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Abbreviations 

 

miRNA: microRNA 

OSCC: oral squamous cell carcinoma 

EMT: epithelial mesenchymal transition 

qRT-PCR: quantitative reverse transcriptase-polymerase chain reaction 

SOCS1: suppressor of cytokine signaling 1 

STAT3: signal transducer and activator of transcription 3 

SEER: the surveillance, epidemiology, and end results 

N-cadherin: neural cadherin 

FFPE: formalin-fixed, paraffin-embedded 

TNM: tumor-node-metastasis 

DMEM: Dulbecco’s modified eagle medium 

SNORD95: small nucleolar RNA, C/D box 95 

RNU6B: RNA, U6 small nuclear 2 

CT: comparative threshold 

E-cadherin: epithelial cadherin 

GAPDH: glyceraldehyde-3-phosphate dehydrogenase  

NC: negative control 

UTR: untranslated region 
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Abstract 

Background: Abnormal miRNA expression was recently implicated in the metastasis of 

oral squamous cell carcinoma (OSCC) with poor prognosis. The initiation of the 

invasion-metastases cascade involves epithelial-mesenchymal transition (EMT). The 

aim of the present study was to clarify if misexpression of miRNA, particularly 

miR-155-5p, contributes to OSCC metastasis through EMT.  

Methods: Tumor samples were collected from 73 subjects with OSCC. The transcripts 

were analyzed by quantitative reverse-transcription polymerase chain reaction 

(qRT-PCR), and correlations between miR-155-5p levels and clinical characteristics 

were investigated. OSCC cell lines were analyzed by miRNA microarray and by 

transfection with miR-155-5p mimics or inhibitors, followed by proliferation and 

wound-healing migration assays. qRT-PCR analyses of EMT makers in cells 

transfected with miR-155-5p inhibitor were performed. 

Results: High miR-155-5p expression was observed in tissue samples from subjects 

with OSCC that had metastasized to cervical lymph nodes. HSC-3 cells also strongly 

expressed miR-155-5p. The epithelial marker E-cadherin was strongly expressed in 

HSC-3 cells transfected with miR-155-5p inhibitor. In addition, there was a tendency of 

elevated SOCS1 and decreased STAT3 expression in those cells.  

Conclusion: The results suggest that miR-155-5p causes OSCC to metastasize, and 

miR-155-5p inhibitor may function as an EMT suppressor. 
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Introduction 

Oral cancer accounts for 1-5% of all malignant tumors in humans (1, 2), and 

oral squamous cell carcinoma (OSCC) comprises approximately 91% of all oral cancers 

(1). Despite advances in OSCC diagnosis and management, the Surveillance, 

Epidemiology, and End Results (SEER) data for 2011 show that the 5-year overall 

survival rate of patients with oral cavity and pharyngeal cancer has not significantly 

improved in the past decade (61.8%, 2002; 62.7%, 2011)(2). Therefore, we needed 

more effective methods for the diagnoses and managing OSCC. Metastases strongly 

decrease the likelihood of a favorable outcome for cancer. (3, 4) 

MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-22 

nucleotides which function in RNA silencing and post-transcriptional regulation of gene 

expression. (5, 6) As miRNA is involved in the normal functioning of cells, the 

abnormal expression of miRNAs has been implicated in numerous disease states by 

suppressing the translation of the target gene's mRNA (7-13), and miRNA-based 

therapies are under investigation. (14-17) Many miRNAs have subsequently been found 

to have links with various types of cancer. (18) OSCC-specific miRNAs have been 

identified (19-21), including miR-155. (22) Although altered miR-155 expression in 

OSCC cells is known to alter OSCC cell behavior (23-25), its role in OSCC is not clear.  

miRNAs are initially transcribed from their own genes or introns as several 

hundred nucleotides long RNAs named a primary miRNAs (pri-miRNAs), which 

contain about 80 nucleotide RNA hairpin loop. (26, 27) A single pri-miRNA may 

contain from one to six hairpin loop structures. RNase III, known as Drosha, cleaves 
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RNA into about eleven nucleotides from the hairpin base to liberate these hairpins from 

pri-miRNAs. (28, 29) The resulting product is often named as a precursor-miRNA 

(pre-miRNA). Exportin-5, the neucleocytoplasmic shuttler, exports pre-miRNA hairpins 

out of the nucleus. (30) In the cytoplasm, the RNase III enzyme Dicer cleaves the 

pre-miRNA hairpin (31) by interacting with 5’ and 3’ ends of the hairpin (32) and cuts 

away the loop joining the 3’ and 5’ arms, yielding an about 22 nucleotides length 

miRNA duplex named a mature miRNA. (31) The mature miRNA is a part of an active 

RNA-induced silencing complex (RISC), where the miRNA and its mRNA target 

interact, containing Dicer and many associated proteins (33) including Members of the 

