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Chapter 1 Introduction 

  

1 Background 

 

 Lignin is one of the most abundant biomacromolecules on Earth. The recent 

focus on sustainable materials has promoted interest in lignin as a source of fuel and 

new materials. Lignin prepared through industrial pulping (cooking) processes is called 

technical lignin. Chemical pulping accounts for 70% of the total worldwide production 

of lignin (Alén 2000). The great majority of chemical pulps of lignin are obtained by 

alkaline cooking. Generally, the sulfate or kraft process and the soda process are the 

two principal alkaline cooking techniques. Sodium hydroxide is the principal cooking 

chemical in both processes, while sodium sulfide is an additional active pulping 

component in kraft cooking. Alkaline solution (white liquor) is added to wood chips at 

high temperature and pressure, and cellulose is produced from the wood by dissolving 

almost all of the lignin and a large portion of the hemicelluloses into the spent liquor 

(black liquor). The main object of the cooking processes for delignification is to 

facilitate the disintegration of wood into its fibrous components. 

The present and future utilization of lignin is an extensive and increasingly 

important field of study (Fengel and Wegener 1983). One reason for this can be seen in 

the increasing appreciation of renewable raw materials. Lignin as a raw material is still 

far from being utilized intensively. This is true in spite of its large potential for 

multiple purposes due to its chemistry, properties, and the huge amounts of it produced 

worldwide by pulping processes. However, at the present time, lignin is mainly used as 
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an energy source. Most technical lignin is used for energy purposes because the 

recovery of the chemicals used in pulping processes is based on the incineration of the 

black liquor. The calorific value of the organic material in the black liquor is an 

important economic factor, especially when considering the high prices of gas and oil, 

though kraft lignin can also be used for high-value non-fuel purposes (Barton 1978; 

Zhu and Theliander 2015). New fields of lignin utilization as a starting material would 

be opened up by the development of processed lignins with improved properties. 

 

2 Biorefinery 

 

In modern times, the global population has been consuming many commodity 

products such as energy, materials, plastics, and transportation fuels. These commodity 

products almost all originate from fossil resources, which are non-renewable resources and 

contribute to CO2 emissions. Therefore, alternatives should be sought with low carbon 

emissions. Currently available alternatives include renewable resources such as wind, solar 

energy, and biomass. Biomass represents an abundant renewable resource for the 

production of bioenergy and biomaterials. 

Shifting society’s dependence away from fossil resources to renewable biomass 

resources is generally viewed as an important contributor to the development of a 

sustainable industrial society and the effective management of CO2 (Ragauskas et al. 2006). 

It is thought that this shift will need research and development to increase the efficiency and 

sustainablility of biorefinery facilities. The term “biorefinery” encompasses the 

technologies and industries related to the production of bio-fuels and chemicals using 

biomass as a raw material. Biorefineries input biomass as a carbon source and can 
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generate fuel, power, and products as outputs (Figure 1) (Ragauskas et al., 2006; 

Holladay et al. 2007). It is widely believed that the next generational change in the use of 

bioresources will come from a total integration of the use of innovative plant resources, 

synthesis of biomaterials, and generation of bio-fuels and biopower. 

Wood is the world’s largest source of biomass. Woody biomass offers many 

possibilities as a raw material not only for the energy sector but also for the chemical 

industry due to its chemical composition, abundant availability, and relatively low costs 

when its conversion to products can be carried out in an economic and sustainable manner 

(Gosselink, 2011). The abundant availability of woody biomass is supported by the large 

worldwide annual woody biomass production of about 200 billion (200 × 109) tons per 

year (Zhang 2008), compared to the 0.25–0.3 billion tons (0.25–0.3 × 109) tons per year of 

organic chemicals produced by the chemical industry (Haveren et al. 2008). 

Woody biomass is mainly composed of cellulose, hemicellulose, and lignin. 

About 95% of synthetic polymers (plastics, synthetic fibers, and synthetic rubbers) could be 

derived from woody materials, although the circuitous synthesis route required for some of 

them might make such processes uneconomic at this time (Goldstein, 1975). The key to the 

most efficient use of biomass is to design a suitable and sustainable integral biorefinery to 

separate biomass into its major compounds and generate the highest value-added products 

from all fractions. In Figure 2, an example is given of a 3-platform (C5 & C6 sugars, 

electricity & heat, and lignin) biorefinery that uses wood chips to produce bioethanol, 

electricity, heat, and phenols (Jungmeier 2014). The ideal biorefinery would contribute to 

sustainability not only through its inherent dependence on sustainable bioresources, but also 

by recycling waste, with the entire process being carbon neutral (Ragauskas et al. 2006).  

In the second generation production process for bioethanol, woody biomass is 
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separated into pulp (cellulose fiber). The production of bioethanol from woody biomass has 

been proposed as a strategy to alleviate the pressure on global fossil fueal reserves that are 

forecast to eventually become insufficient to meet worldwide demand (Chum et al. 1985). 

This biorefinery technology has the potential to generate sulfur-free lignin in black liquor. 

Sulfur-free lignin can be obtained by soda cooking and is an emerging class of lignin 

product (Lora 2002; Lora and Glasser 2002). The recovery of sulfur-free lignin in the black 

liquor is based on precipitation, followed by liquid/solid separation and drying. 

Several technologies have been under development for wood biorefineries in 

which the lignin fraction is mainly considered as an energy source. Lignin also has a 

high potential for utilization as a material in the construction and textile industries. This 

will be described again in detail in section 4 “Material utilization of lignin” of this 

chapter. 
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Figure 1. Biorefinery concept (Ragauskas et al., 2006; Holladay et al. 2007) 
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Figure 2. A 3-platform (C5 and C6 sugars, electricity and heat, and lignin) 
biorefinery using wood chips for the production of bioethanol, electricity, heat, 
and phenols (Jungmeier 2014) 
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3 Lignin 

 

Lignin is one of the most abundant natural organic polymers on Earth and is 

found in all woods. It has a complex structure containing both aromatic and aliphatic 

molecules. The isolation of lignin from wood was first described in a report by the French 

scientist Payen in 1838, and it was given its current name in 1857 by Schulze. Lignin 

occurs widely in the middle lamellae and secondary cell walls of higher plants and plays 

a key role in structural tissues as a building material, where it confers strength, rigidity, 

and resistance to environmental stresses (Ralph et al. 2007). Wood consists of cellulose 

(40–45%), hemicellulose (25–35%), and lignin (20–30%) (Alén 2000). Softwoods and 

hardwoods typically differ from each other in their chemical compositions. Figure 3 

illustrates the typical gross chemical compositions of a commercial softwood and a 

hardwood (Alén 2000). This figure summarizes the main differences between pine 

(Pinus sylvestris) and birch (Betula pendula).  

Lignin is a hydrophobic material; therefore, it makes plant cell walls 

impermeable to water, and thus ensures the efficient transport of water and nutrients 

between the cells (Henriksson 2009; Norberg 2012). Lignin is also an amorphous 

polymer with a distinctly different chemical structure from that of the other 

macromolecular constituents of wood. In its native state, or as found in plants, lignin is 

referred to as protolignin. It is widely accepted that the biosynthesis of lignin stems 

from the polymerization of three types of phenylpropane units, which are also referred 

to as monolignols (Freudenberg and Neish 1968; Sarkanen and Ludwig 1971; Lewis 

1999; Ralph et al. 1999). Lignin is produced by the enzymatic dehydrogenative 
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polymerization of coniferyl alcohol, syringyl alcohol, and coumaryl alcohol (Figure 4). 

The proportions of these precursors in lignins vary depending on their botanical origin. 

Normal softwood lignins are usually referred to as having a guaiacyl (G) structure 

because the structural elements are derived principally from coniferyl alcohol (more 

than 90%), with the remainder consisting mainly of p-coumaryl alcohol. In contrast, 

hardwood lignins, generally termed as having a G-syringyl (S) structure, are mainly 

composed of coniferyl alcohol and sinapyl alcohol in varying ratios (about 50% of each 

alcohol). Grass lignins are also classified as having a G-S structure, although they 

additionally contain significant amounts of structural elements derived from p-coumaryl 

alcohol and some aromatic acid residues (about 40% coniferyl alcohol, about 40% 

sinapyl alcohol, and about 20% other precursors) (Alén 2000). The biosynthesis of 

lignins occurs via a process comprising various oxidative coupling reactions of the 

resonance-stabilized phenoxy radicals obtained from these α, β-unsaturated C6C3 

alcohol precursors, leading to the formation of a randomly cross-linked macromolecule. 

Lignins are built in plants starting from the three basic monolignols via oxidative 

phenolic coupling reactions to generate the polymer, as shown in Figure 5 (Adler 1977). 

Lignin polymers are heterogeneous in terms of their molecular composition and the 

linkage types between the phenyl propane monomers and the S, G, and p-

hydroxyphenyl (H) structures. These structures are derived from the monolignols 

sinapyl alcohol, coniferyl alcohol, and coumaryl alcohol, respectively (Figure 4). Figure 

6 illustrates the dehydrogenation of coniferyl alcohol and the resonance-stabilized 

phenoxy radicals (Higuchi 1982; Fukushima 2010). The polymerization process is 

initiated by the oxidation of the monolignol phenolic hydroxyl groups. The oxidation 

reaction itself has been shown to be catalyzed via an enzymatic route. The enzymatic 
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dehydrogenation is initiated by an electron transfer that yields reactive monolignol 

species and free radicals (Figure 6). Subsequent nucleophilic attack by water, alcohols, 

or phenolic hydroxyl groups on the benzyl carbon of the quinone methide intermediate 

will restore the aromaticity of the benzene ring. The generated dilignols will then 

undergo further polymerization (Chakar and Ragauskas 2004). 

