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We recognize objects even when they are partially degraded by visual noise. We studied

the relation between the amount of visual noise (5, 10, 15, 20, or 25%) degrading 8

black-and-white stimuli and stimulus identification in 2 monkeys performing a sequential

delayed match-to-sample task. We measured the accuracy and speed with which

matching stimuli were identified. The performance decreased slightly (errors increased)

as the amount of visual noise increased for both monkeys. The performance remained

above 80% correct, even with 25% noise. However, the reaction times markedly

increased as the noise increased, indicating that the monkeys took progressively longer

to decide what the correct response would be as the amount of visual noise increased,

showing that the monkeys trade time to maintain accuracy. Thus, as time unfolds the

monkeys act as if they are accumulating the information and/or testing hypotheses

about whether the test stimulus is likely to be a match for the sample being held in

short-term memory. We recorded responses from 13 single neurons in area TE of the 2

monkeys. We found that stimulus-selective information in the neuronal responses began

accumulating when the match stimulus appeared. We found that the greater the amount

of noise obscuring the test stimulus, the more slowly stimulus-related information by

the 13 neurons accumulated. The noise induced slowing was about the same for both

behavior and information. These data are consistent with the hypothesis that area TE

neuron population carries information about stimulus identity that accumulates over time

in such a manner that it progressively overcomes the signal degradation imposed by

adding visual noise.
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INTRODUCTION

Generally humans and other primates can identify a visual
stimulus accurately from a brief glance. The physical properties
that are combined to make objects distinguishable in natural
scenes encompass a wide variety of physical properties: size,
orientation, color, contrast, movement, and clarity. Thus, the
brain integrates information rapidly from all of these physical
properties (Richmond and Optican, 1987; Eskandar et al.,
1992a,b; Ito et al., 1995; Logothetis and Sheinberg, 1996; Tanaka,
1996; Sugase et al., 1999; Riesenhuber and Poggio, 2002; Dicarlo
et al., 2012; Hirabayashi et al., 2013; Martin and Schröder,
2013; Pagan et al., 2013). In primates including humans visual
perception is tolerant to variations that degrade the image or
make it more ambiguous (Bussey et al., 2003; Jones et al., 2003;
Emadi and Esteky, 2013; Komura et al., 2013). Shidara and
Richmond (2005) showed that as the amount of visual noise
degrading a visual stimulus increases, monkeys maintain their
performance in identifying the stimulus correctly by taking
progressively more time to make a decision using black-and-
white patterns which have been shown to elicit differential
responses in inferior temporal cortex neurons (Richmond et al.,
1987; Eskandar et al., 1992a,b). Here, using the same task (Shidara
and Richmond, 2005), we studied what happens to stimulus
selective information in area TE of inferior temporal cortex when
the stimulus is degraded by random dot visual noise, e.g., the
raindrops scattered on the glass window, or snow and fog.

FIGURE 1 | Sequential Delayed Match to Sample (DMS) task with visual noise. (A) The procedure of sequential DMS task. The example shows a 10% noise

level. (B) Six noise conditions (0, 5, 10, 15, 20, and 25%) were prepared for each of eight stimulus patterns. All stimulus and noise patterns were shown in Shidara

and Richmond (2005).

The signals carried by neurons in area TE are of particular
interest for object recognition because area TE is considered as
a late stage in processing visual information used to recognize
complex objects. We found that the amount of visual noise
superimposed on the stimuli was directly related to the rate
as which stimulus-related information accumulated in the
responses of the TE neurons we recorded.

MATERIALS AND METHODS

All experiments and procedures were carried out in accordance
with the Guidelines for the Care and Use of Laboratory Animals
as published by the National Research Council of the U.S.
National Academy of Sciences and adopted by the National
Institutes of Health. The experiments were approved by the
Animal Care and Use Committee of the National Institute of
Mental Health.

