHIZWoNITT 5.

[= NS

X2k, A7I) XLNEDTD O FTRIE L XPath R %2 EIE A RE

IEBIASCE (regular tree grammar) (X DTD & D BIZRBHIDOEH WA F—~
TdHH, W3C XML Schema ® RELAXNG 72 ¥ D AF—~<

=h
= AR

DILAE
TILELTHEHVWONTWS., KigXTlk, EHRAGEZEMIETES LD
W EROT VTV ZALEHET 5. DTD & IEMAEE Db KE2E W
A~ DDERZZH LTI OO UNE D Y TEHEI ENRNTERVDITH
U, BFIF—DOHERZLICH L TEBOR ZE D LB TEI ENAEETHE T

ETHB. TETIE, IO [=DOERAITH L TEBOMZEY & THHE]
WS M % xd-graph DEFRITERD ANTHAR T 5 Z £12X D, xd-graph &
[FkkDVEE % H 9 % xg-graph Z#Epk T 5. Z D xg-graph Z W5 Z &1 &

ZEZWoMTT 5.

D, AJIXPath X g L EFAIEGIZH LT, GO RTqZimbiEW KHD
BEMIIZOVWTEEREL, ERAGEZDID &) HIZRIDVPEWIZE

XPath X% KDZ TNV TV XLZRKTS. 612, ZOT)NVITY XLDE
Poss

D53, DID DS L AEONBTIRET NI ZALDEETEETH 5

A Study on Algorithms for Finding Correct XPath

Queries

Abstract

If a query written by a user does not return a desirable answer, then the user
have to correct the query. In such cases, a method for helping users to write
correct queries is much useful. For relational databases (RDBs), methods for
helping users to write correct SQL queries have been proposed. On the other hand,
Extensible Markup Language (XML) essentially has a much more complex data
structure than RDB. Thus, helping users to write correct queries is a much more
difficult problem, and very few effective methods for dealing with the problem
have been proposed so far.

In order to help users to write correct queries, information about correct data
structures is required. There are two possible approaches to obtain such infor-
mation: (1) gathering structural information from data and (2) referring schema
information instead of data. However, the former approach has some drawbacks.
First, it is sometimes impossible to access some or entire part of data due to pri-
vacy and/or security reasons. Second, the size of data is extremely larger than
that of schema, and large data is hard to be processed in environments with small
resources. In such situations, it is useful to help users to write correct queries by
using schema rather than data. Therefore, this dissertation focuses on the latter
approach and considers correcting queries by using the structural information of

schema. Assuming this approach, there are two possibilities to help users to write

Vi

Vil

correct queries. One is to help users while writing a query (e.g., completing el-
ement names), the other is to help users after a query is written. These are not
incompatible to each other, and we can use both of them together. In particular,
the latter is much useful if a user writes a query but the query returns undesirable
results, or a correct query becomes invalid due to schema updates. This disserta-
tion focuses on the latter and considers correcting XPath queries written by users.
Problems of analyzing the behavior of queries over schema without referring
data are called static analysis, and the problem considered in this dissertation is a
kind of static analysis problem. It is known that XML static analysis problems are
intractable in many cases. For example, the XPath satisfiability problem is one of
the most popular XML static analysis problem. This problem is shown to be unde-
cidable in general case, and remains NP-hard even if only child and descendant-or-
self axes are allowed. The XPath containment problem is another popular XML
static analysis problem, and it is also shown that the problem is undecidable in
general case. It is not clear whether the XPath query correction problem consid-
ered in this dissertation can be solved efficiently or not, and careful considera-
tions are required to investigate the nature of the problem in terms of algorithm
and computational complexity. Therefore, this dissertation aims at clarifying the
boundaries between the tractability and the intractability of the XPath query cor-
rection problem, in terms of the restrictions on schemas and XPath queries.

The main contribution of this dissertation are the following.

1. A formal definition of edit operations to XPath query is presented for the
first time. Two classes of edit operations, core and extended, are defined.
These enable formal discussions about complexities and algorithms for cor-
recting XPath queries. Besides this, two XPath fragments simple and XP are
given in order to investigate the complexity of the XPath query correction
problem. As stated later, these two factors surely affects the complexity of
the problem. In particular, the XPath query correction problem is shown to

be intractable if the extended edit operations are allowed.

viil

2. Algorithms for solving the XPath query correction problem are presented,
assuming that only the core edit operations are available. It is shown that
the algorithms run efficiently for simple XPath queries. Moreover, sufficient
conditions under which the algorithms run efficiently for queries in XP are

identified.

Edit operation is the key to formalize the XPath query correction problem and
also affects the complexity of the XPath query correction problem. In Chapter 4,
six edit operations to XPath queries are proposed: (1) axis substitution, (2) label
substitution, (3) location step insertion, (4) location step deletion, (5) location step
exchange, and (6) predicate exchange. Above (1) to (4) are called core edit oper-
ations and (5) and (6) are called extended edit operations. The six edit operations
are complete in the sense that any XPath query can be transformed into another
arbitrary XPath query by using these edit operations, and the completeness still
holds for the core edit operations. The other major factor of the complexity of the
problem is XPath fragment. In this dissertation, two XPath fragments simple and
XP are presented. In short, XP is the set of XPath queries using child, descendant-
or-self, following-sibling, preceding-sibling, and attribute axes. In particular, a
query g in XP is simple if g uses neither predicate nor attribute axes. Based on
these definitions, the XPath query correction problem is defined to find, for an
XPath query g and a DTD D, the query that is syntactically closest (i.e., having
the least edit distance) to g. By reducing the directed Hamiltonian path problem
to the XPath query correction problem, it is shown that if extended edit operations
are allowed, then the problem becomes NP-hard even for simple XPath queries. It
is also shown that if predicate exchange and label substitution are allowed at the
same time, the problem is NP-hard even if each predicate of an XPath query is a
simple location step having no predicate, which corresponds to a subclass of XP.
On the other hand, by using the algorithms presented below, it is shown that if
only core edit operations are allowed, then the problem is tractable in many cases

even if queries in XP are allowed.

1X

Since there may be more than one correct XPath query syntactically close to
a query g, it is desirable for users to be able to choose a preferable query from
queries obtained by correcting g. Therefore, the main algorithm proposed in this
dissertation is designed for finding top-K queries syntactically close to a query g
under a DTD D. However, even if the set of edit operations to queries is restricted
to core, it is not clear if top-K queries syntactically close to g under D can be
obtained efficiently. To cope with this problem, the algorithm proposed in this
dissertation takes the following approach: (1) compute the set of valid queries
obtained by correcting ¢, then (2) select top-K queries close to g among the valid
queries. To model the set of valid queries in (1) that enables efficient computations
of top-K queries, a novel graph called xd-graph is proposed. The most important
point of xd-graph is that valid queries obtained by correcting g are mapped to paths
from the start node to the accepting node. Another important point is that, for any
path p from the start node to the accepting node, the cost of p represents the cost
of correcting the input query to the valid query represented by p. Therefore, once
an xd-graph is obtained, it suffices to solve the K shortest paths problem over the
xd-graph to obtain top-K valid queries syntactically close to g. Based on this idea,
in Chapter 6 an algorithm for finding top-K queries that runs in polynomial time
for simple XPath queries is proposed. As for queries in XP, it is shown that the
algorithm runs in polynomial time if the nest level of a predicate is bounded by
a constant. It is also shown that the algorithm can efficiently find top-K queries
under a real-world DTD by pruning unnecessary nodes and edges of an xd-graph
appropriately.

Regular tree grammar is strictly more expressive than DTD and is used to
model major powerful schema languages such as W3C XML Schema and RELAX
NG. The above proposed algorithm is extended in order to handle such powerful
schemas. The main difference between DTD and regular tree grammar is that
the former assigns exactly one type to one element name while the latter is able to

assign more than one type to one element name. In Chapter 7, a novel graph called

xg-graph is introduced by extending the definition of xd-graph to cope with this
property inherent to regular tree grammar. Based on this xg-graph, an algorithm
for finding, for an XPath query ¢ and a regular tree grammar G, top-K queries
syntactically close to g under G is presented. Then it is shown that the algorithm
runs as efficient as the previous algorithm designed for DTD, despite the fact that

regular tree grammar is strictly more expressive than DTD.

Table of Contents

1 Introduction

2 Related Works
2.1 Edit Operation to Various Data Structure
2.2 XPath Satisfiability and Related Problems
2.3 XML Query Correction and Related Studies

3 Preliminaries

4 Edit Operations to XPath Query and Intractability
4.1 Edit Operations to XPath Query
4.2 Edit Operations Causing Intractability

5 Xd-Graph Representing Set of Valid Queries
5.1 Overviewo
5.2 Xd-Graph Examples
5.3 Formal Definition of Xd-Graph

6 Algorithm for Finding top-K Queries under DTDs
6.1 Algorithm for Simple Query
6.2 Algorithm for Queriesin XP

7 Algorithm for Regular Tree Grammar

xi

13

17
17
19

25
25
28
33

37
37

52

TABLE OF CONTENTS

7.1 Regular Tree Grammar

72 Xg-Graph

722 Xg-Graph
7.3 Algorithm for Finding top-K Queries . . .
7.3.1 Algorithm for Simple Query . . .
7.3.2 Algorithm for Queries in XP . . .
7.3.3 Graph Optimization and Pruning .

8 Experimental Results
8.1 Quality of the Output of the Algorithm . .
8.2 Execution Time of the Algorithm

9 Discussion
9.1 Edit Operation and Intractability
9.2 Algorithm and Complexity
9.3 Boundary of Tractability and Intractability

10 Conclusion
Acknowledgement
Bibliography

Full List of Publications

Xil

52
54
56
57
61
61
62
64

68
68
72

76
76
77
78

81

83

84

95

List of Figures

1.1

4.1

5.1
5.2
5.3
54
5.5
5.6
5.7

6.1
6.2
6.3

6.4
6.5
6.6

7.1
7.2
7.3

Overview of our algorithm 7

A directed graph H = (V, E),aDTD D = (d,v,,a), and a query g. 24

An example of xd-graph oL 26
Xd-graph 28
aDTDgraphG(D) 29
An xd-graph G(¢,G(D)) 30
Edges representing location step insertion 31
Edges representing axis substitution 32
Edges dealing with »*and «"axes 33
Xd-graph 39
Adding a new accepting node nto G(¢,G(D)) 42
Node /; and its gadget, where [’ is a new node and ey, - -, ex are

new edges. 45
DTD graph G(D). 46
Xd-graph G(sp(q),G(D)). 47
The graph obtained by moditying G(sp(q), G(D)). 49
An example of RELAX NGschema 55
An example of production-graph 57
An xg-graph G(q,G(P)) 58

Xiii

LIST OF FIGURES Xiv

7.4
1.5

8.1
8.2

8.3

A production-graph that non-terminals conflict 65

A (contracted) production-graph that non-terminals do not conflict 65

Ratios at which the outputs contain correct answers 72
Execution time with/without pruning of the algorithm for queries
targeting “far” nodes L. 73
Execution time with/without pruning of the algorithm for queries

targeting “near” nodes 74

List of Tables

3.1

8.1
8.2

9.1
9.2

Syntax of XPo 14
XPath queries (correct queries) and conditions 71
Incorrect queries writtenbyusers L 75
The complexity of the XPath query correction problem under DTD 79

The complexity of the XPath query correction problem under reg-

ular tree grammar 80

XV

Chapter 1

Introduction

The more complex the data structure becomes, the more difficult it is to write “cor-
rect” queries. For relational databases (RDBs), a number of methods for helping
users to write correct SQL queries have been proposed (e.g., [76, 63, 36, 19]). On
the other hand, Extensible Markup Language (XML) essentially has a much more
complex data structure than RDB, but very few studies on helping users to write
correct queries for XML have been made so far.

In order to help users to write correct queries, we need information about cor-
rect data structures. There are two possible approaches to obtain such information:
(1) gathering structural information from data and (2) referring schema informa-
tion instead of data. However, the former approach has some drawbacks. First, it
is sometimes impossible to access some or entire part of data due to privacy and/or
security reasons. Second, the size of data is extremely larger than that of schema,
and large data is hard to be processed in environments with small resources. In
such situations, it is useful to help users to write correct queries by using schema
rather than data. Therefore, this dissertation focuses on the latter approach and
considers correcting queries by using the structural information of schema.

In general, there are two approaches to help users to write correct queries.
One is to help users while writing a query (e.g., suggesting some keywords or

subexpressions), the other is to help users after a query is written (e.g., correcting

CHAPTER 1. INTRODUCTION 2

a query that returns undesirable results). These approaches are not incompatible to
each other, and we can use both of them together. In particular, the latter approach
is much useful if a user writes a query but the query returns undesirable results, or
a correct query becomes invalid due to schema updates. This dissertation focuses
on the latter approach and considers correcting XPath queries written by users.

Problems of analyzing the behavior of query over schema without referring
data are called static analysis, and the problem considered in this dissertation is a
kind of static analysis problem. It is known that XML static analysis problems are
intractable in many cases. For example, the XPath satisfiability problem, which
is the most popular XML static analysis problem, is shown to be undecidable in
general case, and remains NP-hard even if only child and descendant-or-self axes
are allowed [11]. The XPath containment problem is another popular XML static
analysis problem, which is shown to be undecidable [52]. The XML type checking
problem is also a popular XML static analysis problem. Again it is shown that
the problem is undecidable [1, 2] and remains intractable even if a number of
restrictions are imposed on schemas and queries [44, 45]. Thus, whether the query
correction problem considered in this dissertation can be solved efficiently or not
is not clear, and careful considerations are required to investigate the nature of
the problem in terms of computational complexity. Therefore, this dissertation
aims at clarifying the boundaries between the tractability and the intractability of
the XPath query correction problem, in terms of the restrictions on schemas and
XPath queries.

The problem addressed in this dissertation is described as follows:
Input: A DTD D, a query ¢, and a positive integer K.

Problem: top-K XPath queries syntactically close to ¢ among the XPath queries

valid against the schema

As a brief example of the problem, let us consider the following simple DTD

D as a schema.

CHAPTER 1. INTRODUCTION 3

<!ELEMENT site (people)>
<!ELEMENT people (person) *>
<!ELEMENT person (name, email, phone?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA) >
<!ELEMENT phone (#PCDATA) >

<!ATTLIST person id ID #REQUIRED>

Suppose that a user wants name element of the person whose id is “123” and that

he/she tries to use an XPath query

q = /person[@id = "123"]/nama,

which is not valid against D. Our algorithm finds XPath queries “syntactically
close” to g based on the edit distance between XPath queries, proposed in this dis-
sertation. In this example, our algorithm lists the following top-K XPath queries
syntactically close to g (assuming that K = 3). Each XPath query ¢’ is followed
by the edit distance between g and ¢’, assuming that the cost of relabeling [with

I' is the normalized string edit distance between [and /" [47].

1. //person[@id = "123"]/name (0.75)
2. //people/person[@id = "123"]/name (1.75)
3. /site/people/person[@id = "123"]/name (2.25)

As above, by the algorithm the user can obtain top-K correct XPath queries syn-
tactically close to ¢ without modifying ¢ by hand even if he/she does not know
the exact structure of D. Although the above DTD D is very small, schemas used
in practice are larger and more complex [15]. In such a situation, a user tends
not to understand the entire structure of a schemas exactly, and thus our algo-
rithm is helpful for writing correct XPath queries on such schemas. Moreover,

since the algorithm is based on the edit distance between XPath queries, we can

CHAPTER 1. INTRODUCTION 4

change the cost of an edit operation, if necessary. For example, if a user wants
“concise” XPath queries that prefers descendant-or-self axes to child axes wher-
ever possible, it suffices to decrease the costs of deleting child axis and inserting
descendant-or-self axis.

The main contributions of this dissertation are the following threefold.

1. The notion of correcting XPath query has not been formalized so far. In this
dissertation, a formal definition of edit operations to XPath query is pre-
sented for the first time. This enables formal discussions about complexities
and algorithms for correcting XPath queries. The edit operations has two
classes called “core” and “extended”, which affect the (in)tractability of the

XPath query correction problem.

2. Two XPath fragments “simple” and “XP” are given in order to investigate
the complexity of the XPath query correction problem. Here, XP is the set of
XPath queries using child, descendant-or-self, following-sibling, preceding-
sibling, and attribute axes. In particular, a query ¢ is simple if g € XP and
q uses neither predicate nor attribute axes. It is shown that if core and ex-
tended edit operations are allowed, then the XPath query correction problem
becomes intractable even for simple XPath queries. On the other hand, it is
shown that if only core extended edit operations are allowed, then the XPath

query correction problem can be solved efficiently in many cases.