The lignin composition of plants differs not only between species, but also 

between different tissues of an individual plant variety. In softwood lignin, coniferyl 

alcohol is the predominant building unit (over 95% G structural elements), while in 

hardwoods the ratio between coniferyl and synapyl alcohols shows considerable 

variation (Henriksson 2009; Gosselink 2011). Lignin contains a range of chemical 

functional groups, which is partly the result of the extraction method. The main groups 

in protolignin (native lignin) are hydroxyl (aromatic and aliphatic), methoxyl, carbonyl, 

and carboxyl groups (Figure 5). The content of functional groups in lignin varies 

considerably among plant species and within individual cell walls, and therefore only 

approximate values for the frequencies of different functional groups can be given 

(Table 1) (Alén 2000). Depending on its precursors, the lignin polymer contains 

characteristics of methoxyl groups, phenolic hydroxyl groups, and some terminal 

aldehyde groups in the side chain.  

The solubility of lignins is affected by the proportion of these functional 

groups. Most lignins are quite soluble in alkaline solutions due to the ionization of the 

hydroxyl and carboxyl functional groups. However, the exact structure of native lignin 

remains virtually unknown (Chakar and Ragauskas, 2004). The majority of chemical 

bonds in the native lignin polymeric network are the C-O-C ether linkage type between 

the phenyl propane structures, mainly β-O-4, while the residue consists of C-C bonds 
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between these structures (Higuchi 1982; Yamauchi and Saka 2013). Figure 7 summarizes 

the dominant bond types and their frequencies. In addition, numerous miscellaneous 

linkages and minor structures are known (Higuchi 1982; Alén 2000; Yamauchi and Saka 

2013). It is also evident that the frequency of these groups can vary according to the 

morphological location of lignin. 

Almost all lignins extracted from woody materials by the chemical pulping 

industry are burned to generate energy and recover chemicals. During the chemical 

pulping process, roughly half of the wood substance, by volume, degrades and dissolves. 

The organic matter in the black liquor is composed of the degradation products of lignin 

and polysaccharides in addition to a minor fraction comprising extractives. The sulfate 

or kraft (kraft means strength or power in German and Swedish) process and the soda 

process are the two principal alkaline pulping techniques and the basis for several 

modified alkaline processes (Fengel and Wegener 1983). Sodium hydroxide is the 

principal cooking chemical in both processes, while in sulfate pulping, sodium sulfide is 

an additional active pulping component. The kraft process is not only the dominant 

alkaline pulping process for wood, but also the most important of all current industrial 

pulping processes. Kraft pulps are obtained in higher yields and with properties superior 

to those of soda pulps. The lignin obtained by the kraft process is partly cleaved and 

thiol groups (-SH) are introduced into the solubilized lignin. The purpose of kraft 

cooking is to obtain cellulose. On the other hand, a lignin obtained by the soda process 

is a sulfur-free lignin (soda lignin) (Lora and Glasser 2002; Ikeda and Magara 2015). 

Soda lignins with a moderate macromolecular size can be obtained. In this study, 

cooking of lignin was performed using soda-anthraquinone (AQ) cooking to obtain 

black liquor for preparing a starting material. After the soda-AQ cooking process, the 
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black liquor was used in this study. The soda-AQ black liquor was spray-dried and 

vacuum-dried. The preparation of the spray-dried black liquor powder will be described 

fully in Chapter 2. 
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Figure 3．Average chemical composition of pine (Pinus sylvestris) and birch 
(Betula pendula) (% of the wood dry solids) (Alén 2000) 
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Figure 4．The structures of three C6C3 precursors of lignins: p-hydroxyphenyl 
(H), guaiacyl (G) and syringyl (S) structure 
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Figure 5. Lignin structure of a simulated softwood (spruce) lignin by Adler 
(1977) 
 

 

 

 

 



15 

 

 

 

 

 

 

OH

OH

Coniferyl alcohol

Peroxidase

OH

O●

OH

O

●

OH

O

●

OCH3

OCH3 OCH3
OCH3

OH

O

OCH3

●

 

Figure 6. Four types of radical resonance from coniferyl alcohol (Higuchi 
1982; Fukushima 2010) 
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Table 1. Functional groups of native lignin (per 100 C6C3 units) (Alén 2000) 
Functional group Softwood Hardwood 

Phenolic hydroxyl 20 - 30 10 - 20 
 Aliphatic hydroxyla 115 - 120 110-115 

Methoxyl 90 - 95 140 - 160 
Carbonyl 20 15 

a Total sum of the primary and secondary hydroxyl groups. 
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Figure 7. Main structures and frequencies of the inter-unitary linkages in 
native softwood and hardwood lignins (Higuchi 1982; Alén 2000; Yamauchi 
and Saka 2013) 
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4 Material utilization of lignin 

 

  Lignin is a versatile raw material with many potential utilizations (Lora and 

Glasser 2002; Stewart 2008; Doherty et al. 2011). The potential utilizations of lignin can 

readily be divided into three categories: 1. fuels; 2. macromolecules; and 3. aromatics and 

other chemicals. These categories can also be distinguished according to the time-to-market, 

with category 1 as current or near-term utilizations (immediate), category 2 as medium-term 

utilizations, and category 3 as longer-term utilizations (Holladay et al. 2007). 

In the category of fuels, lignin is used as a carbon source for energy production by 

gasification. Macromolecules that could potentially be produced from lignin include 

dispersants, binders, and carbon fiber (CF). The production of aromatics involves the use of 

technologies to cleave the lignin structure into monomers without sacrificing the aromatic 

rings for the production of polymer building blocks, including the aromatic monomers 

benzene, toluene, xylene, phenol, and vanillin. A representative diagram of the various 

utilizations of lignin is shown in Figure 8 (Holladay et al. 2007; Higsson 2011; Gosselink 

2011). 

Due to its polyaromatic macromolecule property, lignin represents a potential 

low-cost source of carbon that may be suitable for displacing synthetic polymers such as 

polyacrylonitrile in the production of CF (Figure 9) (Kline and Co. 2004; Holladay et al. 

2007). Using lignin-based CF improves raw material availability, decreases raw material 

sensitivity to the price of fossil oil, and decreases environmental impacts. The initial step in 

economical lignin-based CF manufacturing requires lignin to have a thermal melting 

property. The technical barriers in processing lignin to have this property include the 
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development of a low-cost purification method to remove bound short polysaccharides, 

salts, particulate contaminants, water, and other volatiles. Another technical challenge is 

dealing with lignin molecular weight polydispersity. A final barrier is the development 

of practical new methods to process, stabilize, and derivatize lignin and thus optimize 

its thermal melting properties such as its melt-flow, glass transition temperature (Tg), 

and thermal softening temperature (Ts). Another goal is to make lignin from different 

sources acceptable as a raw material for high rate melt-spinning and simultaneously 

capable of delivering high carbon weight yields when the melt-spun lignin fiber is 

thermally converted to CF (Holladay et al. 2007; Norberg 2012; Jian 2013).  

As above, some derivatized lignins for industrial utilization have focused on 

improvements in thermal property. It is well recognized that the thermal melting 

property generally follows Tg, with the thermal melting property increasing as Tg 

declines. Lignins with an appropriate thermal melting property may be useful as 

plasticizers. Some lignins, such as soda lignin, do not exhibit melt-flow with increasing 

temperature. Taken together, establishing processing techniques to control the thermal 

behavior of lignin is one of the most important challenges for improving its material 

utilization. 

Phenol and some of its commercially important derivatives produced using 

current technology are shown in Figure 10 (Holladay et al. 2007). In 2009, phenol was 

utilized as feedstock to produce bisphenol-A (which is the end-product of 48% of phenol 

processed worldwide), phenol resin (25%), caprolactam (11%), alkyl phenols (4%), 

xylenols (4%), aniline (2%), and others (Sadhukhan et al. 2014).  
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Figure 8. Potential utilizations of lignin (Holladay et al. 2007; Higsson 
2011; Gosselink 2011) 
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Figure 9. Depiction of low-cost carbon fiber production from lignin (Kline 
and Companies program 2004; Holladay et al. 2007) 
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Figure 10. Phenol derivatives that canbe produced using current technology 
(Holladay et al. 2007) 
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5 Alkaline polyethylene glycol (PEG) treatment 

 

Alkaline PEG treatment is a new method for improving the material utilization of 

lignin. In the experiments for this thesis, I performed alkaline PEG treatment using black 

liquor powder produced by softwood soda-AQ cooking. In the process, the black liquor 

powder was directly treated with PEG under alkaline conditions to produce a thermal 

melting material. This lignin modification method is termed alkaline PEG treatment. 