Argonaute (Ago) protein. Ago protein family is central in RISC function. Argonautes 

are need for miRNA-induced silencing and contain two conserved RNA binding 

domains. They bind the mature miRNA and orient it for interaction with a target mRNA. 

RISC with incorporated miRNA is referred as “miRISC.” Although each strand of the 

duplex may potentially act as a functional miRNA, only one strand selected on the basis 

of its thermodynamic instability and weaker base pairing relative to the other strand is 

incorporated into the miRISC. (34-36) The position of the stem-loop may also influence 

the strand choice. (37) The other strand, named the passenger strand, is normally 

degraded due to its low expression level in the steady state.  

One miRNA is complementary to a part of one or more mRNAs for the 

purpose of the function of miRNA in gene repression. miRNAs often have only partly 

the right complementary sequence of nucleotides in the 3’UTR to bond with the target 

mRNA. As a result, these mRNA molecules are silenced by one or more of cleavage of 
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the mRNA strand, leading to destabilization of the mRNA through shortening of its 

poly A tail, and less efficient translation of the mRNA into proteins by ribosomes. 

(38-40) But translational repression is accomplished through whether mRNA 

degradation, the translational inhibition or combination of both processes is still unclear. 

Partially complementary miRNAs recognize their targets. Although, 6-8 nucleotides of 

5’ end of the miRNA, named seed region, have to be perfectly complementary. (41-44) 

miRNAs that are partially complementary to a target can also increase deadenylation, 

causing mRNAs rapid degrading. (45)  

The human genome is considered to encode over 2000 miRNAs (46-49) and 

appear to target about 30-60% of all human genes. (41,50) Estimates of the average 

number of unique mRNAs that are targets for repression by a typical miRNA vary, 

depending on the method used to make the estimate, (51) but a given miRNA may have 

hundreds of different mRNA targets, and a given target might be regulated by multiple 

miRNAs. (52-56) Hence, miRNA research has revealed multiple roles of miRNAs in 

many other biological processes.  

miRNA expression can be quantified in a two-step polymerase chain reaction 

process of modified RT-PCR followed by quantitative PCR. miRNAs can also be 

hybridized to microarrays, slides or chips with probes to hundreds or thousands of 

miRNA targets, so that relative levels of miRNAs can be determined in different 

samples. (57)  

miRNA mimics and inhibitors are used as analysis tools of miRNA function. 

(58-60) miRNA mimics and inhibitors provide means to study the function of specific 
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miRNAs in a range of organisms, and to validate their role in regulating targeting genes. 

miRNA mimics are small, chemically modified double-stranded RNA molecules that 

are designed to mimic endogenous mature miRNAs, resulting in artificial 

down-regulation of target mRNA translation and accompanied, in some cases, by 

reduction in transcript levels. (61) Like natural miRNAs, these mimics have two mature 

strands, one of which is functional and used by the Ago protein to target mRNA. 

miRNA inhibitors are chemically modified, single-stranded oligonucleotides designed 

to specifically bind to and inhibit endogenous miRNAs, resulting in artificial 

up-regulation of target mRNA translation. (62) The function of miRNA inhibitor is 

application of the antisense method using antisense nucleic acid. The antisense method 

is a method to inhibit or downergulate the target RNA by using antisense RNA 

molecules. (63, 64) Thus, it is possible to identify miRNA function in cells by specific 

strong inhibition of the target miRNA. (65, 66) These short RNA molecules are 

expected to be used as treatment agents for such human diseases as cancer. 

Before cells in the primary tumor can metastasize, they must undergo 

invasion via epithelial-mesenchymal transition (EMT). EMT is a process by which 

epithelial cells in primary tumor change into mesenchymal cells; i.e., they lose cell 

polarity and cell-cell adhesion mediated by E-cadherin repression, and break free of 

neighboring cells, thereby acquiring the ability to metastasize via vascular invasion. 