3. Algorithms for solving the XPath query correction problem are presented,
assuming that only the core edit operations are available. It is shown that
the algorithms run efficiently for simple XPath queries. Also, sufficient
conditions under which the algorithms run efficiently for queries in XP are

identified.

An overview of our main algorithm is as follows. Let g be an XPath query
and D be a DTD. To obtain top-K queries syntactically close to g under D, we

first compute the set of valid queries obtained by correcting ¢, then select top-K

CHAPTER 1. INTRODUCTION 5

queries close to ¢ among the valid queries. To obtain such a set of valid queries,
we construct a graph called “xd-graph” (Fig. 1.1). The important point of xd-
graph is that valid queries obtained by correcting g are mapped to paths from the
start node to the accepting node. For example, consider the XPath query g and the
xd-graph in Fig. 1.1. The path ny — ay — d; — ¢, on the xd-graph represents
a valid query / |:: a/ l:: d/ l:: ¢, which is obtained by inserting / |:: a to g
and substituting the label of the first location step |:: e with d. Similarly, the
other paths from the start node n to the accepting node ¢, represent valid queries
obtained by correcting g. Another important point is that, for any path p from the
start node to the accepting node, the cost of p represents the cost of correcting
the input query to the valid query represented by p. Therefore, once an xd-graph
is obtained, it suffices to solve the K shortest paths problem over the xd-graph
to obtain top-K valid queries syntactically close to g. It is also shown that the
algorithm can efficiently find top-K queries under a real-world DTD by pruning
unnecessary nodes and edges of an xd-graph appropriately.

This dissertation considers regular tree grammar as well as DTD. Regular tree
grammar is strictly more expressive than DTD, and is used to model major pow-
erful schema languages such as W3C XML Schema and RELAX NG. The above
proposed algorithm is extended in order to handle such powerful schemas. The
main difference between DTD and regular tree grammar is that the former assigns
exactly one type to one element name while the latter is able to assign more than
one type to one element name. In Chapter 7, a novel graph called xg-graph is
introduced by extending the definition of xd-graph to cope with this property in-
herent to regular tree grammar. Based on this xg-graph, an algorithm for finding,
for an XPath query ¢g and a regular tree grammar G, top-K queries syntactically
close to g under G is presented. Then it is shown that the algorithm runs as effi-
cient as the previous algorithm designed for DTD, regular tree grammar is strictly

more expressive than DTD nonetheless.

CHAPTER 1. INTRODUCTION 6

Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 shows related works
and position of this dissertation. Chapter 3 gives some preliminary definitions of
XPath and DTD. Chapter 4 defines edit operations to XPath queries and considers
the complexity of the problem and shows that finding top-K valid XPath queries is
NP-hard if extended edit operations are allowed. Chapter 5 introduces xd-graph,
which forms the basis of our algorithm. Chapter 6 gives algorithms for finding top-
K valid XPath queries under DTDs, assuming that only core edit operations are
allowed. Chapter 7 extends the algorithms to use regular tree grammar as a schema
instead of DTD. Chapter 8 shows some experimental results. Chapter 9 discusses
the results of this dissertation and some future works. Chapter 10 summarizes this

dissertation.

CHAPTER 1. INTRODUCTION

(a) XPath query (b) DTD
<l ELEMENT a (b, d)>
q=/yueyic <IELEMENT b (c >)
o <I ELEMENT d (c)>
(invalid query) <! ELEVENT c (#PCDATA) >

(c) Xd-graph:

This path represents valid query /y::af§ ::d/}::c

y..e
(1st location
step of)

y.:C
(2nd location
step of q)

)) accepting node
This path represents valid query /4 ::af§ ::b/}::c

Figure 1.1: Overview of our algorithm

Chapter 2

Related Works

2.1 Edit Operation to Various Data Structure

Correcting XPath queries in this dissertation are essentially based on edit opera-
tions to XPath queries. Edit operation was firstly proposed in terms of strings by

Levenshtein [40]. This consists of
e insertion of a symbol,
e deletion of a symbol, and
e substitution of a symbol for another symbol.

These have widely been accepted as the basis of edit operations. Then some ex-
tensions were proposed, e.g., transposition of two adjacent character, merge, and
split [74, 60]. Alignment is a notion similar to edit distance, which is widely used
to compare DNA sequences [62, 75, 22, 29, 12].

The notion of edit operation is also extended to handle other data structures
that are more complex than string. In particular, tree is the most popular data
structure to which edit operations are applied. The basic edit operations to trees
consist of insertion of a node, deletion of a node, and relabeling of a node. Unlike

string, a tree is either unordered or ordered, and thus we have two kinds of tree

8

CHAPTER 2. RELATED WORKS 9

edit distance problem: the unordered tree edit distance problem and the ordered
tree edit distance problem. Whether a tree is ordered or not significantly affects
the complexity of the problem. Actually, the former problem is shown to be NP-
hard [86]. Moreover, the problem is shown to be MAXSNP-hard [9], and thus it
is unlikely that there exists an efficient approximation algorithm for solving the
problem. On the other hand, the latter problem is fortunately tractable. An al-
gorithm for solving the problem was firstly introduced by Tai [70], then Zhang
and Shasha proposes a new algorithm to the problem [85]. However, these al-
gorithms run in O(n*) in the worst case. Recently, Demaine et al. reduced the
upper bound complexity of the problem, in which their algorithm run in O(n?)
time [17]. Pawlik proposed another O(n®) algorithm [55]. Besides string and tree,
edit operations are also defined in terms of other data structures. For example, edit
operations to graphs are used in order to measure the structural distance between
two graphs [25]. In [65, 66] edit operations between a schema and an XML doc-
ument are proposed, which are used to correct invalid XML documents into valid
ones. Edit operations between two schemas are also proposed [30, 38, 39]. These

edit operations are used to detect changes between old and new schemas.

2.2 XPath Satisfiability and Related Problems

The notion close to the syntactical validity of XPath in this dissertation is XPath
satisfiability. Here, the XPath satisfiability problem is to decide, for a DTD D
and an XPath query g, whether there exists an XML document d valid against D
such that the answer of g on d is not empty. The main difference between the
two notions is that the XPath satisfiability uses a more strict condition than the
syntactical validity of XPath, and thus the XPath satisfiability problem has higher
complexity than the syntactical validity of XPath.

In fact, assuming that no restriction is imposed on DTDs, the XPath satisfi-

ability problem is shown to be NP-hard even if an XPath query uses only child

CHAPTER 2. RELATED WORKS 10

and descendant-or-self axes [10, 11]. Moreover, the problem remains intractable
even under fixed DTDs [67]. Due to this situation, a number of studies on ex-
ploring subclasses of DTD under which the satisfiability problem is tractable have
been made. For example, Ref. [27] considers the problem under non-recursive
DTDs. However, non-recursiveness does not broaden the tractable class of XPath.
On the other hand, Ref. [49] considers the problem under disjunction-free DTD,
and shows that under disjunction-free DTDs the satisfiability problem becomes
tractable for some XPath fragments. However, alternation ‘|’ cannot be used
under disjunction-free DTDs, which means that disjunction-freeness is too re-
strictive from a practical point of view. Besides these restricted DTDs, more
practical subclasses of DTD have been proposed. It is shown that the problem
becomes tractable under duplicate-free DTDs (i.e., DTDs in which no content
model contains two occurrences of the same label) for XPath queries using only
child and descendant-or-self axes [68, 69]. Moreover, disjunction-capsuled DTD
(DC-DTD) and its extensions have been proposed. Here, a DTD is disjunction-
capsuled if each alternation ‘|’ is enclosed by ‘*’ or ‘+’. Under these DTDs, the
satisfiability problem is tractable if only child and descendant-or-self axes are al-
lowed [32, 31, 33, 34]. Moreover, it is shown that most of real-world DTDs are
categorized into DC-DTD and its extensions [34, 64].

Ref. [28] takes an approach different to the above studies. The study propose
a system for solving the satisfiability problem by transforming a DTD and an
XPath query into MSO-logic formulas and then solving the problem with decision
procedures for MSO-logic formulas. This approach does not require restricting
DTDs but requires exponential time in the worst case.

Another popular XML static analysis problem related to XPath is the XPath
query containment problem [61]. For XPath queries p and g, g contains p if
it holds that whenever a document d matches p d also matches ¢g. It is shown

that the XPath query containment problem is undecidable in general case [52],

and remains coNP-hard in several restricted cases [78]. The XPath equivalence

CHAPTER 2. RELATED WORKS 11

problem is a problem similar to above, which is to decide whether given two
XPath queries always return the same result. This problem is also shown to be

intractable [48].

2.3 XML Query Correction and Related Studies

Currently, XML is widely used to represent various kind of data, and XPath [81]
is the most popular query language for XML. Moreover, XPath is contained in
transformation languages such as XSLT [83] and XQuery [82]. In such languages,
XPath expressions are used to select elements to be transformed.

The ordinary XPath processors [37, 8] only verify the syntax of an inputs
XPath expression according to the XPath specification. However, such XPath pro-
cessors do not check the validity of an input XPath query in terms of a schema. On
the other hand, our algorithm corrects an XPath expression that is invalid against
a schema even though syntactically valid.

Although a number of studies on XPath have been made so far, studies on
correcting XPath queries are unexpectedly not many. Ref. [16, 13] proposes an
algorithm that finds valid tree pattern queries most syntactically close to an in-
put query. Their algorithm and ours are incomparable due to the underlying data
models; in their data model a tree is unordered and a schema and a query are
represented by a DAG, while we use DTD and regular tree grammar as schema
(recursion is supported) and a tree is ordered. Since in our data model a schema
allows cycles and a query allows sibling axes (—*, «7), their algorithm cannot
be applied to our data model. Note that Choi investigated 60 DTDs and 35 of the
DTDs are recursive [15], which suggests that it is meaningful to support recursive
schemas. Besides this, the major limitation of their algorithm is that their algo-
rithm outputs a DAG even if an input query is restricted to be a tree. Therefore,
their algorithm cannot be directly applied to XPath query correction.

Besides query correction, several related but different approaches have been

CHAPTER 2. RELATED WORKS 12

studied for XML; query expansion, inexact queries, interaction, keyword search,
minimizing query, etc. Ref. [58] proposes the node insertion operation that is
also proposed in this dissertation. Ref. [57] takes a query expansion approach
instead of correcting queries. Refs. [5, 6, 21, 20] deal with a top-K query evalu-
ation for XML documents to derive inexact answers, i.e., evaluating a “relaxed”
version of the input query, if it is unsatisfiable. Inexact querying is also studied
in Refs. [42, 43], in which a user can write an XQuery query without specifying
exact connections between elements. Ref. [50] proposes an interactive system
for generating XQuery queries in which an XPath query is interactively created
by an algorithm based on the interactive learning algorithm for regular expres-
sion [7]. There has been a number of studies on XML keyword search (e.g.,
[84, 41, 14,71, 53, 72]), which are especially suitable for users that are not famil-
iar with XML query languages. Refs. [4, 77, 56, 23] proposes minimizing XPath
Queries for optimizing a query more efficiently but maintain outputs. Several
XML editors (e.g., XMLSpy [3]) support auto-complete for XPath query editing,
but they do not support listing K correct XPath queries.

Chapter 3

Preliminaries

In this chapter, we give some definitions related to XPath and DTD.

Let X, be a set of labels (element names) and X, be a set of attribute names

with X, NX, = 0. ADTD is a triple D = (d, a, s), where d is a mapping from X,

to the set of regular expressions over Z,, « is a mapping from X, to 2*, and s € %,

is the start label. For example, the DTD in Chapter 1 is represented by a triple

(d, a, site), where

d(site)
d(people)
d(person)
d(name)
a(name)

ale)

people,

person”,

(name, emailaddress, phone?),
€,

{id},

(0 for any element e € X, \{name}.

By L(d(a)) we mean the language of d(a). For labels b, c, if there is a string

str € L(d(a)) such that str[i] = ¢ and str[j] = b with i < j (i > j), then we say

that b can be right (resp., left) to c in d(a), where str[i] denotes the ith character

of str. For example, e can be right to ¢ in d(a) = c(fle)".

13

CHAPTER 3. PRELIMINARIES 14

Table 3.1: Syntax of XP

XP “/” RelativePath | “/” RelativePath “@” Attribute
RelativePath LocationStep | LocationStep “/” RelativePath
LocationStep Axis “::” Label | Axis “::” Label Predicate
Axis U I A Bt S Bt
Label (any label in Z,)
Attribute (any label in X,)
Predicate “I” Exp “1”
Exp PredPath | PredPath Op Value
PredPath RelativePath | “@” Attribute | RelativePath “@” Attribute
e R R
Value “” (any string other than) 7

ForaDTD D = (d, «, s) and labels a, b € X, b is reachable from a in D if

e a = b or b appears in d(a), or
e for some label a’, a’ is reachable from a and b appears in d(a’).

In the following, we assume that any label in a DTD is reachable from the start
label of the DTD.

In this dissertation, we use XPath queries using child (), descendant-or-self
("), following-sibling (—7), preceding-sibling («*), and attribute (@) axes. The
set of such XPath queries is denoted XP. Formally, XP is the set of XPath queries
defined in Table 3.1. Thus, an XPath query (query for short) g in XP can be

denoted

[ax(1] 2 [[1][exp[1]1/ - fax[m] :: [[m][exp[m]], 3.1

CHAPTER 3. PRELIMINARIES 15

where

ax[i] € Axis,
il € Z2(1<i<m-1),
explil] € Exp(l <i<m),

ax[m] € AxisU{@},

X, ifax|m] =@,
I[[m] €

2, otherwise.

If the ith location step has no predicate, then we write exp[i] = €. Although XP
supports no upward axes, this usually gives little problem since the majority of
XPath queries uses only downward axes[35].

Let g be a query in (3.1). For indexes i, j such that ax[i] € {], |} and that

ax[i+1],---,ax[j] € {—=7, <"}, we say that [is the parent label of I[j] in g if
e ax[i]=land ! =1[i - 1], or
e ax[i] =", [is reachable from [[i — 1], and [[i] appears in d(I).

For example, if ¢ = / |:: a/ l:: b/ =71 ¢/ «":: d, then a is the parent label of
b,c,d in gq.
Let D = (d,a, s) be a DTD. Then ¢ is (syntactically) valid against D if the

following conditions hold.
e ax[1]= | and [[1] = s,0r,ax[1] = |*and [[1] € X,
e The following condition holds for every 2 <i < m
— ax[i] = | and [[i] appears in d(I[i — 1]),

— ax[i] = |* and [[{] is reachable from [[i — 1] in D,

— ax[i] = —™ and [[{] can be right to [[i — 1] in d(I), where [is the parent

label of [[i] (the case where ax[i] = < is defined similarly), or

CHAPTER 3. PRELIMINARIES 16

— ax[i] = @, i =m, and [[i] € a(l[i - 1]).

e Forevery 1 <i < m with exp[i] # €, query /]:: [[i]/expl[i] is valid against
DTD (d, a, [[i]).

By |g| we mean the number of location steps in ¢, e.g., if ¢ = / |z a/ |::
b[«"*:: d], then |g| = 3. If a query ¢ has neither predicate nor attribute axis, then

we say that g is simple.

Chapter 4

Edit Operations to XPath Query
and Intractability

In this chapter, we firstly define edit operations to queries and show that some edit

operations make finding top-K valid queries intractable.

4.1 Edit Operations to XPath Query

We propose the following six kinds of edit operations.

1. Axis substitution: substitutes axis ax with ax’, denoted ax — ax’. For

example, by applying | — |* to /|:: @ we obtain / |*:: a.

2. Label substitution: substitutes label / with /', denoted [— [’. For example,

by applying a — bto /|:: a we obtain / |:: b.

3. Location step insertion: inserts location step ax :: [, denoted € — ax :: L.
For example, by applying € —|:: b to the tail of / |:: a we obtain / |:: a/ |::
b.

4. Location step deletion: deletes location step ax :: [, denoted ax :: [— €.

For example, by applying |:: a — € to the first location step of / |:: a/ l:: b

17

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 18

we obtain / |:: b.

5. Location step exchange: exchanges adjacent two location steps. For exam-
ple, by applying this edit operation to / |:: a/ |*:: b we obtain / |*:: b/ |::

a.

6. Predicate exchange: exchanges the predicates of adjacent two location steps.
For example, by applying this edit operation to / |:: a[b/d]/ |*:: ¢ we ob-
tain / |z a/ " c[b/d].

Above 1 to 4 are called core edit operations and 5 and 6 are called extended
edit operations.