 

6 Objective 

 

The aim of this thesis was to investigate the possibility of using softwood soda-

AQ lignin as a commercial material. First, a process for the preparation of black liquor 

powder from black liquor was described (Chapter 2). Then, the chemical and thermal 

properties of alkaline PEG-treated lignin prepared from black liquor powder were studied 

(Chapter 3). To clarify the reaction of softwood soda-AQ lignin in the alkaline PEG 

treatment, experimental alkaline PEG treatments were performed using purified acid-

soluble lignin (Chapter 4). 
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Chapter 2 Preparation and composition of black liquor 

powder 

 

1 Introduction 

 

Lignins in wood are removed by alkaline cooking procedures such as the soda 

and kraft processes. In the plant cell wall, lignin is closely associated with 

polysaccharide structures including cellulose and hemicellulose. Woody materials are 

used as a base material for the extraction of cellulosic fibers to manufacture paper. 

During the production of paper, lignin is chemically degraded under alkaline conditions. 

The majority of the degraded lignin is contained in spent liquor, which is called black 

liquor. The black liquor containing the lignin fraction is mostly used as fuel feedstock 

for industrial plant operation. Spray drying is a method of producing a dried powder 

from a liquid by rapidly drying it under hot air. Lignin in the black liquor powder would 

be modified by alkaline PEG treatment. First, it is necessary to clarify the preparation 

and composition of the raw materials used this study. 

 

2 Experimental procedures 

 

2-1 Materials 

2-1-1 Black liquor powder 
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Black liquor was obtained from the bioethanol pilot plant at the Forestry and 

Forest Product Research Institute (Tsukuba, Ibaraki, Japan). The bioethanol pilot plant 

conducts soda-AQ cooking of Japanese cedar (Cryptomeria japonica), which generates 

black liquor as a byproduct. The soda-AQ conditions used at the plant are as follows: 

active alkaline charge of 19.5% on wood; AQ charge of 0.1% on wood; cooking time of 

2 h; and cooking temperature of 170 °C. The solid content of the black liquor was 28.8% 

(w/w). The black liquor was dried to a powder by a spray dryer system (PJMSD-10SY, 

Powdering Japan) operating at a chamber temperature of 90 °C and an inlet air 

temperature of 180 °C. The dried black liquor powder was then removed from the spray 

dryer system and kept in a vacuum oven over phosphorus pentoxide (P2O5) for 24 h 

prior to use. 

 

2-2 Methods 

2-2-1 Preparation of purified lignin  

 

 Purified lignin was isolated from black liquor. To precipitate the lignin, the 

pH of black liquor was adjusted to 2.0 with 20% (w/w) sulfuric acid. The solution was 

then centrifuged to recover the precipitate, which was then washed with water. The 

centrifuging and washing procedure were repeated eight times. The precipitate was then 

vacuum-dried for 24 h and used as purified lignin. 

 

2-2-2 Determination of Klason method 

 

 The primary hydrolysis stage was performed with 1 g of samples in 15 mL 
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of 72% (w/w) H2SO4 for 2.5 h using a glass rod. The solution was then diluted to 4 wt% 

H2SO4 and autoclaved for 1 h at 121 °C (secondary hydrolysis stage). After all the 

carbohydrates were completely hydrolyzed, the solution was cooled and the residue 

(acid-insoluble lignin) was filtered on a 1G3. The acid-insoluble lignin was washed with 

water and dried for 24 h at 105 °C. The amount of acid-insoluble lignin was presented 

as the percentage of the oven-dry weight of each residue sample. 

The amount of acid-soluble lignin remaining soluble in the 4 wt% H2SO4 

solution after filtration of the acid-insoluble lignin was estimated by the ultraviolet 

(UV) spectroscopic method described in Tappi Method UM 250 um-83 (1991). Lignin’s 

absorptivity of 110 L•g-1•cm-1 at 205 nm was used to estimate the concentration of 

lignin in each sample solution. 

 

2-2-3 Evaluation of lignin content by UV method  

 

  A sample was dissolved in 1, 4-dioxane/0.2 M sodium hydroxide (NaOH; 

v/v = 1/1). The pH of the sample solution was adjusted to 5.0 with acetic acid. UV 

absorption (ABS) at 280 nm was determined using a UV spectrophotometer (UV-1800, 

Shimadzu, Kyoto, Japan). The UV lignin content was calculated from the ABS 

coefficient of lignin (Dence 1992; Takahashi et al. 2014). The ABS coefficient of soda 

lignin at 280 nm was determined based on the relationship between the concentration 

and UV absorbance of the purified lignin at 280 nm, which was 26.1 L•g -1•cm-1. 
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2-2-4 Chemical analysis of black liquor powder 

 

 The dried black liquor powder (10 g) was slowly dissolved in 50 mL of 

distilled water. The solution was titrated with 1 M hydrochloric acid (HCl) to determine 

its contents of sodium hydroxide and sodium carbonate. 

 

3 Results and discussion 

 

3-1 Total lignin content of raw material 

 

The total lignin content of the raw materials (black liquor powder and purified 

lignin) used in this study is equal to the sum of their contents of acid-soluble lignin 

derived from the Klason method and acid-insoluble lignin (Klason lignin). The results 

for the black liquor powder indicated contents of 11.3% (w/w) acid-insoluble lignin and 

7.9% (w/w) acid-soluble lignin derived from the Klason method, and the total lignin 

content of the black liquor powder was 19.2% (w/w). The results for the purified lignin 

indicated contents of 90.6% (w/w) acid-insoluble lignin and 7.1% (w/w) acid-soluble 

lignin derived from the Klason method, and the total lignin content of the purified lignin 

was 97.7% (w/w) (Table 2).  

 

3-2 Absorption coefficient of soda lignin for evaluation of UV method 

 

 An ABS coefficient was determined for the Japanese cedar soda lignin, 

which was considered to be the origin of the lignin content of the purified lignin. Since 
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lignin maximally absorbs UV light at 280 nm, the soda lignin calibration curve could be 

used to estimate the concentration of lignin in any solution of purified lignin, based on 

its ABS at 280 nm (Figure 11). The ABS coefficient of soda lignin at 280 nm was 

determined based on the relationship between the concentration and UV absorbance of 

purified lignin at 280 nm. The ABS coefficient was 26.1 L•g-1•cm-1. The UV lignin 

content was calculated from the ABS coefficient. 

 

3-3 Composition of black liquor powder 

 

Sodium hydroxide and sodium carbonate are the major alkaline components of 

black liquor powder. The alkali content of black liquor powder was determined by 

titration with HCl. Figure 12 shows Formulas 1, 2, and 3 for the reactions of sodium 

hydroxide and sodium carbonate with HCl, and the titration curve. The reactions 

shown in Formulas 1 and 2 result in a change of the pH of the solution to about pH 9 

after adding HCl. Sodium hydrogen carbonate produced by the addition of HCl to the 

sodium carbonate is also then titrated by HCl, as shown in Formula 2. The final pH of 

the solution reaches about pH 4 after adding HCl by the reaction shown in Formula 3. 

Taken together, the results showed that the black liquor powder consisted of sodium 

hydroxide (7.3%, w/w), sodium carbonate (66.7%, w/w), and lignin (18.0%, w/w) 

(Table 3).  
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Table 2. Total lignin contents of dried black liquor powder and purified 
lignin 

 Klason lignin 
(%) 

Acid-soluble lignin* 
(%) 

Total lignin 
(%) 

Black liquor powder 11.3 7.9 19.2 
Purified lignin 90.6 7.1 97.7 

*This lignin means an acid-soluble lignin derived from the Klason method. 
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Figure 11. Absorption (ABS) coefficient of soda lignin as determined by 

UV spectroscopy 
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Figure 12. Determination of the alkali content of dried black liquor powder 
by hydrochloric acid titration 
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Table 3. Composition of black liquor powder 
Composition of black liquor powder 

NaOH Na2CO3 Lignin 
% % % 
7.3 66.7 18.0 
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4 Conclusion 

 

The black liquor powder used in this study was prepared from black liquor, 

which was dried to a powder using a spray dryer system. The total lignin content of 

each raw material (black liquor powder and purified lignin) used in this study is equal to 

the sum of their contents of acid-soluble lignin derived from the Klason method and the 

acid-insoluble lignin (Klason lignin). The total lignin content of the black liquor powder 

was 19.2% (w/w) and that of the purified lignin was 97.7% (w/w). The ABS coefficient 

of soda lignin at 280 nm was determined based on the relationship between the 

concentration and UV absorbance of purified lignin at 280 nm. The ABS coefficient 

was 26.1 L•g-1•cm-1. The black liquor powder consisted of sodium hydroxide (7.3%, 

w/w), sodium carbonate (66.7%, w/w), and lignin (18.0%, w/w). 
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CHAPTER 3 Preparation and characterization of alkaline 

PEG-treated lignin from black liquor powder 

 

1 Introduction 

 

 Technical lignins are divided into two categories (El Mansouri and Salvadό 

2006). The first category includes sulfur-containing commercial lignins, such as kraft 

lignin and lignosulfonate. The second grouping is the non-sulfur lignins obtained from 

other pulping processes, such as soda, organosolv, steam explosion, and acid hydrolysis. 