Animal Preparation and Behavioral
Paradigm
Two adult 5–7 kg male rhesus monkeys (Macaca mulatta;
monkey G & S) were used to collect the behavioral and neuronal
data. The experimental apparatus and behavioral paradigm have
been previously described in Shidara and Richmond (2005). The
monkeys were trained to perform sequential delayed match-to-
sample (DMS) task (Figure 1A). When the monkey touched
the bar in the chair, a small white fixation spot (0.83 × 0.83◦)
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appeared in the center of the monitor for 500 ms. Then a
series of 2–5 stimuli appeared in succession. The first stimulus
was a sample, and the remaining 1–4 stimuli were test stimuli
(non-match or match stimuli). To obtain a reward the monkey
was required to release the bar between 150 and 800ms when
the test stimulus was a repeat of the sample, that is, the match
appeared. Each stimulus was 10.0 × 10.0 degrees, and appeared
at the center of the screen for a randomly chosen interval of
500–1000 ms. The interstimulus interval (ISI) was 200–1000 ms.
During the interstimulus intervals, the fixation spot reappeared.
The visual stimuli (same as in Shidara and Richmond, 2005) were
8 black-and-white patterns using 48 × 48 video monitor pixels.
A 1-pixel black-and-white random dot background covered the
whole monitor screen. To add visual noise, groups of 3× 3-pixel

FIGURE 2 | Behavioral performances. (A) Error rates averaged between

two monkeys. Asterisks indicate the significant difference between adjacent

noise levels (Chi-squared test; *p < 0.05, p-values adjusted for multiple

comparisons using the FDR procedure). (B) Error rates for each pattern.

Black, red, green, blue, aqua blue, and purple curves indicate the error rates in

0, 5, 10, 15, 20, and 25% noise levels, respectively. (C) Errors divided into

false alarm (bar release error in non-match presentation) and miss (not

releasing the bar during match presentation). Asterisk indicates a significant

difference between false alarm and miss in the same noise level (Chi-squared

test; *p < 0.05). (D) Median reaction time averaged between two monkeys.

Asterisk indicates a significant difference in the reaction times between

adjacent noise levels (Wilcoxon rank sum test; *p < 0.05, p-values adjusted for

multiple comparisons using the FDR procedure). (E) Median reaction time for

each pattern. The same convention as in (B).

dots were reversed from white to black or black to white for the
non-match and match stimuli so that the number of white-black
reversed pixels was 5, 10, 15, 20, or 25% (Figure 1B). The noise
pattern was changed among several noise sets on an irregular
rotating cycle of 1 day to a few weeks to prevent the monkeys
from memorizing the noise pattern itself in the training session.
The noise pattern was fixed during the recording session. The
sample stimulus was always presented without noise.

After the monkeys learned to perform the task at the overall
correct rate of more than 80%, a head holder and a recording
cylinder were fixed to the skulls during an aseptic surgical
procedures carried out under isoflurane anesthesia. The cylinder
for single unit recording was attached at anterior 17mm (monkey
G) or 16 mm (monkey S). A scleral magnetic search coil
was implanted under Tenon’s capsule to measure eye position
(Robinson, 1963; Judge et al., 1980). The fixation window was 10◦

or 20◦. Neuronal recordings began 1 week or later after surgery.

Neuronal Recording
Single units were recorded while the monkeys performed the
DMS task. A hydraulic microdrive wasmounted on the recording
cylinder, and tungsten microelectrodes with impedance of 1.5–
1.7 M� (MicroProbe, Clarksburg, MD) were used through
a stainless steel guide tube. Experimental control and data
collection were performed by a Hewlett-Packard Vectra 486/33,
using a real-time data acquisition program (Hays et al., 1982)
adapted for the QNX operating system. Single units were
discriminated according to spike shape and amplitude by
calculating principal components using an IBM PC compatible
microcomputer (Abeles and Goldstein, 1977; Gawne and
Richmond, 1993). We used MR imaging to confirm that our
recordings were taken from the ventral bank of inferior temporal