We next define the position of a location step Ls, denoted pos(ls). Let g =
Jax[1] = I[1][exp[1]1]/ - - - Jax[m] :: [[m][exp[m]] € XP. We define that pos(ax[i] ::
l[i]) = ifor 1 < i < m. As for location steps in predicates, let exp[i] = ax’[1] ::
U[1][exp’[1]1/ -+ /ax'[n] :: U[n]lexp’[n]]. Then we define that pos(ax'[j] ::
I'ljI) = i.jfor 1 < j < n. The position of a location step in exp’[j] can be
defined similarly. For example, let g = / |:: a/ l:: b[l:: d[l:: g]]/ =*:: c. Then
pos(l:: b) = 2, pos(l:: d) = 2.1, and pos(|:: g) = 2.1.1. By [op],0s, WE mean
an edit operation op applied to the location step at position pos. If op is an edit
operation inserting a location step /s, then [op] . inserts s just after the location
step at pos.

Let g € XP. An edit script for g is a sequence of edit operations having a
position in g. For an edit script s for g, by s(g) we mean the query obtained by
applying s to g. For example, let s = [e — |:: b];[c — flzand g =/]":: a/ |:
d/l:: c. Then we have s(q) = /1l*:a/l:: b/l d]] f.

Throughout this dissertation, we assume the following. Let U = {|,|"}, § =
{—*,«*},and A = {@}.

e An axis can be substituted with an axis of the “same kind” only, that is,

ax € U (resp., S, A) can be substituted with an axis in U (resp., S, A) only.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 19

e A location step ax :: [can be inserted to a query only if ax € U and [€ Z,.

A cost function assigns a cost to an edit operation. By y(op) we mean the cost
of an edit operation op, where 7 is a cost function. In the following, we assume
that y(op) > 0. A cost function can be a general function as well as a constant.
For example, y(op) can be a string edit distance between [and " if op =1 — ['.

For an edit script s = op10ps - - - op,,, by y(s) we mean the cost of s, that is,

Ys) =) ylop).
1<i<n
For a DTD D, a query g, and a positive integer K, the K optimum edit script
for g under D is a sequence of edit operations sy, - - -, sk satisfying the following

conditions.
1. Each of 51(g), - -, sx(q) is valid against D.

2. y(s1) < - - < y(sk).

3. s1,---, Sg are optimum, that is, for any edit script s for g such that s(g) is

valid against D, s(q) € {s1(q)," -+, sx(q)} or y(s) = y(sk).

We say that s1(q),-- -, sg(q) are top-K queries syntactically close to g under
D.

4.2 Edit Operations Causing Intractability

For an query ¢ and a DTD D, top-K queries syntactically close to ¢ under D may
not be found efficiently if all the edit operation defined in the previous section are
allowed. Actually, in this section we show that the extended edit operations make
finding top-K valid queries intractable.

Let us consider the following decision problem, called query correction prob-

lem.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 20

Input: A DTD D, a query ¢, and a positive integer K.

Problem: Determine whether there is an edit script s to g such that y(s) < K and

that s(g) is valid against D.
We have the following result.

Theorem 1 [If location step exchange is allowed, the query correction problem is

NP-hard even if a query is simple.

Proof We reduce the directed Hamiltonian path problem, which is NP-complete [26],
to the query correction problem. The directed Hamiltonian path problem is de-

fined as follows.
Input: A directed graph H = (V, E) and nodes u,v € V.
Problem: Determine whether H contains a directed Hamiltonian path from u to v.

Let H = (V,E) and u,v € V be an instance of the directed Hamiltonian path
problem, where V = {v,v,,---,v;}. From this instance, we define a DTD D, a
query ¢, and a positive integer K. First, D is defined to simulate H. Formally, X,,

2oand D = (d,a, s"), are defined as follows.

X = {u,00,0 0,0k,
Z:a = ®a
s = u,

dv) = seq;, (1<i<k)

where segq; is any sequence of labels such that v; occurs in seq; iff v; — v; € E.

Second, query ¢ is defined as follows.

g=/lzv/luiv/ /]l n.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 21

For example, let us consider the directed graph shown in Fig. 4.1(A). From this
graph, we obtain the DTD in Fig. 4.1(B) and the query in fig. 4.1(C) according to
the above reduction. As for the costs of edit operations, we define that the cost of
a location step exchange is one and that the costs of the other edit operations are
co. Let K = 3k*(k + 1).

In the following, we show that H has a directed Hamiltonian path from u to v
iff there is an edit script s to g such that y(s) < K and that s(q) is valid against D.

(=) Assume that H has a directed Hamiltonian path from u to v, say u = v;, —
v, = -+ = v, = v. By the definition of D, query ¢’ = / |t v,/ L:i v,/ -/ Lz
v;, 1s valid against D. Since {v;,v;,,---,v;} = V, there is an edit script s to g
consisting of only location step exchanges such that y(s) < %kz(k +1) = K and
that s(q) = ¢’.

(<) Assume that H has no directed Hamiltonian path from u to v. Then any
path from u to v on H of length & visits some same node more than once. This and
the definition of D imply that in order to make g valid, we need to use a location
step deletion, a location step insertion, or a label substitution, which costs co. Thus

there is no edit script s to g such that y(s) < K and that s(g) is valid. O

We also have the following.

Theorem 2 [f predicate exchange and label substitution are allowed at the same
time, the query correction problem is NP-hard even if each predicate of a query is

a simple location step having no predicate.

Proof Again we reduce the directed Hamiltonian path problem to the query cor-
rection problem. Let H = (V,E) and u,v € V be an instance of the directed
Hamiltonian path problem, where V = {vy, v, - -, v¢}. From this instance, we de-
fine a DTD D, a query ¢, and a positive integer K. First, D is defined to simulate
H. Formally, Z,, Z,, and D = (d, a, s"), are defined as follows.

Ze’ = {U}U{U[,UQ,"‘,Uk}U{al,az,"‘,ak},

2. = 0,

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND

INTRACTABILITY 22
s = u,
da) = € (1<i<k
dv;)) = seq;, (1<i<k)

where seq; is a sequence of labels such that v; occurs in seq; iff v; — v; € E or
V; = a;.

Second, query ¢ is defined as follows.
g=/lzollail/ ol anl/--- /Lol]

As for the costs of edit operations, we define that for any I’ € Z,

1 ifl=u,
yil-1) =

co otherwise,

the cost of a predicate exchange is one, and that the costs of the other edit opera-
tions are co. Let K = 1k*(k + 1) + k.

We can show similarly to Theorem 1 that H has a directed Hamiltonian path

u=uv, - v, — - — v, =viff there is an edit script s to g such that s(qg) =
[Livg a1/ Loy [l a]/ -/ L v [ai], y(s) < K, and that s(g) is valid
against D. O

Thus, it is unlikely that we can find top-K valid queries efficiently, if we use
the extended edit operations. In the following chapters, we consider finding top-K
valid queries assuming that only the core edit operations are allowed.

Finally, let us consider the expressive power of the edit operations. Under
the following restriction, the six edit operations are “complete” in the sense that
any query can be transformed into another arbitrary query by using these edit

operations.

e No new predicate can be added to a query.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY 23

We believe that this restriction is reasonable since (i) it is unnatural to add a pred-
icate that is not written by a user and (ii) it is hardly possible to “infer” an ap-
propriate predicate from an “empty” predicate. The completeness can be shown
easily since a query ¢ can be transformed into another query ¢’ by deleting every
location step of ¢ and inserting every location step of ¢’. In fact, the completeness
still holds even if the extended edit operations are omitted, although more edit
operations may be required to correct a query. For example, letg = / |:: a/ |l:: b
and ¢’ = /]:: b/ |:: a. If location step exchange is allowed, g can be transformed
into ¢’ by just one edit operation, otherwise at least two edit operations are re-
quired. In summary, since the completeness is preserved, we believe that our edit
operations have an expressive power enough to handle the problem of correcting

invalid queries, even if extended edit operations are omitted.

CHAPTER 4. EDIT OPERATIONS TO XPATH QUERY AND
INTRACTABILITY

(A) directed graph H = (V,E)

(C) XPath query q
/¢::vl/¢::v2/¢::v3/¢::v4/¢::v5/¢::v6/¢ ::v7/¢ ::v8/¢::v9

24

Figure 4.1: A directed graph H = (V, E), aDTD D = (d, v, @), and a query gq.

Chapter 5

Xd-Graph Representing Set of Valid

Queries

In this chapter, we introduce a graph called xd-graph, which forms the basis of
our algorithm. An xd-graph is constructed from an XPath query and a DTD, and
as we will see below, an xd-graph represents the set of valid queries obtained by
correcting the input query.

Throughout this chapter, we assume that each query is simple.

5.1 Opverview

For a query ¢ and a DTD D, in order to obtain top-K queries syntactically close to
g under D, we first need to compute the set of valid queries obtained by correcting
g, then select top-K queries close to g among the set of valid queries. However,
it is not obvious how to obtain such a set of valid queries in which top-K queries
can be found easily. To cope with this problem, in this dissertation we construct
a graph called “xd-graph” from ¢ and D, as shown in Fig. 5.1. An xd-graph has
a start node and an accepting node, and valid queries obtained by correcting g are

mapped to paths from the start node to the accepting node. Thus, in order to obtain

25

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 26

(a) XPath query (b)DTDD =(d, a, a) (c) DTD graph of D
el Ll d(a) = bd &
= [yual ey
q=/y:alyieyic dlb) = ¢
dd)=c
dic)=¢ b d
c
(d) Xd-graph
start node B
\ : bo "
AN
N i i
ya
(1st location T
step of) g
NV - lol + 1 DTD graphs
yue ' NN
(2nd location e £,
step of) g
Ve '
(3rd location ’ R
step of)
\“d3

accepting node

Figure 5.1: An example of xd-graph

top-K queries syntactically close to ¢ under D, it suffices to solve the K shortest
paths problem over the xd-graph.

Let us show the structure of xd-graph. As shown in Fig. 5.1(d), an xd-graph
consists of |g|+ 1 DTD graphs and some edges connecting the DTD graphs, where
the DTD graph of D represents the parent-child relationships between labels oc-
curring in D (Fig. 5.1(c)). The reason why we use such multiple DTD graphs
is that we have to represent every edit operation to each location step of g. As

shown in Fig. 5.2, the edges between the first and second DTD graphs represent

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 27

edit operations to the first location step |:: a, the edges between the second and
third DTD graphs represent edit operations to the second location step |:: e, and
so on. To identify the edit operation of an edge, an xd-graph has several kinds of
edges; a “horizontal” edge [; — I/ corresponds to a location step insertion, each
“slant” edge /;_; --» [/ corresponds to a label substitution, and each “vertical” edge
l;_y -~ I; corresponds to a location step deletion. For example, consider the edges

on the path ny — ag --> by --> ¢, —> c3 (the thick path in Fig. 5.2).

e The first “horizontal” edge ny — ay represents inserting location step |:: a

before the first location step |:: a.

e The second “slant” edge a; --» b; represents substituting the label of the

first location step |:: a with b.

e The third “slant” edge b, --> ¢, represents substituting the label of the sec-

ond location step |:: e with c.

e The last “vertical” edge ¢, > c3 represents deleting the third location step

lic.

Thus, the thick path represents correcting g = / |:: a/ |:: e/ |:: ¢ to valid query
/1 al L b/ l:: c. Each edge has a cost according to the edit operation as-
sociated with the edge. Thus, the cost of each path p from the start node to the
accepting node represents the cost of correcting the input query to the valid query
represented by p.

In the following, we first present the detailed examples of xd-graph (Sec-

tion 5.2), then give the formal definitions (Section 5.3).

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 28

start node
location step
; = | NSertion before
via
(1st IocaI| on == €0it Operations
step of) toy::a
(2nd ocat|on = edit operations
step of g) toy:e
(3rd ocatl on = edit operations
step of q) toy::c
TG accepting node

Figure 5.2: Xd-graph

5.2 Xd-Graph Examples

To construct an xd-graph, we need a graph representation of DTD. The DTD graph
G(D) of aDTD D = (d, a, s) is a directed graph (V, E), where

V=2%,E={l—[l'|I isalabel appearing in d(1)}.

For example, Fig. 5.3 is the DTD graph of D = (d,a,s), where d(s) =
d(a) = cl|d, d(b) = d, d(c) = €,d(d) = Dle.
Now let us illustrate xd-graph. We first present the following three cases by

examples, then define xd-graph formally.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 29
S
a b

\J

d

Figure 5.3: a DTD graph G(D)

Case A) Only child (]) can be used as an axis.
Case B) Descendant-or-self (|*) can be used as well as |.

Case C) Sibling axes (—*, <) can be used as well as | and |*.

Case A) Only child (|) can be used as an axis.

Let us first illustrate the xd-graph constructed from a simple query ¢ = / |:: a/ |::
d and the DTD graph G(D) in Fig. 5.3. Since only | axis is allowed, it suffices
to consider location step insertion, location step deletion, and label substitution.
Figure 5.4 shows xd-graph G(g, G(D)). The xd-graph is constructed from 3 copies
of G(D) with their nodes connected by several edges. Here, ng, n, n, are newly
added nodes, which correspond to the “root node” in the XPath data model. Each
node is subscripted, e.g., the node s in G(D) is denoted sy on the topmost DTD
graph of G(p, G(D)), s, on the second topmost DTD graph, and so on, as shown
in Fig. 5.4.
We have the following three kinds of edges in an xd-graph.

e A “horizontal” edge [— I’ corresponds to a location step insertion.

e A “slant” edge [--> I’ corresponds to a label substitution.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 30

start

\\ i \\\ : ,"'kio \l// :\/dd‘-.
a NN DD graph

Figure 5.4: An xd-graph G(q, G(D))

o A “vertical” edge [> I’ corresponds to a location step deletion.

More concretely, let us first consider horizontal edge ny — sy in Fig. 5.4. This
edge means “moving from the root node to child node s, using no location step of
q”. In other words, the edge ny — s, represents adding a location step |:: s, that
is, the edge represents an edit operation [e —|:: s]yp. Let us next consider slant
edge so --> by in Fig. 5.4. This edge means “moving from node s to child node b
using the first location step |:: a of ¢”. Since the target node is b rather than a,
we have to substitute the label of |:: @ with b, that is, the edge sy --> b; represents
[a — b],. Finally, consider vertical edge b; > b, in Fig. 5.4. This edge means
“staying the same node b by ignoring (deleting) the second location step |:: d of
q”. Thus the edge b, --> b, represents [|:: d — €],.

In Fig. 5.4, ny is called start node and d, is called accepting node. Each

path from the start node to the accepting node represents a simple query valid

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 31

1€ - $*|}

Figure 5.5: Edges representing location step insertion

against D obtained by correcting g. For example, let us consider a path p =
ng — So > a; --> dp in Fig. 5.4. Recall that ¢ = / |:: a/ |:: d. The first
edge ny — sy represents a location step insertion [e —|:: s]o. The second edge
so --> a; represents a label substitution [a — a];, i.e., the first location step “|:: a”
of g is unchanged. Similarly, the location step “|:: d” of ¢ is unchanged. Thus,
p represents a query ¢ = / |1 s/ l:: a/ |:: d, which is obtained by applying
[e =l:: slola — ali[d — d], to g. Note that ¢’ is valid against D.

Case B) Descendant-or-self () can be used as well as |.

In this case, we can use |* axes as well as | axes. Let us first consider an edit
operation inserting location step |*:: / to a query. For this insertion, we add edges
representing the edit operation to an xd-graph. Fig. 5.5 shows the xd-graph con-
structed from the DTD graph in Fig. 5.3 and a query g = / |:: d. Each dashed
edge in Fig. 5.5 represents a location step insertion. For example, sy --> dy means
“moving from node s to node d via |* axis, using no location step of ¢”, that is, in-

serting a location step |*:: d at position 0 of ¢, i.e., [e =] ":: d]y. As stated before,

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 32

Figure 5.6: Edges representing axis substitution

every path from the start node to the accepting node represents a simple query
valid against D, which is obtained by correcting g. For example, ny — s --> d;
represents a simple query / |:: s/ |*:: d obtained by applying [d — s];[e —":: d];
tog=/1:d.

Let us next consider axis substitution between | and |*. Fig. 5.6 shows the
xd-graph constructed from the same DTD graph as above and the same query
q = / l:: d. In the figure, for simplicity we omit some of the edges representing
location step insertion, location step deletion, and label substitution. In Fig. 5.6,
a dashed edge represents substituting |:: a with |*:: [. For example, ny --> a;
means “moving from the root node to a with |* axis”, i.e., substituting |:: d with
l*:: a. Here, consider path p = ny — s¢ --> d; in Fig. 5.6. p represents a query
/l::s/1":: d, which is obtained by applying [e —]:: s]o[l—=1"]i tog=/l::d.