During pulp manufacture, the lignin in black liquor is combusted to generate energy and 

recover chemicals. It has been reported that only about 2% of the byproduct lignin 

produced from industrial pulp manufacturing is utilized for purposes other than energy 

production (Gargulak and Lebo 2000). Approximately 1,000,000 tons/year of 

lignosulfonate originating from sulfite pulping, and less than 100,000 tons/year of kraft 

lignin produced from kraft pulping were utilized commercially (Gargulak and Lebo 

2000; Gosselink et al. 2004). Technical lignins can be used as dispersants, binders, and 

surfactants (Dizhbite et al. 1999; Gargulak and Lebo 2000; Lora and Glasser 2002; 

Gosselink et al. 2004; El Mansouri and Salvadό 2006; Stewart 2008). The existing 

markets for technical lignins (predominantly lignosulfonates) are confined to low-value 

products or limited to very narrow market segments (Gosselink et al. 2004; Doherty et 

al. 2011). To develop additional applications for technical lignins, it is important to 

develop modification methods to enhance lignin properties for high-end value-added 
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products. 

 One of the most important applications of lignin-based high value-added 

products is carbon fibers (CFs) (Kubo and Kadla 2004; 2005; Fernandes et al. 2006). 

Generally, commercial CFs, such as pitch-based CFs, are produced by a thermal melt 

spinning method in order to provide precursor fibers. To prepare lignin-based fibers 

following the industrial melt spinning process, the lignin should melt while being heated 

and should not be degraded by the heat. Since extensive cross-linking and strong 

intramolecular interactions of polymeric lignins constrain their utilization in solid 

material systems (Li et al. 1997), hardwood lignins are more easily processed than 

softwood lignins (Kadla and Kubo 2004). In the 2000s, Kadla et al. (2002) developed a 

process to derive kraft lignin-based CFs from hardwood without chemical modification. 

They prepared CFs by using hardwood kraft lignin with 5% polyethylene oxide (PEO) 

as a plasticizer. Polymer blending is a useful technique to improve the physical 

properties of technical lignins. In polymer blending systems, lignin generally increases 

the modulus and cold crystallization temperature, but it decreases the melt temperature 

(Doherty et al. 2011). Recently, Baker et al. (2012) developed kraft lignin-based CFs by 

using an organic solvent purification system applied to hardwood kraft lignins.  

It is reported that softwood lignins, such as soda lignin, prepared from alkaline 

cooking are infusible (Kubo et al. 1997; 1998). To operate a softwood lignin-based CF 

production following the industrial melt spinning method, the lignin should have certain 

thermal melting characteristics. To obtain the desired thermal melting characteristics, 

the softwood lignin needs chemical modification or blending techniques. Norberg et al. 

(2013) and Nordström et al. (2013) reported the continuous spinning of softwood kraft 

lignin by adding a purified hardwood kraft lignin as a softening agent.  
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To change the thermal characteristics of softwood soda lignin, we successfully 

employed a new lignin modification method which used dried black liquor powder and 

polyethylene glycol (PEG). Black liquor powder was directly modified using PEG 

under alkaline conditions (termed as alkaline PEG treatment). This paper presents the 

alkaline PEG treatment, and the chemical and thermal characteristics of the derivatized 

lignin. 

 

2 Experimental procedures 

 

2-1 Materials 

2-1-1 Black liquor powder 

 

Black liquor was obtained from the bioethanol pilot plant at the Forestry and 

Forest Product Research Institute (FFPRI). The bioethanol pilot plant conducts soda-

anthraquinone (AQ) cooking of Japanese cedar (Cryptomeria japonica), which 

generates black liquor as a byproduct. The soda-AQ conditions are as follows: active 

alkaline charge of 19.5% on wood; AQ charge of 0.1% on wood; cooking time of 2 h; 

cooking temperature of 170 °C. The solid content of the black liquor was 28.8%. The 

black liquor was dried to a powder by a spray dryer system (Powdering Japan PJMSD-

10SY) operating at a chamber temperature of 90 °C and an inlet air temperature of 

180 °C. The dried black liquor powder was then removed from the spray dryer system 

and kept in a vacuum oven over phosphorus pentoxide (P2O5) for 24 h prior to use. 
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2-2 Methods 

2-2-1 Alkaline PEG treatment 

 

 The dried black liquor powder was dissolved in PEG solutions of various 

average molecular weights (200, 400, 600, 1000, and 2000), ethylene glycol (EG), or 

diethylene glycol (DEG). The mixture was transferred into a separable flask and heated 

to either 120 or 160 °C at atmospheric pressure for 2 h in an oil bath. After the reaction, 

the mixture was slowly poured into 500 mL of distilled water and the solution was 

acidified to pH 2.0 by 3 M HCl to produce a precipitate. The precipitate was filtered and 

the solids dried in a vacuum oven over P2O5. 

 

2-2-2 Evaluation of lignin content 

 

The lignin content of the alkaline PEG-treated lignin was measured using the 

UV method (Dence 1992; Takahashi et al 2014), which involved the following steps. 

A sample was dissolved in 1,4-dioxane/0.2 M sodium hydroxide (NaOH; v/v = 1/1). 

The pH of the sample solution was adjusted to pH 5.0 with acetic acid. The UV ABS at 

280 nm was measured by a UV spectrophotometer (Shimadzu UV-1800). The UV lignin 

content was calculated from the ABS coefficient of lignin of 26.1 L•g-1•cm-1 at 280 nm. 

 

2-2-3 Thermal melting characteristics 

 

The thermal melting characteristics of the alkaline PEG-treated lignin were 

evaluated by a softening point system (Mettler Toledo DP 70). This part of the process 

was performed by increasing the temperature from 100 to 200 °C at the rate of 2 °C/min. 
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The alkaline PEG-treated lignin powder (200 mg) was filled into a cylinder loaded with 

a ball that had a mass of 4 g. The flow length of the melted sample was monitored by 

the system. 

 

2-2-4 Nuclear magnetic resonance (NMR) analysis 

 

The chemical structure of the lignin derivatives was estimated by NMR 

analysis. Alkaline PEG-treated lignin (200 mg) was dissolved in 600 μL of deuterated 

dimethyl sulfoxide (DMSO-d6) as the solvent. The concentration of lignin solution was 

20 to 30 wt.%. The 13C-NMR spectrum of the lignin solution was recorded using a 

JEOL-500 MHz NMR spectrometer (Japan) operating at 125.65 MHz with proton noise 

decoupling. The spectrum was registered at 28 °C. 

 

3 Results and discussion 

 

3-1 Thermal melting characteristics of the alkaline PEG-treated lignin 

 

 Figure 13 demonstrates the thermal melting behavior of the alkaline PEG-

treated lignins (PEG 1000 and PEG 2000 treatments) prepared at 120 °C. As shown in 

Fig. 13, the alkaline PEG-treated lignin gradually melted with heating. Figure 14 shows 

the melting length of the alkaline PEG-treated lignins (a: PEG 2000 and b: PEG 1000 

treatments), which were made at 120 °C, by increasing the temperature at a rate of 

2 °C/min. The thermal melting of the alkaline PEG-treated lignin made with PEG 2000 
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started at 102.5 °C (Fig. 14a). The melting length of the lignin sample increased steadily 

as the temperature rose, reaching 5 mm at 107.8 °C. At 122.5 °C, the sample dropped to 

the bottom of the test cylinder. On the other hand, the thermal melting speed of the 

alkaline PEG-treated lignin made from PEG 1000 was slower than that made from PEG 

2000. The PEG 1000 lignin sample started melting at 116.2 °C, and the length reached 5 

mm at 130.6 °C. At 167.6 °C, the sample dropped to the bottom of the test cylinder (Fig. 

14b). The thermal melting characteristics of alkaline PEG lignin made from various 

molecular weight PEGs (i.e., 200, 400, 600, 1000, and 2000) were checked and shown 

in Table 4. The melting characteristics of these derivatized lignins were evaluated by the 

flow length on the softening point system. The plus mark (+) in Table 4 indicated that 

the melting length of the sample was more than 5 mm, whereas the minus mark (-) 

indicated that the sample did not melt or that the melting length was less than 5 mm. In 

the alkaline PEG treatment at 120 °C, the samples for both PEG 1000 and PEG 2000 

had desirable melting characteristics. However, derivatized lignins made with lower 

molecular weight PEG (i.e., 600, 400, and 200) at 120 °C did not exhibit any of the 

desired melting characteristics. On the other hand, all derivatized lignin samples showed 

the desired melting characteristics when the PEG treatments were performed at 160 °C. 

