SrTiO₃/TiO₂ composite electron transport layer for perovskite solar cells

Yuji Okamoto^a, Ryuta Fukui^b, Motoharu Fukazawa^b, and Yoshikazu Suzuki^{a,c*}

^a Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8573, Japan

^b Denka Innovation Center, Denka Co. Ltd., Tokyo 194-8560, Japan

^c Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8573, Japan

Abstract

Perovskite solar cells (PSCs) with SrTiO₃ mesoporous layer (MPL) generally show higher V_{OC} but lower J_{SC} than those with standard TiO₂-MPL. In this letter, we propose a new PSC with SrTiO₃/TiO₂ composite MPL to overcome this lower J_{SC} problem. The PSC with the SrTiO₃/TiO₂ composite MPL generated a comparable J_{SC} (19.3 mA/cm²) to that with the TiO₂-MPL, with keeping higher V_{OC} , which resulted in relatively high power conversion efficiency of 9.98 %.

Keywords: perovskite solar cells, SrTiO₃, composite mesoporous layer, electron transport layer

1. Introduction

Perovskite solar cells (PSCs) have attracted much attention due to the rapid increase of power conversion efficiency (PCE) from 3.8 % in 2009 [1] to 22.1 % in 2016 [2]. The PSCs are divided into two types by the structure of electron transport layer (ETL); one is mesoscopic type and the other is planer type. Although anatase TiO_2 is commonly used for the ETL of PSCs [3,4], other oxides, such as ZnO [5], SnO₂ [6] and Al₂O₃ [7], have also been studied as the ETL materials.

In dye-sensitized solar cells (DSCs), SrTiO₃ has recently been studied as an alternative ETL material [8–11]. Since it has a conduction band at ~ 0.2 eV higher position than that of anatase TiO₂, a band offset between SrTiO₃ and dyes is smaller than that of TiO₂, resulting in larger open circuit voltage (V_{OC}). We have reported that the SrTiO₃/TiO₂ composite mesoporous layer for the ETL of DSCs is effective to improve the performance by suppressing decrease of J_{SC} with relatively high V_{OC} [10].

In PSCs, similarly to DSCs, Bera et al. [12] reported that $SrTiO_3$ mesoporous layer (MPL) is effective to obtain larger V_{OC} than TiO_2 -MPL, but its J_{SC} was smaller. Wang et al. [13] succeeded to increase the J_{SC} with keeping the high V_{OC} by using the $SrTiO_3$ /conductive-graphene composite MPL, and they achieved relatively high PCE of 9.41%. Recently, we have reported $BaTiO_3/TiO_2$ mesoporous double layer in the ETL with enhanced photovoltaic performances [14]. Instead of using the double layer structure, in this letter, we propose the PSCs with $SrTiO_3/TiO_2$ composite

^{*} Corresponding Author

E-mail: suzuki@ims.tsukuba.ac.jp

Tel: +81-29-853-5026 / Fax: +81-29-853-4490

mesoporous layer (SrTiO₃/TiO₂-MPL). The PSC with SrTiO₃/TiO₂-MPL showed larger V_{OC} than that with TiO₂-MPL without the decrease of J_{SC} .

2. Experimental

2.1 TiO₂ compact layer

On the transparent conductive oxide glass (0052, Geomatec, 10 Ω /sq.), a TiO₂ compact layer was prepared by spin coating of 0.15 M titanium diisopropoxide bis(acetylacetonate) solution (Ti(acac)₂O^{*i*}Pr₂, 75 wt.% in isopropanol, Sigma Aldrich) in 1-butanol for 20 s at 2000 rpm, followed by annealing at 125°C for 5 min. Then, this process was repeated twice with 0.3 M Ti(acac)₂O^{*i*}Pr₂ solution. The coated substrates were annealed at 500°C for 30 min in air.