Finally, substituting |* with | can be represented by a slant edge similar to
label substitution (I — [’), and the deletion of a location step using |* axis can be

handled similarly to the location step deletion in Case A.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 33

start

......... >t d — et

—— > —tud — <«

— % —»td — ¢

Figure 5.7: Edges dealing with —* and «* axes

Case C) Sibling axes (—*, <) can be used as well as | and |"*.

Let us consider handling —* and «* axes. Fig. 5.7 shows the xd-graph con-
structed from the same DTD graph as above and a query ¢ = / —*:: d. First,
let us consider edges connecting the same labels having distinct subscripts, e.g.,
so — s and ayp — a;. Such an edge means that the position does not change
(ignoring —*:: d of ¢) and —7:: d is deleted from gq.

Let us next consider dashed edges connecting “sibling labels”. For example,
we have four edges between ay, by and ay, by (e.g., ay --> by, by > ay) since a and
b are siblings in d(s) = ba*. A dashed edge > represents substituting a sibling
axis (=" or «*) with —»*, and another dashed edge --» represents substituting a
sibling axis with «*. For example, ay --> b; means “moving from node a to b
via «* axis”, that is, substituting the location step —*:: d of ¢ with «*:: b. An
xd-graph has no edge violating a DTD, e.g., Fig. 5.7 does not have edge b, --> a,

since d(s) = ba* and a cannot be left to b.

5.3 Formal Definition of Xd-Graph

Let us now give the formal definition of xd-graph. Let D = (d, «, s) be a DTD,
G(D) = (V,E) be the DTD graph of D, and g = /ax[1] :: I[1]/--- /ax[m] :: l[m]

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 34

be a simple query. Moreover, let G;(D) = (V,, E;) be a graph obtained by adding a
subscript i to each node of G(D), thatis, V; ={; |l € Viand E; = {[; > [| | —
I' € E} for 0 < i < m. Then the xd-graph for g and G(D), denoted G(q, G(D)), is
a directed graph (V’, E”), where

V’ {no,nl,"',nm}UVOUVIU"'UVm,

E Einse U(EJUE|U---UE/)U(FyUF,U---UF,).

Here, E;,; in (5.1) is the set of edges inserting |:: [(corresponding to “e —|:: [”

in Fig. 5.4), that is,

Eipse ={no — s, 1y = S} U(Eg U -+ U Ey),

where E; is the set of edges of G;(D). E” in (5.1) is the set of edges inserting |*:: [

(corresponding to “e —|*:: I’ in Fig. 5.5) and is defined as follows.

E ={n; > ;| l; € Vi}U{l; - Il | I is reachable from [in D}.

F;in (5.1) is the set of edges between G;_;(D) and G,(D) defined as follows. We
have two cases to be considered.

1) The case where ax[i] € {|,|*}: F; = D; U C; U A;, where

= {niy > n}U{liy > L1eV), (5.1)
Ci = n—- sVl >[I ->1 €k}

= {niy > L |, € V}U{li.y = [| ' is reachable from [in D}. (5.2)

Here, D; is the set of edges corresponding to “|:: [— €’ in Fig. 5.4, C; is the
set of edges corresponding to “/ — [’” in Fig. 5.4, and A; is the set of edges

corresponding to “|:: d —|*:: [in Fig 5.6.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 35

2) The case where ax[i] € {«",—>"}: F; = D; U L; U R;, where

{li.y = [''| I can be left to [, [is the parent label of [, /" in d(I")},

i

R; {li-y = | I' can be right to /, [is the parent label of /, " in d(I"")},

and D; is the same as the previous case. L; (resp., R;) is the set of edges corre-
sponding to “—*::d —» <"1 [” (resp., “—F::d - —*:: [”) in Fig. 5.7.

Finally, we define the cost of an edge in G(g, G(D)) = (V’, E”). Suppose that
vyl = I'), y(ax — ax’), y(e — ax ::), and y(ax :: | — €) are defined for any
I,I' € ¥, and any axes ax,ax’. Then the cost of an edge e € E’, denoted y(e), is

defined as follows.

e The case where e € Ej,,: We can denote e = [; — [I. Since this edge

represents inserting a location step |:: ', y(e) = y(e — l:: I').

e The case where e € E!: We can denote e = [; — [I. Since this edge

represents inserting a location step [*:: I, y(e) = y(e = |":: [).

e The case where e € D;: We can denote ¢ = [,_; — [;. Since this edge

represents deleting a location step ax[i] :: [[i], y(e) = y(ax[i] :: l[i] — €).

e The case where e € C;: We can denote e = [;_; — [/. Since this edge repre-
sents substituting ax[i] with | and substituting I[i] with [, y(e) =y(ax[i] =)
+y([i] = I).

e The case where e € A;: We can denote e = [,_; — [. Since this edge
represents substituting ax[i] with |* and substituting [[i] with I’, y(e) =
ylaxli]=1") + y([i] —=).

e The case where e € L;: We can denote e = [,_; — [’. Since this edge
represents substituting ax[i] with «* and substituting [[i] with I, y(e) =

v(ax[i] =»<")+vy(l[i] =). The case where e € R; can be defined similarly.

CHAPTER 5. XD-GRAPH REPRESENTING SET OF VALID QUERIES 36

For example, assume that y(ax — ax’) = 0 if ax = ax’, y(Il - ') = 0 if
[= I', and that y(op) = 1 for any other edit operation op. Then for the path
p =nyg — Sy > a; --> dp in Fig. 5.4, we have y(p) = y(e =l 5) + (y(l—=]
)+yla—a)+U-D+yd—-d)=1+0+0=1

Chapter 6

Algorithm for Finding top-K
Queries under DTDs

In this chapter, we present an algorithm for finding top-K queries syntactically
close to an input query under a DTD. We first consider the case where a query is

simple, then present an algorithm for queries in XP.

6.1 Algorithm for Simple Query

Let D be a DTD, Z, be the set of labels in D, g = /ax[1]::{[1]/--- /ax[m]:: l[m]
be a simple query, and G(q,G(D)) = (V’, E’) be the xd-graph for ¢ and G(D).
Moreover, let ny € V’ be the start node and (/[m]),, € V' be the accepting node of
G(q,G(D)). If I[[m] ¢ X, (due to user’s typo), then the label / € X, “most similar”
to [[m] is selected and ,, € V"’ is used as the accepting node.! Currently, we select
[€ 2, such that the edit distance between [and [[m] is the smallest.

By the definition of xd-graph, in order to find top-K queries syntactically close
to g under D, it suffices to solve the K shortest paths problem over the xd-graph

1G(q, G(D)) can also have multiple accepting nodes by adding a new “accepting” node n and
edges from each node in V,, to n. But since this approach tends to output “too diverse” answers,
we currently use a single accepting node.

37

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 38

G(gq,G(D)) between the start node and the accepting node. The resulting K short-
est paths represent the top-K queries syntactically close to ¢ under D. Formally,
this algorithm can be described as follows.

Input: ADTD D = (d, a, s), a simple query g = /ax[1] :: l[1]/--- Jax[m] :: [[m],
and a positive integer K.

Output: Top-K queries syntactically close to g under D.
1. Construct the DTD graph G(D) of D.
2. Construct the xd-graph G(g, G(D)) for g and G(D).

3. Solve the K shortest paths problem? on G(g, G(D)) between the start node

and the accepting node.

4. Let g, -+, gk be the queries represented by the K paths obtained above.
Return ¢qy, - - -, gk.

Let us give a simple example. We use query g and DTD D in Fig. 5.1, thus
we have g = / |:: a/ l:: e/ l:: cand D = (d, a,a), where d(s) = bd, d(a) = c,
d(b) = ¢, d(c) = €. Let K = 2. For simplicity, we only consider child axis (the
other axes are omitted), and suppose that the cost of each edit operation is one
except that y(I — I') = 0 whenever [= I’. In line 1 of the algorithm, we obtain the
DTD graph D(G) shown in Fig. 5.1(c). In line 2, we obtain the xd-graph shown in
Fig. 5.1(d), where ny is the start node and c; is the accepting node. Now, in step
3 we solve the K shortest paths problem on the xd-graph and obtain the following

two shortest paths.

® ny --> a; --> by --> c3. The second edge a; --> b, represents substituting the
label of the second location step |:: e of g with b, while the other edges do
nothing (substituting a label with the same one). Thus we have / |:: a/ |::
b/l:c.

There are a number of algorithms for solving K shortest paths problem (e.g., [46, 18]). Here
we can use any of them.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 39

® ny --> a; --> d --> c3. The second edge a; --» d, represents substituting the
label of the second location step |:: e of g with d, while the other edges do
nothing. Thus we have / |:: a/l::d/]:: c.

The above two queries are returned in line 4.

,,,

Figure 6.1: Xd-graph

We have the following.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 40

Theorem 3 Let D be a DTD, g be a simple query, and K be a positive integer.

Then the above algorithm outputs top-K queries syntactically close to q under D.

Proof Let g = /ax[1] :: [[1]/---/ax[m] :: [[m] be a simple XPath query and D
be a DTD. It suffices to show that the xd-graph G(g, G(D)) of g and D is “sound”
(every path from the start node to the accepting node corresponds to a valid query)
and “complete” (every valid query obtained by some edit script to g is represented
by a path from the start node to the accepting node in the xd-graph). Let g, be the
prefix of g of length &, that is, g, = /ax[1] :: [[1]/--- Jax[k] :: l[k]. In particular,
qo = €. In the following, we show by induction on |g| that for any node /; in

G(gq,G(D)), the following two statements hold.

e (Soundness) Any path from the start node to /;, represents a valid query

retrieving element / obtained by applying an edit script to g.

e (Completeness) Any valid query retrieving / obtained by applying an edit

script to gy is represented by a path from the start node to /.

Basis: |g| = 0 and g = €. Thus G(g, G(D)) contains only one DTD graph (G,
in Fig. 6.1). Since g = €, only location step insertions to ¢ are allowed. Thus it is
easy to verify that for each node /[, in G(g, G(D)), the above two statements hold.

Induction: Assume as the induction hypothesis that if |g| < m, then for any
node /; in G(g, G(D)), the above two statements hold. Consider the case of |g| = m.
Since the soundness is rather clear, we only consider the completeness. Consider
an edge between G,,_; and G,,, say a,,_1 — c¢,, (see Fig. 6.1). We have the follow-

ing observations.

e By the induction hypothesis, any valid query retrieving a obtained by ap-
plying an edit script to g,,—; is represented by a path from the start node to

am-1, that is, the subgraph A of Fig. 6.1 is complete.

e By definition, the edges between G,,_; and G,, cover all the edit operations

to the mth location step of q.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 41

e Assuming that ¢,, is the “document root”, we can show similarly to the basis
case that any valid query p retrieving e (the label of the accepting node)
obtained by applying location step insertions to € is represented by a path

from c,, to e,,. That is, the subgraph B of Fig. 6.1 is complete.

The above three observations imply that any valid query retrieving / obtained by
applying an edit script to g is represented by a path from the start node to /,,, where
I, is the accepting node. Hence G(g, G(D)) is complete. O

Let us consider the time complexity of this algorithm. First, we consider the
size of G(g, G(D)). For every node n in G(p, G(D)), the number of edges leaving
n is in O(|Z,]). Since the number of nodes in G(g, G(D)) is in O(|q| - |Z.|), the total
number of edges in G(g, G(D)) is in O(|g| - |Z.|*). Let us next consider solving
the K shortest paths problem on G(g, G(D)). There are a number of algorithms for
solving this problem (e.g., [46, 18]), and we use the extended Dijkstra’s algorithm.
The time complexity of the Dijkstra’s algorithm is O(K - |E| - log |V]), where E is
the set of edges and V is the set of nodes. Since the number of edges in the xd-
graph is in O(|g| - |Z.|*) and that of nodes is in O(|g| - |Z|), the time complexity for
solving the K shortest paths problem over the xd-graph is in

O(K - lg| - [ZI* - 1og(Igl - Zc1)).

This is the time complexity of the algorithm.

Thus we have the following.

Theorem 4 Let D be a DTD, X be the set of labels in D, q be a simple XPath
query, and K be a positive integer. Then top-K queries syntactically close to q
under D can be obtained in O(K - |q| - |2 - log(lq| - [Z)) time. |

Let D be a DTD, g = /ax[1] :: I[1]/---/ax[m] :: l[m] be a query, and
G(gq,G(D)) be the xd-graph for g and D. The proposed algorithm assumes that
the label of the accepting node of G(g, G(D)) coincides with that of the last loca-
tion step of ¢, that is, /[m],, is the accepting node of G(q, G(D)). Here, consider

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 42

{=d

Figure 6.2: Adding a new accepting node n to G(g, G(D))

the case that a user write a query g. Then the label of the last location step of g rep-
resents the most symbolic label that the user wants to retrieve, thus the user tends
not to write a completely wrong label at the last location step of g. Therefore, in
most cases we believe that the above assumption is a reasonable one. However, if
a user prefers a more general query correction, we can relax the above assumption

by extending the xd-graph, as follows (see Fig. 6.2)
1. Add a new accepting node n to G(q, G(D)).
2. For each node /; in G(gq, G(D)), add and edge /; — n.
3. For each edge [; — n added above, let y(/; — n) = 0.

On the other hand, the drawback of the above extension is that the approach tends

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 43

to output “too many” corrected queries. Thus the above extension should be used

only if no desirable query correction is obtained under the original xd-graph.

6.2 Algorithm for Queries in XP

The algorithm proposed in the previous section can handle only simple queries.
In this section, we extend the algorithm so that it handles any queries in XP.

We present an algorithm that finds, for a query ¢ € XP and a DTD D, top-
K queries syntactically close to g under D. We first give some definitions. Let
q = [ax[1]::l[1][exp[1]]/ - - - Jax[m]::[[m][exp[m]] € XP. By sp(q) we mean the
selection path of g obtained by dropping every predicate in g and the last location

step of g if ax[m] = @; that is,

Jax[1]::1[1]/) -+ Jax[m — 1] l[m — 1] if ax[m] = @,
sp(q) =
Jax[1]::1[1]/ - - Jax[m]::[m] otherwise.

Suppose that ax[m] = @. By definition the set of edit operations applicable to
ax[m]::l[m]is S = {ax[m]::l[m] — €} U {l[m] — I |l € a(l[m — 1])}. We say that
op1,---,opg are K optimum edit operations for ax[m]::[[m] if op,---,0px € S,
op; # opjforany i # j, y(op;) < --- < y(opk), and y(opg) < op for any
op € S\{opi,---,opk} (We assume that opiss; = -+ - = opg = nil with y(nil) = oo
if |IS| < K).

We now present the algorithm. To find top-K queries syntactically close to
a query g under a DTD D, we again construct an xd-graph G(sp(q), G(D)) and
solve the K shortest paths problem on the xd-graph. But since ¢ may not be
simple, before solving the K shortest paths problem we modify G(sp(q), G(D)) as

follows.>

3Since it is fairly difficult to correct the right hand side and the comparison operator of expl[i]
exactly, we focus on correcting the left hand side of exp[i].

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 44

e Suppose expli] # €. The cost of deleting location step ax[i] :: I[i][exp[i]]
should be y(ax[i] :: [[i]] — €) + y(expl[i] — €), where “exp[i] — €’ stands
for the delete operations that delete every location step in expl[i] (line (3-a)

below).

We also have to consider correcting exp[i]. To do this, we call the algorithm
for query /I[i]/expli] and DTD (d, @, I[i]) recursively. The obtained result
is incorporated into G(sp(q), G(D)) by using the gadget in Fig. 6.3 (node /;
corresponds to /[m]); the obtained K optimum edit scripts are assigned to

the K edges ey, - - -, ex in the gadget (line (3-b)).

o If ax[m] = @, we have to modify G(sp(q), G(D)) in order to incorporate

the K optimum edit operations for ax[m]::[[m] (line 4).

FinoKParns(D, g, K)
Input: A DTD D = (d,a,s), a query g = [ax[1] = I[1]lexp[1]]/--- /ax[m] ::
[[m][exp[m]], and a positive integer K.

Output: Top-K queries syntactically close to g under D.

1. Construct the DTD graph G(D) of D.
2. Construct the xd-graph G(sp(q), G(D)) for g and G(D).
3. For each 1 <i < m with exp[i] # €, modify G(sp(q), G(D)) as follows.
(a) Foreachedge e € D, (defined in Eq. (5.1)), let y(e) < y(e)+y(expli] —
€).
(b) For each node [; € V;, do the following (i) — (iii).
i. Replace /; with its corresponding gadget (Fig. 6.3).

ii. Call FINnoKPatus(D’, ¢, K), where D’ = (d, a,l;) and ¢’ = /I;/exp[i].*

Let s, -, s be the result.