When these circulating tumor cells exit the vessels to form micrometastases, they 

undergo mesenchymal-epithelial transition (MET) for outgrowth at the metastatic sites; 

e.g., in the cervical lymph nodes in case of OSCC. Thus, EMT, and its reverse process, 
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MET, form the initiation and completion of the invasion-metastasis cascade. (67, 68) 

EMT and MET bring not only phenotypic but also functional changes to the 

cells. Epithelial cells are closely connected to each other by tight, gap and adherens 

junctions, have apico-basal polarity, polarization of the actin cytoskeleton and are 

bound to the basal membrane with their basal surface. On the other hand, mesenchymal 

cells lack such polarization, have a spindle-shaped morphology and interact with each 

other only through focal points. (69) Epithelial cells express high levels of epithelial 

biomarkers, E-cadherin, whereas mesenchymal cells express those of mesenchymal 

biomarkers, including vimentin and neural cadherin (N-cadherin), the latter is also 

known as cadherin-2. (70) E-cadherin is commonly found in epithelial tissues and plays 

a crucial role in cell-cell adhesion, forming the above-mentioned junctions to bind cells 

within tissues together. Vimentin is a primary cytoskeletal component of 

mesenchyme-derived cells or cells undergoing EMT. N-cadherin is commonly found in 

cancer cells; it frees cancer cells to metastasize by causing the failure of cell-cell 

adhesion. (71) Therefore, loss of E-cadherin is considered to be an essential event in 

EMT. EMT inducing transcription factors (EMT-TFs) that can repress E-cadherin 

directly or indirectly are previously identified. Snail, Slug, Zeb1 and Zeb2 can repress 

E-cadherin directly by binding E-cadherin promoter and repress its transcription, 

whereas factors such as Twist repress E-cadherin indirectly. (72, 73) Since EMT occurs 

during cancer progression, many of the EMT-TFs are thought to be involved in 

development of metastases. On the other hand, a recent study also showed that some 

miRNAs contribute to EMT. (74-76) 
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Suppressor of cytokine signaling 1 (SOCS1) is recently identified as a novel 

miR-155 target in several cancer cells. (77, 78) SOCS1 is a protein that is encoded by 

the SOCS1 gene in humans (79, 80). It is a tumor suppressor that functions as a 

negative feedback regulator of Janus activated kinase (JAK)/signal transducer and 

activator of transcription (STAT) signaling. SOCS genes, also known as SOCS family,  

encode a member of the STAT-induced STAT inhibitor (SSI). SSI family members are 

cytokine-inducible negative regulators of cytokine signaling. The protein encoded by 

this gene functions downstream of cytokine receptors, and takes part in a negative 

feedback loop to attenuate cytokine signaling. Signal transducer and activator of 

transcription 3 (STAT3) is a transcription factor that is encoded by the STAT3 gene in 

humans. (81) Constitutive STAT3 activation is associated with various human cancers 

and commonly suggests poor prognosis. (82-85) The STAT protein regulates many 

aspects of growth, survival and differentiation in cells. The transcription factors of this 

family are activated by JAK. (86) In addition, STAT3 is described to modulate the 

expression of EMT transcriptional factors, including Twist, Snail, Zeb1, Zeb2, and Slug. 

(87, 88) 

In this study, I, with colleagues found that miR-155-5p was significantly 

upregulated both in OSCC cell lines and in formalin-fixed, paraffin-embedded (FFPE) 

tissue samples from patients with OSCC metastases to cervical lymph nodes, which is 

associated with a poor prognosis. I, with colleagues also found that HSC-3 cells 

expressed increased levels of E-cadherin and decreased levels of N-cadherin and 

vimentin mRNAs when transfected with an miR-155-5p inhibitor. Furthermore, there 
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was trend that SOCS1 was upregulated and STAT3 was downregulated in HSC-3 cells 

transfected with the miR-155-5p inhibitor.  

My results showed that miR-155-5p expression correlated significantly with 

metastasis to the cervical lymph nodes in OSCC and with a poor prognosis. My findings 

also suggest that miR-155-5p would be a potential novel target for the prevention of 

OSCC metastasis. 
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Materials and methods 

Clinical samples 

The study included 73 patients with OSCC and five patients who did not have cancer. 