FIGURE 3 | Rank-ordered normalized response to the eight match

stimuli for 13 analyzed neurons. Firing rates for each stimulus pattern in 0%

noise level were normalized by their max firing rate in 0% noise level. Each

curve shows the data from each neuron.
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FIGURE 4 | Two examples of neuronal response during match stimulus. (A) An example of the match stimulus response. The raster plots and spike density

plots (σ = 10 ms) are aligned to the onset of the match stimulus (line at time 0). Horizontal axis shows the time from the onset of the match stimulus. Vertical axis

shows the firing rate. (B) Another example of the recorded neuronal responses. The same convention as in (A).
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cortex (area TE) (Saunders et al., 1990). The depths of recording
sites were calculated from the lengths of the guide tubes and
electrodes. The recording depths were further confirmed by
calculating backwards from the depth at which the electrode
struck the dura at the bottom of some penetrations.

Data Analysis
Data with fewer than 6 trials for any stimulus were discarded.
A neuron was regarded as responsive if averaged spike counts
between 50 and 500 ms after the onset of the sample stimulus
were significantly higher than the average spike counts between
725 and 275 ms before the appearance of the fixation point
(intertrial interval, ITI) for at least one of the 8 sample stimuli
(p < 0.05, t-test).

For behavioral performance, error rate and reaction time
averaged across all recording sessions were calculated. Error rate
was defined as the ratio of the number of error trials to the
number of all trials. Reaction time was defined as the time from
the onset of match stimuli to bar release.

Data analysis were performed using “R” statistical computing
environment (R Foundation for Statistical Computing, R
Development Core Team, 2008).

Onset Latency Analysis
To analyze the effect of visual noise on the neuronal responses,
we measured the onset latency of neuronal responses for each
noise level. First, the spike density function (SDF), which is an
estimate of spike probability over time, was constructed for each
individual response in each noise level by replacing each spike
with a Gaussian pulse, σ= 10− 30ms (convolving the spike train
with a Gaussian pulse). These were averaged at each millisecond
(Figure 4). The onset latency was defined as the first time after 50
ms after the match onset when the firing rate exceeded the mean
± 2SD of the ISI response during 50 ms immediately before the
match onset.

Information Theoretic Analysis
Mutual information is a measure of the interdependence of two
stochastic variables (Optican and Richmond, 1987). The mutual
information between the neural responses and the eight stimulus
patterns was calculated.

I (S;R) =

(

∑

S

P(s|r)log

[

P(s|r)

P(s)

]

)

r

where I(S;R) is the mutual information between the stimulus
sets, S, and the neural responses R. S is the average over each
stimulus, and s is the stimulus related to neural response r. P(s|r)
is the probability of s given r, i.e., the conditional probability of
the stimulus being selected on the basis of the neural response
r. P(s) is the a priori probability of the stimulus, which is
determined by the experimenter as the experimental settings.
Obtaining an accurate estimate of the mutual information, I(S;R),
requires an accurate estimate of P(s|r). We have done this using
a neural network to carry out a nominal regression of the
experimental condition on the neural response with care to avoid
over-fitting. The analysis performed by the neural network is

similar to logistic regression (Kjaer et al., 1994; Heller et al.,
1995; Shidara et al., 1998; Shidara and Richmond, 2004; Inaba
et al., 2013). As the response codes, spike counts from the
match stimulus interval were used. Because there were almost
equal numbers of trials, the maximum amount of information
that could have been transmitted about the visual stimulus, that
is the entropy, is log28 or 3 bits. To examine the temporal
change in the information accumulation, we calculated the
information through an expanding time window beginning 50
ms after the stimulus onset and incremented in 8 ms steps up
to 500ms.

RESULTS

From 37 recorded neurons (19 neurons from monkey G, 18
neurons from monkey S), data of 13 neurons that had enough
number of trials for each noise level were analyzed (7 neurons
frommonkey G, 6 neurons frommonkey S, see Section Materials
and Methods).