The melting characteristics of the modified lignins were improved considerably by 

increasing the reaction temperature of alkaline PEG treatment. Figure 15 shows the 

melting lengths of the alkaline PEG-treated lignin made at 160 °C by using (a) PEG 400 

and (b) PEG 1000. The thermal melting of alkaline PEG-treated lignin made with PEG 

1000 started at 102.2 °C (Fig. 15b). The length reached 5 mm at 106.0 °C, and the 

sample dropped to the bottom of the test cylinder at 119.2 °C. When compared the Ts at 

which the length of the sample reached to 5 mm of PEG 1000-lignin treated at 120 °C 
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and 160 °C, the later was 48.4 degree less than the former. For the PEG 400 treatment, 

the thermal melting of the derivatized lignin started at 134.1 °C with the length reaching 

5 mm at 144.5 °C (Fig. 15a). These data indicate that the higher PEG reaction 

temperature with the higher PEG molecular weight improved the thermal melting 

characteristics and physical properties of lignin.  
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Figure 13. Thermal softening behavior of the alkaline PEG-treated lignin 
with elevating temperature to determine softening point (a) PEG 2000 
treated and (b) PEG 1000 treated at 120 °C  
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Figure 14. Thermal softening length of the alkaline PEG-treated lignins 
(Treatment temperature at 120 °C: (a) PEG 2000 and (b) PEG 1000) 
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Table 4. Thermal melting characteristics of the alkaline PEG-treated lignins 
  Molecular weight of PEGs Non- 
Alkaline PEG treated lignin 200 400 600 1000 2000 treated 

Treated at 120ºC - - - + + - 
Treated at 160ºC + + + + + - 

+ : the melting length of sample was greater than 5 mm,  
- : did not melt or the melting length was less than 5 mm 
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Figure 15. Thermal softening length of the alkaline PEG-treated lignins 
(Treatment temperature at 160 °C: (a) PEG 400 and (b) PEG 1000) 
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3-2 Effect of the reaction temperature of alkaline PEG treatment on grafting PEG 

onto lignin 

 

The PEG content grafted into the soda lignin during the treatment was evaluated 

by determining the lignin content analysis of the samples. Figure 16 shows the lignin 

content of the alkaline PEG-treated lignins for various PEG molecular weights prepared 

at 120 °C (circle) and 160 °C (square). The lignin content of the alkaline PEG-treated 

lignin prepared at 120 °C decreased linearly with increasing molecular weight of PEG 

used in the reaction. The decrease in the lignin content indicated the increased amounts 

PEG being grafted onto the soda lignin. The lignin content of derivatives prepared at 

160 °C was much lower than that of derivatives prepared at 120 °C. This indicated that 

a higher amount of PEG was introduced into the lignin when the grafting reaction 

temperature was performed at 160 °C. It should be noted that the better thermal melting 

characteristics of the lignin treated at 160 °C was attributable to the introduction of 

higher amounts of PEG.  
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Figure 16．Effect of the PEG molecular weight on the lignin content of the 
alkaline PEG-treated lignin at 120 °C(●) and 160 °C(■) 
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3-3 Reaction mechanism of the alkaline PEG treatment of lignin 

 

In the alkaline PEG treatment, since excess amount of PEG exixts around lignin 

molecules, possible reaction site on the lignin will be wholly reacted with PEG. If the 

number of possible reaction site did not increase in the reaction, then the relationship 

between the amount of introduced PEG and the size of PEG would be linear. Figure 16 

showed a linear correlation between the lignin content in alkaline PEG-treated lignin 

prepared at 120 °C and the molecular weight of PEG. This suggested that the number of 

possible reaction sites on the lignin was limited and did not increase in the treatment at 

120 °C. The alkaline PEG-treated lignin was analyzed using 13C-NMR to clarify the 

bonded position of the PEG to the lignin. Figure 17 shows the 13C-NMR spectrum of 

the alkaline PEG-treated lignin that was prepared using PEG 400 at 160 °C. The signal 

at 55.6 ppm was assigned to the carbon atoms of the methoxy groups of lignin. The 

strong signal at 69.8 ppm (b) was primarily assigned to the methylene carbons of the 

repeating unit of the PEG polymer. The signals at 72.3 ppm (a) and 60.2 ppm (d) were 

assigned to the methylene carbons of the alcoholic end groups of the PEG. These three 

signals (a, b, and d) could be detected even if unreacted PEG remained in the sample. In 

addition to these three signals, a small signal at 66.3 ppm (c) was assigned to methylene 

carbons bonded to the alpha carbon on the lignin side chain via an ether linkage 

(Kishimoto et al. 2004). This data strongly suggested that PEG is grafted to the lignin 

with an ether bond at the α-carbon of the lignin, as shown in Fig. 17.  

Figure 18 shows a proposed reaction mechanism between the soda lignin and the 

PEG polymer under alkaline treatment conditions. In general, there are few alcoholic 

hydroxyl group on the benzyl position (α-carbon position) of soda or kraft lignin (Adler 
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and Hernestam 1955). However, the NMR spectrum in Fig. 17 shows the chemical 

structure of the lignin with the PEG bonded at its α-carbon position.  

Under the alkaline condition, lignin containing free phenolic hydroxyl groups 

were deprotonated and released the hydroxyl groups at the α-carbon position to form the 

quinone methides. The terminal hydroxyl group in PEG should react with the quinone 

methides in the lignin at α-carbon position.  

The higher amounts of PEG introduced onto the lignin at 160 °C suggested that 

the number of reaction sites in the soda lignin increased with increasing reaction 

temperatures. The vanillin yields from the alkaline nitrobenzene oxidation of soda-AQ 

lignin were 9% based on lignin content (Takahashi et al. 2014). This indicated that the 

soda-AQ lignin has possible reaction sites at α-carbon position. Thus, the alkaline PEG-

treated lignin prepared at 160 °C had higher amounts of PEG than that prepared at 

120 °C.  
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Figure 17. 13C－NMR spectrum of alkaline PEG-treated lignin prepared 
from black liquor powder with PEG 400 
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Figure 18. A reaction mechanism between soda lignin and PEG in the 
alkaline PEG treatment 
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4 Conclusion 

 

1. The alkaline PEG-treated lignin from a softwood soda-AQ black liquor powder 

showed thermal melting characteristics with heating.  

 

2. At the 120 °C alkaline PEG treatment, the samples made from PEG 1000 and PEG 

2000 showed thermal melting; however, the samples using lower PEG molecular 

weights (i.e., 600, 400, and 200) did not exhibit significant thermal melting. On the 

other hand, for the 160 °C alkaline PEG treatment, all samples showed thermal 

melting. 

 

3. The treatment temperature and molecular weight of PEG had considerable effects on 

the physical properties of the alkaline PEG-treated lignin. The better melting 

characteristics of the 160 °C-treated lignin could be due to the higher amount of 

PEG grafted onto the soda-AQ lignin. The NMR data suggested that the PEG 

grafted to α-carbon of lignin via an ether linkage.  
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Chapter 4 Preparation and characterization of alkaline 

PEG-treated lignin from purified and acid-soluble lignin 

(Model experiment) 

 

1 Introduction 

 

Lignin is a major component in wood cell walls and can be isolated from 

wood via chemical pulping. Wood can be regarded as a lignin plastic reinforced by 

cellulose fibers (Hoyt and Goheen 1971). Many million tons of wood are processed 

annually in the chemical pulping industry to separate lignin from cellulose fibers. Spent 

liquors (black liquor) from pulping operations such as kraft, soda, and sulfite processes 

are some of the available sources of lignin. Lignins prepared from the black liquor of 

industrial pulping processes is called technical lignins. Some types of technical lignin 

can be used as dispersants, binders, and surfactants (Dizhbite et al. 1999; Gargulak and 

Lebo 2000; Lora and Glasser 2002; Gosselink et al. 2004; El Mansouri and Salvadό 

2006; Stewart 2008; El Mansouri et el. 2011). However, only approximately 2% of the 

technical lignin produced from industrial pulp manufacturing is utilized for commercial 

purposes (Gargulak and Lebo 2000). In the industrial pulping process, most of the lignin 

in black liquor is combusted to generate energy and recover chemicals. To activate the 

commercial utilization of lignin, the mechanical properties of technical lignin must be 

improved, a key point in the preparation of these value-added products.  
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Polymer blending is a simple modification method to used to upgrade the 

thermoplastic properties of lignin (Feldman et al. 1995; Feldman 2002). Li et al. (1997) 

reported that lignin-based polymeric materials blended with polyvinyl acetate exhibited 

improved mechanical and thermoplastic properties. Kadla and Kubo (2004) prepared a 

blended polymer with a low Tg and a Ts using soda lignin and polyethylene terephthalate. 

Chemical derivatization is a direct approach for improving the physical and 

chemical properties of lignin. Fang et al. (2011) reported that dicarboxylic acid prepared 

by dimerizing unsaturated fatty acids can be reacted with lignin via esterification, 

leading to the formation of lignin derivatives that could remove the rigidity and improve 

the flexibility of lignin. Although the physical and chemical properties of lignin can be 

improved via chemical derivatization, the cost of treatment is prohibitive on a 

commercial basis.  

CF is a high-value added product that can be prepared from lignin (Kubo and 

Kadla 2004; 2005; Fernandes et al. 2006; Shen et al. 2011). For efficient lignin-based 

CF preparation, lignin can be converted into in fibers via melt-spinning. Lignin-based 

CF was first prepared from technical lignin blended with polyvinyl alcohol by Otani et 

al. (1969). Sudo et al. (1993) developed CF from a hardwood steam-exploded lignin, 

which was modified to a thermal melting material by phenolation. Uraki et al. (1995) 

produced a lignin fiber that was suitable for CF production via melt-spinning using 

hardwood organosolv lignin obtained from aqueous acetic acid pulping. In the 2000s, 

Kadla et al. (2002) developed a process to prepare hardwood kraft lignin-based CF 

without chemical modification. They prepared hardwood kraft lignin-based fibers using 

5% polyethylene oxide (PEO) as a plasticizer. Recently, Baker et al. (2012) developed a 

method for producing lignin-based CF from purified hardwood lignin. Because the 
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thermal processability of technical hardwood lignin is better than that of technical 

softwood lignin, the majority of lignin-based CF studies have been performed on 

hardwood lignin. 