All subjects visited the University of Tsukuba Hospital for the first time between 

February 2008 and November 2010, and tissue samples were collected on each subject's 

first visit, before administering treatment. Patients with oral cancers other than OSCC 

were excluded from this study. Samples of oral tumors were collected as part of a 

biopsy procedure. Thirty-four samples were from the tongue, 25 from the gingiva, seven 

from the cheek, four from the floor of the mouth, and three from the soft palate. Five 

patients without OSCC who had an impacted wisdom tooth volunteered to provide an 

oral biopsy sample for this study. All control samples were from the gingiva around the 

wisdom tooth. The samples were prepared for FFPE histology using standard 

procedures. OSCC was diagnosed and classified based on the Tumor-Node-Metastasis 

(TNM) system of Unio Internationalis Contra Cancrum. All cases were diagnosed 

histologically and clinically, as confirmed by pathologists. The median follow-up period 

was 24 months (range, 3–50 months).  

Table 1 shows the clinical characteristics of subjects with OSCC. Follow-up 

data were obtained from each patient's medical chart. Disease-free survival time was 

calculated from the date of the patient's first visit to a final time point of 60 months, 

when the overall survival rate was poor.   

This study was reviewed and approved by the Ethics Committee University of 

Tsukuba Hospital (No.215). All patients gave informed written consent prior to 
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enrollment. 

 

Cell lines, reagents, and cultures 

HaCaT and HSC-3 cell lines were obtained from the Japanese Collection of Research 

Bioresources. HSC-3 is a human oral squamous carcinoma cell line with high metastatic 

potential. Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum (Nichirei Bioscience, Tokyo, Japan) and 1% 

penicillin-streptomycin at 37°C in a humidified atmosphere of 5% CO2 and 95% air. 

HaCaT cells, an immortalized human keratinocyte line, were used as a control. 

 

TaqMan-based quantitative reverse-transcription polymerase chain reaction 

(qRT-PCR) assays of miRNA expression 

Mature miRNA expression levels were analyzed by TaqMan miRNA assay. 

Total RNA was extracted with the miRNeasy Mini Kit (Qiagen, Venlo, Limburg, 

Netherlands) for cell lines and the miRNeasy FFPE Kit (Qiagen). Total RNA was then 

reverse-transcribed into complementary DNA using a TaqMan MicroRNA 

Reverse-Transcription Kit (Applied Biosystems, Foster city, CA). The miR-155-5p 

level in the HSC-3 cell line was compared with the level in HaCaT cells. PCR reactions 

were first incubated at 16°C for 30 min and then at 42°C for 30 min, followed by 

inactivation at 85°C for 5 min. For the miRNA microarray analysis, reactions were then 

incubated in an miRNA PCR array platform (Human Cancer Pathway Finder miScript 

miRNA PCR array, MIHS-102Z, Qiagen), and other samples were incubated in a 
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384-well plate at 50°C for 2 min and at 95°C for 10 min, followed by 40 cycles of 95°C 

for 15 s and 60°C for 1 min, using the 7500 Fast Real-Time PCR System (Applied 

Biosystems) for MIHS-102Z, and the CFX384 Real-Time System (Bio-Rad 

Laboratories, Pleasanton, CA, USA) for 384-well plates. Relative miRNA expression 

was normalized against SNORD95 in the miRNA microarrays, and other samples were 

normalized against RNU-6B. Relative expression was calculated by the comparative 

threshold (CT) method. All experiments were performed at least in quintuplicate.  

 

TaqMan-based qRT-PCR assays of mRNA expression 

The qRT-PCR primers for E-cadherin, N-cadherin, and vimentin mRNA were as 

described previously (89-91): E-cadherin, 5’-TGCCCAGAAAATGAAAAAGG-3’ 