Behavioral Performances
We first analyzed the error rate and the reaction times during
neuronal recording periods. The monkeys generally kept low
error rates at all visual noise levels (Figure 2A), although there
was significant difference between 5 and 10% noise levels
and between 20 and 25% noise levels (Chi-squared test, p
< 0.05, p-values adjusted for multiple comparisons using the
Benjamini and Hochberg false discovery rate (FDR) procedure).
A similar trend was observed in the error rates for each pattern
(Figure 2B). In Figure 2C, the error rate was divided into
“false alarm” (bar release error during the presentation of the
non-match) and “miss” (not releasing the bar during match
presentation). There were no significant differences between
those errors except in 25% noise level. The median reaction time

FIGURE 5 | The relation between neuronal latency and noise level. The

onset latency measured from the spike activity recorded during the match

stimulus presentation was plotted against noise level. The same color square

means the data from the same neuron. The line shows the averaged onset

latency from 13 neurons. Color that indicates data of each neuron matches the

color shown in Figure 3.
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for bar release when thematch stimulus appeared increased as the
amount of visual noise increased except between 0 and 5% noise
levels (Figure 2D, Wilcoxon rank sum test, p < 0.05, p-values
adjusted for multiple comparisons using the FDR procedure).
This tendency was similar to that reported previously by Shidara
and Richmond (2005). Figure 2E shows themedian reaction time
for each pattern.

Neuronal Responses to Match Stimuli
The 13 neurons in area TE showed selective responses to the
8 match stimuli in 0% noise level (Figure 3). Figure 4 shows
2 examples of neuronal responses to each match stimulus. The
neuron in Figure 4A showed the strongest response at pattern 5
in 0% noise level, and the response strength decreased at higher
noise levels. The neuron in Figure 4B showed stronger responses

FIGURE 6 | Two examples of accumulation of information carried by single neurons. (A,B) Accumulation curve of mutual information (calculated from the

same neuron as shown in Figures 4A,B, respectively). Horizontal axis shows the time from the onset of match stimulus. Vertical axis shows accumulated information

calculated from neuronal responses using the time window between 50 ms after the onset of match stimulus and the value of the horizontal axis. Black line indicates

the information accumulation curve of 0% noise level. Red, green, blue, aqua blue, and purple lines indicate those of 5, 10, 15, 20, and 25% noise levels, respectively.

Accumulation curves were smoothed by using simple moving average. (C,D) The time required to reach the arbitrary threshold of information (information latency)

against noise levels (black circle and line) and the median reaction times against noise levels (red circle and line). The neurons used in (C,D) corresponded to those in

(A,B), respectively. Horizontal axis shows noise level. Vertical axis shows information latency and the reaction time. In (C,D), the constant values (336 and 261 ms,

respectively) were added to the information latencies so that those at the 0% noise level matches with the reaction time at the 0% noise level.
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at specific patterns in various noise levels. 7/13 neurons showed
responses like those seen in Figure 4A, whereas the remaining 6
had their highest activities when there was visual noise. Figure 5
shows that the neuronal latency across neurons to the match
stimulus did not change significantly (Kruskal-Wallis rank sum
test, df = 5, p= 0.7267) as a function of noise level.

The Mutual Information to Discriminate
Patterns
To determine whether the information available for
discriminating among stimulus patterns was related to the
increase in the behavioral reaction times, we calculated how
the information carried by the spike counts grew over time.
Figures 6A,B shows the temporal dynamics of information after
the onset of match stimulus calculated from the neurons shown
in Figures 4A,B. For the neuron taken from Figure 4A, the rate
at which the information accumulated rose as a function of the
noise level, with information accumulating fastest at zero or 5%
noise (Figure 6A), whereas for the neuron taken from Figure 4B,
this was not the case.