Kubo et al. (1997) reported that softwood lignins, such as soda lignin, prepared 

by alkaline cooking are infusible. Infusible softwood lignin can be made fusible by 

removing 30% of the high molecular mass fraction (Kubo et al. 1998). Recently, 

Norberg et al. (2013) and Nordstrӧm et al. (2013) reported the continuous spinning of 

softwood kraft lignin by adding purified hardwood kraft lignin as a softening agent. 

In Chapter 3, I explained a simple softwood lignin modification method using a 

dried black liquor powder as a starting material. Spray-dried black liquor powder was 

directly treated with PEG under alkaline conditions (alkaline PEG treatment) (Yoon et 

al. 2015). The alkaline PEG-treated lignin prepared from black liquor powder exhibited 

its thermal melting property to be a CF precursor. The present study aimed to clarify the 

reaction of softwood lignin in the alkaline PEG treatment by model experiments using 

purified and acid-soluble lignin. 

 

2 Experimental procedures 

 

2-1 Materials 

2-1-1 Black liquor powder 

 

Black liquor was obtained from Japanese cedar (Cryptomeria japonica) wood 

chips via soda-AQ cooking. The soda-AQ conditions were as follows: active alkaline 
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charge of 19.5% of wood, AQ charge of 0.1% of wood, cooking time of 2 h, and 

cooking temperature of 170 °C. Black liquor was dried to a powder using a spray dryer 

system (Powdering Japan PJMSD-10SY, Japan) operating at a chamber temperature of 

90 °C and an inlet air temperature of 180 °C. The dried black liquor powder was then 

removed from the spray dryer system and kept in a vacuum oven over phosphorus 

pentoxide for 24 h prior to use (Yoon et al. 2015). 

 

2-1-2 Purified lignin 

 

 Purified lignin (acid-insoluble lignin) was isolated from black liquor powder. 

The black liquor powder was dissolved in distilled water until it comprised 40% of the 

solution’s content. The pH of this solution was then adjusted to 2 with 20% sulfuric acid 

to precipitate the acid-insoluble part. The solution was then centrifuged to recover the 

precipitate, and the precipitate was washed with water. The centrifuging and washing 

procedures were repeated eight times. The precipitate was then vacuum-dried for 24 h 

and used as purified lignin (acid-insoluble lignin). 

 

2-1-3 Acid-soluble lignin fraction 

 

The acid-soluble lignin fraction was extracted from the filtrate of the 

precipitation solution of the purified lignin preparation. The pH of the filtrate was 

adjusted to 7 with sodium hydroxide. Water in the filtrate was removed using a rotary 

evaporator. The remaining material was dried in a vacuum oven for 24 h. After stirring 
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for three days, the dried material was extracted with 1,4-dioxane. The insoluble material 

in the solution was filtered out, and the dioxane in the filtrate was removed using a 

rotary evaporator. The remaining material was dried in a vacuum oven for 24 h. The 

dried material was extracted with chloroform using a shaking apparatus; the chloroform 

layer was then separated using a separating funnel. Chloroform in the chloroform layer 

was removed using a rotary evaporator. The remaining material was dried in a vacuum 

oven for 24 h and used as the acid-soluble lignin fraction. 

 

2-2 Methods 

2-2-1 Alkaline PEG treatment of black liquor powder 

 

Black liquor powder was directly modified using PEG under alkaline conditions 

(termed as alkaline PEG treatment) following the method used in our previous study 

(Yoon et al. 2015). The black liquor powder (30 g) was dissolved in PEG 1000 (150 g). 

The mixture was transferred to a separable flask and heated to 160 °C at atmospheric 

pressure in an oil bath. After the reaction, the mixture was slowly poured into 500 mL 

of distilled water and the solution was acidified to pH 2.0 with 3 M HCl to produce a 

precipitate. The precipitate was filtered and dried in a vacuum oven. 

 

2-2-2 Alkaline PEG treatment of the purified lignin 

 

A model experiment was carried out to clarify the reaction of lignin in the 

alkaline PEG treatment of the black liquor powder. The black liquor powder consisted 
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of sodium hydroxide (7.3%), sodium carbonate (66.7%), and lignin(18.0%) (Chapter 2). 

The purified lignin was used as a model compound. The purified lignin (20 g) was 

mixed with sodium hydroxide (5 g) and sodium carbonate (50 g). The mixture was 

dissolved in 375 g of various average molecular weights of PEG (200, 300, 400, 600, 

1000, 1500, and 2000), EG, or DEG. The solution was transferred into a separable flask 

(500 mL) with mechanical stirring and heated to 160 °C at atmospheric pressure in an 

oil bath. After the reaction, the reactant was slowly poured into 500 mL of distilled 

water and the solution was acidified to pH 2.0 with 3 M hydrochloric acid to produce a 

precipitate. The precipitate was filtered, and the solids were dried in a vacuum oven.  

 

2-2-3 Evaluation of lignin content 

 

The lignin content of the alkaline PEG-treated lignin was measured using the 

UV method (Dence 1992; Takahashi et al. 2014). Since the composition of the alkaline 

PEG-treated lignin consists of two components, only one of which (the lignin) absorbs 

in the UV spectral region, the lignin content measured by the UV method will reflect the 

amount of lignin in alkaline PEG treated sample. A sample was dissolved in 1,4-

dioxane/0.2 M sodium hydroxide (NaOH; v/v = 1/1). The pH of the sample solution was 

adjusted to 5.0 with acetic acid. UV ABS at 280 nm was determined using a UV 

spectrophotometer (Shimadzu UV-1800, Japan). The lignin content was calculated from 

the ABS coefficient of lignin (UV lignin content). The ABS coefficient of the lignin was 

determined by the following process. The total lignin content of the purified lignin was 

determined using the Klason lignin method (TAPPI T222 om-02 2006), and the acid-

soluble lignin derived from the Klason method was determined using the TAPPI useful 
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method UM 250 um-83 (1991). The ABS coefficient of soda lignin at 280 nm was 

determined based on the relationship between the concentration based on the total lignin 

content and UV absorbance of the purified lignin at 280 nm, which was 26.1 L•g-1•cm-1.  

 

2-2-4 Thermal melting characteristics 

 

The thermal melting characteristics of the alkaline PEG-treated lignin were 

evaluated using a softening point system (Mettler Toledo DP 70 Dropping poin system, 

Switzerland). The alkaline PEG-treated lignin powder (200 mg) was poured into a 

cylinder loaded with a ball of mass 4 g. The thermal melting test was performed by 

increasing the temperature from 100 to 200 °C at a rate of 2 °C/min. The flow length of 

the melted sample was monitored by the system. 

 

2-2-5 Thermomechanical analysis (TMA) 

 

TMA was performed using a TMA Q400 (TA Instruments, USA) at 

temperatures from 20 to 320 °C at a compression loading of 0.05 N under a N2 stream at 

50 mL/min. The values Tg and Ts were estimated as the first and the second transition 

points in the TMA curves, respectively. 

 

2-2-6 Nuclear magnetic resonance (NMR) analysis 

 

The chemical structures of lignin derivatives were estimated using NMR 

analysis. Alkaline PEG-treated lignin (200 mg) was dissolved using 600 μL of 
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deuterated dimethyl sulfoxide (DMSO-d6) as a solvent. The concentration of the lignin 

solution was 20 to 30 wt.%. The 13C-NMR spectrum of the lignin solution was recorded 

using a JEOL-500 MHz NMR spectrometer (JEOL, Japan) operating at 125.65 MHz 

with proton noise decoupling. The spectrum was registered at 28 °C.  

 

3 Results and dicussion 

 

3-1 Effect of the PEG molecular weight 

 

The amount of PEG introduced into lignin during treatment was evaluated by 

determining the UV lignin content of the sample. Figure 19 shows the lignin content of 

the alkaline PEG-treated lignins using various PEG molecular weights prepared from 

purified lignin. The lignin content decreased with increasing PEG molecular weight. 

The decrease in lignin content indicated that increased amounts of PEG were being 

introduced into the purified lignin.  
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Figure 19. Effect of PEG molecular weight on the lignin content of alkaline 
PEG-treated lignin prepared from purified lignin 
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3-2 Thermal melting characteristics of alkaline PEG-treated lignin 

 

Figure 20 and 21 demonstrates the thermal melting behavior of the alkaline 

PEG-treated lignin prepared from purified lignin (Fig. 20) and black liquor powder (Fig. 

21) and the softening point that was determined with increasing temperature. As shown 

in Fig. 20 and 21, the alkaline PEG-treated lignin gradually melted with heating.  