“Since [; is added as the first location step of ¢’, for each recursive call we assume that y(ny —
D =0ifl = (l;)o and y(ngy — I) = oo otherwise, where ng is the start node of the constructed
xd-graph in the recursive call.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 45

EdgesinA4 or C or D.

CD@Z<

Edges in C.

EdgesinA4 or D,

Figure 6.3: Node /; and its gadget, where [is a new node and ey, - - -, ex are new
edges.

ii. y(e;) « y(s;.) forevery 1 < j < K.
4. If ax[m] = @, modify G(sp(q), G(D)) as follows.

(a) Replace the accepting node [,,_; of G(sp(q), G(D)) with its correspond-
ing gadget (Fig. 6.3).
(b) Letopy,---,0pk be the K optimum edit operations for ax[m] :: [[m].

(c) y(e;) < y(op;) forevery 1 < j < K.

5. Solve the K shortest paths problem on G(sp(q), G(D)) modified as above.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER

DTDS 46
6. Let q1,- -+, gk be the queries represented by the K paths obtained above.
Return gy, - - -, gk.

a
b d
C e
Figure 6.4: DTD graph G(D).

Let us explain the algorithm by an example. For simplicity, we assume that
the cost of each edit operation is one except that y(I — I’) = 0 whenever [/ = ['.
We also assume that only child axes are allowed (the other axes are omitted).
Let K =2,qg =/1:a/l: b[l:: e]l/ l:: cbeaquery,and D = (d,a,a) be a
DTD, where d(a) = bd, d(b) = ¢, d(d) = ce, and d(c) = d(e) = €. In step 1
of the algorithm, we obtain the DTD graph G(D) shown in Fig. 6.4. In step 2,
sp(q) = [l al l:: b/ i ¢ and we obtain the xd-graph G(sp(q), G(D)) shown
in Fig. 6.5, where ny is the start node and c; is the accepting node. In this xd-
graph, the costs of four edges ny --> ay, a; --> by, by --> ¢3, d, --> c3 are zero (the
edges labeled by “0” in Fig. 6.5), while the costs of the other edges are one (their
labels are omitted). In step 3, since the second location step |:: b[]:: e] of g has
a predicate, G(sp(q), G(D)) is modified by replacing five nodes a,, b;, ¢;,d>, e>
with their corresponding gadgets, as shown in Fig. 6.6. For example, consider
the gadget having two nodes b, and b). This gadget has two edges b, 4 b, and
b, 5 b),, where the former represents substituting e with ¢ in the predicate and the
latter represents deleting the predicate of g. Note that, due to step (3-a), the costs

of “vertical” edges n; ~> ny, ay =~ ay, by =~ b}, ¢, =~ ¢, dy > d}, and e > €

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 47

Figure 6.5: Xd-graph G(sp(q), G(D)).

are increased by one (the edges labeled by “2” in Fig. 6.6), since these edges now
represent deleting |:: b[|:: e] instead of deleting |:: b. Over this modified graph,
we solve the K shortest paths problem between ny and c3 (step 5). The followings

are the three shortest paths whose costs are one.

e 1y ->a; --» by 4 D), --> c3. The third edge b, 4 D), represents substituting
e with ¢ in the predicate of g, while the other edges do nothing (substituting
a label with the same one). Thus we obtain / |:: a/|:: b[|:: c]/l:: c.

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 48

® 1y ->ay > by 5 b}, --> c3. The third edge b, 5 b, represents deleting the
predicate of g, while the other edges do nothing. Thus we obtain / |:: a/ |::
b/ |:: c.

® ng-->a > d i d} --» c3. The second edge a; --» d, represents substitut-
ing b with d in the second location step |:: b[|:: e], while the other edges
do nothing. Thus we obtain / |:: a/ |:: d[l:: e]/ l:: c.

Since K = 2, arbitrary two of the above three are returned in step 6 (ties are broken
arbitrary).

We have the following.

Theorem 5 Let D be a DTD, q € XP a query, and K be a positive integer. Then

FinoKPatHs outputs top-K queries syntactically close to q under D.

Proof Let g = /ax[1] :: I[1][exp[1]]/--- /ax[m] :: l[m][exp[m]]. We show the
completeness of the graph obtained in lines (1) to (4) of the algorithm. Every
update to sp(q) is covered by G(sp(q), G(D)) by Theorem 4. Thus we have to
consider (a) updates to the predicates in ¢ and (b) update to the attributes in g.
Consider first (a). Consider a location step ax[i] :: [[i][exp[i]] of g. Due to the
definition of update operations, the possible updates to this location step are as

follows.
1. The whole location step is deleted.

2. This location step is not deleted. In this case, [[{] is replaced by some label

and expl[i] is updated by some update script.

(1) is covered by line (3-a) and (2) is covered by line (3-b) of the algorithm. As for

(b), the possible updates to the attributes are covered by line (4). Thus the graph

obtained in line (3) is complete. O
Let us consider the running time of the algorithm. Let g = /ax[1] :: I[[1][exp[1]]

[-+ Jax[m] :: [[m][exp[m]]. By mnl(q) we mean the maximum nest level of g, that

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 49

Aye—c)=1 Aye—e)=0

2 Biye—e)=1 b’ o B:ye—0C)=1 d

Figure 6.6: The graph obtained by modifying G(sp(q), G(D)).

18,

0 if g is simple,
mnl(q) =

1 + max<;<,(mnl(expli])) otherwise.

For example, if g = / |:: a/ |:: b[|:: d[l:: e]]l/ l:: ¢, then mnl(q) = 2. First, con-
sider the case where mnl(g) = 1, i.e., no exp[i] has a predicate. In this case, since

FinDKPaths is called |V;| = |Z,| times (step (3-b)), by Theorem 4 the algorithm

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 50

runs in

O(K - Isp(q@)] - [Z.]* - log(Isp(q)] - [Z.]) +
Z IZ.| - (K - lexplill - [ZI* - log(lexpli]] - IZ.])) =

1<i<m

O(K - lql - IZ.I° - Tog(lql - Z.1))

time. In general, due to step (3) the running time of the algorithm is increased by

a factor of |Z,| as mnl(g) increases by one. Thus, the algorithm runs in
O(K - |g| - [Z.[*""@ - Tog(lg| - Z.]))

time. Thus we have the following.

Theorem 6 Let D be a DTD, q € XP be a query, and K be a positive integer. Then

FinoKPatus(D, g, K) runs in polynomial time of |D| and |q| if mnl(q) is constant.

This suggests that the algorithm may run inefficiently if ¢ has deeply nested
predicates. However, XPath queries usually contains very few such predicates,
and as we will see below, by pruning unnecessary edges and nodes of xd-graphs
the algorithm can run more efficiently. Therefore, we believe that the algorithm

runs efficiently for most of XPath queries.

Pruning Xd-Graph

An xd-graph may contain unnecessary nodes, e.g., in Fig. 5.4 the accepting node
d, is unreachable from cy, ¢y, and ¢, and thus these three nodes are unnecessary.
By pruning such nodes, we can save space and time. Such a pruning is effective
especially if a DTD has a tree-like structure. For example, suppose that the DTD
graph D(G) is a complete k-ary tree and that query ¢ contains no sibling axis and

no predicate. For a leaf node n in D(G), the number of nodes from which 7 is

CHAPTER 6. ALGORITHM FOR FINDING TOP-K QUERIES UNDER
DTDS 51

reachable is in O(log|Z,|). Thus the size of the xd-graph can be reduced from
O(q - 1Z.*) to O(|q| - log2 |Z.]), and the time complexity of the algorithm in this

section can be reduced to
O(K - |q| - 1og™*"" P |Z,| - log(lq] - log [Z.])).

On the other hand, the pruning itself can be done very efficiently. Actually,
the pruning needs (1) a top-down traversal from the start node and (2) a bottom-
up traversal from the accepting node, each of which can be done by a breath-first
traversal. Since a breath-first traversal can be done in O(|V| + |E|) time for a graph
(V, E) [73] and the numbers of nodes and edges of an xd-graph are in O(|%,|), the
pruning can be done in

O(1Z| + [Zc]) = O(1Ze)).

We also make an experiment to evaluate the effect of this pruning. This is

shown in Section 8.2.

Chapter 7

Algorithm for Regular Tree

Grammar

In this chapter, we extend the algorithms to use regular tree grammar as a schema
instead of DTD. Regular tree grammar is a general schema model for XML in-
cluding local tree grammar, which is equivalent to DTD [51]. Since regular tree
grammar can assign more than one type (non-terminal) to a label, we cannot use
the definition of xd-graph in that shape. In the following, we firstly define regular
tree grammar formally, then extend xd-graph for regular tree grammar (xg-graph).

By using xg-graph, we describe how to find correct XPath queries.

7.1 Regular Tree Grammar

A regular tree grammar is a 4-tuple G = (N, T, S, P), where N is a set of non-
terminals, T is a set of terminals, S € N is a set of start symbols, P is a set
of productions of the form X — ar such that X € N,a € T, and r is a regular
expression over N. We say that X is the left-hand side of the production, ar is the
right-hand side, a is the label, and r is the content model.

For example, the DTD in Chapter 1 can be represented by a regular tree gram-

52

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 53
mar G = (N, T, S, P), where

= {Site, People, Person, Name, Pcdata},

N

T = ({site, people, person,name, pcdata},

S = ({Site},

P = {Site — site(People), People — people(Person®),
Person — person(Name), Name — Pcdata(Pcdata),

Pcdata — pcdata(e)}.

For a regular tree grammar G = (N, T, S, P) and labels a, b, we say that b is

reachable from a in G if either one of the conditions is satisfied.

e a = b, or there are productions X — ar and X’ — br’ in P such that X’

occurs in r.

e For a label a’, @’ is reachable from a, and there are productions X — a'r

and X’ — br’ such that X’ occurs in r.

Let ¢ be a tree. An interpretation I of t against G is a mapping from each node

e int to a state I(e) that satisfies the following conditions.

e If e is the root of 7, I(e) is an initial state.

e There is a production X — ar in G such that I(e) = X, a is a terminal of e,
and that I(eg)I(e;)...I1(e,,) matches r, where ey, ¢1, ..., ¢,, are the child nodes

of e.

By L(G) we mean the language of G. Then t € L(G) if and only if there is an
interpretation of ¢ against G.

It is shown that regular tree grammar is strictly more expressive than DTD [51].
Actually, both W3C XML Schema [79, 80] and RELAX NG [54] can be modeled

by regular tree grammar. For example, let us consider the RELAX NG schema

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 54

shown in Fig. 7.1. In this schema, an item element can be of type CD or Book,
and the CD and Book types have different content models. Such types cannot be
modeled by any DTD since each element must have exactly one content model.
On the other hand, regular tree grammar can handle such types. The following
regular tree grammar G = (N, T, S, P) corresponds to the RELAX NG schema in
Fig. 7.1.

= {Catalog,CD, Book, Title, Artist, Author, Pcdata}
{catalog, item, title, artist, author, pcdata}

= {Catalog}

v Y N =
[

= {Catalog — catalog(CD"* Book"),
CD — item(Title Artist),

Book — item(T'itle Author),
Title — title(Pcdata),

Artist — artist(Pcdata),

Author — author(Pcdata),

Pcdata — pcdata(e)}

7.2 Xg-Graph

In this section, we introduce a graph called xg-graph. This is an extended version
of xd-graph that can handle non-terminal of regular tree grammar. Throughout
this section, we assume that each query is simple. The general case is considered
in Section 7.3.2.

Similar to Section 6.1, we obtain K optimum edit scripts against a query ¢

under G = (N, T, S, P) as follows.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR

55

<?xml version="1.0" encoding="Shift_JIS" ?>
<rng:grammar
xmlns:rng="http://relaxng.org/ns/structure/1.0">

<rng:start>
<rng:ref name="Catalog" />
</rng:start>

<rng:define name="Catalog">
<rng:element name="catalog">
<rng:oneOrMore>
<rng:ref name="CD" />
</rng:one0rMore>
<rng:oneOrMore>
<rng:ref name="Book" />
</rng:onelrMore>
</rng:element>
</rng:define>

<rng:define name="CD">
<rng:element name="item">
<rng:ref name="Title" />
<rng:ref name="Artist" />
</rng:element>
</rng:define>

<rng:define name="Book">
<rng:element name="item">
<rng:ref name="Title" />
<rng:ref name="Author" />
</rng:element>
</rng:define>
<rng:define name="Title">
<rng:element name="title">
<rng:text />
</rng:element>
</rng:define>

<rng:define name="Artist">
<rng:element name="artist">
<rng:text />
</rng:element>
</rng:define>

<rng:define name="Author">
<rng:element name="author">
<rng:text />
</rng:element>
</rng:define>

</rng:grammar>

Figure 7.1: An example of RELAX NG schema

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 56

1. Construct a production-graph G(P) from P in G.

2. Construct an xg-graph G(g, G(P)) from g and G(P). It consists of all paths
that represent XPath expressions valid against G obtained by applying edit

scripts on g.

3. Solve K shortest paths problem over G(g, G(P)) to obtain top-K optimum

edit scripts against g under G. The details is considered in Section 7.3.

7.2.1 Production-Graph

To construct an xg-graph, we need to represent productions of regular tree gram-
mar as a graph. Therefore, we first define production-graph.

Let G = (N, T,S, P) be a regular tree grammar. A production-graph G(P) =
(V, E) is a directed graph, where

{(X,a)| X — ar € P},

{(X,a) > (X',a’)| X = ar € P, X’ occurs in r, X’ # Pcdata,

X" — a’'r’ € P for some a’ € T and some regular expression r’ over N}.

For example, a production-graph G(P) for regular tree grammar G = (N, T, S, P)

is shown in Fig. 7.2, where

= {S,A,B,C, D, Pcdata},
{s,a,b,c,d, pcdata},
= {S},

N N =
I

= {§ = s5(A,B),A — a(C,D), B — b(D)
C — c¢(Pcdata), D — d(B|Pcdata),

Pcdata — pcdata(e)}.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 57

N
(A a) (B, b)

(C o (D, d)

Figure 7.2: An example of production-graph

7.2.2 Xg-Graph

We next construct an xg-graph from a query g and a production graph G(P). In-
tuitively, each edge on an xg-graph corresponds to an edit operation defined in
Chapter 4.

In the following, we first explain an xg-graph for the case of (1) mentioned be-
low (the case of (2) and (3) are omitted because they are similar to the discussions

in Section 5.2).
(1) Only child () can be used as an axis
(2) Descendant-or-self (1*) can be used as well as |

(3) Sibling axes (—7, <) can be used as well as | and |*

Only child (|) can be used as an axis

Let us consider the xg-graph constructed from a simple query ¢ = / |:: a/ |:: d and
the production-graph G(P) in Figure 7.2. Since only | axis is allowed, it suffices
to consider location step insertion, location step deletion, and label substitution.
Figure. 7.3 shows an xg-graph G(gq, G(P)) constructed from g and G(P). As
shown in this figure, the xg-graph is constructed from |g| + 1 copies of G(P) with

their nodes connected by several edges. Note that (N, n)y, (N, n);, (N, n), are newly

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 58

start 4 ™
Aa),— ,(Ca,
\
\
(Nl n:)O\ >(S, S)O\ \\\\
N N bl ©,d),
N N AN ~\ L Production-graph
lua \ : NN X roduction-graphs

Figure 7.3: An xg-graph G(gq, G(P))

added nodes, which correspond to the “root node” in the XPath data model. We
subscript each node of a production-graph to distinguish the nodes. For example,
the node (S, s) over G(P) is denoted (S, 5)y on the topmost production-graph of
G(p,G(P)), (S, s); on the second topmost production-graph, and so on.

As shown in Fig. 7.3, we have the following three kinds of edges in an xg-

graph.
e A “horizontal” edge (—) corresponds to a location step insertion (€ —|:: /).
e A “slant” edge (--») corresponds to a label substitution (I —).
o A “vertical” edge (>) corresponds to a location step deletion (|:: [— €).

More concretely, let us first consider horizontal edge ny — (S, s) in Fig. 7.3.
This edge means “moving from the root node to child node s, using no location
step of ¢”. This is moving to child node s by location step |:: s using no location

step in g. That is, the edge represents an edit operation [€ —|:: s].

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 59

Let us next consider slant edge (S, §)o --» (B, b); in Fig. 7.3. This edge means
“moving from node s to child node b using the first location step |:: a of ¢”. Since
the target node is b rather than a, we have to substitute the label of |:: a with b,
that is, the edge sy --> (B, b), represents [a — b];.