2.2 SrTiO₃/TiO₂-MPL and device preparation

TiO₂-dispersed SrTiO₃ sol (TDSTS, ST-B, prototype product, Denka Co.) was used for the preparation of SrTiO₃/TiO₂-MPL. Figure 1 shows the SEM image and XRD pattern of the dried powder from the TiO₂-dispersed SrTiO₃ sol. The SrTiO₃/TiO₂ composite powder (particle size of \sim 50–100 nm) was mainly composed of cubic SrTiO₃ with some anatase TiO₂ (\sim 5 vol.%).

The SrTiO₃/TiO₂ composite paste was prepared by mixing the TDSTS, ethyl cellulose (80 ~ 120 cps, Nacalai tesque) and ethanol with a hot stirrer at 120°C for 30 min, followed by an ultrasonication for 1 h. The SrTiO₃/TiO₂-MPL was prepared by spin-coating the prepared SrTiO₃/TiO₂ composite paste on the TiO₂ compact layer for 25 s at 4000 rpm and annealing at 500°C for 15 min. We controlled the thickness of SrTiO₃/TiO₂-MPL by changing the concentration of the paste. Then, the glass was placed in 40 mM of TiCl₄ solution in distilled water at 70°C for 30 min, rinsed with ethanol, and annealed at 500°C for 1 h. As a comparison, TiO₂-only MPL was also prepared with a commercial TiO₂ powder (particle size: ~30 nm, P-25, AEROSIL[®]), ethyl cellulose, α -terpineol (96.0 %, Alfa Aesar), lauric acid (>98.0 %, Tokyo chemical industry), and ethanol in the same manner as the SrTiO₃/TiO₂ composite paste.

The CH₃NH₃PbI₃ layer was prepared by a standard two-step method. A hole transport layer was

prepared by spin-coating a Spiro-OMeTAD-based solution, and finally, the Ag electrode was thermally evaporated. The details of preparation conditions are described in our previous study [14].

2.3 Characterization

The morphology of particles and cross sections of the prepared films were observed by scanning electron microscopy (SEM, SU-70, Hitachi and JSM-5600LV, JEOL). The SrTiO₃/TiO₂ composite powder was characterized by X-ray diffraction analysis (XRD, Multiflex, Cu-K_{α}, 40 kV and 40 mA, Rigaku). Optical transmittance of the CH₃NH₃PbI₃/mesoporous layer was measured by UV–Vis (UV3100PC, Shimadzu). Current density–voltage (*J*–*V*) characteristics were measured with a solar simulator (XES-40S1, SAN-EI Electric) calibrated to AM 1.5, 100 mW/cm² with a standard silicon photodiode (BS-520BK, Bunkokeiki). A black mask was used during the *J–V* measurement and the active area was 8.7 mm².

3. Results and discussion

Figures 2(a)–(c) show the cross sectional SEM images of prepared mesoporous layers. The thickness of TiO₂-MPL, SrTiO₃/TiO₂-MPL (thinner), SrTiO₃/TiO₂-MPL (thicker) were ~250 nm, ~200 nm, and ~300 nm, respectively. Compared with the TiO₂-MPL, the SrTiO₃/TiO₂-MPLs had somewhat laugh surface, which is attributable to some aggregated particles. Figures 2(d)–(f) show the cross sectional SEM images of prepared CH₃NH₃PbI₃ layers on (a)–(c). Although the total thickness of the CH₃NH₃PbI₃/MPL was almost same (~500 nm) for (d)–(f), the transmittance of (f) was much smaller than that of (d) and (e), as shown in Fig. 2(g), due to its thicker mesoporous layer.