Mutual information rose as a function of time for all 13
neurons for all noise levels. To examine the relationship between
the reaction times and the mutual information, we measured
the time necessary for the information carried by the neurons
to rise to an arbitrary threshold (information latency), using the
best fit between the behavioral reaction times and information
latency determined by least squares. As shown in Figures 6C,D,
the information latency and the reaction times did not match
for the neurons in Figure 4. However, when fit for the mutual
information averaged across all 13 neurons, the information
accumulating at a threshold of 0.084 bits across each noise level
seems to be similar to the behavioral reaction times. The time
to the threshold of 0.084 bits (the orange horizontal line in

Figure 7A) closely matched the behavioral reaction times, with
the behavioral reaction times delayed by 220ms (Figure 7B).

DISCUSSION

Here we have shown, as before, that in a classical delayed match-
to-sample task, monkeys will trade time to maintain accuracy
in identifying the match stimulus, when the match stimulus is
degraded by visual noise (Shidara and Richmond, 2005). The
amount of noise was capped at 25%. It appears that, at this level of
noise, the trade-off of time for information allows compensation,
that is, the monkeys’ error rates increased slightly as the noise
level increased although reaction time was more sensitive to the
noise. In our neuronal recordings, information about the identity
of the visual patterns rises more slowly over time when there
is more noise, seeming to show that the neuronal processing
integrates stimulus-specific information as time passes, even
though the amount of noise on the stimulus unchanged. Thus,
the processing acts as if information is progressively interpolated
across the noise. This happens even though the onset latency for
neuronal responses did not differ across noise levels, implying the
visual noise has an effect making it appear as if the visual noise
adds noise to the stimulus-elicited responses.

The average amount of information needed to reach the
decision threshold was 0.084 bits, with time to reach that
threshold being about 180ms (0 and 5% noise) to about 350
ms (25% noise) after the appearance of the match stimulus,
similar to earlier reports (Hung et al., 2005). The information
encoded by one neuron was not sufficient for explaining the
monkey’s behavior, i.e., the reaction times. Thus, the neuronal
population in area TE seems to generalize across stimulus
degradation in amanner that closely parallels themonkey’s ability
to recognize the stimulus. This result is consistent with the idea

FIGURE 7 | (A) The mutual information averaged across all the 13 neurons. (B) A comparison between the information latency for the averaged information (A) and

the median reaction times across the six noise levels. The same convention as in Figure 6 is used here, except that the orange horizontal line in (A) means the

information threshold of 0.084 bit and 220ms was added to the information latency. The dotted lines show mean ± SE.
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that pattern recognition is processed by neuronal populations
(Dicarlo et al., 2012). In addition, Afraz et al. (2006) showed
that after microstimulation on the face related area in monkey
inferior temporal cortex, the categorization behavior was strongly
biased, supporting a central role for the inferior temporal cortex
in pattern recognition.

Other recent work (Emadi and Esteky, 2013, 2014) is
consistent with our findings, although the results do not match
ours in detail. The neural activity they recorded showed increased
latencies as visual noise increased, both in a passive task and
an active category discrimination task, whereas the neurons we
recorded did not change their latencies, but rather showed slower
accumulation of stimulus selective information. A number of
factors might be responsible for this difference. Our analysis was
for single neuronal recordings whereas they recorded multiunit
activity; our measurement was information accumulation, which
might have different sensitivity to changes in neuronal firing;
and finally the tasks were different, ours being stimulus working
memory and identification with noise level of up to 25%,
theirs being active categorization with up to 60% noise level
without a working memory component. Nonetheless, all of the
studies support the hypothesis that neural activity in inferior

temporal cortex, specifically area TE for us, carries information
about stimulus identity that accumulates over time in such a
manner that it progressively overcomes the signal degradation
imposed by adding visual pixel noise, and that this accumulated
information is available for the monkey to monitor as the
information rises to a decision threshold.
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