(forward) and 5’-GTGTATGTGGCAATGCGTTC-3’ (reverse); N-cadherin, 

5’-ACAGTGGCCACCTACAAAGG-3’ (forward) and 

5’-CCGAGATGGGGTTGATAATG-3’ (reverse); vimentin, 

5’-GAGTCCACTGAGTACCGGAGAC-3’ (forward) and 

5’-TGTAGGTGGCAATCTCAATGTC-3’ (reverse); SOCS1, 5′-GAGGGAGC 

GGATGGGTGTA-3′ (forward) and 5′-GAGGTAGGAGGT GCGAGTTCAG-3′ 

(reverse); and STAT3, 5′-CCAAGGAGGAGG CATTCG-3′ (forward) and 

5′-ACATCGGCAGGTCAATGG-3′ (reverse). Total RNA was extracted with the 

RNeasy Mini Kit (Qiagen) and then reverse-transcribed into complementary DNA using 

a PrimeScript RT Reagent Kit (TaKaRa, Shiga, Japan). PCR reactions were first 

incubated at 16°C for 30 min and then at 42°C for 30 min followed by inactivation at 
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85°C for 5 min. Reactions were then incubated in a 384-well plate at 95°C for 20 s, 

followed by 40 cycles of 95°C for 3 s and 60°C for 30 s using the CFX384 Real-Time 

system (Bio-Rad Laboratories). Relative mRNA expression was normalized against 

GAPDH. Relative expression was calculated by the CT method. All experiments were 

performed at least in quintuplicate. 

 

Transfection with miR-155-5p mimic or inhibitor  

Cells were transfected with miR-155-5p mimic or inhibitor or with scrambled negative 

control (NC; Ambion, Austin, TX, USA) using Lipofectamine RNAiMAX (Invitrogen, 

Carlsbad, CA, USA). Twenty-four hours after the beginning of the transfection, I, with 

colleagues isolated RNA and assayed cell proliferation and wound-healing migration. 

 

Cell-proliferation assay 

HSC-3 cells were seeded in triplicate 6-well plates with 3 ml of cell suspension per well 

(total 2.5 × 105 cells/well) and incubated for 24 h to allow attachment. The cells were 

transfected with miR-155-5p mimic or inhibitor or with NC, and were counted 24 and 

48 h after transfection using a TC10 (Bio-Rad) automated cell counter. 

 

Wound-healing migration assay 

HSC-3 cells were seeded in 6-well plates with 3 ml of cell suspension per well (total 2.5 

× 105 cells/well), cultured until approximately 80% confluent, and then transfected with 

miR-155-5p mimic or inhibitor or with NC. Twenty-four hours later, the cells were 
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washed twice with phosphate-buffered saline, starved by incubation in serum-free 

medium for 24 h, and then a wound was simulated with a straight scratch using a 200-µl 

pipette tip. The cells' migratory ability was measured by photographing the wound area 

every 3 h and quantifying it by ImageJ software (U. S. National Institutes of Health). 

(92, 93) All experiments were performed at least in duplicate. 

 

Statistical analysis 

Data from the OSCC cell line were compared by the Student’s t-test. Data from the 

FFPE tissue samples were compared by the Mann-Whitney U-test. Data from the 

Student’s t-test are presented as the mean + standard deviation, and data from the 

Mann-Whitney U-test are presented as boxplots. Data from cervical lymph-node 

metastasis and disease-free survival data were analyzed by the chi-square test. Survival 

data were analyzed by Kaplan-Meier survival analysis; Kaplan-Meier curves were 

compared using the log-rank test. In chi-square tests and the Kaplan-Meier survival 

analysis, the miR-155-5p expression level was classified as high or low by normalizing 

miR-155-5p expression to that of normal tissue (expression of miR-155-5p in normal 

tissue = 1, high > 1, low < 1). Data from FFPE tissue samples and patients’ clinical 

characteristics, including treatments for OSCC, were used for multivariate analysis of 

prognostic variables by Cox regression analysis. Metastasis to cervical lymph nodes 

was excluded from the multivariate analysis because of its obvious contribution to a 

poor prognosis. A two-tailed P value <0.05 was considered to be statistically significant. 

All statistical analyses were performed using JMP for Macintosh version 11 (SAS 
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institute).  
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Results 

High miR-155-5p expression was associated with poor overall survival in OSCC 

patients 

To determine the clinical significance of miR-155-5p expression, tissue samples from 

patients with OSCC and those without cancer were collected, prepared for FFPE, and 

analyzed by qRT-PCR. The miR-155-5p levels were then compared with patients’ 

clinical characteristics, to look for significant correlations (n=73; Table 1) after 

confirmation that there were no statistically significant differences in expression of 

miR-155-5p between each site. Mann-Whitney U and chi-square tests showed that high 

miR-155-5p expression was positively correlated with cervical lymph-node metastasis 

in OSCC patients (Fig. 1a, b). Kaplan-Meier survival analysis of miR-155-5p 

expression and OSCC recurrence or metastasis showed a significant correlation between 

high miR-155-5p expression and a poor disease-free survival rate (P = 0.017, Fig. 1c). 