Figure 22 shows the melting length of the alkaline PEG-treated lignin prepared 

from black liquor powder, with the temperature increasing at a rate of 2 °C/min. The 

alkaline PEG-treated lignin prepared from black liquor powder started melting at 

102.2 °C, and the length reached 5 mm at 105.3 °C. At 119.2 °C, the sample dropped to 

the bottom of the test cylinder. The thermal melting speed of the alkaline PEG-treated 

lignin prepared from purified lignin was slower than that of the lignin prepared from 

black liquor powder. Figure 23 shows the melting length of the alkaline PEG-treated 

lignin prepared from the purified lignin, with the temperature increasing at a rate of 

2 °C/min. The thermal melting of the alkaline PEG-treated lignin prepared from the 

purified lignin started at 151.3 °C. The melting length of the lignin sample steadily 

increased as the temperature increased, reaching 5 mm at 179.2 °C. The thermal melting 

characteristics of the alkaline PEG-treated lignin prepared from various molecular 

weight PEGs (i.e., 200, 300, 400, 600, 1000, 1500, and 2000), EG, and DEG were 

checked and are shown in Table 5. The melting characteristics of these alkaline PEG-

treated lignin types were evaluated by flow length in the softening point system. The “+” 

in Table 5 indicates that the melting length of the sample was more than 5 mm, whereas 

the “−” indicates that the sample did not melt or that the melting length was less than 5 

mm.  
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Figure 24, 25, and 26 shows the TMA curves of various lignin samples. These 

alkaline PEG-treated lignin types were prepared in the PEG 1000 series (Fig. 25, and 

26). Thermal properies such as Tg and Ts were determined using TMA (Kubo et al. 

1996). As shown in Fig. 24, the TMA curve of the purified lignin showed a decrease in 

dimension change starting at approximately 140 °C. This decrease continued until the 

temperature reached 220.4 °C, and was followed by a marked increase. During the 

dimension change-increasing step, the sample swelled and formed a foaming, rigid solid 

with thermo-setting. This result indicates that these samples were difficult to melt under 

heat. Because the purified lignin did not exhibit thermal melting characteristics (Table 

5), its TMA curve can be regarded as a typical TMA plot of lignin samples that do not 

show thermal melting. As shown in Fig. 25, the TMA curve of the alkaline PEG-treated 

lignin prepared from black liquor powder was quite different from that of purified lignin 

(Fig. 24). The TMA curve (Fig. 25) showed a Tg at 157.4 °C, and the dimension change 

decreased rapidly to approximately 190 °C. After this rapid decrease, the decreasing 

ratio slowed. The TMA curve (Fig. 25) suggested that the alkaline PEG-treated lignin 

prepared from black liquor powder exhibited a thermal melting property (Kubo et al. 

1996).  

As shown in Fig. 26, the TMA curve of the alkaline PEG-treated lignin prepared 

from purified lignin showed Tg at 145.4 °C (Fig. 26). The decrease in dimension change 

continued until 184.3 °C, followed by a marked increase. This type of TMA curve (Fig. 

26) is similar to that of purified lignin (Fig. 24) and does not show thermal melting on 

the softening point analysis system. This suggests that the alkaline PEG-treated lignin 

prepared from purified lignin did not show appropriate thermal melting performance 

during TMA analysis. However, the alkaline PEG-treated lignin prepared from purified 
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lignin exhibited a thermal melting property in the softening point analysis system (Table 

5). Because the dimension change of the alkaline PEG-treated lignin prepared from 

purified lignin dropped at a temperature approximately 30 °C lower than that of  

purified lignin, the lignin showed more than 5 mm of flow on the softening point 

analysis system (Fig. 24).  
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Figure 20．Thermal softening behavior of alkaline PEG-treated lignin 
prepared from purified lignin with increasing temperature to determine 
softening point  
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Figure 21．Thermal softening behavior of alkaline PEG-treated lignin 
prepared from black liquor powder with increasing temperature to 
determine softening point  
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Figure 22. Thermal softening length of alkaline PEG-treated lignin 
prepared from black liquor powder 
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Figure 23. Thermal softening length of alkaline PEG-treated lignin 
prepared from purified lignin 
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Table 5. Thermal melting characteristics of alkaline PEG
prepared from black liquor powder and purified lignin
 
 
 
 
 
 
 
+ : the melting length of sample was greater than 5 mm, 
- : did not melt or the melting length was less than 5 mm
EG : Ethylene glycol,  
DEG : Diethylene glycol 
 

 

 

 

 

 

 

 

 

 

 

68 

. Thermal melting characteristics of alkaline PEG-
prepared from black liquor powder and purified lignin 

+ : the melting length of sample was greater than 5 mm,  
: did not melt or the melting length was less than 5 mm 

-treated lignin 
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Figure 24. Thermal mechanical analysis of purified lignin 
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Figure 25. Thermal mechanical analysis of alkaline PEG-treated lignin 
prepared from black liquor powder 
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Figure 26. Thermal mechanical analysis of alkaline PEG-treated lignin 
prepared from purified lignin 
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3-3 Chemical structure of alkaline PEG-treated lignin 

 

The alkaline PEG-treated lignin was analyzed using 13C-NMR to clarify the 

bonded position of the PEG to the lignin. Figure 17, 27, 28, 29, and 30 shows the 13C-

NMR spectra of the purified lignin (Fig. 27), the alkaline PEG-treated lignin prepared 

from the purified lignin in PEG 200 (Fig. 28), PEG 400 (Fig. 29), PEG 1000 (Fig. 30), 

and the alkaline PEG-treated lignin prepared from black liquor powder in PEG 400 (Fig. 

17). Signal assignment was reported in previous chapter (chapter 3). The signal at 55.6 

ppm (e) was assigned to the carbon atoms of the methoxy groups of lignin. The strong 

signal (b) at 69.8 ppm was primarily assigned to the methylene carbons of the repeating 

unit of a PEG polymer. The signals at 72.3 ppm (a) and 60.2 ppm (d) were assigned to 

the methylene carbons of the alcoholic end-groups of PEG. These three signals (a, b, 

and d) could be detected even if unreacted PEG remained in the sample. In addition to 

these three signals, a small signal (c) at 66.3 ppm was assigned to the methylene 

carbons bonded to α-carbon on the lignin side-chain via an ether linkage (Kishimoto et 

al. 2004). These data strongly suggest that PEG was grafted to the lignin with an ether 

bond at the α-carbon of lignin. As shown in Fig. 17, the alkaline PEG-treated lignin 

prepared from black liquor powder showed the signal (c). However, this signal was not 

detected in the spectra of the alkaline PEG-treated lignin prepared from purified lignin 

(Fig. 28, 29, and 30). These data suggest that there was no linkage between lignin and 

PEG on the alkaline PEG-treated lignin prepared from purified lignin. This suggested 

that the data shown in Fig.19 of increasing amount of introduced PEG with increasing 

molecular weight of PEG might due to the unreacted PEGs in the sample. Generally, a 

higher molecular weight of PEG will result in stronger interaction between PEG and the 
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other polymeric materials (Pillin et al. 2006). Removing of the unreacted higher 

molecular weight fraction of PEG would be difficult. 
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Figure 27．13C-NMR spectrum of purified lignin 
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Figure 28．13C-NMR spectrum of alkaline PEG-treated lignin prepared 
from purified lignin with PEG 200 
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Figure 29. 13C-NMR spectrum of alkaline PEG-treated lignin prepared 
from purified lignin with PEG 400 
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Figure 30．13C-NMR spectrum of alkaline PEG-treated lignin prepared 
from purified lignin with PEG 1000 
 

 

 

3-4 Effect of the reaction time of alkaline PEG treatment on grafting PEG onto 
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Figure 31 shows a proposed reaction mechanism of the soda lignin in the 

alkaline PEG treatment. In the alkaline PEG treatment, the alkaline PEG-treated lignin 

(a) can be converted into intermediate of the quinone methide type (b) by adding an 

electron produced from free phenolic hydroxyl groups in different lignin units. (b) 

structure and a cycolhexadienone anion (c) of lignin by resonance canbe a diphenyl type 

structure (d), which is condensed by addition reaction. (d) structure can be an addition 

product (e) with rearomatization. Then, (e) structure can be a carbanion structure (e) by 

addition of proton. I think that (e) structure increase with increasing reaction time in the 

alkaline PEG treatment. Because, the step from (d) to (f) is irreversible reaction step. 

Finally, the alkaline PEG-treated lignin may be eliminated by  increasing the carbanion 

structure with reaction time, as shown Fig. 31.  

Figure 32 shows effect of the reaction time on the lignin content of the alkaline 

PEG-treated lignin prepared from purified lignin. The lignin content of the alkaline 

PEG-treated lignin prepared from the purified lignin for 60 minutes was the lowest 

sample in the alkaline PEG-treated lignin for variouse reaction time. This indicated that 

a high amount of PEG was introduced into the lignin when the grafting reaction time 

was performed for 60 minutes.  

Figure 33 shows 13C-NMR spectrum of alkaline PEG-treated lignin prepared 

from purified lignin for 60 minutes. The three signals (a, b, and d) could be detected in 

this NMR data. On the other hand, the signal (c) was not detected in this spectra of the 

alkaline PEG-treated lignin prepared from purified lignin for 60 minutes. This data 

suggested that there was no linkage between lignin and PEG on the alkaline PEG-

treated lignin prepared from purified lignin for 60 minutes.  