Finally, consider vertical edge (B, b); > (B, b), in Fig. 7.3. This edge means
“staying the same node b by ignoring (deleting) the second location step |:: d of
q”. Thus the edge b, --> (B, b), represents [|:: d = €]5.

In Fig. 7.3, (N, n), is called the start node and (D, d), is called the accepting
node. Each path from the start node to the accepting node represents a simple
query valid against G obtained by correcting g. For example, let us consider a
path p = (N,n)y — (S,8) --> (A,a); --> (D,d), in Fig. 7.3. In this path, the
first edge (N, n)y — (S, s)o represents a location step insertion [e —|:: s]yo. The
second edge (S,)y --» (A, a); represents a label substitution [a — a];, that is, the
first location step “|:: a” of p is unchanged. Similarly, the location step “|:: d” of
q is unchanged. Therefore, p represents an XPath expression / |:: s/]:: a/ l:: d,

which is valid against G.

Formal Definition of Xg-graph and Costs of Edges

Let us show the formal definition of xg-graph, and the cost of each edge on the
graph.

LetG = (N, T,S, P) be aregular tree grammar, G(P) = (V, E) be a production-
graph, p = /Jax[1] :: I[1]/--- /ax[m] :: I[m] be a simple query. By G;(P) we
mean the graph obtained from G(P) by subscripting each node with i. That is,
Vi={X,a); | X > are P}and E; = {(X,a); —» (X',a’); | X — ar € P}.

The xg-graph for p and G(P), denoted G(p, G(P)), is a directed graph (V’, E”)
defined as follows (Note that n of (N, n)y, - - -, (N, n),, is a label where n ¢ V).

4 {(N,n)y, -, (N,n),} UVoU---UV,

E = Emch(FIUUFm) (71)

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 60

Here, E;, . in (7.1) is the set of edges inserting |:: [(corresponding to “€ —|:: [”

in Fig. 7.3) and is defined as follows. Note that E; is an edge in G;(P).

Einsc = {(N’n)o - (S,S)(),"',(N,n)m - (S9S)m}U(EOU UEm)

F; (1 <i < m)in (7.1) is the set of edges between G;_;(P) and G;(P), and have
some definitions depending on the type of the ith axis on p. In this dissertation,
for simplicity we assume that ax[i] € {l} and F; = D; U C;. Then D; and C; are
defined as follows. Note that D; corresponds an edge “|:: [— €’ in Fig. 7.3 and

C; corresponds “/ — [I’” in Fig. 7.3, respectively.

D; {(N,n)i-y = (N,m)}Ulliy = i |1 e V) (7.2)

Ci {(N,n)ies = (S,)i} U{lioy = [|l > ' € E} (7.3)

We next consider the cost of each edge on an xg-graph. Suppose that following
costs correspond edit scripts defined in Chapter 4.

e y(l = I') : cost of label substituting / to I’

e y(e — ax :: I) : cost of inserting a location step ax :: [

e y(ax :: I — €) : cost of deleting a location step ax :: [

According to the above costs, we define the cost y(e) of an edgee € E’ on an

xg-graph, as follows.

e The case where e € E,, : We denote e = [; — [’. Since this edge represents

inserting a location step |:: I, we define y(e) = y(e — |:: [').

e The case where e € D; : We denote e = [;_; — [;. Since this edge represents

deleting a location step ax[i] :: I[i], we define y(e) = y(ax[i] :: I[i] — e€).

e The case where e € C; : We denote e = [;_; — [I. Since this edge

represents substituting ax[i] with | and substituting /[i] with /", we define

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 61

y(e) = y(ax[i] =) +y(U[i] = I').

For example, let us consider the following cost function.

0O whenl="/
yil—-1r) =
1 otherwise
yEe—ax:l) = 1
yax::l—e = 1

Then for the path (N,n)y — (S,s) --> (A,a); --> (D,d),, we obtain a cost
ye—=lus)+ (U=l +y@—-a)+ (Y-l +yd—->d)=1+0+0=1.

7.3 Algorithm for Finding top-K Queries

In this section, we present an algorithm for finding top-K queries syntactically
close to an input query under regular tree grammar. We first consider the case
where a query is simple, then present for queries in XP. Furthermore, we consider

the pruning for graphs.

7.3.1 Algorithm for Simple Query

Let G(P) be a regular tree grammar, g = /ax[1] :: [[1]/--- /ax[m] :: [[m] be a
simple query, G(q,G(P)) = (V,E) be the xg-graph for ¢ and G(P). Moreover,
let (N,n)y € V be the start node and (X, [[m]),, € V be the accepting node of
G(q,G(P)).

By the above cost definition, in order to find top-K queries syntactically close
to g under G, it suffices to solve the K shortest paths problem over the xg-graph
G(gq,G(P)) between the start node and the accepting node, and output K XPath
expressions represented by the obtained paths pi,---, pi. The algorithm is de-

scribed as follows.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 62

Input: A regular tree grammar G = (N, T, S, P), a simple query g = /ax[1] :: I[1]/
-+ /ax[m] :: [[m], and a positive integer K.

Output: Top-K queries syntactically close to g under G.

1. Construct the production graph G(P) of G.
2. Construct the xg-graph G(q, G(P)) for g and G(P).

3. Solve the K shortest paths problem on G(g, G(P)) between the start node
and the accepting node of G(gq, G(P)).

4. Let g1, -, gx be the queries represented by the K paths obtained in step 3.

Return g1, - - -, gk-

Thus we have the following.

Theorem 7 Let G = (N, T,S, P) be a regular tree grammar, q be a simple query,
and K be a positive integer. Then the above algorithm outputs top-K queries
syntactically close to q under G. Moreover; the algorithm runs in O(K - |q| - |P|* -
log(lgl - |PD)) time.

7.3.2 Algorithm for Queries in XP

Let g = Jax[1] :: l[1][exp[1]]/ - - - Jax[m] :: [[m][exp[m]] € XP, sp(q) be a query
expression obtained from extracting location steps with predicates from XP. that

18,

sp(q) = Jax[1]::1[1]/ - - - Jax[m]:: l[m].

Similar to FINpKPatHs, we construct an xg-graph G(sp(g), G(P)) first, then
solve top-K shortest paths problem.

FinoKPaTHSONG(G, ¢, K)

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 63

Input: A regular tree grammar G = (N, T, S, P), aquery g = /ax[1] :: l[1][exp[1]]/
-+ [ax|[m] :: [[m][exp[m]], and a positive integer K.

Output: Top-K queries syntactically close to g under G.

1. Construct the production-graph G(P).
2. Construct the xg-graph G(sp(q), G(P)).
3. For each 1 <i < m with expl[i] # €, modify G(sp(g), G(P)) as follows.

(a) For each edge e € D, let y(e) < y(e) + y(expli] — €).
(b) For each node /; € V;, do the following (1) — (ii1).

1. Replace /; with its corresponding gadget (Fig. 6.3).

ii. Call FinoKPatusONG(G, ¢/, K), where G' = (N, T, X, P), X of
node (X, [;) where X — ar € P,and g’ = /l;/expli]. Let sc},- -, sc}
be the results.

ii. y(e;) « y(s;.) forevery 1 < j < K.
4. If ax[m] = @, modify G(sp(q), G(D)) as follows.
(a) Replace the accepting node /,_; on G(sp(q), G(D)) with its corre-
sponding gadget (Fig. 6.3)
(b) opy,---,0pk be the K optimum edit operations for Let ax[m] :: [[m].
(c) y(e;) « y(op;) forevery 1 < j < K.

5. Solve the K shortest paths problem on G(sp(q), G(P)) modified as above.

6. Let scy,- - -, sck be the results obtained above. Return sci(q), - - -, scx(q).
The following result can be obtained similarly to Theorems 5 and 6.

Theorem 8 Let G = (N, T, S, P) be a regular tree grammar, g € XP be a query,
and K be a positive integer. Then FINDKPATHSONG outputs top-K queries syntac-

tically close to q under G. Moreover, FINDKPATHSONG runs in O(K - |g| - |P|>*™@) .
log(lgl - |P])).

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 64

7.3.3 Graph Optimization and Pruning

In the above algorithms, pruning a production-graph and an xg-graph is not con-
sidered. By optimizing nodes on a production-graph and pruning unnecessary
nodes on an xg-graph, we can save space and time.

In this section, we first describe optimizing of a production-graph, then show

how to prune an xg-graph.

Optimization of Production-Graph

Since regular tree grammar allow “conflicting” non-terminals, same non-terminals
may occur more than once in a production-graph. Therefore, more than one iden-
tical query may be obtained when top-K edit scripts are applied to a query.

For example, let us consider a regular tree grammar, where

= {S,A1,A2,B,C, D, Pcdata},
{s,a,b,c,d, pcdata},
= {S},

v Y N =
I

= {§ - s(A1,A2),Al - a(B,(),A2 — a(B, D)
B — b(Pcdata), C — c(Pcdata),

D — d(Pcdata), Pcdata — pcdata(e)}.

Then the algorithm constructs the production-graph of G shown in Fig.7.4. Here,
the terminals of the paths (S, s) — (Al,a) — (B,b) and (S, s) — (A2,a) — (B, b)
are same, / |:: a/ |:: b may outputted more than once by solving the K shortest
paths problem on an xg-graph. To avoid this problem, we contract nodes with
same terminals as shown in Fig.7.5. In the following, we describe contraction

formally.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 65

<)

(A2, a)

(B,b) (C,¢c) (D,d)

Figure 7.4: A production-graph that non-terminals conflict

(S, s)
(A1, a) (A2, a)
B, (C, o (D,

Figure 7.5: A (contracted) production-graph that non-terminals do not conflict

Recall that a production-graph G(P) = (V, E) is a directed graph, where

{(X,a) | X — ar € P},

{(X,a) > (X',a")| X = ar € P, X’ occurs in r, X’ # Pcdata,

X" — a’'r’ € P for some a’ € T and some regular expression r’ over N}.

If X; # X;,a; = aj, there exist nodes (X, a;), (X, a;) reachable from a node in
{(S,a) | S — ar € P}, and the following four conditions hold, then a production-

graph can be constructed by (1) and (2) described bellow.

e (Xj,a;) is unreachable from (X;, a;)

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 66

e (X;,a;) is unreachable from (X;, a;)
e (X, a;) have no (X;, a;) as a child node.
e (Xj,a;) have no (X;,a;) as a child node.

1. Let

Ei = {Xha)— (X,a) |

X; = a;r € P, X occurs in r, X; # Pcdata,

X! — a'r’ € P for some a; € T and some regular expression r’ on N},
E; = {(Xj,a)) > (X;-,a;-) |

X;—>ajre P,X} occurs in r, X;. # Pcdata,

X — ar’ € P for some a) € T and some regular expression r* on N}.
For any (X;,a;) - (X),d)) € E}, if a; # a for any (X;,a;) — (X!, a}) € E,,
then add (X;, q;) — (X;., a;.) to E and delete (X;,a;) — (X;., a;.) from E.
2. Let
E; = {(Xj-1,aj-1) — (Xj,a)) |

X; > aj_r € P, X;occurs inr,X; # Pcdata,

X; — a;r’ € Pfor some a; € T and some regular expression 7’ on N}.
Delete every edge in E; from E, and add (X;_;,a;-1) — (X;,a;) to E .

Pruning Xg-Graph

Suppose that G is a local tree grammar. Then we can save space and time for
solving K shortest paths problem by deleting nodes unreachable to the accepting

node.

CHAPTER 7. ALGORITHM FOR REGULAR TREE GRAMMAR 67

Let us consider the size of an xg-graph G(q, G(P)) for a local tree grammar
G =(N,T,S, P) and a query g. For simplicity, we assume that a production-graph
G(P) of G 1s a complete n-ary tree. Since whether a node can reach the accepting

node or not depends on —* and «* axes, we have two cases to be considered.

e The case where g does not include —* nor «* axis : The path that can reach
the accepting node is only one from the assumption. Thus, the number of
necessary nodes on G(P) is log|T|, therefore the size of the xg-graph is

reduced to O(|q| - log |T).

e The case where ¢ includes —* or «* axis : Let us assume that the depth

of the node that includes —* or «* axis first from the document element

is [. From the assumption, the number of necessary nodes on G(P) is '21,',
1]

- In this case, since

therefore the size of the xg-graph is reduced to |g]| -
—* or «* axis does not occur in / = 0, that is, the document element, we

: 1
can reduce the size of an xg-graph to 5 or less.

Chapter 8

Experimental Results

In this chapter, we present two experimental results. The first experiment eval-
uates the “quality” of the output of the algorithm, and the second experiment
evaluates the execution time of the algorithm.

The algorithm is implemented in Ruby, and the experiments are performed on

an Apple Xserver with the following specifications.
e Mac OS X Server 10.6.8
e Xeon 2.26GHz CPU
e 6GB Memory
e Ruby-1.9.3

In the following, we use the shorthand notations for child and descendant-or-

self axes, i.e., “}::” is omitted and *“//” is used instead of “/ | *::”.

8.1 Quality of the Output of the Algorithm

For a Schema § and an incorrect query g written by a user, there are a number

of queries similar to ¢ under S, and thus our algorithm need to output a result

68

CHAPTER 8. EXPERIMENTAL RESULTS 69

containing the “correct query” that the user requires. We evaluate the ratio at
which the results of the algorithm contain such correct queries.

The outline of this experiment is as follows. We first prepare a set of pairs
(9., qi), where g, is a correct query (a query a user should write) and ¢; is an
incorrect query (a query a user actually writes). Then for each pair (q., g;), we
execute the algorithm to obtain top-K queries syntactically close to ¢g; and check
weather the top-K queries contain g..

Let us give the details of the experiment. The experiment is achieved by the

following five steps.

1. The schema used in this experiment is auction.dtd of XMark [59], which is
a recursive schema. As for XPath queries, we use XPath queries of XPath-
Mark [24]. These queries have a natural interpretation over documents gen-
erated with XMark. Therefore, they simulate realistic query needs of a po-
tential user of the the auction site. Among the queries of XPathMark, we
choose seven queries that can be handled by the implementation of our al-

gorithm. They are treated as “correct queries” ¢..

2. XPathMark also purveys a query in natural language and a condition for

each XPath query. For example, for the XPath query

//closed_auction//keyword,

the corresponding query and condition (enclosed in curly brackets) are as

follows.

Keywords in annotations of closed auctions

{descendant}

This condition means “only descendant axis is available”.

These are called “questions”. Table. 8.1 shows the above seven correct

queries and conditions.

CHAPTER 8. EXPERIMENTAL RESULTS 70

3. We request seven people to solve the 7 questions obtained in step 2. That
is, for each question they are asked to write an XPath query so that the
query coincides with what the question means. In this step they can see
auction.dtd at any time. We obtain 7 X 7 = 49 answers (i.e., queries written

by users) in total.

4. We check the above 49 queries by hand and find 20 incorrect ones as shown
in Table 8.1. Now we obtain 20 pairs (g., g;) of correct queries and incorrect

queries such that g. and ¢; share the same question.

5. For each incorrect query g; of the 20 pairs (¢, ¢;) and each K = 1,---, 10,
we execute the algorithm for ¢; under auction.dtd and check whether the
corresponding correct query g, is contained in the output of the algorithm.
We use the following simple cost function. This is determined in an ad-hoc

manner for no particular reason.

Yy —1)

the normalized string edit distance [47]

between [and /',

0 ifax=ax,

v(ax — ax")
2 otherwise,

ye—-ax:l) = 1,

vax::l—e€) = 2.

Fig. 8.1 illustrates the result. As shown in the figure, the algorithm fairly
succeeds in generating top-K queries containing correct queries.

However, the ratio does not reach 100% due to the three incorrect queries 5,
6, and 7 in Table 8.1. Since the cost of location step deletion is set to be larger
than that of location step insertion, incorrect queries containing redundant location

steps tend not to be contained in the result of the algorithm. More concretely, one

CHAPTER 8. EXPERIMENTAL RESULTS 71

Table 8.1: XPath queries (correct queries) and conditions

1. /site/closed_auctions/closed _auction/annotation/description/text/keyword
Keywords in annotations of closed auctions {child}
2. //closed_auction//keyword
Keywords in annotations of closed auctions {descendant}
3. /site/closed_auctions/closed _auction//keyword
Keywords in annotations of closed auctions {child and descendant}
4. [/site/closed_auctions/closed_auction[annotation/description/text/keyword]/date
Closed auctions with an annotation containing a keyword {filter with child}
5. /site/closed_auctions/closed _auction[descendant::keyword]/date
Closed auctions with an annotation containing a keyword {filter with descendant}
6. /site/open_auctions/open_auction/bidder[following-sibling::bidder]
Bidders except the last one of each open auction {following-sibling}
7. /site/open_auctions/open_auction/bidder[preceding-sibling::bidder]

Bidders except the first one of each open auction {preceding-sibling}

of the incorrect query is the following,
/closed_auctions/closed_auction/annotation/description//keyword

and the corresponding correct query is as follows. The algorithm does not predict
it since it needs to delete two location steps /annotation and /description (and to

insert one location step /site).
/site/closed_auctions/closed_auction//keyword

In this experiment, we use a simple ad-hoc cost function and we might ob-
tain a more better result if we use a more sophisticated cost function. This is an

important future work.