In addition, multivariate analysis of prognostic variables in OSCC patients identified 

miR-155-5p expression as the specific factor leading to a poor OSCC prognosis (P = 

0.023, Table 2).  

 

miR-155-5p was upregulated in OSCC cells 

To determine which miRNAs are differentially expressed in HSC-3 cells, I, with 

colleagues analyzed 84 miRNAs by microarray, using the Human Pathway Finder 

miRNA PCR Array: MIHS-102Z (Fig. 2a-c). I, with colleagues found that miR-146a-5p, 

miR-10b, miR-155-5p, and miR10a-5p were upregulated more than 4-fold in HSC-3 
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cells. Conversely, 38 miRNAs were downregulated, albeit less than 4-fold (Fig. 2b). 

Furthermore, the expression of miR-155-5p was 8.04-fold higher in the HSC-3 cells 

than in the HaCaT cells (Fig. 2c). 

 

Effect of miR-155-5p mimic or inhibitor on OSCC-cell proliferation and migration 

I, with colleagues investigated correlations between miR-155-5p and the ability of 

HSC-3 cells to proliferate and migrate by assaying cell proliferation and wound-healing 

migration in cells transfected with an miR-155-5p mimic or inhibitor. I, with colleagues 

first confirmed that transfection was successful by performing qRT-PCR for 

miR-155-5p. Proliferation did not differ markedly between HSC-3 cells transfected with 

the miR-155-5p mimic or the inhibitor (Fig. 3a). Furthermore, although there was no 

statistically significant difference, the migratory ability of HSC-3 cells tended to 

increase by the miR-155-5p mimic and to decrease by the miR-155-5p inhibitor (Fig. 

3b). Together, my data suggest that miR-155-5p may affect the ability of HSC-3 cells to 

migrate rather than their ability to proliferate. 

 

Effect of miR-155-5p on E-cadherin, N-cadherin, and vimentin mRNA expression 

To investigate correlations between miR-155-5p and the mRNA of genes related to 

epithelial or mesenchymal properties, I, with colleagues analyzed E-cadherin, 

N-cadherin, and vimentin in HSC-3 cells transfected with miR-155-5p inhibitor. 

E-cadherin was significantly upregulated in HSC-3 cells transfected with the 

miR-155-5p inhibitor (Fig. 4a). In contrast, N-cadherin and vimentin tended to be 
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downregulated in HSC-3 cells transfected with the miR-155-5p inhibitor (Fig. 4a).  

 

miR-155-5p inhibitor suppressed the STAT3 signaling pathway through SOCS1 

To identify the biological mechanism by which miR-155-5p inhibitor mediates the 

upregulation of E-cadherin and the downregulation of N-cadherin and vimentin, I, with 

colleagues used qRT-PCR to analyze SOCS1 and STAT3 in HSC-3 cells transfected 

with miR-155-5p inhibitor. I, with colleagues found trends for SOCS1 to be upregulated 

and STAT3 to be downregulated (Fig. 4b).  
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Discussion 

The most fatal characteristics of oral squamous cell carcinoma is its potential 

for metastasis. When removing a primary OSCC tumor, surgeons may also remove 

nearby lymph tissue—especially cervical lymph nodes, as these are frequently the first 

metastasis sites. Once OSCC metastasizes to the lymph system, the likelihood of a 

favorable outcome decreases significantly. (3, 4) My study suggests that miR-155-5p 

induces metastasis to the lymph nodes, which leads to a poor prognosis. Thus, 

miR-155-5p might be a useful prognostic biomarker and an important therapeutic target 

for OSCC.  

High levels of miR-155-5p were significantly associated with a poor 

prognosis, metastasis to cervical lymph nodes, and poor overall survival. Multivariate 

analysis confirmed that this association of miR-155-5p with a poor prognosis for OSCC 

was not influenced by other prognostic variables such as treatment, pTNM stage, or age. 

Therefore, miR-155-5p merits consideration as a potential prognostic biomarker.      