Current density versus voltage (J-V) curves of back scan are shown in Fig. 3, and their parameters are listed in Table 1. These data are average of 3 batches of the solar cells. Here, we denote the solar cells with TiO₂-MPL (~250 nm), SrTiO₃/TiO₂-MPL (~200 nm) and

SrTiO₃/TiO₂-MPL (~300 nm) as "TiO₂ (~250 nm)", "SrTiO₃/TiO₂ (~200 nm)", and "SrTiO₃/TiO₂ (~300 nm)", respectively. The TiO₂ (~250 nm) and SrTiO₃/TiO₂ (~200 nm) showed similar J_{SC} , *FF* and conversion efficiency. The V_{OC} of SrTiO₃/TiO₂ (~200 nm) was higher than that of TiO₂ (~250 nm), which is attributable to a better band alignment of SrTiO₃ and CH₃NH₃PbI₃. The best performance of SrTiO₃/TiO₂ (~200 nm) was J_{SC} = 18.9 mA/cm², V_{OC} = 0.97 V, *FF* = 0.58 and η = 10.6 % as shown in Fig. S1 and Table S1.

When the thickness of the SrTiO₃/TiO₂-MPL increased from ~200 nm to ~300 nm, J_{SC} decreased from 19.3 mA/cm² for SrTiO₃/TiO₂ (~200 nm) to 18.5 mA/cm² for SrTiO₃/TiO₂ (~300 nm) in spite of its lower transmittance (Fig. 2(g)). Other parameters also decreased to $V_{OC} = 0.87$ V, FF = 0.49 and $\eta = 7.96$ % compared with the SrTiO₃/TiO₂ (~200 nm). Thicker mesoporous layer increases the distance of electron transportation, resulting in an increase of charge recombination. Moreover, the series resistances (R_s), which were calculated from inverse of the J-V curves around V_{OC} , significantly increased from 15.8 Ω for SrTiO₃/TiO₂ (~200 nm) to 28.8 Ω for SrTiO₃/TiO₂ (~300 nm). These factors must cause the lower performance with thicker mesoporous layer in SrTiO₃-MPL based PSCs.

The SrTiO₃-MPL based perovskite solar cells generally show lower J_{SC} (12~14 mA/cm²) than TiO₂-MPL due to its inefficient electron collection [12,13]. Furthermore, Bera et al. [12] reported that J_{SC} dramatically decreased by increasing the thickness of SrTiO₃-MPL from 13.37 mA/cm² for 200 nm to 7.95 mA/cm² for 350 nm. On the other hand, the solar cells in this study, a J_{SC} of SrTiO₃/TiO₂ (~200 nm) was comparable to that for TiO₂ and a decrease of J_{SC} by increasing the SrTiO₃/TiO₂-MPL thickness was much smaller in spite of using the similar particle size and MPL thickness to the reported study. These results indicate that the decrease of J_{SC} by using SrTiO₃ was suppressed in the SrTiO₃/TiO₂ composite cells.

Compared to the reported studies, we carried out dipping the solar cells in a TiCl₄ solution after preparation of SrTiO₃/TiO₂-MPL. We also prepared the solar cells which were dipped in the TiCl₄ solution before the preparation of SrTiO₃/TiO₂-MPL, and its average J_{SC} was 18.9 mA/cm². Therefore, the TiCl₄ treatment cannot be the main reason of the high J_{SC} for the SrTiO₃/TiO₂ (~200 nm). We have recently reported that a SrTiO₃/TiO₂-MPL showed higher J_{SC} than SrTiO₃ pure MPL in DSCs [11]. Considering these results, anatase TiO₂ included in the SrTiO₃/TiO₂ composite powder must be a key factor to improve the electron collection in SrTiO₃-MPL and to achieve high J_{SC} . Further improvement can be realized by optimizing the TiO₂ ratio and film thickness.

Table 1 The average J-V characteristics of back scan for TiO₂ (~250 nm), SrTiO₃/TiO₂ (~200 nm) and SrTiO₃/TiO₂ (~300 nm). The data are averages of the 3 batches.