CHAPTER 8. EXPERIMENTAL RESULTS

72

ratio [%]

100

90

80
0+ S

60

50
40

30

20
10

1 2 3 4 5 6 7 8 9 10
number of output XPath queries [K]

Figure 8.1: Ratios at which the outputs contain correct answers

8.2 Execution Time of the Algorithm

We next evaluate the execution time of the algorithm. In particular, since the

size of an xd-graph may become very large, pruning of xd-graph is important to

obtain top-K queries efficiently. We evaluate the execution time of the algorithm,

as follows.

1. Pruning of xd-graph becomes more effective as the accepting node is near

node is 3).

to the start node. We partition the queries shown in Table 8.1 into two sets.
First set Q;contains queries 1-8 whose target element (accepting node) is
“keyword”, which is far from the start node (the distance between the start
node and the accepting node is 6 in the DTD graph of auction.dtd). Second
set O, contains queries 9-20 whose target element is “bidder”, which is near

from the start node (the distance between the start node and the accepting

2. For each set Q; and Q, and each K = 1,---, 10, we execute the algorithm

CHAPTER 8. EXPERIMENTAL RESULTS 73

el \vith pruning === without pruning

2.000
1.500 ‘___r_-Tr'—'-"‘-g——"—-l
— = bk ===
2,
o 1.000
£
0-000 1 1 I 1 1 1 1 I 1 1

1 2 3 4 5 6 7 8 9 10
number of output XPath queries [K]

Figure 8.2: Execution time with/without pruning of the algorithm for queries
targeting “far” nodes

with the same cost function of the previous experiment and measure its

execution time.

Figure 8.2 plots the average execution times for Q;, and Fig. 8.3 for O,
with/without pruning. With pruning the average execution time for Q, is about
0.51 to 0.81 seconds, while without pruning execution requires about twice the
time in the average. On the other hand, with pruning the average execution time
for O, is about 10 milliseconds, while without pruning the average execution time
is increased by a factor of 85 to 113.

Thus, with pruning the algorithm runs efficiently and the pruning brings a
much reduction of the execution time of the algorithm especially for queries tar-

geting near nodes.

CHAPTER 8. EXPERIMENTAL RESULTS 74

efl= \vith pruning =«A= without pruning

1.200

1.000 it b ==k =

A-—-‘--"A‘""

0.800

[s]

2 0.600

tim

0.400

0.200

0.000 - Ee—f|————————————
1 2 3 4 5 6 7 8 9 10
number of output XPath queries [K]

Figure 8.3: Execution time with/without pruning of the algorithm for queries
targeting “near” nodes

CHAPTER 8. EXPERIMENTAL RESULTS

Table 8.2: Incorrect queries written by users

75

—

A A T o

| NS I e e e e e T e T T
© v ©® N kA L M = O

/closed_auctions/closed_auction/annotation/description/text/keyword
/site/closed_auctions/closed_auction/annotation/keyword
/closed_auction/annotation/keyword
/closed_auctions/closed_auction/annotation/keyword
/closed_auctions/closed_auction/annotation/description//keyword
/site//closed_auction/annotation/keyword

//closed _auction/annotation/keyword
/closed_auctions/closed_auction//keyword
/open_auction/following-sibling::bidder
/site/open_auctions/open_auction/following-sibling::bidder
/open_auctions/open_auction/bidder/following-sibling::bidder
/site/open_auctions/open_auction/following-sibling::bidder
/open_auction/bidder/following-sibling::bidder
/open_auction/preceding-sibling::bidder
/site/open_auctions/open_auction/preceding-sibling::bidder
/open_auctions/open_auction/bidder/preceding-sibling::bidder
/site/open_auctions/open_auction/preceding-sibling::bidder
/open_auction/bidder/preceding-sibling::bidder
/site/open_auctions/bdder/following-sibling::bidder

/site/open_auctions/bdder/preceding-sibling::bidder

Chapter 9

Discussion

This chapter discusses about the XPath query correction problem, mainly from a

point of view of computational complexity and efficiency.

9.1 Edit Operation and Intractability

The complexity of the problem depends on the edit operations applied to XPath
queries; “core” and “core + extended”. The problem is tractable for the former
edit operations, while the problem becomes NP-hard for the latter edit operations
even if only simple XPath queries are allowed. The main difference between the
former and the latter is whether location step exchange is allowed or not. Here,
let us consider the reason why allowing location step exchange considerably in-
creases the complexity of the problem. In Theorem 1, the NP-hardness of the
problem in the case where location step exchange is allowed is shown by reducing
the Hamilton path problem to the XPath query correction problem. The hardness
of the Hamilton path problem comes from the fact that for a given graph G, a node
ordering of G that brings a Hamilton path is hard to find. The proof of the theorem
means that, by allowing location step exchange, the number of possible orderings
of location steps may increase exponentially, which implies that finding an opti-

mum valid query becomes considerably hard. Users that do not fully understand

76

CHAPTER 9. DISCUSSION 7

the structure of a schema tend to write invalid queries in which some of the loca-
tion steps are incorrectly interchanged. In this sense, location step exchange is a
useful edit operation. However, one location step exchange can be simulated by
a pair of a location step deletion and a location step insertion, although the latter
cost does not always coincide with the former cost. In addition, the algorithm pro-
posed in this dissertation presents top-K valid queries to users rather than a single
valid query. This suggests that restricting the available set of edit operations to

“core” is not too restrictive from a practical point of view.

9.2 Algorithm and Complexity

Let us next consider the time complexity of the algorithm, in terms of the ex-
pressive power of schema. As shown in Tables 9.1 and 9.2, the time complexity
of the algorithm under DTD is almost equivalent to the complexity under regular
tree grammar. According to [51], there are three major classes of schema lan-
guages; local tree grammar, single-type tree grammar, and regular tree grammar.
Regular tree grammar corresponds to RELAX NG [54], single-type tree grammar
corresponds to W3C XML Schema [79, 80], and local tree grammar corresponds
to DTD. It is shown that the expressive power of regular tree grammar is strictly
larger than that of single-type tree grammar, and the expressive power of single-
type tree grammar is strictly larger than that of local tree grammar. Although
there is a significant gap between regular tree grammar and DTD in terms of tree
grammar, the expressive power of schema hardly affects the time complexity of
the algorithm.

Let us consider the time complexity of the algorithm further. Assuming that
the set of available edit operations is restricted to “core”, the algorithm finds, for
a schema S, a (possibly invalid) XPath query ¢, and a positive integer K, top-
K queries syntactically close to g. Firstly, if XPath queries are restricted to be

simple, then the algorithm runs in time polynomial of the sizes of S and g. On the

CHAPTER 9. DISCUSSION 78

other hand, if XPath queries in XP are allowed, then the algorithm runs in time
polynomial of the sizes of S and ¢ in the case where the nest level of predicates
of ¢ is bounded by a constant, while the running time becomes exponential if the
nest level of predicates of ¢ is unrestricted. To see why the nest level of predicates

affects the complexity of the algorithm, let us consider the following query

[si[expi1/ -+ [ls,lexp,],

where [s; is a location step and exp; is a predicate. Note that if the last label of /s;
is changed to another label, then corrections to predicate exp; becomes completely
different. Therefore, corrections to a predicate exp; are affected by the corrections
to the location step /s; that holds exp;. This is the reason why the complexity of the
algorithm increases exponentially to the nest level of predicates. It is open whether
the problem is tractable or not in the case where arbitrary nest level of predicate
is allowed, and to investigate the (in)tractability is an interesting problem.

The results of the experimental evaluations show the efficiency of the algo-
rithm. In Chapter 8, it is shown that the algorithm runs highly efficiently, although
the evaluations are done under only XMark auction.dtd. However, auction.dtd
used in the evaluations is a relatively large DTD. Actually, auction.dtd is the sixth
largest DTD among the 27 real-world DTDs listed in [34]. Moreover, auction.dtd
contains cycles. These imply that the algorithm runs efficiently for most of real-
world DTDs. However, more experiments should be done under schemas other

than auction.dtd, which is left as a future work.

9.3 Boundary of Tractability and Intractability

As shown in Tables 9.1 and 9.2, the difference between “core” and “core + ex-
tended” is found to be the major boundary for the complexity of the XPath query

correction problem. In the former case, the problem is tractable for many cases,

CHAPTER 9. DISCUSSION 79

Table 9.1: The complexity of the XPath query correction problem under DTD

Query class
Edit operation XP
simple
mnl(q) < constant general case
PTIME PTIME O(K - |q| - [/ - log(lg| - [Z.I))
core
(Theorem 4) (Theorem 6) (Theorem 6)
NP-hard NP-hard
core + extended
(Theorems 1 and 2) (Theorems 1 and 2)

while in the latter case the problem becomes intractable even for simple XPath
queries. More specifically, in the former case the problem can be solved effi-
ciently if a query is simple or in XP with bounded nest level of predicates, but the
running time of the algorithm grows exponentially if the nest level is not bounded
by any constant. On the other hand, the complexity of the problem is shown to be
hardly affected by the expressive power of schema.

Finally, there are still some problems that need to be investigated. First, it is
open whether the problem is tractable in the case where a query is in XP and the
nest level of predicates is not bounded. Second, XP does not allow upward axes
such as parent and ancestor-or-self. Investigating the complexity of the problem

for broader XPath classes allowing such axes is also left as a future work.

CHAPTER 9. DISCUSSION 80

Table 9.2: The complexity of the XPath query correction problem under regular
tree grammar

Query class
Edit operation XP
simple
mnl(q) < constant general case
PTIME PTIME O(K - |g| - [P . log(|q| - |P]))
core
(Theorem 7) (Theorem 8) (Theorem 8)
NP-hard NP-hard
core + extended
(Theorems 1 and 2) (Theorems 1 and 2)

Chapter 10

Conclusion

In this dissertation, we firstly proposed two classes of XPath queries and two
classes of edit operations to XPath queries. We considered the intractability of the
XPath query correction problem in terms of the classes of edit operations and the
classes of XPath query. Then we proposed an algorithm that finds, for a query g,
a schema S, and a positive integer K, top-K queries syntactically close to ¢ under
S. Experimental results suggested that the algorithm outputs “correct” answers
efficiently in many cases.

The results of this dissertation are summarized as follows. First, the extended
edit operations clearly influence the complexity of the query correction problem.
However, the core edit operations are still useful because the edit operations are
complete even without the extended edit operations. Next, the complexity of the
query correction problem remains the same under DTD and regular tree gram-
mar. Thus the expressive power of schema does not affect the complexity of this
problem. Finally, for the XPath query classes, the XPath queries in XP can be
corrected efficiently in many cases if the core edit operations are allowed. How-
ever, whether this problem can be solve efficiently or not in the case where any
nest level of predicate is allowed is open, and identifying the complexity is left as
a future work.

In addition, to apply this research in practical application areas, several ex-

81

CHAPTER 10. CONCLUSION 82

tensions to the algorithms are desired. First, to output useful candidate queries,
using not only schema but also some part of data is especially effective for cor-
recting and recommending predicates. For example, an incorrect numerical value
in a predicate can be corrected by referring data values in the places indicated
by the predicate. Next, cost settings of edit operations directly influence output
queries and user experience. Therefore, for optimizing costs of edit operations,
some learning mechanism based on user feedback are required to collect users’

errors and analyze the tendency of the errors.

Acknowledgement

The author would like to give his sincere thanks, first of all, Associate Professor
Nobutaka Suzuki who graciously supported and guided the author. Without him,
the author did not aim to become a researcher.

The author is grateful to Professor Atuyuki Morishima and Professor Tetsuji
Satoh, both of whom shared their time and knowledge with him. Their advice will
continue to live in his future.

The author would like to thank Professors Shigeo Sugimoto and Associate
Professor Toshiyuki Amagasa both of whom provided many essential and benefi-
cial comments their reviews of his dissertation.

The author also thank to all the members of nslab, mlab and hitslab. They
usually encouraged and gave pleasure to him.

Furthermore, the author thank to his colleagues in Chiba university. Thanks to
their support, the author had completed this dissertation.

Finally, the author express his deepest thanks to his parents and his friends for

their infinite encouragement and kindness.

83

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

Alon, N., Milo, T., Neven, F., Suciu, D. and Vianu, V.: Typechecking XML
Views of Relational Databases, ACM Transactions on Computational Logic,

Vol. 4, No. 3, pp. 315-354 (2003).

Alon, N., Milo, T., Neven, F., Suciu, D. and Vianu, V.: XML with data
values: typechecking revisited, Journal of Computer and System Sciences,

Vol. 66, No. 4, pp. 688-727 (2003).
ALTOVA: XMLSpy. http://www.altova.com/jp/xmlspy.html.

Amer-Yahia, S., Cho, S., Lakshmanan, L. V. S. and Srivastava, D.: Mini-
mization of Tree Pattern Queries, In Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2001), ACM,
pp- 497-508 (2001).

Amer-Yahia, S., Cho, S. and Srivastava, D.: Tree Pattern Relaxation, In Pro-

ceedings of the 8th International Conference on Extending Database Tech-

nology (EDBT 2002), Springer Berlin Heidelberg, pp. 89-102 (2002).

Amer-Yahia, S., Lakshmanan, L. V. and Pandit, S.: FleXPath: Flexible struc-
ture and full-text querying for XML, In Proceedings of the 2004 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2004),
ACM, pp. 83-94 (2004).

84

BIBLIOGRAPHY 85

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Angluin, D.: Learning Regular Sets from Queries and Counterexamples,

Information and Computation, Vol. 75, No. 2, pp. 87-106 (1987).
Apache Software Foundation: Xalan. http://xalan.apache.org/.

Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M.: Proof Veri-
fication and the Hardness of Approximation Problems, Journal of the ACM,
Vol. 45, No. 3, pp. 501-555 (1998).

Benedikt, M., Fan, W. and Geerts, F.: XPath Satisfiability in the Presence
of DTDs, In the Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS 2005), ACM, pp. 25—
36 (2005).

Benedikt, M., Fan, W. and Geerts, F.: XPath Satisfiability in the Presence of
DTDs, Journal of the ACM, Vol. 55, No. 2, pp. 8:1-8:79 (2008).

Bockenhauer, H.-J. and Bongartz, D.: Algorithmic Aspects of Bioinformatics
(Natural Computing Series), Springer-Verlag Berlin Heidelberg (2007).

Brodianskiy, T. and Cohen, S.: Self-correcting Queries for Xml, In Pro-
ceedings of the 16th ACM Conference on Conference on Information and
Knowledge Management (CIKM 2007), ACM, pp. 11-20 (2007).

Chen, Y., Wang, W., Liu, Z. and Lin, X.: Keyword Search on Structured
and Semi-structured Data, In Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD 2009), ACM, pp.
1005-1010 (2009).

Choi, B.: What are real DTDs like?, In Proceedings of the 5th International
Workshop on the Web and Databases (WebDB 2002), pp. 43—48 (2002).

Cohen, S. and Brodianskiy, T.: Correcting queries for XML, In Proceedings
of the 16th ACM Conference on Conference on Information and Knowledge
Management (CIKM 2007), Vol. 34, No. 8, pp. 690-710 (2009).

BIBLIOGRAPHY 86

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Demaine, E. D., Mozes, S., Rossman, B. and Weimann, O.: An Optimal
Decomposition Algorithm for Tree Edit Distance, ACM Transactions on Al-

gorithms, Vol. 6, No. 1, pp. 2:1-2:19 (2009).

Eppstein, D.: Finding the k shortest paths, SIAM Journal on Computing,
Vol. 28, No. 2, pp. 652-673 (1998).

Fan, J., Li, G. and Zhou, L.: Interactive SQL query suggestion: Making
databases user-friendly, In Proceedings of the IEEE 27th International Con-
ference on Data Engineering (ICDE 2011), IEEE Computer Society, pp.
351-362 (2011).

Fazzinga, B., Flesca, S. and Furfaro, F.: XPath query relaxation through
rewriting rules, IEEE Transactions on Knowledge and Data Engineering,

Vol. 23, pp. 15831600 (2011).