Analysis by miRNA microarray confirmed that the miR-155-5p levels were 

high in OSCC cell lines compared with HaCaT cells. The roles of miR-155 upregulation 

and EMT in metastasis have been investigated in several cancers. (94, 95) I, with 

colleagues hypothesized that miR-155-5p also plays a crucial role in OSCC metastasis 

through EMT and could serve as a novel target for OSCC treatment. To investigate 

miR-155-5p's effect on OSCC cell proliferation, migration, and expression of 

EMT-related mRNAs, I, with colleagues conducted a series of loss- and 

gain-of-function assays with an miR-155-5p mimic or inhibitor. My data showed that 
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increased miR-155-5p function caused trends toward enhanced OSCC-cell migration 

rather than enhanced proliferation. 

Recently, miRNAs have been found in serum, plasma, saliva, and other body 

fluids. In addition, circulating extracellular vesicles, such as exosomes, containing 

miRNA are significantly associated with treatment resistance, metastatic properties, and 

a poor prognosis. (96-98) These findings suggest that the effect of miRNAs is not 

limited to the cancer cell itself, but that miRNAs can influence the behavior of both 

neighboring and distant cells. In other words, miRNAs exert not only autocrine effects, 

but also paracrine or endocrine effects. The miRNAs contained in exosomes influence 

the microenvironment of cells in the stroma of the neoplasm, including endothelial cells 

and fibroblasts, permitting them to begin migrating and invading other tissues (96). This 

mechanism may explain why the changes in the HSC-3 cells’ migration were not 

statistically significant, even though a clear relationship between metastasis and the 

expression of miR-155-5p was shown in clinical samples.   

In HSC-3 cells transfected with miR-155-5p inhibitor, the epithelial marker 

E-cadherin was upregulated while the mesenchymal markers N-cadherin and vimentin 

decreased. During EMT, epithelial makers are progressively lost as mesenchymal 

markers increase, and the cells develop a mesenchymal phenotype. (70) However, one 

fundamental function of miRNA is to silence mRNAs by cleaving their target mRNA 

strand or by decreasing the efficiency of its translation into protein. Thus, I, with 

colleagues hypothesized that miR-155-5p induced EMT by inhibiting an unknown 

biological mechanism. This would explain the high levels of epithelial-related mRNAs 
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in HSC-3 cells transfected with miR-155-5p inhibitor and the high miR-155-5p levels in 

both the HSC-3 cell line and the FFPE tissue samples. This would also support the 

potential for developing a novel OSCC therapeutic agent based on miR-155-5p 

function.  

A recent study reported a STAT3-mediated association between miR-155 and 

EMT that leads to invasion and metastases. (91) In head and neck squamous cell 

carcinoma, previous study reported SOCS1 regulates STAT3 activation in cell line and 

tissue samples (99) and STAT3 alternation correlates with poor prognosis (100, 101) 

and is considered to be a novel therapeutic target. (102)  

Expression of E-cadherin mRNA was upregulated in HSC-3 cells transfected 

with miR-155-5p inhibitor (Fig. 4a), and significant contribution of miR-155-5p 

inhibitor to EMT inhibition was confirmed. Abundant expression of SOCS1 and STAT3 

mRNAs was also confirmed in HSC-3 cells. The SOCS1 and STAT3 levels showed 

tendencies to be up- and down- regulated, respectively, by the transfection with 

miR-155-5p inhibitor, although the changes were not statistically significant (Fig. 5). 

miR-155-5p inhibitor may function as an EMT suppressor that increases SOCS1 

expression and suppresses STAT3 signaling as previously described (77, 87). Thus, it is 

strongly suggested that miR-155-5p inhibitor causes inhibition of EMT, which could be 

mediated by the SOCS1-STAT3 signaling cascade. Further studies are needed to clarify 

the mechanisms how miR-155-5p inhibitor leads to EMT inhibition. 