The most amount of PEG was introduced into the purified lignin when the 
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grafting reaction time was performed for 60 minutes. However, it was difficult to 

confirm the reaction site between lignin and PEG on the alkaline PEG-treated lignin 

prepared from purified lignin. A high amount of PEG in the alkaline PEG-treated lignin 

performed for positive reaction time such as 60 minutes might have no influence on the 

reaction site between purified lignin and PEG. 
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Figure 31. A reaction mechanism of alkaline PEG treatment  
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Figure 32. Effect of the reaction time on the lignin content of the alkaline 
PEG-treated lignin prepared from purified lignin 
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Figure 33．13C－NMR spectrum of alkaline PEG-treated lignin prepared 
from purified lignin (Reaction time : 60 min) 
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3-5 Reaction of acid-soluble lignin 

 

The alkaline PEG-treated lignin prepared from black liquor powder exhibited 

thermal melting properties. However, the alkaline PEG-treated lignin prepared from 

purified lignin showed weak thermal melting during softening point analysis and did not 

show appropriate thermal melting performance during TMA analysis. Black liquor 

powder includes a considerable amount of lignin and consists of acid-insoluble lignin 

(62 %) and acid-soluble lignin (38 %), as shown in Figure 34. As the lignin in black 

liquor powder includes both acid-insoluble lignin (purified lignin) and acid-soluble 

lignin, alkaline PEG treatment was performed using the acid-soluble lignin as a model 

compound. A preparation procedure of acid-soluble lignin was shown in Figure 35. It 

was extraction from an acid-soluble fraction in the black liquor powder by acidifying.  

Figure 36 shows the 13C-NMR spectrum of alkaline PEG-treated lignin prepared 

from acid-soluble fraction using EG. In this NMR data, the three signals (a, b, and d) 

could also be detected. In addition, a small signal 65.8 ppm (c) was detected. However, 

this NMR spectrum was difficult to determine the relationship between the acid-soluble 

lignin and PEG in the alkaline PEG treatment. Because, the signal (c) in the Fig.36 was 

detected with unknown signals in this NMR spectrum. It could be thought that the 

unknown signals indicated residue of carbohydrates due to lack of purification in the 

extraction of acid-soluble lignin. After purifying the acid soluble fraction by repeating a 

chloroform extraction step, the acid-soluble lignin was used in the alkaline PEG 

treatment as a model experiment.  

Figure 37 shows the 13C-NMR spectrum of alkaline PEG-treated lignin prepared 

from the acid-soluble lignin fraction. This alkaline PEG-treated lignin was prepared in 
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the PEG 1000 series. The signal (e) at 55.4 ppm was assigned to the carbon atoms of 

lignin methoxy groups. The strong signal at 69.8 ppm (Fig. 37b) was assigned to the 

methylene carbons of the repeating unit of the PEG polymer. The signals at 72.4 ppm 

(Fig.37a) and 60.3 ppm (Fig. 37d) were assigned to the methylene carbons of the 

alcohol end-groups of PEG. In addition, a strong signal at 66.4 ppm (Fig. 37c) was 

detected. The signal was assigned to methylene carbons bonded to the α-carbon on the 

lignin side chain via an ether linkage (Kishimoto et al. 2004). This spectrum strongly 

suggests that PEG was introduced to acid-soluble lignin at its α-carbon position. In the 

spectrum of the alkaline PEG-treated lignin prepared from black liquor powder (Fig. 17), 

the small signal (c) might be caused by the reaction of the acid-soluble lignin in the 

black liquor powder. The alkaline PEG-treated lignin prepared from black liquor 

powder exhibited good thermal melting properties. However, the alkaline PEG-treated 

lignin prepared from purified lignin exhibited week thermal melting properties and did 

not exhibit appropriate thermal melting performance during TMA analysis. The acid-

soluble lignin in black liquor powder could provide thermal melting characteristics to 

the alkaline PEG-treated lignin prepared from black liquor powder. The data shown in 

Fig. 37 suggests that the acid-soluble lignin reacted with PEG to produce PEG-lignin 

derivatives. These derivatives may work as a plasticizer to induce the thermal melting of 

alkaline PEG-treated lignin prepared from black liquor powder.  
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Figure 34. Percentage of acid-soluble and acid-insoluble lignin in black 
liquor powder 
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Figure 35. Preparation scheme for acid-soluble lignin of black liquor 
powder 
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Figure 36. 13C－NMR spectrum of alkaline PEG-treated lignin prepared 
from acid-soluble lignin fraction using EG 
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Figure 37. 13C－NMR spectrum of alkaline PEG-treated lignin prepared 
from acid-soluble lignin fraction using PEG 1000 
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4 Conclusion 

 

1. Alkaline PEG-treated lignin prepared from black liquor powder exhibited good 

thermal melting properties; on the other hand, that prepared from purified lignin 

exhibited weak thermal melting during softening point analysis and did not exhibit 

appropriate thermal melting during TMA analysis.  

 

2. The lignin in black liquor powder includes both acid-insoluble lignin (purified 

lignin) and acid-soluble lignin. The NMR data of the alkaline PEG-treated lignin 

prepared from purified lignin suggest that there was no linkage between lignin and 

PEG in the samples. On the other hand, the NMR data of samples prepared from the 

acid-soluble lignin fraction suggest that PEG was grafted onto the lignin, thus 

producing PEG-lignin derivatives. PEG-lignin derivatives may work as a plasticizer 

to induce the thermal melting of alkaline PEG-treated lignin prepared from black 

liquor powder. 
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Chapter 5 General conclusions 

 

In this study, a simple method for lignin derivatization using a spray-dried 

black liquor powder as a starting material was applied to the process of lignin 

modification from softwood. 

 

Chapter 2 explains a process for the preparation of a black liquor powder from 

black liquor. 

The results were as follows: 

The material in this study was prepared from black liquor, which was dried to a powder 

using a spray dryer system. The total lignin content of each raw material (black liquor 

powder and purified lignin) used in this study is equal to the sum of their contents of 

acid-soluble lignin derived from the Klason method and the acid-insoluble lignin 

(Klason lignin). The total lignin content of the black liquor powder was 19.2% (w/w) 

and that of the purified lignin was 97.7% (w/w). The ABS coefficient of soda lignin at 

280 nm was determined based on the relationship between the concentration and UV 

absorbance of purified lignin at 280 nm. The ABS coefficient was 26.1 L•g-1•cm-1. The 

black liquor powder consisted of sodium hydroxide (7.3%, w/w), sodium carbonate 

(66.7%, w/w), and lignin (18.0%, w/w). 

 

Chapter 3 presents experiments on the treatment of lignin derived from black 

liquor powder with alkaline PEG, and the chemical and thermal characteristics of the 

derivatized lignin. 
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The results were as follows: 

1. The alkaline PEG-treated lignin from a softwood soda-AQ black liquor powder 

showed thermal melting characteristics with heating.  

 

2. After alkaline PEG treatment at 120 °C , the samples treated with PEG 1000 and 

PEG 2000 showed thermal melting; however, the samples using PEG of lower 

molecular weights (i.e., 600, 400, and 200) did not exhibit significant thermal 

melting. On the other hand, after alkaline PEG treatment at 160 °C, all samples 

showed thermal melting. 

 

3. The treatment temperature and molecular weight of PEG had considerable effects on 

the physical properties of the alkaline PEG-treated lignin. The better melting 

characteristics of the lignin treated with PEG at 160 °C could be due to the higher 

amount of PEG grafted onto the soda-AQ lignin. The NMR data suggested that the 

PEG grafted to the α-carbon of lignin via an ether linkage.  

 

Chapter 4 presents model experiments to clarify the reaction of softwood 

lignin in the alkaline PEG treatment using a purified lignin and an acid-soluble lignin.  

The results were as follows:  

1. Alkaline PEG-treated lignin prepared from black liquor powder exhibited good 

thermal melting properties; on the other hand, that prepared from purified lignin 

exhibited weak thermal melting during softening point analysis and did not exhibit 

appropriate thermal melting during TMA analysis. 
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2. The lignin in black liquor powder includes both acid-insoluble lignin (purified 

lignin) and acid-soluble lignin. The NMR data of the alkaline PEG-treated lignin 

prepared from purified lignin suggest that there was no linkage between lignin and 

PEG in the samples. On the other hand, the NMR data of samples prepared from the 

acid-soluble lignin fraction suggest that PEG was grafted onto the lignin, thus 

producing PEG-lignin derivatives. PEG-lignin derivatives may work as plasticizers 

to induce the thermal melting of alkaline PEG-treated lignin prepared from black 

liquor powder. 

 

From the above, this thesis provides knowledge about the production of lignin 

derivatives by alkaline PEG treatment, which may facilitate the development of new 

technologies for the material utilization of lignin, which is a major component of woody 

biomass. It was shown that lignin derivatives could be obtained by a simple softwood 

lignin modification method using a spray-dried black liquor powder as a starting 

material. The black liquor powder was dissolved into PEG solution and heated at 

atmospheric pressure. After the reaction, the alkaline PEG-treated lignin was 

precipitated with acid and recovered by filtration. The lignin derivatives showed 

adequate thermal melting characteristics for conversion to a lignin material with a 

thermal melting property. This thesis demonstrates a process for producing high value-

added products from lignin in the black liquor, which until now has been discharged as a 

byproduct of pulp. 
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