Samples	$J_{\rm SC}~({\rm mA/cm^2})$	$V_{\rm OC}$ (V)	FF	η (%)	$R_{\rm s}\left(\Omega ight)$
TiO ₂ (~250 nm)	19.0	0.89	0.59	9.98	12.7
SrTiO ₃ /TiO ₂ (~200 nm)	19.3	0.93	0.56	9.98	15.8
SrTiO ₃ /TiO ₂ (~300 nm)	18.5	0.87	0.49	7.96	28.8

4. Conclusions

In this letter, we demonstrated the improvement of photovoltaic performances for the $SrTiO_3$ -MPL based perovskite solar cells by using $SrTiO_3/TiO_2$ composite powder included ~5 vol% of anatase TiO₂. The solar cells with the $SrTiO_3/TiO_2$ -MPL showed a higher J_{SC} of 19.3 mA/cm² than that of reported $SrTiO_3$ -MPL based solar cells with keeping a high V_{OC} . It is attributable to an improvement of electron collection in $SrTiO_3$ -MPL by the included anatase TiO_2 . As a result, we obtained a high PCE of 9.98 % as the $SrTiO_3$ -MPL based perovskite solar cells.

Acknowledgments

We thank to Prof. Tamotsu Koyano at University of Tsukuba for the use of SEM and Open Facility, Research Facility Center for Science and Technology, University of Tsukuba for the use of UV–Vis spectroscopy.

References

- [1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am.Chem. Soc. 2009; 131: 6050-1.
- [2] <u>Research cell efficiency records, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg,</u> (accessed August 2016).
- [3] Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M, Nature 2013; 499: 316–9.
- [4] <u>Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH,</u> <u>Moser JE, Grätzel M, Park NG. Sci. Rep. 2012; 2: 591.</u>
- [5] <u>Kumar MH, Yantara N, Dharani S, Grätzel M, Mhaisalkar S, Boix PP, Mathews N. Chem.</u> <u>Commun. 2013; 49: 11089–91.</u>
- [6] Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. J. Am. Chem. Soc. 2015; 137: 6730–3.
- [7] Lee MM, Teuscher J, Miyasaka T, Murakami N T, Snaith HJ. Science 2012; 338: 643-7.
- [8] Jayabal P, Sasirekha V, Mayandi J, Jeganathan K, Ramakrishnan V. J. Alloys Compounds 2014; 586: 456–61.
- [9] <u>Gholamrezaei S, Niasari MS, Dadkhah M, Sarkhosh B. J Mater Sci: Mater Electron 2016; 27:</u> 118–25.
- [10] Okamoto Y, Suzuki Y. J. Ceram. Soc. Jpn. 2014; 122: 728-31.
- [11] Okamoto Y, Suzuki Y. J. Ceram. Soc. Jpn. 2015; 123: 967-71.
- [12] Bera A, Wu K, Sheikh A, Alarousu E, Mohammed OF, Wu T. J. Phys. Chem. C 2014; 118: 28494–501.
- [13] Wang C, Tang Y, Hu Y, Huang L, Fu J, Jin J, Shi W, Wanga L, Yang W. RSC Adv. 2015; 5: 52041–7.
- [14] Okamoto Y, Suzuki Y. J. Phys. Chem. C 2016; 120: 13995-4000.

Figure Captions

Fig. 1 Dried powder from the TiO₂-dispersed SrTiO₃ sol: (a) SEM image and (b) XRD pattern. **Fig. 2** Cross sectional SEM images of (a) TiO₂-MPL (~250 nm), (b) SrTiO₃/TiO₂-MPL (~200 nm) from the composite paste (thinner concentration), (c) SrTiO₃/TiO₂-MPL (~300 nm) from the composite paste (thicker concentration), (d) CH₃NH₃PbI₃ layer on TiO₂-MPL (~250 nm), (e) CH₃NH₃PbI₃ layer on SrTiO₃/TiO₂-MPL (~200 nm), (f) CH₃NH₃PbI₃ layer on SrTiO₃/TiO₂-MPL (~300 nm); (g) Optical transmittance of the prepared CH₃NH₃PbI₃/mesoporous layers for (d)–(f). **Fig. 3** The average *J*–*V* curves of back scan for TiO₂ (~250 nm), SrTiO₃/TiO₂ (~200 nm) and SrTiO₃/TiO₂ (~300 nm). The data are average of the 3 batches.