Fazzinga, B., Flesca, S. and Pugliese, A.: Retrieving XML Data from Het-
erogeneous Sources Through Vague Querying, ACM Transactions on Inter-

net Technology, Vol. 9, No. 2, pp. 7:1-7:35 (2009).

Feng, D.-F. and Doolittle, R. F.: Progressive sequence alignment as a prereq-
uisite to correct phylogenetic trees, Journal of Molecular Evolution, Vol. 25,
No. 4, pp. 351 — 60 (1987).

Flesca, S., Furfaro, F. and Masciari, E.: On the Minimization of Xpath
Queries, In Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB 2003), ACM, pp. 153-164 (2003).

Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Gener-
ated Data, In Proceedings of the 3rd International XML Database Sympo-
sium (XSym 2005), Springer Berlin Heidelberg, pp. 129-143 (2005).

Gao, X., Xiao, B., Tao, D. and Li, X.: A survey of graph edit distance,
Pattern Analysis and Applications, Vol. 13, No. 1, pp. 113-129 (2010).

BIBLIOGRAPHY 87

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness, W.H. Freeman (1979).

Geerts, F. and Fan, W.: Satisfiability of XPath Queries with Sibling Axes, In
Revised Selected Papers of the 10th International Workshop on Database

Programming Languages (DBPL 2005), Springer Berlin Heidelberg, pp.
122-137 (2005).

Geneves, P. and Layaida, N.: A System for the Static Analysis of XPath,
ACM Transactions on Information Systems, Vol. 24, No. 4, pp. 475-502
(2000).

Higgins, D. G., Thompson, J. D. and Gibson, T. J.: Using CLUSTAL for
multiple sequence alignments, Computer Methods for Macromolecular Se-

quence Analysis, Methods in Enzymology, Vol. 266, Academic Press, pp.
383 — 402 (1996).

Horie, K. and Suzuki, N.: Extracting Differences Between Regular Tree
Grammars, In Proceedings of the 28th Annual ACM Symposium on Applied
Computing (SAC 2013), ACM, pp. 859-864 (2013).

Ishihara, Y., Hashimoto, K., Shimizu, S. and Fujiwara, T.: XPath Satisfiabil-
ity with Downward and Sibling Axes is Tractable Under Most of Real-world
DTDs, In Proceedings of the 12th International Workshop on Web Informa-
tion and Data Management (WIDM 2012), ACM, pp. 11-18 (2012).

Ishihara, Y., Morimoto, T., Shimizu, S., Hashimoto, K. and Fujiwara, T.:
A Tractable Subclass of DTDs for XPath Satisfiability with Sibling Axes,
In Proceedings of the 12th International Symposium on Database Pro-
gramming Languages (DBPL 2009), Springer Berlin Heidelberg, pp. 68—83
(2009).

BIBLIOGRAPHY 88

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Ishihara, Y., Shimizu, S. and Fujiwara, T.: Extending the Tractability Results
on XPath Satisfiability with Sibling Axes, In Proceedings of the 7th Interna-
tional XML Database Symposium (XSym 2010), Springer Berlin Heidelberg,
pp- 3347 (2010).

Ishihara, Y., Suzuki, N., Hashimoto, K., Shimizu, S. and Fujiwara, T.:
XPath Satisfiability with Parent Axes or Qualifiers Is Tractable under Many
of Real-World DTDs, In Proceedings of the 14th International Sympo-
sium on Database Programming Languages (DBPL 2013) (2013). http:
//arxiv.org/abs/1308.0769.

Ives, Z. G., Halevy, A. Y. and Weld, D. S.: An XML query engine for
network-bound data, VLDB Journal, Vol. 11, No. 4, pp. 380—402 (2002).

Karchmer, M., Newman, 1., Saks, M. and Wigderson, A.: Non-deterministic
Communication Complexity with Few Witnesses, Journal of Computer and

System Sciences, Vol. 49, No. 2, pp. 247-257 (1994).
Kay, M. H.: SAXON. http://saxon.sourceforge.net/.

Leonardi, E., Hoai, T. T., Bhowmick, S. S. and Madria, S.: DTD-Diff: A
Change Detection Algorithm for DTDs, In Proceedings of the 11th Interna-

tional Conference on Database Systems for Advanced Applications (DAS-
FAA 2006), Springer Berlin Heidelberg, pp. 817-827 (2006).

Leonardi, E., Hoai, T. T., Bhowmick, S. S. and Madria, S.: DTD-Diff:
A change detection algorithm for DTDs, Data & Knowledge Engineering,
Vol. 61, No. 2, pp. 384 — 402 (2007).

Levenshtein, V. I.: Binary codes capable of correcting deletions, insertions

and reversals, Soviet Physics Doklady, Vol. 10, pp. 707-710 (1966).

Li, G., Feng, J., Wang, J. and Zhou, L.: Effective keyword search for valu-
able lcas over XML documents, In Proceedings of the 16th ACM Conference

BIBLIOGRAPHY 89

[42]

[43]

[44]

[45]

[406]

[47]

[48]

[49]

on Conference on Information and Knowledge Management (CIKM 2007),
ACM, pp. 3140 (2007).

Li, Y., Yu, C. and Jagadish, H. V.: Schema-Free XQuery, In Proceedings of
the 30th International Conference on Very Large Data Bases (VLDB 2004),
ACM, pp. 72-83 (2004).

Li, Y., Yu, C. and Jagadish, H. V.: Enabling Schema-Free XQuery with
meaningful query focus, VLDB Journal, Vol. 17, pp. 355-377 (2008).

Martens, W. and Neven, F.: Frontiers of Tractability for Typechecking Sim-
ple XML Transformations, In Proceedings of the 23rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS
2004), ACM, pp. 23-34 (2004).

Martens, W. and Neven, F.: On the Complexity of Typechecking Top-down
XML Transformations, Theoretical Computer Science, Vol. 336, No. 1, pp.
153-180 (2005).

Martins, E.: K-th Shortest Paths Problem. http://www.mat.uc.pt/
~eqvm/OPP/KSPP/KSPP.html.

Marzal, A. and Vidal, E.: Computation of Normalized Edit Distance and Ap-

plications, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 15, pp. 926-932 (1993).

Miklau, G. and Suciu, D.: Containment and Equivalence for a Fragment of

XPath, Journal of the ACM, Vol. 51, No. 1, pp. 2-45 (2004).

Montazerian, M., Wood, P. T. and Mousavi, S. R.: XPath Query Satisfiability
is in PTIME for Real-world DTDs, In Proceedings of the 5th International
XML Database Symposium (XSym 2007), Springer Berlin Heidelberg, pp.
17-30 (2007).

BIBLIOGRAPHY 90

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Morishima, A., Kitagawa, H. and Matsumoto, A.: A machine learning ap-
proach to rapid development of XML mapping queries, In Proceedings of
the 20th IEEE International Conference on Data Engineering (ICDE 2004),
pp- 276-287 (2004).

Murata, M., Lee, D., Mani, M. and Kawaguchi, K.: Taxonomy of XML
Schema Languages Using Formal Language Theory, ACM Transactions on

Internet Technology, Vol. 5, No. 4, pp. 660704 (2005).

Neven, F. and Schwentick, T.: XPath Containment in the Presence of Dis-
junction, DTDs, and Variables, In Proceedings of the 9th International Con-
ference on Database Theory (ICDT 2003), Springer Berlin Heidelberg, pp.
315-329 (2003).

Nguyen, K. and Cao, J.: Exploit Keyword Query Semantics and Structure
of Data for Effective XML Keyword Search, In Proceedings of the 21st
Australasian Conference on Database Technologies (ADC 2010), Australian
Computer Society, Inc., pp. 133-140 (2010).

OASIS: RELAX NG (Clark, J. and Murata, M., Eds.). https://www.

oasis-open.org/committees/relax-ng/spec-20011203.html.

Pawlik, M. and Augsten, N.: RTED: A Robust Algorithm for the Tree Edit
Distance, Proceedings of the VLDB Endowment, Vol. 5, No. 4, pp. 334-345
(2011).

Ramanan, P.: Efficient Algorithms for Minimizing Tree Pattern Queries, In
Proceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2002), ACM, pp. 299-309 (2002).

Schenkel, R. and Theobald, M.: Feedback-Driven Structural Query Expan-
sion for Ranked Retrieval of XML Data, In Proceedings of the 10th In-

BIBLIOGRAPHY 91

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

ternational Conference on Extending Database Technology (EDBT 2006),
Springer Berlin Heidelberg, pp. 331-348 (2006).

Schlieder, T.: Schema-driven evaluation of approximate tree-pattern queries,
In Proceedings of the 8th International Conference on Extending Database

Technology (EDBT 2002), Springer Berlin Heidelberg, pp. 514-532 (2002).

Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, 1. and Busse,
R.: XMark: A Benchmark for XML Data Managemet, In Proceedings of
the 28th International Conference on Very Large Data Bases (VLDB 2002),
VLDB Endowment, pp. 974-085 (2002).

Schulz, U. K. and Mihov, S.: Fast string correction with Levenshtein au-

tomata, International Association for Pattern Recognition, Vol. 5, No. 1, pp.

67-85 (2002).

Schwentick, T.: XPath Query Containment, ACM SIGMOD Record, Vol. 33,
No. 1, pp. 101-109 (2004).

Smith, T. and Waterman, M.: Identification of common molecular subse-
quences, Journal of Molecular Biology, Vol. 147, No. 1, pp. 195 — 197
(1981).

SoftTree Technologies: SoftTree SQL Assistant. http://www.

softtreetech.com/isql.htm.

Sugimura, K., Ishihara, Y. and Fujiwara, T.: Proposal and Evaluation of
Polynomial-time Algorithms for Deciding XPath Satisfiability, IPSJ Jour-
nal, Vol. 57, No. 5, pp. 1477-1488 (2016). (in Japanese with English Ab-

stract).

Suzuki, N.: On Finding an Edit Script between an XML Document and a
DTD, IPSJ Digital Courier, Vol. 2, pp. 813—825 (2006).

BIBLIOGRAPHY 92

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Suzuki, N.: Finding K Optimum Edit Scripts between an XML Document
and a RegularTree Grammar, In Proceedings of the 1st Workshop on Emerg-
ing Research Opportunities for Web Data Management (EROW 2007), pp.
81-95 (2007).

Suzuki, N.: Satisfiability of Simple Xpath Fragments Under Fixed DTDs, In
Proceedings of the 28th British National Conference on Databases (BNCOD
2011), Springer Berlin Heidelberg, pp. 194-208 (2011).

Suzuki, N. and Fukushima, Y.: Satisfiability of Simple Xpath Fragments
in the Presence of DTDs, In Proceedings of the 11th ACM International
Workshop on Web Information and Data Management (WIDM 2009), ACM,
pp- 15-22 (2009).

Suzuki, N., Fukushima, Y. and Ikeda, K.: Satisfiability of Simple XPath
Fragments under Duplicate-Free DTDs, IEICE Transactions on Information

and Systems, Vol. 96, No. 5, pp. 1029-1042 (2013).

Tai, K.-C.: The Tree-to-Tree Correction Problem, Journal of the ACM,
Vol. 26, No. 3, pp. 422433 (1979).

Termehchy, A. and Winslett, M.: Effective, Design-independent XML Key-
word Search, In Proceedings of the 18th ACM Conference on Conference on
Information and Knowledge Management (CIKM 2009), ACM, pp. 107-116
(2009).

Termehchy, A. and Winslett, M.: Using structural information in XML key-
word search effectively., ACM Transactions on Database Systems, Vol. 36,

No. 1, p. 4 (2011).

Thomas H. Cormen, Charles E. Leiserson, R. L. R. and Stein, C.: Introduc-
tion to Algorithms, Third Edition, The MIT Press (2009).

BIBLIOGRAPHY 93

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Ukkonen, E.: On approximate string matching, Foundations of Computation
Theory: Proceedings of the 1983 International FCT-Conference, Springer
Berlin Heidelberg, pp. 487495 (1983).

Waterman, M. S. and Eggert, M.: A new algorithm for best subsequence
alignments with application to tRNA-rRNA comparisons, Journal of Molec-
ular Biology, Vol. 197, No. 4, pp. 723 — 728 (1987).

Welty, C.: Correcting user errors in SQL, International Journal of Man-

Machine Studies, Vol. 22, No. 4, pp. 463 — 477 (1985).

Wood, P. T.: Minimising Simple XPath Expressions, In Proceedings of the
4th International Workshop on the Web and Databases (WebDB 2001), pp.
13-18 (2001).

Wood, P. T.: Containment for XPath Fragments under DTD Constraints, pp.
300-314, Springer Berlin Heidelberg (2003).

World Wide Web Consortium: W3C XML Schema Definition Language
(XSD) 1.1 Part 1: Structures (Gao, S., Sperberg-McQueen, C. M. and
Thompson, H. S., Eds.). https://www.w3.0org/TR/xmlschemall-1/.

World Wide Web Consortium: W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes (Peterson, D., Gao, S., Malhotra, A., Sperberg-
McQueen, C. M. and Thompson, H. S., Eds.). https://www.w3.0rg/TR/
xmlschemall-2/.

World Wide Web Consortium: XML Path Language (XPath) (Clark, J. and
DeRose, S., Eds.). http://www.w3.org/TR/xpath.

World Wide Web Consortium: XML Query Language (XQuery) (Boag, S.,
Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J and Siméon, J.,
Eds.). https://www.w3.0org/TR/xquery/.

BIBLIOGRAPHY 94

[83] World Wide Web Consortium: XSL Transformations (XSLT) (Clark, J.,
Ed.). http://www.w3.0org/TR/xslt.

[84] Xu, Y. and Papakonstantinou, Y.: Efficient keyword search for smallest
LCAs in XML databases, In Proceedings of the 2005 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD 2005), ACM,
pp- 527-538 (2005).

[85] Zhang, K. and Shasha, D.: Simple Fast Algorithms for the Editing Distance
between Trees and Related Problems, SIAM Journal on Computing, Vol. 18,
No. 6, pp. 1245-1262 (1989).

[86] Zhang, K., Statman, R. and Shasha, D.: On the Editing Distance Between
Unordered Labeled Trees, Information Processing Letters, Vol. 42, No. 3,
pp. 133-139 (1992).

Full List of Publications

Journal Papers (refereed)

1. Suzuki, N., Fukushima, Y. and Ikeda, K.: Satisfiability of Simple XPath
Fragments under Duplicate-Free DTDs, IEICE Transactions on Information

and Systems, Vol. E96-D, No. 5, pp. 1029-1042 (2013).

2. lkeda, K. and Suzuki, N.: An Algorithm for Finding top-K Valid XPath
Queries, IPSJ Transactions on Databases, Vol. 7, No. 2, pp. 70-82 (2014).

3. Suzuki, N., Ikeda, K. and Kwon, Y.: An Algorithm for All-Pairs Regular
Path Problem on External Memory Graphs, IEICE Transactions on Infor-
mation and Systems, Vol. E99-D, No. 4, pp. 944-958 (2016).

International Conference Papers (refereed)

1. Ikeda, K. and Suzuki, N.: An Algorithm for Finding K Correct XPath Ex-
pressions, In Proceedings of the 3rd International Workshop with Mentors
on Databases, Web and Information Management for Young Researchers

(iDB Workshop 2011), 10p (2011).

2. Ikeda, K. and Suzuki, N.: Finding top-K Correct XPath Queries of User’s
Incorrect XPath Query, In Proceedings of the 23rd International Conference
on Database and Expert Systems Applications (DEXA 2012), pp. 116-130
(2012).

95

FULL LIST OF PUBLICATIONS 96

3. Hasegawa, K., Ikeda, K. and Suzuki, N.: An Algorithm for Transforming
XPath Expressions According to Schema Evolution, In Proceedings of the
First International Workshop on Document Changes: Modelling Detection,

Storage and Visualization (co-located with ACM DocEng 2013), 8p (2013).

4. Suzuki, N., Ikeda, K. and Kwon, Y.: An External Memory Algorithm for
All-Pairs Regular Path Problem, In Proceedings of the 26th International
Conference on Database and Expert Systems Applications (DEXA 2015),
pp- 399414 (2015).

5. Sakurai, E., Morishima, A., Ikeda, K. and N, Suzuki.: Bookshelf Problem:
A Human-in-the-Loop Approach for Data Grouping without Complete In-
formation, In Proceedings of iConference 2016, 10p (2016).

6. Ikeda, K., Morishima, A., Rahman, H., Roy, S. B., Thirumuruganathan, S.,
Amer-Yahia, S. and Das, G.: Collaborative Crowdsourcing with Crowd4U,

In Proceedings of the 42nd International Conference on Very Large Data
Bases (VLDB 2016), 4p (2016)(accepted).