Since, high correlation of miRNA expression and carcinogenesis is observed, 

the development of nucleic acid medicine for variety of human diseases like cancer 
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have been carried out. Recently, reducing expression level of the oncomiR has attracted 

attention as one of the developing therapeutic agents of human diseases including 

cancer. (103-106) In addition, use of the disease signature miRNAs has been 

increasingly investigated in clinical trials in several countries. (107)   

Taken together, my findings indicate that the induction of metastasis and the 

poor prognosis associated with high miR-155-5p expression may be a direct result of 

EMT. Although my results indicate that miR-155-5p merits consideration as a 

prognostic biomarker and a treatment target, the details of the mechanism by which 

miR-155-5p exerts its effects remain obscure. Furthermore, I, with colleagues have 

evaluated the function of miRNA only at the miRNA and mRNA levels, and since the 

no significant differences for N-cadherin, Vimentin, STAT3 and SOCS1 mRNA, it is 

only speculations that miR155-5p contributes to EMT through STAT3 signaling 

pathway via SOCS1 in HSC-3 cell. Further studies of OSCC, specifically focusing on 

mRNA translation to protein, will be necessary to determine the mechanism underlying 

miR-155-5p’s association with poor prognosis in more detail. Additionally, Only 73 

OSCC specimens from five different sites were included to this study. Although there 

was no statistically significant difference in miR-155-5p expression between each 

biopsy site, some factors may affect my results depending on which site in the oral 

cavity the biopsy is taken. Larger number of patients and comparison of each biopsy site 

may improve the study quality. 
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Figures and tables  

Table 1 Clinical characteristics of patients with oral squamous cell carcinoma
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Figure 1 Association of high miR-155-p expression with oral squamous cell carcinoma 

(OSCC) metastasis to neck lymph nodes and poor prognosis for OSCC 

 

(a) High miR-155-5p levels are found in tissue samples from OSCC patients with 

metastasis to neck lymph nodes (*P = 0.045). (b) miR-155-5p levels in formalin-fixed, 

paraffin-embedded (FFPE) tissue samples from patients with OSCC correlate with 

metastasis to neck lymph nodes. Significance of correlation between miR-155-5p 

expression in FFPE tissue samples and the clinical index (presence or absence of 

metastasis) are determined by chi-square test (P = 0.040). (c) Kaplan-Meier survival 

analysis support the correlation between a poor disease-free survival rate for OSCC 

patients and high miR-155-5p expression (P = 0.017).  
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Table 2 Cox-regression multivariate analysis of prognostic variables in oral squamous 

cell carcinoma patients
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Figure 2 miR-155-5p expression in HSC-3 cells

 

miRNA microarray analysis of 84 miRNAs that are expressed differently in HSC-3 vs. 

HaCaT cells. (a) miR-155-5p express more strongly in HSC-3 cells than HaCaT cells 

(black arrow). Clustergram generated from miRNA microarray data of HaCaT and 

HSC-3 cells. Red: high expression; green: low expression; levels are continuously 

mapped on the color scale at the bottom of the figure. (b) miR-155-5p expression is 

8.04-fold higher in HSC-3 cells than HaCaT cells. Scatterplot generated from miRNA 

microarray data from HaCaT and HSC-3 cells. (c) miR-155-5p expression is 

significantly higher in HSC-3 cells than HaCaT cells (*P = 0.026 x10-4).    
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Figure 3 Effect of miR-155-5p regulation on the proliferation and migration of HSC-3 

cells

 

(a) Proliferation assay of HSC-3 cells transfected with an miR-155-5p mimic or 

inhibitor. There are no significant differences in HSC-3 cell proliferation in either 

condition. (b) Wound-healing migration assay of HSC-3 cells. HSC-3 cells’ migration 

is increased by transfection with an miR-155-5p mimic and decreased by transfection 

with an miR-155-5p inhibitor, but the difference is not statistically significant.  
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Figure 4 Effect of miR-155-5p inhibitor on the expression of epithelial-mesenchymal 

transition related mRNA

 

(a) E-cadherin expression is significantly increased in HSC-3 cells transfected with an 

miR-155-5p inhibitor (*P = 0.041). HSC-3 cells transfected with an miR-155-5p 

inhibitor shows trends toward decreased N-cadherin and vimentin expression. (b) 

Suppressor of cytokine signaling 1 expression tend to be upregulated in HSC-3 cells 

after transfection with the miR-155-5p inhibitor, while STAT3 expression tend to be 

downregulated. 
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Figure 5 Suppressor of cytokine signaling 1 (SOCS1) is a potential target of 

miR-155-5p. miR-155-5p is associated with epithelial-mesenchymal transition (EMT) 

through STAT3-signaling modulation via SOCS1

 

(a) The seed region of miR-155-5p shows good complementarity to the SOCS1 3’UTR. 

(b) miR-155-5p induces EMT by upregulating STAT3 via SOCS1 downregulation. 
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